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Abstract. The patterns arising from the differential swelling of gels are investigated experimentally and
theoretically as a model for the differential growth of living tissues. Two geometries are considered: a thin
strip of soft gel clamped to a stiff gel, and a thin corona of soft gel clamped to a disk of stiff gel. When
the structure is immersed in water, the soft gel swells and bends out of plane leading to a wavy periodic
pattern whose wavelength is measured. The linear stability of the flat state is studied in the framework
of linear elasticity using the equations for thin plates. The flat state is shown to become unstable to
oscillations above a critical swelling rate and the computed wavelengths are in quantitative agreement
with the experiment.

PACS. 46.32.+x Static buckling and instability – 61.41.+e Polymers, elastomers, and plastics – 87.18.La
Morphogenesis – 68.35.Gy Mechanical properties; surface strains

1 Introduction

Living organisms are full of fascinating complex patterns.
One might wonder about the physical mechanisms at stake
as well as their relevance. Although a tissue is obviously an
elastic solid, the role of mechanical stresses in morphogen-
esis was not investigated from a physical perspective until
recently. On the one hand, they were shown to be impor-
tant in phyllotaxis (the arrangement of leaves in plants) [1,
2], in the wrinkling of leaves [3,4], in the selection of cell
sizes [5], as well as in the development of embryos [6]. On
the other hand, a theoretical framework was introduced to
study the instabilities occurring in the growth of elastic
bodies [7].

At first sight, it is difficult to find physical systems
allowing the investigation of growth. The tearing of plas-
tic sheets as in [3] generates beautiful self-similar buck-
ling patterns, but gives little control over the growth rate.
However, some polymeric gels can undergo huge volume
changes when submitted to external stimuli such as vari-
ations in temperature, pH, osmotic pressure [8,9], electric
field [10] or light [11]. Strictly speaking, such a gel does not
grow but swells by absorbing water while its elastic mod-
ulus decreases. Another important difference with living
tissues is that, in such gels, there is no feedback of me-
chanical stresses on the rate of swelling/growth. A num-
ber of studies (see [12] for a review) have been devoted
to the instabilities of swelling or deswelling gels, such as
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the folding of the surface of swollen gels clamped to hard
substrates and the subsequent formation of a network of
cusp lines [13–17].

In this article we are concerned with the instabilities
occurring in the differential swelling of gels. Our main
motivation is to design physical counterparts to growing
tissues and to determine the generic patterns emerging
in the growth/swelling of elastic bodies. We use thin gel
plates made by assembling two gels with different elas-
tic and swelling properties, we investigate the patterns
resulting from the swelling of the plates. This procedure
could also be a method to generate micro-patterns in mi-
croscopic films or layered structures. In previous studies
on such micro-systems, a number of methods were used to
produce the stresses that generated the buckling patterns:
cooling [18,19], swelling in a solvent [20], evaporation [21],
spinodal decomposition [22] or thermal annealing [23].

Here we investigate the buckling patterns induced by
the swelling of a soft-gel plate clamped to a nonswelling
stiff-gel plate. First, in Section 2, we describe the experi-
mental procedure and give our first observations. In Sec-
tion 3, we introduce the theoretical framework and the
linear-stability analysis. In Section 4, we compare quanti-
tatively the experimental and theoretical results. We even-
tually give a discussion and some perspectives in Section 5.

2 The experiment

Our goal was to design an experiment to study the dif-
ferential swelling of gels. We chose to assemble two thin
flat gels having different elastic and swelling properties in
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Table 1. Composition and properties of the gels used in the
experiment. Concentrations are given in mmol L−1. The length
ratio corresponds to the ratio of a free-gel dimensions before
and after swelling. E is the elastic modulus of the gel.

(I) (II)

[AA + BISAA] 720 2880

BISAA : AA ratio 1 : 37.5 1 : 19

[SA] 46–183 0

Length ratio 150%–180% 106%

E (Pa) 5.0 · 103 3.2 · 105

order to obtain a gel plate whose properties vary along
the width (and are constant along the thickness). Poly-
acrylamide gels are suitable as they swell when immersed
in water whereas their swelling and elastic properties can
be tuned independently.

We prepared our gels as in [8,9,24]. A mixture
of acrylamide (AA) and N,N′-methylenebisacrylamide
(BISAA) is dissolved with sodium acrylate (SA) in dis-
tilled water. The polymerization is initiated by ammo-
nium persulfate (PA) and is catalysed with N,N,N′,N′-
tetramethylenediamine (TEMED) (0.3% in volume). The
composition of the gels is given in Table 1. (Other compo-
sitions were investigated qualitatively and the correspond-
ing results are mentionned in Sect. 4.3.) In these condi-
tions, gelation generally occurs within one minute after
the addition of the catalyst.

The characteristics of the gel can be tuned by varying
the concentrations of the components. The more concen-
trated (and, for the same concentration, the more concen-
trated in BISAA) the solution, the stiffer the gel. Likewise,
the equilibrium length ratio (the ratio between a free-gel
dimensions before and after swelling) can be increased by
adding sodium acrylate. For the purpose of the experi-
ment we prepared two distinct types of gel: (I) a soft and
swelling gel; (II) a stiff and nonswelling gel. The elastic
and swelling properties of these gels have been measured
and are reported in Table 1. The elastic modulus was de-
termined by hanging weights to the extremity of a gel
plate, whereas the equilibrium length ratio was measured
directly on a swollen free gel. Typically the stiff gel is two
orders of magnitude stiffer than the soft one and the soft
gel swells by a factor of 5 in volume.

The gelation process is performed in a thin cell com-
posed of two glass plates separated by rubber spacers of
constant thickness h (1 to 5mm). The cell is set vertically.
The spacers are used as masks shaped according to two
different geometries:

– The so-called strip geometry consists of two thin strips
of gel of respective compositions (I) and (II), clamped
by their edges (see Fig. 1). To obtain this geometry,
solution (II) was first poured into the cell and left for
gelation. Then solution (I) was added to form a second
layer of width l (typically 1 cm) and length 20 cm. In
the process of gelation of the second layer, the two
layers become chemically clamped to each other.

y

x
z

Soft swelling gel (I)

l

λ

Stiff gel (II)

h

(a)

(b)

(c)

Fig. 1. The strip geometry. A strip of soft swelling gel (I)
is chemically clamped to a strip of stiff nonswelling gel (II).
When immersed in water, part (I) swells while part (II) does
not. (a) Schematic of the experimental setting. (b) Side view
(along the y-direction) in the regime with cusps. The middle
plane of gel (I) remains flat while the surface of the gel becomes
wavy and displays cusps (a few of which are shown by arrows).
Strip of initial thickness h = 2.25mm and width l = 5mm.
(c) Side view (along the y-direction) in the buckling regime.
When swelling, the middle surface of gel (I) oscillates out of
plane with a well-defined wavelength λ. Strip of initial thick-
ness h = 2.25mm and width l = 30mm.

– The corona geometry is the axisymmetric counterpart
of the strip geometry. A disk (radius ri in the range
2–5 cm) of gel (II) is clamped to a corona (inner radius
ri, outer radius ro in the range 2–5 cm as well) of gel (I)
(see Fig. 2). We used circular masks of various radii to
obtain these shapes: first the disk is made, then the
cell is opened, the mask is replaced and the corona is
moulded after closing back the cell.

After opening the cell, we obtain a structure made of
two chemically clamped gels with different properties. In-
cidentally, whenever the structure is accidentally broken,
the failure always occurs in the bulk of the soft part, which
shows that the clamping is strong. The whole is then im-
mersed in water for several hours until a stationary state
is reached and the swelling process is complete. In both
cases, the sample undergoes a mechanical buckling insta-
bility such that the soft gel is no longer flat (except for
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Fig. 2. The corona geometry. A corona (inner radius ri and
outer radius ro) of soft swelling gel (I) is clamped to a disk of
stiff nonswelling gel (II). When swelling, the corona becomes
unstable and goes off the inital plane. The wave number is
eight in this picture (h = 1mm, ri = 3.5 cm and ro = 5 cm).
The arrows indicate the crests of the swollen gel.

narrow strips —see below). This results in a wavy pattern
(Figs. 1, 2) with a well-defined wavelength.

In the strip geometry, the wavelength increases with
the width of the strip l. We also performed some experi-
ments with different swelling ratios and found similar re-
sults. For a small width l no buckling occurred but we ob-
served instead a fine pattern with regularly spaced cusps
similar to those studied in [13]. In the corona geometry, the
pattern is periodic and is characterised by a wave number
(defined as the number of complete wavelengths) which
increases with the aspect ratio ro/ri. A more quantitative
description is delayed to Section 4.

3 Theoretical setting

We now study the patterns using a linear-stability analy-
sis of the equations of elasticity for a flat initial state. We
consider only the soft swelling part (I) of the structure,
the other part (II) being considered as static as it swells
by a small amount and it is very stiff. Since the gel sam-
ple is thin and flat before the instability, we can use the
Foppl-von Kármán equations for thin elastic plates [25].
Material points are parametrized by their initial planar
Cartesian coordinates x and y. A deformation is defined
by the displacement field (ux(x, y), uy(x, y), ζ(x, y)); ux
and uy are the in-plane displacements along the x and y
axes, respectively, whereas ζ is the transverse (off-plane)
displacement. We use the framework of linear elasticity
which will prove sufficient for the interpretation of the re-
sults (this restriction is discussed in the conclusion), so
that the in-plane stress tensor σαβ (α, β = x, y) depends

linearly on the deformation tensor uαβ [25]:

uαβ =
1

2

(

∂uα
∂xβ

+
∂uβ
∂xα

+
∂ζ

∂xα

∂ζ

∂xβ

)

, (1)

σxx =
E

1− σ2
(uxx + σuyy) , (2)

σyy =
E

1− σ2
(uyy + σuxx) , (3)

σxy =
E

1 + σ
uxy, (4)

where σ = 1/2 is the Poisson ratio of the gel (these gels are
almost incompressible). The Föppl-von Kármán equations
for equilibrium [25] read

D∆2ζ − h
∂

∂xβ

(

σαβ
∂ζ

∂xα

)

= 0, (5)

∂σαβ
∂xβ

= 0, (6)

for out-of-plane bending and in-plane stretching, respec-
tively. The bending stiffness is

D =
Eh3

12(1− σ2)
. (7)

The corresponding (linearized) boundary conditions are
given in the next two subsections.

3.1 The strip geometry

We now specify the formulation for the strip geometry.
The reader should refer to Figure 1 for the notations. From
this point onwards we use l as unit of length and D/(hl2)
as unit of stress. The constraint imposed by (II) results
in the compression of the swollen strip in the x-direction.
We study the linear stability of the flat solution such that
ζ = 0. Using the boundary conditions uy(0, x) = 0 at
the clamped edge and σxx(x, 1) = 0 at the free edge, the
solution to equation (6) yields ux = −kx (k > 0 because
the strip is compressed) and uy = 0. Then the equilibrium
equations reduce to

∆2ζ + P
∂2ζ

∂x2 = 0, (8)

P = 12kl2/h2 being the compressive (nondimensional)
stress applied along the x-direction.

We look for periodic solutions in the form

ζ(x, y) = ξ(y) cos qx. (9)

Using (8), ξ(y) appears to be the solution of a fourth-order
linear differential equation with constant coefficients. As
a consequence, its solutions can be written in the form

ξ(y) = A exp(imy) +B exp(−imy)

+C exp(ny) +D exp(−ny), (10)
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Fig. 3. The stability diagram. Nondimensional critical com-
pressive stress P as a function of the nondimensional wave
number q at the limit of stability. The flat strip is unstable
(respectively stable) above the curve (respectively below the
curve). The most unstable wave number corresponds to the
minimum Pc = 10.40 and qc = 1.930.

Fig. 4. Most unstable mode for an infinite flat strip of gel
longitudinally compressed on one edge, as given by the solution
to equation (8).

n and m being the real solutions of

P =

(

m2 + q2
)2

q2
and n2

−m2 = 2q2. (11)

The boundary equations on the clamped (y = 0) and
free (y = 1) edges read [25]

ξ(0) = 0, ξ′′(1)− σq2ξ(1) = 0,

ξ′(0) = 0, −ξ(3)(1) + (2− σ)q2ξ′(1) = 0.

These conditions can be viewed as a system of 4 linear
equations with the four unknowns A,B,C,D. A nonzero
solution ζ exists if and only if the determinant is zero,
which occurs for a certain P (q). This curve is shown in
Figure 3. It corresponds to the marginal stability, i.e. the
smallest value of the compressive stress P for which a wave
number q can exist and so it becomes unstable.

The first wave number qc to become unstable corre-
sponds to the minimum of P (q). This yields the critical
wave number qc = 1.390 and the threshold on compression
Pc = 10.40. Using dimensional quantities, the correspond-
ing wavelength and critical length ratio read

λ =
2π

qc
= 3.256 l, kc =

Pch
2

12l2
= 0.867

h2

l2
. (12)

A 3-dimensional representation of the corresponding solu-
tion ζ(x, y) of (8) is shown in Figure 4. Note that, when
comparing to the experimental wavelengths, we implicitly
assume that the compression is near its threshold. This is
another limitation which is discussed in the conclusion.

3.2 The corona geometry

We now proceed to the same analysis for the corona ge-
ometry. The swollen corona (ri < r < ro) is supposed to
be radially pulled at the inner edge so that its inner ra-
dius shrinks to fit the radius of the unswollen disk. Note
that ri and ro are the dimensions of the corona if it had
swollen unconstrained. Although neither of these radii can
be measured directly, their ratio ri/ro is the same as be-
fore swelling. From this point onwards we use the outer
radius ro as unit of length and D/(hr2

o) as unit of stress.
In these reduced units, ri is the aspect ratio of the corona
before the swelling.

We first need the stress field in the flat corona as re-
sulting from the tension at the inner radius. We look for
a solution of (6) in the form

ur = ar +
b

r
, uθ = 0. (13)

r and θ are the standard polar coordinates. The boundary
conditions are ur(r = ri) = −β (displacement to fit the
unswollen gel) at the inner edge and σrr(r = 1) = 0 (stress
free) at the outer edge. The problem has now one single
degree of freedom β. We obtain a stress tensor of the form

σrr = −α

(

1−
1

r2

)

, σθθ = −α

(

1 +
1

r2

)

. (14)

The number α being proportional to β is chosen as the
swelling control parameter. The balance of moments (5)
reduces to

∆2ζ + α∆ζ +
α

r2

(

−
∂2ζ

∂r2
+

3

r

∂ζ

∂r
+

1

r2

∂2ζ

∂θ2

)

= 0, (15)

with

∆ζ =
∂2ζ

∂r2
+

1

r2

∂2ζ

∂θ2
+

1

r

∂ζ

∂r
. (16)

At the clamped edge (r = ri), the boundary conditions
read

ξ = 0,

∂ξ

∂r
= 0, (17)

whereas at the free edge (r = 1),

−
∂

∂r
∆ζ + (1− σ)

1

r3

(

∂2ζ

∂θ2
− r

∂3ζ

∂r∂θ2

)

= 0,

∆ζ + (σ − 1)
1

r2

(

∂2ζ

∂θ2
+ r

∂ζ

∂r

)

= 0. (18)

We look for periodic solutions to (15) in the form

ζ(r, θ) = ξ(r) cosmθ, (19)

where the wave number m is an integer. We find a fourth-
order linear equation in ξ(r).

We first compute a basis of the 2-dimensional space
formed by the solutions satisfying the conditions at the
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Fig. 5. Most unstable mode for a flat corona of gel with ra-
dial tension at the inner radius. The aspect ratio (inner ra-
dius/outer radius) is 0.74. The selected wave number is m = 8.

inner boundary (17). To proceed, we solve the differential
equation with initial conditions

(ξ(ri), ξ
′(ri), ξ

′′(ri), ξ
′′′(ri)) =

{

(0, 0, 1, 0),

(0, 0, 0, 1),

using a Runge-Kutta algorithm, so that we find the basis
ξ1, ξ2. A nonzero linear combination of ξ1 and ξ2 verifying
the conditions at the outer boundary (18) exists only for a
certain α(m, ri), which we compute numerically. Using the
same argument as in the strip geometry, we choose m(ri)
for which α(m, ri) is minimum. Thus we obtain the wave
number m as a function of the aspect ratio ri. Figure 5
shows the solution ξ(r, θ) of (15) with the aspect ratio
ri/ro = 0.74 for which m = 8.

We also tested the ri → 1 limit of our numerical cal-
culation. In this limit, the corona geometry should reduce
to the strip geometry, as the curvature of the interface
between the two gels vanishes. The wavelength reads

λ

l
≈

π

m

1 + ri
1− ri

. (20)

For ri = 0.9999, we obtained indeed λ/l = 3.255 in agree-
ment with (12).

4 Results

4.1 The strip geometry

The two geometrical parameters are the width l of the
swollen strip, and the thickness h of the gel before swelling.
We plotted our observations in Figure 6, along with the
analytical result (12). The gel goes off the plane for l >
lc ∼ 2h. The wavelength of the instability increases with
l, and is approximately linear with l in the limit of small
thickness h¿ l, in agreement with the theoretical result.
Indeed, the theoretical approach uses the theory of thin
plates, i.e. it assumes that l À h. For l < lc, instability
patterns are observed on the surface of the swollen gel

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

h = 2.25 mm

h = 5 mm

h = 1 mm

h = 1 mm

h = 2 mm

l / h

λ / h

Fig. 6. Instability wavelength λ as a function of the width
l of the swollen strip. The measurements are normalised by
the thickness h of the gel and typical error bars are shown.
Off-plane instability is observed for l > lc ∼ 2h. For l < lc,
cusped patterns appear on the surface of the swollen gel. The
line corresponds to the theoretical result λ = 3.256 l (Eq. (12),
valid for lÀ h).
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Fig. 7. Wave number m of the instability as a function of the
aspect ratio (inner radius ri/outer radius ro) before swelling.
Circles: experimental results (a typical error bar is shown).
Line: theoretical result.

(Fig. 1), whereas the middle plane of the gel remains flat.
They consist in regularly spaced cusps similar to those
observed in [13].

4.2 The corona geometry

In the corona geometry experiment, the thickness h was
fixed to 1mm, and the inner and outer radii were varied
from 20mm to 50mm. Thus, the theory of thin plates re-
mains valid, which allows a direct comparison between ex-
perimental and analytical results (Fig. 7). The wave num-
berm increases with the aspect ratio ri/ro, in quantitative
agreement with the theoretical predictions.
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4.3 Other observations

We also varied the other experimental parameters al-
though not systematically. Concerning the composition of
the soft gel, we varied the content in sodium acrylate to
change the equilibrium length ratio (115% to 180%) with
no noticeable alteration of the patterns and the wave-
lengths, which supports the assumption that the wave-
lengths depend very little on the applied stresses. We
mainly investigated the situation such that the stiff gel is
much stiffer than the soft gel —the results do not depend
on the width of the hard gel. If this condition is relaxed
either by softening the hard gel or stiffening the soft gel,
we observed the oscillations to penetrate the hard gel. In
this case, we expect the wavelength to increase with the
width of the system.

5 Conclusion

To summarise, we showed that the swelling of thin soft-gel
plates clamped to a stiff gel leads to a buckling instabil-
ity. A linear-stability analysis yields a prediction for the
pattern wavelengths in quantitative agreement with the
experiment. These wavelengths are mainly determined by
the in-plane geometry of the thin gel. Our analysis is re-
stricted by two main limitations.

On the one hand, we used the most unstable modes
to predict the wavelengths at the instability threshold,
whereas the experimental conditions are far above this
threshold. For instance, in the strip geometry k ∼ 0.5
as given by Table 1 while the threshold is estimated as
kc ∼ h2/l2 ∼ 10−2. However, standard weakly nonlinear
analysis generally yields almost the same wavelengths [26].
On the other hand, we used the framework of linear elas-
ticity while the equilibrium length ratios are large and
the deformations are finite. Moreover, the flat base state
is anisotropic: for instance, in the strip geometry, the gel
has swollen differently along the two in-plane directions, so
that the elastic modulus is not strictly the same in these
two directions. The small discrepancies between the ex-
perimental and theoretical wavelengths might be ascribed
to either of these two limitations.

A suggestion for future research stems from the second
limitation, which we believe to be the main source of
descrepancies. One might use the framework of nonlinear
elasticity developed in [7] (for a spherical geometry) to
build a more precise theory for the present experiment
—this would account for large deformations and for
anisotropy of the base state. On the experimental side, we
have shown how to design physical counterparts to grow-
ing tissues. The main conclusion from the present study is
that differential growth/swelling of thin gels/tissues nat-
urally leads to buckling instabilities which could account
for the wavy shape of the edge of certain leaves or flow-
ers [3,4]. This experimental technique could also be used

for the patterning of layered micro-structures. Other ge-
ometries are currently investigated and will be the subject
of forthcoming publications.
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