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Thin elastic plates: On the core of developable cones
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Abstract. – Large deformations of thin elastic plates lead generally to the focusing of defor-
mations around almost singular structures which are either linear (curved and straight ridges)
or point-like (developable cones), as can be observed for crumpled paper. An experiment has
been devised to study the core of a developable cone. An initially bent plate is loaded at its
center. It is either drilled with two holes or made of metal. The experimental results are used
to measure the energy of the core for both elastic and plastic deformations. It is shown that
the behaviour of a plate when plastic deformations occur, as in practical applications, can be
deduced from its behaviour when deformations are perfectly elastic. This result demonstrates
that studies on large deformations of perfectly elastic plates may be used for applications.

Introduction. – Thin elastic structures are of huge practical and industrial importance.
Examples range from cans to planes, including all sorts of containers, ships, rockets, . . . . This
importance has motivated a large number of studies on the stability of these structures (see [1]
for the case of cylinders): if they are constrained, they loose their shape (they buckle) at a crit-
ical force. Of course, one would like to increase this buckling threshold for applications. The
buckling of thin plates has also been investigated as a model for pattern formation [2]. Micro-
scopic membranes such as polymer networks [3], solid Langmuir monolayers [4] or actin-coated
membranes [5] buckle when compressed. These sheets are similar to biological membranes such
as blood red-cell membranes [6]. This similarity has stimulated many theoretical works on mi-
croscopic membranes [7]. At small scales, thermal fluctuations are important: sheets are flat at
low temperature and collapsed at high temperature. An intermediate crumpled phase has been
predicted, but its observation is controversial [8]. Most theoretical macroscopic studies (see [1])
have been devoted to small deformations, as the complete equations are complicated. Large
deformations of thin elastic plates are described by the Föppl-von Kármán equations [9], which
are two fourth-order nonlinear coupled partial differential equations. Thus, analytical as well
as numerical [10,11] resolutions are difficult. However, the existence of a small parameter, the
ratio of the thickness h to a typical length R of the plate, allows asymptotic analysis. This field
has grown recently and has aroused many experimental works [12–24]. When a thin plate is
strongly constrained, deformations focus along almost singular lines (edges called ridges) which
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meet in points (vertices called developable cones), as is easily observed with crumpled paper.
In this letter, we are concerned with point-like singularities. As far as we are aware, we give the
first measurement and modeling of their core energy for both elastic and plastic deformations.

Thin elastic plates have two modes of deformation, bending and stretching; their typical
elastic energies are, respectively, [9] Eb ∼ Eh3Z2/R2 and Es ∼ EhZ4/R2, for a transverse
displacement of magnitude Z, E being the elastic modulus of the material, h the plate thick-
ness and R a typical length. It is much easier to bend a plate than to stretch it, as can be
expected from the ratio Es/Eb ∼ (Z/h)2, which is large as soon as the transverse deforma-
tion is larger than the plate thickness. So, pure bending deformations (with no stretching)
are to be preferred. Then, the plate has the shape of a developable surface (one of its two
curvatures is zero). However, there is not always a smooth developable surface satisfying the
applied boundary conditions (the non-existence is in fact generic [16]). So, developable sur-
faces which are singular at curves or points are expected. Such developable surfaces also arise
in the context of smectics [25]. Outside the singularities, there are pure bending deformations.
When the plate thickness is finite, the singularities are smoothed, and the energetically ex-
pensive stretching is localized in boundary layers around the singularities of the developable
surface. These singularities were mostly studied when they are isolated [12–20]. They have
also been investigated in high dimensions [21]. In practice, plastic deformations occur first at
the singularities where the strains are the larger (as shown for d-cones [19]).

Here we are concerned with point-like singularities (developable cones or d-cones). The
sheet has locally the shape of a cone of angle φ (defined so that φ = 0 if the cone is flat) and
radius R. The tip of the cone is smoothed on a zone (the core) of radius Rc. The bending
energy outside the core is given by [16]

Ed = κG ln(R/Rc)φ2. (1)

κ is the bending modulus
κ =

Eh3

12(1 − ν2)
, (2)

ν being the Poisson ratio of the material. G is a geometric shape factor (material independent).
G depends on the shape of the cone, but the value G = 67 computed for a single d-cone [17,18]
has been shown to be quite general [24]. In situations with a few singularities, the energy of the
plate is given by that of the d-cones [24]. Developable cones have been observed on fabrics [26],
curved shells [22] and thin viscous sheets [27]. Two different scalings have been proposed for
the size Rc of the core of a d-cone [16,18,20], the one consistent with experiments [19,20] is

Rc = (κ/Eh)1/6R2/3φ−1/3, (3)

for small tip angles. The energy of the core can be written as

Ec = κγGφ2, (4)

γ being another geometrical factor (material independent), which we expect to be as general
as the value of G. The present experiment allowed us to measure γ although Ec < Ed (which
should make the measurement difficult). The principle is to drill holes in the plate so that
a part of the d-cone core becomes virtual. Energies are measured by integrating the plate
resisting force as a function of the imposed displacement. The energy difference between
drilled and undrilled plates gives the core energy. Our second achievement was to model the
behaviour of the plate when plastic deformations occur in the core.

The experiment. – A thin elastic plate of length L = 35 cm and width W = 25 cm is
clamped on two sides and free on the other two sides. The distance d between the clamped
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Fig. 1 – Sketch and photograph of the experiment. A rectangular plate clamped at two sides (at
x = ±d/2) has its centre pushed down. Two d-cones linked by a ridge of length 2D appear at small
vertical displacement (here Z = 5 mm). The origin of axes is at the initial plate centre.

sides as well as their inclination angle α can be adjusted (fig. 1). A conical tip pushes the
plate at its centre. The control parameter is the vertical displacement Z of the centre. A
piezoelectric cell gives the plate resisting force F . Initially (when Z = 0), the plate is cylin-
drical, and we measure its curvature 2k at x = 0. As plates, we use: i) mylar sheets of
thickness h = 0.25 mm, bending modulus κ = 8.3 · 10−3 N m and Poisson ratio ν = 0.4 (as
a reference case); ii) the same mylar sheets but pierced with 2 holes of radius Rt, located at
(x = ±D0, y = 0); iii) bronze sheets of thickness h = 0.3 mm, bending modulus κ = 0.34 N m
and Poisson ratio ν = 0.3.

Let us describe our first observations for each plate type. i) This is the reference case
studied in [24]. If the centre of the sheet is displaced, two d-cones appear in symmetrical
positions (x = ±D, y = 0), and move toward the clamped sides as Z is increased. Their
distance D to the centre, their radius R and their tip angle φ are given by [24]

kD = kR =
√

kZ, φ = 2
√

kZ/µ, (5)

at small Z, k being half the cylinder top curvature and µ = 4.8 a geometrical factor. At
large Z, other patterns occur, but are not useful to the present study. ii) With pierced mylar
sheets, the observations are similar, but the d-cones tips are slightly attracted and pinned by
the holes. The effect of the holes is felt over a distance of the order of their diameter 2Rt.
Energy is gained when the cone tip is in a hole and the core “suppressed”, so that the pinning
could be expected. iii) The first loading of bronze sheets is almost identical to the case i). A
mylar sheet would show exactly the same patterns if reloaded. At the second loading of the
bronze plate, the d-cones move faster toward the clamped sides; at a given Z, the d-cones
can be up to 2 cm nearer to the sides than with a mylar sheet. The subsequent loadings are
similar to the second loading. The simplest interpretation is that the material is “softened”
at the first loading: It undergoes plastic deformations so that its equilibrium state is changed
to a state nearer to the deformed state. Thus it is easier to deform it later on. We will discuss
this point in the last section.

The elastic energy of the core. – We now use the results on pierced mylar sheets. The
gain of energy at the pinning can be observed on the force/displacement curves F (Z) (fig. 2):
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Fig. 2 – Pierced mylar sheets: Resisting force F vs. vertical displacement Z of the plate centre (left),
for α = 30◦, d = 21 cm (see fig. 1) and a zoom (right). The distance between the holes is 2D0 = 10 cm
and their radii range from 0 (thick line) to Rt = 6 mm (smaller to larger bumps). When the d-cones
tips enter the holes, pierced sheets are easier to deform as energy is gained at the pinning. The two
d-cones sometimes depin at different displacements Z, so that the force curve has two peaks at the
depinning. When the d-cones are far from the holes the curves are identical as the holes are only a
small perturbation.

the force decreases when the tip enters in the hole and reaches the same value as without
a hole after the depinning. The gain of energy can be computed from the force integral∫

F (Z) dZ; its maximal value ∆E increases with the area of the holes. Each hole (radius
Rt ≤ 6 mm) is smaller than the d-cone core (radius Rc ∼ 10 mm, as given by eqs. (3)-(5)).
As a consequence, we expect the maximum energy gain ∆E to occur when the d-cone tips are
at the hole centres and to result from the suppression of a part of the core of radius Rt: this
region has become virtual. Assuming that the elastic energy is evenly distributed in the core,
and using eqs. (4)-(5), the energy of a disc of radius Rt in the core (half the gained energy) is
found to be

κγGφ2 (Rt/Rc)
2 = 4κγGk2D2

0/µ2 (Rt/Rc)
2 = ∆E/2. (6)

The factor 2 stands for the two d-cones. This equation allows the collapse of the experimental
results on a single curve (fig. 3), and the fit gives a measurement of the core geometric factor,

γ = 0.53 ± 0.04. (7)

It is rather large as we expected γG of order one. Thus, we obtain the first measurement of
the core energy.

To support this estimation, we minimized the elastic energy of the core,
∫ (

2κM2 + Eh/2(∆−1K)2
)
dr rdθ. (8)

M and K are the mean and the Gauss curvature, respectively, and ∆−1 is the inverse Lapla-
cian. We assumed the shape of the cone to be given by a test function ξ = Rcg(r/Rc)ψ(θ),
in polar coordinates (r, θ), g being a polynomial of degree 8. This shape has to be matched
to the cone ξ = rψ(θ), so that ψ is identical with the outer solution [18], and g and its two
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Fig. 3 Fig. 4

Fig. 3 – The core energy: non-dimensional maximum energy gain ε vs. the ratio of the hole radius to
the d-cone core radius Rt/Rc, for various values of the geometrical parameters (α, d and D0). The
error on ε is constant (� 10−2). ε = ∆Eµ2/(8κGk2D2

0), ∆E being the maximum energy gain, µ and
G geometrical parameters, κ the plate bending modulus, 2k its initial curvature and 2D0 the distance
between the holes. Line: fit to ε = γ(Rt/Rc)

2 (eq. (6)).

Fig. 4 – Plastic deformations: reduced force F/κ vs. non-dimensional displacement Z/h for: i) loading
of an elastic mylar plate (solid line); ii) first loading of a bronze sheet (dashed line); iii) second loading
of the same bronze sheet (dotted line). i) and ii) are identical except at large Z.

first derivatives are matched to r. This choice allows an analytical computation of the inverse
Laplacian. The minimisation of the energy by varying the coefficients of the polynomial g
leads to γ = 1.05. Of course, this is an upper bound, as we have not solved the Föppl-von
Kármán equations exactly, but it has the right order of magnitude.

Plastic deformations in the core. – The first surprise came from the identity between
the force curves for unpierced mylar sheets and bronze sheets loaded for the first time (fig. 4),
although the bronze sheets undergo irreversible deformations. At the second loading of bronze
sheets, the resisting force is smaller than at the first load. At the subsequent loadings, the
force does not differ significantly from the second loading. Besides, it does not depend on the
displacement velocity nor on the duration of the first loading (within experimental errors).

Most materials behave elastically below a critical strain a0 (of the order of 1%, see [28]),
and plastically above. The material has a residual strain (its length at equilibrium changes
irreversibly) when the strain is decreased from above a0: plasticity can be viewed as a memory
of large deformations. To characterize the bronze sheets that we have used, we performed a
separate experiment: we imposed their curvatures by folding them onto rigid cylinders of
different radii. When released, the sheets had a residual curvature (they became curved at
equilibrium) if the imposed curvature was large enough. As the maximum strain a = hc/2 is
proportional to the sheet curvature c, we obtained an empirical law for the residual strain ar

as a function of the imposed strain ai: we fitted

ar = β(ai − a0)2H(ai − a0) ≡ f(a) (9)

to the experimental data. H is the Heaviside function: there is a residual deformation only
over the yield strain a0. This fit gave β = 128 and a0 = 4.8 · 10−3, which characterize the
bronze used here. These quantities, as well as the law of eq. (9), are material dependent, but
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Fig. 5 Fig. 6

Fig. 5 – The critical displacement leading to plastic deformations Zc as a function of the curvature
k, and fit to eq. (10) (h the sheet thickness). The error on Zc/h is constant (� 7).

Fig. 6 – Plastic deformations: non-dimensional energy gain ε vs. the strain in the core ch/2. ε =
∆Ehµ2/(8κGR2

cc) corresponds to the energy difference between the first and the second loading of a
bronze sheet (same notations as in fig. 3 and c is the curvature in the core). Line: fit to eq. (11).

that should not affect the generality of the following analysis. Equation (9) is reasonable for
so-called strain-hardening materials [28].

Figure 4 shows that, in fact, the second loading of bronze sheets differs from the first loading
only above a critical displacement Z0, which can be predicted as follows. The curvature in
the cone is φ/r, r being the distance to its tip, so that the curvature in the core is c = φ/Rc.
Memory effects start when the strain in the core φh/(2Rc) reaches the yield threshold a0.
Using eqs. (3), (5), we get the critical displacement for plastic deformations,

Zc =
µa3

0√
48(1 − ν2)

1
h2k3

. (10)

A fit to the data of fig. 5 leads to a0 = 5 · 10−3, in agreement with the measured value
(4.8 · 10−3).

Now we consider the difference in forces between the two first loadings. By integration, we
obtain the difference in energies ∆E between the loadings. We estimate ∆E from the changes
in the core. Using eqs. (3)-(5), the energy of the core at the first loading can be rewritten as
Ec = 2γGκc2R2

c/µ2. The equilibrium curvature becomes cr = 2β(ch/2−a0)2/h after the first
loading (from eq. (9)). The energy of the plate at the second loading is obtained by replacing
c by c − cr in Ec: E

(2)
c = 2γGκ(c − cr)2R2

c/µ2. The difference ∆E = Ec − E
(2)
c equals

∆E = 8κGγR2
c

c

hµ2
f

(
ch

2

)
; (11)

f is the function defined in eq. (9). Using the measured core geometrical factor γ, the fit with
the experimental data of fig. 6 leads to the material parameters β = 94 and a0 = 3.4 · 10−3,
slightly smaller than the measured values (β = 128 and a0 = 4.8 · 10−3). Thus, we have
modeled the loss of energy in the d-cone cores when irreversible deformations occur. This type
of modeling would probably explain the singularity energy measured for a single d-cone [19].
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Conclusion. – We have been able to measure the energy of the core for both elastic
and plastic deformations. The first loading of a bronze sheet can be predicted from the
usual elasticity theory; the second loading is well described with a model for the memory of
deformations. These results show that all the recent works using linear elasticity can have
a practical relevance. Further developments could stem from using our results in complex
situations with a large number of singularities as for crumpled paper [29,30].
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[17] Chäıeb S., Melo F. and Géminard J.-C., Phys. Rev. Lett., 80 (1998) 2354.
[18] Cerda E. and Mahadevan L., Phys. Rev. Lett., 80 (1998) 2358.
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