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Abstract — We introduce a thermodynamic (large

deviation) formalism for computing error exponents

in error-correcting codes. Within this framework, we

apply the heuristic cavity method from statistical me-

chanics to derive the average and typical error expo-

nents of low-density parity-check (LDPC) codes on

the binary erasure channel (BEC) under maximum-

likelihood decoding.

I. Introduction

Assessing the performance of error-correcting codes is
a founding topics of information theory. Amongst the
simplest codes are the binary block codes, where a source
generates with equal probability one of 2L codewords,
each a sequence of N bits. As a codeword is transmitted
through a discrete memoryless channel, a noise ξ alters
independently each bit with some probability. The bi-

nary erasure channel (BEC), for instance, erases a bit
with a prescribed probability p ∈ [0, 1]. Given the re-
ceived message, the decoding task consists in inferring
the most likely original codeword. The probability of er-
ror Pξ(error|CN ) then provides a simple characterization
of the performance of a code CN .

The properties of error-correcting codes are conve-
niently studied through ensembles of codes CN , consisting
for instance of the set of all block codes with length N
and rate R = L/N . Shannon showed that, in the limit
N → ∞, a typical code in such an ensemble has a vanish-
ing probability of error if (and only if) R < Rc(p), where
Rc(p) corresponds to the channel capacity. This capac-
ity is simply Rc(p) = 1 − p for the BEC. We are here
interested in refining the description of the error proba-
bility beyond the channel capacity. Error exponents give
the exponential rate of decay of Pξ(error|CN ) with N , for
CN ∈ CN , and offer the most appealing generalization.
Of particular interest is the so-called reliability function,
which gives the lowest achievable exponents as a function
of the rate R [2]. However, despite significant efforts to
estimate error exponents, resulting in the establishment
of a number of bounds, exact expressions are scarce and
restricted to a few extreme cases.

In this note, we put forward a thermodynamic (or large

deviation) formalism [13] for evaluating error exponents
in error-correcting codes. This formalism coherently en-
compasses two types of exponents: if C = {CN}N≥1 de-

notes a sequence of ensembles of codes, we can indeed de-
fine, depending on the procedure for choosing the codes
CN in the ensembles CN , an average and a typical error
exponents as

Eav = − lim
N→∞

1

N
log ECN

[Pξ(error|CN )] , (1)

Etyp = − lim
N→∞

1

N
ECN

[log Pξ(error|CN )] , (2)

where ECN
denotes the expectation value when CN is

drawn uniformly from the ensemble CN (log is base 2
throughout). Although the typical error exponent is the
most interesting from the practical point of view, the av-
erage error exponent is usually simpler to estimate theo-
retically.

We analyze in the thermodynamic formalism one of
the most promising family of block codes, the low-density
parity-check (LDPC) codes [5]. The codewords of these
codes correspond to the kernel of a sparse M ×N parity-

check matrix A, with M = N − L. Different choices for
A lead to different ensemble of codes CN , the simplest
example being regular ensembles1 defined with A having
� 1’s per column and k per line, and zeros otherwise (in
which case R = 1 − �/k). LDPC codes have been shown
to formally map to physical models of disordered systems
on random graphs [7], and we shall exploit this analogy
to apply the (non-rigorous) cavity method [12] recently
proposed in this context2 (see also [14] for a related ap-
proach).

II. Thermodynamic formalism

Given a received word, consisting of a codeword from a
code CN altered by a noise ξ on the BEC, let NN (ξ, CN ) be
the number of codewords from which it could come from
(this quantity is independent of the initial codeword with
LDPC codes). By definition, decoding is achievable if
and only if NN (ξ, CN ) = 1. For random codes, the geom-
etry of the space of codewords indicates that, at least in

1In this paper we restrict to regular codes, even though our
method can be generalized to any irregular ensemble [11].

2While the exponential scaling of the error probability is guar-
anteed when the ensemble of codes comprises all block codes, the
average error probability of LDPC codes is known to be polyno-
mial in N [5]. Following Gallager, we shall ignore the few atypical
codes responsible for this behavior, and consider the average error
exponent associated with an expurgated ensemble where they have
been excluded [5].
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the vicinity of the channel capacity, an error most prob-
ably involves an exponential number of potential code-
words (see e.g. [1]). In such situations, we characterize
NN (ξ, CN ) by an entropy, defined as

SN (ξ, CN ) = logNN (ξ, CN ). (3)

In the limit N → ∞, for sequences of codes C = {CN}N

taken from the sequence of ensembles C = {CN}N , the
entropy density s = SN/N concentrates to a well defined
value s̄, and the channel coding theorem takes the follow-
ing form: there exists pc, such that s̄ = 0 for p < pc, and
s̄ > 0 for p > pc [4]. More generally, we postulate that,
for a typical sequence of codes C0 = {C0

N}N , the entropy
SN satisfies a large deviation principle [3], i.e.,

Pξ[SN (ξ, C0
N )/N = s] � 2−NL0(s), (4)

with aN � bN meaning that log aN/ log bN → 1. The
typical value s̄ corresponds here to the minimum of the
rate function L0, with L0(s̄) = 0. In cases where L0 is
strictly convex, the typical error exponent is obtained as

Etyp = − lim
N→∞

1

N
log

∑
s≥1/N

Pξ[SN (ξ, C0
N )/N = s]

= L0(s = 0).

(5)

A simpler quantity to compute than L0(s) is L1(s), the
rate function for the large deviations of SN (ξ, CN ) with
respect to both the noise ξ and the codes CN ,

Pξ,CN
[SN (ξ, CN )/N = s] � 2−NL1(s). (6)

In the so-called thermodynamic formalism [13], L1(s) is
associated with a potential φ(x) defined through the re-
lation

2Nφ(x) = Eξ,CN
[2xSN (ξ,CN )] �

∫
ds 2N [xs−L1(s)]. (7)

Under the assumption that it is convex, the rate function
L1(s) is derived from the knowledge of φ(x) by Legendre
transformation:

L1(s) = max
x

[xs − φ(x)] . (8)

The average exponent, obtained from Eav = L1(s = 0),
may differ from the typical exponent Etyp. Typical codes
C0

N can however also be described within a thermody-
namic formalism, provided an extra “temperature” y is
introduced, together with a generalized potential ψ(x, y)
satisfying

2Nψ(x,y) = ECN

[(
Eξ[2

xSN (ξ,CN )]
)y]

. (9)

The average case is here recovered for y = 1, with
ψ(x, y = 1) = φ(x). Typical error exponents are asso-
ciated with y = 0 (see [11] for details and exceptions),
with

Etyp = L0(s = 0) = −∂yψ(x∗, y = 0), (10)

where x∗ selects for s = 1
y ∂xψ(x∗, y)

∣∣∣
y=0

= 0.

III. Cavity method

Disordered systems constructed out of random ensem-
bles, of which LDPC codes are particular examples, have
been the subject of intensive studies in statistical me-
chanics. One of the most elaborate analytical tool de-
veloped in this context is the cavity method [10], which
allows to extract the typical properties of models defined
on random graphs. While yielding virtually equivalent
predictions than the similar replica method, this method
has both more sound probabilistic foundations, and an
attractive relation to message-passing algorithms, such
as belief propagation (BP). The cavity method has also
been recently extended to deal with large deviations [12],
making it perfectly suited to the evaluation of error ex-
ponents.

As far as typical codes and typical noise are concerned,
the cavity method is equivalent to a BP density evolution

analysis. Belief propagation, also known as the “peeling
decoder” in the context of the BEC [8], consists in prop-
agating messages between bits (the N letters of a word)
and checks (the M linear equations encoded in the parity-
check matrix A that each codeword must satisfy). The
messages can take three different values: ∗ (erasure) or 0
or 1. Initially, each bit sends its value 0 or 1, or ∗ if erased,
to each of the parity checks it is involved in. Check-to-bit
and bit-to-check messages are then sent alternatively. If
a check a receives non-erasure messages from all its bits
but i, it sends to i the sum (modulo 2) of these messages;
otherwise, the check a sends ∗ to i. If an erased bit i
receives at least one non-erasure message from any of its
checks but a, it sends it to a (if more than one, they are
necessarily identical); otherwise, the bit i sends its value,
0 or 1, or ∗ if erased, to a. The algorithm stops after
convergence of the iterations.

The (typical) cavity method, or BP density evolution,
analyzes the outcome of this procedure in the limit where
the codeword length N is infinite. It introduces η, the
probability that a bit sends an erasure message to a check,
and ζ the probability that a check sends an erasure mes-
sage to a bit, both taken after BP has reached conver-
gence. The cavity equations satisfied by these two proba-
bilities,

ζ = 1 − (1 − η)k−1, η = pζ�−1, (11)

characterize the fixed point of the BP density evolution
(see Fig. 1).

Once BP has converged, bits receiving at least one non-
erasure message are fixed to their correct value, as are
the non-erased bits. When eliminated, along with the
checks receiving no more than one erasure message, they
leave the so-called core. The dimensions Mc × Nc of the
associated residual matrix are, with high probability:

Nc = pζ�N + o(N),

Mc =
�

k
[1 − (1 − η)k − kη(1 − η)k−1]N + o(N).

(12)
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η(a) (b) ζζ η

Figure 1: Illustration of the cavity equations (11), with
k = 4 and � = 3. (a): a check node (square) sends an
erasure message to a bit node (dashed circle) if at least
one of its other variables sends an erasure message. (b):
a bit node (circle) sends an erasure message to a check
node (dashed square) if it has been erased and if all its
other checks send an erasure message.

For p < pd(�, k), the only solution to (11) is ζ = 0, η = 0,
meaning that BP is able to decode the whole word with
high probability. For p > pd however, BP gets stuck at
some ζ > 0, η > 0. In this case, it can be proved that
the residual matrix has full-rank with high probability
[9]. Therefore, the problem has exactly 2Nc−Mc solutions
if Nc > Mc, and one solution (the original codeword)
otherwise. In this approach, the critical noise pc(�, k) is
obtained from the condition Nc = Mc, and s̄ is given by
max(0, s̄cav), with s̄cav = limN→∞(Nc − Mc)/N .

The large deviation cavity method is built on the same
ideas but incorporates a biased measure over the noise
and code ensemble, as prescribed by Eq. (9). When we
consider the value of a bit-to-check message as a function
of its (�− 1)(k − 1) “grandparents”, we also evaluate the
“entropy shift” ∆S associated with the addition of the
bit and its � − 1 checks, i.e. the difference between the
numbers of columns and lines contributed by the bit and
its checks to the residual matrix. Then the message is
sent with a probability proportional to

(
Eξ2

x∆S
)y

. (13)

For regular LDPC codes, we thus obtain for the potential

ψ(x, y) =

log Z� −
�(k − 1)

k
log

[
(1 − η)k + (1 − (1 − η)k)2−xy

]
(14)

with

Z� = (ζ2−xy + 1− ζ)� − (ζ2−xy)� + ζ�(p2x + 1− p)y2−�xy

(15)
and

η = ζ�−1(p2x)y2−(�−1)xyZ−1
�−1,

ζ = 1 − (1 − η)k−1.
(16)

Note that the entropy conjugated with x is not the “real”
entropy s, but scav = (Nc − Mc)/N . When x = 0, the
fixed point of the usual density evolution equations (11)
is recovered, with (1/y)∂xψ(x = 0, y) giving back s̄cav,
the typical value.
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Figure 2: Average entropic rate function L1(s) as a func-
tion of the entropy density scav, for the regular LDPC
code � = 3, k = 6 on the BEC with increasing values
of p. The real entropy is actually s = max(0, scav). (a):
p < p1rsb, no solution with s = 0; (b): p1rsb < p < pd, a
solution with s = 0, but s̄ is not defined; (c): pd < p < pc,
s̄ = 0; (d): p > pc, s̄ > 0 indicates that decoding typically
fails.

IV. LDPC codes

We first discuss average error exponents. The calcula-
tion of the average rate function L1(s) reveals four dis-
tinct regimes when the noise level p is varied, as illus-
trated and explained in Fig. 2. In particular, we find
that the rate function L1(s) is no longer defined for s = 0
when p is too small (p < p1rsb), which points to the inad-
equacy of our method in this low-noise regime.

Indeed, by retaining s = 0 as criterion for correct de-
coding, we assumed that an error implicates an exponen-
tial number of codewords. An error may however also be
caused by the presence of one (or a few) isolated code-
word(s). Estimating this probability requires an alterna-
tive, “energetic”, scheme, as opposed to the “entropic”
scheme discussed so far3. Equations for the energetic av-
erage and typical error exponents can also be obtained
from the large deviation cavity method [11], but their
solutions are confined to a restricted interval p > prs, in-
dicating again that the lowest noise levels are not appro-
priately described. The entropic and energetic exponents
are found to cross at pe, which corresponds to the so-
called critical rate [1, 6]. We conjecture that the entropic
exponent, as given by the above equations, is exact in the
range [pe, pc], while the energetic exponent (not presented
here), which applies for [prs, pe], is only approximate.

3The energetic version of the cavity method is also referred to
as “replica symmetric” in the physics literature, while the entropic
version is known as “one-step replica symmetry breaking”.
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Figure 3: Average error exponent as a function of the
noise level p of the BEC for the regular LDPC code en-
semble with k = 6 and � = 3. Gallager’s union bound
and the random linear code limit (19) are also plotted for
comparison.

(k, �) (4, 3) (6, 3)
p1rsb 0.3252629709 0.2668568754
prs 0.5465748811 0.3378374641
pe 0.6068720166 0.3491884902
pd 0.6474256494 0.4294398144
pc 0.7460097025 0.4881508842

Table 1: Thresholds p1rsb, prs, pe, pd and pc (see text and
Fig. 2) for two regular ensembles of LDPC codes.

Fig. 3 shows our predictions for the average exponent
of the � = 3, k = 6 regular LDPC codes, with the two
regimes represented; the same general picture holds for
other regular or irregular ensembles (see also Table 1).

V. The Random Linear Code limit

This limit is obtained from regular codes with k, � → ∞
and R = 1 − �/k fixed, where the potential simplifies to:

ψ(x, y) = y log(p2x + 1 − p) + (R − 1)xy. (17)

The trivial dependence of ψ(x, y) with y implies that the
two error exponents Eav and Etyp, as obtained from the
entropic scheme, are identical. They are equal to the vol-

ume bound [2] D(1−R||p), where D(x||y) = x log(x/y)+
(1 − x) log((1 − x)/(1 − y)) denotes the Kullback-Leibler

divergence.

The intersection of the entropic and energetic average
error exponents yields the threshold

pe =
1 − R

1 + R
, (18)
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E
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Figure 4: Average and typical error exponents of random
linear codes on the BEC as a function of p, with R = 1/2
fixed. Inset: the same exponents as a function of R, with
p = 0.4 fixed.

and we obtain for the average error exponent in the infi-
nite connectivity limit:

Eav(RLC) =

{
1 − R − log(1 + p) if p < pe,
D(1 − R||p) if pe < p < pc.

(19)
It coincides with the average error exponent of the ran-

dom linear code (RLC) ensemble, where the M×N parity-
check matrix is chosen at random with uniform probabil-
ity among all possible parity-check matrices. Assuming
that the inversion of the limits N → ∞ and k, � → ∞
is justified, we interpret this result as a validation of our
approach (note that here, prs = 0).

The analysis of the typical error exponent in the ener-
getic regime leads us to introduce an additional threshold,

py =
δGV (R)

1 − δGV (R)
, (20)

where δGV (R), the minimal reduced distance of a typ-
ical linear code [1], is given by the smallest solution of
−δ log δ − (1 − δ) log(1 − δ) = 1 − R. Below py, physical
arguments [11] indicates that the typical error exponent
must differ from the average one, with:

Etyp(RLC) =

{
−δGV (R) log p if p < py,
Eav(RLC) if p > py.

(21)

We are not aware of any previous report of this expression
in the literature, but the fact that it matches the union

bound suggests that it is exact. Fig. 4 presents the error
exponents as a function of p for a fixed value of the rate
R = 1/2.

The two thresholds pe and py are presumably generic
features of block codes, and are also found with random
codes on the binary symmetric channel [1].
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VI. Discussion

Despite being one of the earliest and most basic topics
in information theory, error exponents still retain today
a number of unsolved issues. We advocated here a novel,
thermodynamical, formulation of this problem. Using the
cavity method from statistical mechanics, we worked out
in this framework expressions for the average and typical
error exponents of LDPC codes on the BEC. Our method
provides an alternative to the replica method, applied to
the BSC in [14], with the advantage of being based on
explicit probabilistic assumptions. Our approach helps
clarify the nature of the phase diagram, while the exten-
sion to the BEC allows for an analytical treatment.

While non rigorous, the cavity method aims at pro-
viding exact formulæ. Accordingly, our expressions are
consistent with the various rigorous studies reported in
the literature. The quest for rigorous proofs of formulæ
obtained from the cavity method is currently an active
fields of mathematics [15]. Remarkably, predictions from
the cavity method on the maximum-likelihood threshold
pc [4] could be turned into rigorous theorems [9]. This
may inspire alternative derivations of our results.

Perhaps not too surprisingly, the entropic range pe <
p < pc where we conjecture our results to be exact also
coincides with the limited interval for which the related
problem of determining the reliability function of block
codes has been solved so far. Extending our method to
p < pe, where we could obtain only approximate results
(except in the infinite connectivity limit), remains a chal-
lenging open problem.

Using the same approach, we also analyzed the case of
the binary symmetric channel, obtaining comparable re-
sults [11]. A more interesting extension would be to iter-
ative decoding, such as BP. Although arguably quite aca-
demic, studying maximum-likelihood decoding, as we did,
is nevertheless certainly an essential preliminary step.
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