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Error exponents characterize the exponential decay, when increasing message length, of the probability of
error of many error-correcting codes. To tackle the long-standing problem of computing them exactly, we
introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-
density parity-check codes on the binary erasure channel and the binary symmetric channel. In this formalism,
we apply the cavity method for large deviations to derive expressions for both the average and typical error
exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing
the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromag-
netic transition in the space of codewords and a paramagnetic to glass transition in the space of codes.
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I. INTRODUCTION

Communicating information requires a physical channel
whose inherent noise impairs the transmitted signals. Reli-
ability can be improved by adding redundancy to the mes-
sages, thus allowing the receiver to correct the effects of the
noise. This procedure has the drawbacks of increasing the
cost of generating and sending the messages and of decreas-
ing the speed of transmission. At first sight, better accuracy
seems achievable only at the expense of lesser efficiency.
Remarkably, Shannon showed that, in the limit of infinite-
length messages, error-free communication is possible using
only limited redundancy �1�. His proof of principle has trig-
gered many efforts to construct actual error-correcting
schemes that would approach the theoretical bounds. A re-
newal of interest in the subject has taken place during the last
ten years, as new error-correcting codes were finally discov-
ered �2�, or rediscovered �3�, which showed practical perfor-
mances close to Shannon’s bounds.

In this paper, we analyze a major family of such codes,
the low-density parity-check �LDPC� codes, also known as
Gallager codes, from the name of their inventor �4�. Our
focus is on the characterization of rare decoding errors, in
situations where most realizations of the noise are accurately
corrected. Error-free communication, as guaranteed by Shan-
non’s theorem, indeed results from a law of large number
and is achieved only with infinite-length messages. Accord-
ingly, any error-correcting scheme acting on finite-length
messages has a nonzero error probability, which generically
vanishes exponentially with the message length. Such error
probabilities are described by error exponents, giving their
rate of exponential decay. Two kinds of error exponents are
usually distinguished: average error exponents, where the
average is taken over an ensemble of codes, and typical error
exponents, where the codes are typical elements of their en-
semble.

The study of error exponents attracted early on consider-
able attention in the information theory community, but exact
expressions have turned out to be particularly difficult to
derive �see, e.g., �5� and �6� for concise and nontechnical

reviews with entries in the literature�. Exact asymptotic re-
sults are known in the limit of the so-called random linear
model �7� �presented in Appendix B�, but only loose bounds
�presented in Appendix C� have been established for more
general codes. Recently, a systematic finite-length analysis of
LDPC codes under iterative decoding was carried out for the
binary erasure channel �BEC� �8,9�, yielding exact, yet non-
explicit, formulas for the average error probability. Up to
now, little has, however, been known of the error probability
under maximum-likelihood decoding, except for the work of
�10� dealing with the binary symmetric channel �BSC�.

We address here the problem of computing error expo-
nents of LDPC codes under maximum-likelihood decoding,
over both the BEC and BSC �all the necessary definitions are
recalled below�. We adopt a statistical physics point of view,
which exploits the well-established �11� mapping between
error-correcting codes and spin glasses �12�. A thermody-
namic formalism is introduced where error exponents are
expressed as large deviation functions �13�, which we com-
pute by means of the extension of the cavity method �14�
proposed in �15�. This approach offers an alternative to the
related replica method employed in �10� and allows us to
address both average and typical error exponents. We thus
obtain an interesting phase diagram, with two very distinct
phase transitions occurring when the intensity of the noise in
the channels is varied.

A brief summary of our results can be found in �16�. We
present in what follows a much more detailed account of our
approach. In a first part, we define LDPC codes, recall their
mapping to some models of spin glasses and optimization
problems, and give a general overview of our thermody-
namic �large deviation� formalism. The two subsequent parts
apply this framework to the analysis of LDPC codes over the
BEC and BSC, respectively. We sum up our results in a
conclusion where we also point out some open questions.
Most of the technical calculations are relegated to the Ap-
pendixes, which also contain a detailed discussion of the
limiting case of random linear codes.
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II. ERROR-CORRECTING CODES AND THE LARGE
DEVIATION FORMALISM

A. Error-correcting codes

Error-correcting codes are based on the idea that adding
sufficient redundancy to the messages can allow the receiver
to reconstruct them, even if they have been partially cor-
rupted by the noisy channel �17�. A schematic view of how
these codes operate is presented in Fig. 1. Given a message
composed of L bits, an encoding map �0,1�L→ �0,1�N first
introduces redundancy by converting the L bits of the mes-
sage into a longer sequence of N bits, called a codeword. The
ratio R�L /N defines the rate of the code and should ideally
be as large as possible to reduce communication costs, yet
small enough to allow for corrections. Corrections are imple-
mented downstream the noisy channel and specified by a
decoding map �0,1�N→ �0,1�L whose purpose is to recon-
struct the original message from the received corrupted code-
word. Decoding is composed of two steps: first, the most
probable codeword is inferred, and second, it is converted
into its corresponding message.

In this scheme, messages and codewords are related by
the one-to-one encoding map, and translating messages into
codewords or conversely is relatively straightforward. The
computationally most demanding part is concentrated on in-
ferring the most probable codeword sent, given the corrupted
codeword received. In what follows, we shall focus exclu-
sively on this problem, which requires manipulating only
codewords.

B. Communication channels

Formally, a noisy channel is characterized by a transition
probability Q�y �x� giving the probability for its output to be
y given that its input was x. For the sake of simplicity, we
confine ourselves to memoryless channels where the noise
affects each bit independently of the others—i.e., Q�y �x�
=	i=1

N Q�yi �xi� with Q�yi �xi� independent of i.
We shall consider more specifically two examples of

memoryless channels. The first one is the binary erasure
channel where a bit is erased with probability p—that is,
Q�*�x�= p and Q�x �x�=1− p where * represents an erased bit
�see Fig. 2�. The second is the binary symmetric channel
where a bit is flipped with probability p—that is, Q�0 �1�
=Q�1 �0�= p and Q�0 �0�=Q�1 �1�=1− p �see Fig. 2�.

C. LDPC codes and code ensembles

Shannon first formalized the problem of error correction
and determined the lowest achievable rate R allowing error-

free correction �1�. He found a general expression for this
limit, called the channel capacity, which depends only on the
nature of the channel and takes the form CBEC�p�=1− p and
CBSC�p�=1− p ln p− �1− p�ln�1− p� for the BEC and BSC,
respectively. Shannon’s proof for the existence of codes
achieving the channel capacity was nonconstructive and his
analysis restricted to the limit of infinitely long messages,
L→�. Among the various families of codes proposed to
practically perform error correction, one of the most promis-
ing is the family of low-density parity-check codes �4�.

A LDPC code is defined by a sparse matrix A where
“sparse” means that A is mostly composed of 0’s, with oth-
erwise a few 1’s. The parity-check matrix A has size M �N
with M =N−L and is associated with a generator matrix G of
size L�N such that GA=0 �see, e.g., �3� for explicit con-
structions�; the encoding map is taken to be the linear map
x=Gm and the rate of the code is R=L /N=1−M /N. By
construction, an N-bit codeword x satisfies the M parity-
check equations Ax=0, or, in other words, the set of code-
words is the kernel of A. The parity-check matrix A is usu-
ally represented graphically by a factor graph, as in Fig. 3:
the columns of A are associated with check nodes labeled
with a� �1, . . . ,M� and represented by squares, and the lines
of A are associated with variable nodes labeled with i
� �1, . . , . . .N� and represented by circles. A nonzero element
of the matrix A such as Aia=1 appears as a link between the
variable node i and the check node a.

A particularly powerful approach for analyzing error-
correcting codes is the probabilistic method where, instead of
considering a single code, one studies an ensemble of codes.
With LDPC codes, code ensembles correspond to sets of
matrices or, equivalently, sets of factor graphs. A popular
choice is to consider the ensemble of factor graphs with
given connectivities ck and v�, which is the set of factor
graphs having ckM check nodes with connectivity k and v�N
variable nodes with connectivity �, where 
kck=
�v�=1. A
convenient representation is by means of the generating

FIG. 2. Communication channels. On the left the BEC �binary
erasure channel� erases a bit with probability p and leaves it un-
changed with probability 1− p. On the right the BSC �binary sym-
metric channel� flips a bit with probability p and leaves it un-
changed with probability 1− p.

FIG. 1. Error correction scheme. A message m composed of L bits, m� �0,1�L, is first encoded in a codeword of longer size N with
R=L /N�1, defining the rate of the code. The noise � of the channel corrupts the transmitted codeword which becomes y �see Fig. 2 for
examples of channels�. This output is generically not a codeword, and the correction consists in inferring the most probable codeword to
which it comes from. Finally, the inferred codeword x� is converted back into its corresponding message m�. The communication is
successful if m�=m.
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functions c�x�=
kckx
k and v�=
�v�x�; these notations allow

one, for instance, to write the mean connectivities as �k�
=c��1� and ���=v��1�. Due to their simplicity, particular at-
tention will be devoted to regular codes, whose check nodes
have all same degree k and variable nodes same degree �,
corresponding to ck�=�k,k� and v��=��,�� or, equivalently,
c�x�=xk and v�x�=x�.

The mathematical fact underlying the probabilistic
method is the phenomenon of measure concentration which
occurs in the limit where N→� and M→� with fixed ratio
�=M /N: in this limit, many properties are shared by almost
all elements of the ensemble �i.e., all but a subset of measure
zero�. As a consequence, by studying average properties over
an ensemble, one actually has access to properties of typical
elements of this ensemble. This fact is one of the building
blocks of random graph theory �19� and is also central to the
physics of disordered systems where it is known as the self-
averaging property �20�.

While the factor graph representation makes obvious the
connection between LDPC codes and random graph theory,
it will also turn particularly fruitful to exploit the close ties of
LDPC codes with both optimization problems �21� and spin-
glass systems �20�. LDPC codes are indeed intimately related
to a class of combinatorial optimization problems known as
XORSAT problems where, given a sparse matrix A and a
vector �, one is to find solutions 	 to the equation A	=�.
Although algorithmically relatively simple �Gauss method
provides an answer in a time polynomial in the size of the
matrix�, XORSAT problems share many common features
with notably more difficult, NP-complete �21�, problems
such as K-SAT. A recent physical approach to XORSAT
problems makes use of their formal equivalence with a class
of spin-glass systems known as p-spin models �22–24�. We
shall follow this line of investigation and apply the cavity
method �14,25� from spin-glass theory to analyze LDPC
codes. We note that alternative, sometimes equivalent, physi-
cal approaches have previously been applied to LDPC codes;
we refer the reader to �26� for a review of the subject.

The distinctive feature of XORSAT at the root of its com-
putational simplicity is the presence of an underlying group
symmetry that relates all solutions. In the context of LDPC
codes, it corresponds to the fact that the set of codewords is
the kernel of the parity-check matrix A; we shall refer to the
XORSAT problem A	=0 whose solutions define the set of
codewords as the encoding constraint satisfaction problem
(CSP) of the LDPC code with check matrix A. The group
symmetry has a number of interesting consequences which
will crucially simplify the analysis.

Most of the interest in LDPC codes stems from the pos-
sibility to decode them using efficient, iterative algorithms

�described in Sec. III A 3�. Unless otherwise stated, we shall,
however, be here concerned with the theoretically simpler,
yet computationally much more demanding, maximum-
likelihood decoding procedure. It consists in systematically
decoding a received message to the most probable codeword
�a task that iterative algorithms are in some cases unable to
perform, as recalled in Sec. III A 3�.

Finally, it is interesting to note that in the limit where
�k� , ���→� with fixed ratio, LDPC codes define the random
linear model �RLM� whose typical elements have been
shown by Shannon to achieve the channel capacity. This par-
ticular limit, where many quantities can be computed by in-
voking only elementary combinatorial arguments, is dis-
cussed in detail in Appendix B.

D. Typical properties and phase transitions

The performance of a particular code over a given chan-
nel is measured by its error probability—i.e., the probability
that it fails to correctly decode a corrupted codeword. More
precisely, if d�y� denotes the inferred codeword when x is
sent and y received, one defines the block error probability
for x as

PN
�B��x� = 


y
Q�y�x�1d�y��x �1�

and the average block error probability as

PN
�B� = Ex�PN

�B��x�� , �2�

where Ex denotes the expectation �average� over the set of
codewords. With LDPC codes, this average is trivial since,
due to the group symmetry, all codewords are equivalent,
and PN

�B��x� is independent of x.
The concentration phenomenon alluded to above means

here that PN
�B�→pB with N→� within a given code ensemble

defined by generating functions c�x� and v�x�. As the level of
the noise p is increased, a phase transition is generically
observed: a critical value pc exists above which error-free
correction is no longer possible �pB=0 for p� pc and pB=1
for p
 pc�. The formalism to be presented in the next sec-
tions will yield in particular the value of pc for given code
ensembles and channels. Obviously, the presence of this
phase transition indicates that, when using a channel with
noise level p, one should choose a code from an ensemble
for which p� pc. The phase transition is, however, occurring
only in the limit of infinite codewords �thermodynamic limit�
whereas practical coding inevitably deals with finite N. This
leads to the fact that the block error probability is not exactly
zero, even in the regime p� pc.

For a given code of finite but large block-length N, error
can thus be caused by rare, atypical, realizations of the noise.
Similarly, when picking a code at random from a code en-
semble of finite size, one can observe properties differing
from the typical properties predicted by the law of large
numbers. We show in what follows how these two atypical
features induced by finite-size effects can be analyzed in a
common framework.

FIG. 3. Factor graph �Tanner graph �18��. The circles represent
the variable nodes, associated with the N bits �xi�, and the squares
represent the M parity check. In the example given, the constraints
read: �a� x1+x2+x3=0, �b� x2+x3=0, and �c� x2+x3+x4=0
�modulo 2�.
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E. Large deviations

At this stage, it is useful to make explicit the three differ-
ent levels of statistics involved in the analysis of error-
correcting codes: �i� statistics over the codes C in a defined
code ensemble C, �ii� statistics over the set of transmitted
codewords x of a particular code, and �iii� statistics over the
noise � of the channel, with a specified p. For given C, x, and
�, a fourth level of statistics is involved in the decoding
process, over the possible codewords y� �0,1�N from which
the received corrupted codeword originates. The group struc-
ture of the set of codewords of LDPC codes makes level �ii�
trivial since all codewords are in fact equivalent �isomor-
phic�. We will consequently ignore it and address only levels
�i� and �iii�.

The problem of evaluating the probability that, due to
finite-size effects, a property differs from the typical case
belongs to large deviation theory �13�. To give here a general
presentation of the concepts and methods to be used, we
assume that the success of the decoding is measured by a
function SN�� ,C� extensive in N and such that SN�� ,C��0 if
the code C correctly decodes a message subject to noise �
and SN�� ,C�
0 otherwise; in the next sections, we will show
explicitly how such an observable can be defined with LDPC
codes, for both the BEC and BSC channels. In terms of SN,
the decoding phase transition takes the following form: in the
limit N→�, the distribution of the density SN /N concen-
trates around a typical value styp�p� which verifies styp�p�
�0 if p� pc, and styp�p�
0 if p
 pc,where p denotes as
before the level of noise of the channel �see Fig. 2 for ex-
amples�.

For typical codes in their ensemble, denoted C0, we de-
scribe large deviations of SN with respect to the noise � by a
rate function L0�s� such that the probability to observe
SN�� ,C0� /N=s satisfies

PN��:SN��,C0�/N = s� � e−NL0�s�. �3�

Here the symbol aN�bN refers to an exponential equiva-
lence, ln aN / ln bN→1 as N→�. Viewed as a function of the
noise level p, the rate function Etyp�p�=L0�s=0� is known in
the coding literature as the typical error exponent �5�. The
exponential decay with N of atypical properties is quite ge-
neric when dealing with large deviations, but this scaling is
not necessarily ensured, as discussed in more detail in Ap-
pendix A. In the thermodynamic formalism that we shall

adopt, rate functions are computed by introducing a potential
�C�x� defined by

�C�x� = ln�E��exSN��,C��� . �4�

In the limit N→� limit, the density �C�x� /N tends to a
typical value 0�x�, which is related to the rate function L0�s�
by

eN0�x� � ds eN�xs−L0�s��. �5�

Equivalently, by taking the saddle point,

0�x� = xs − L0�s�, x = �sL0�s� . �6�

The rate function L0�s� can thus be reconstructed from 0�x�
by inverting the Legendre transformation,

L0�s� = sx − 0�x�, s = �x0�x� . �7�

The analogy with the usual thermodynamics is summarized
in Table I.

From a theoretical perspective, it is simpler to make an
average over the codes and compute the rate function L1�s�
defined as

PN��,C:SN��,C�/N = s� � e−NL1�s�. �8�

This procedure yields the so-called average error exponent
Eav=L1�s=0�. In the thermodynamical formalism, L1�s� is
conjugated to the potential 1�x� satisfying

eN1�x� = E��,C��exSN��,C�� = ds eN�xs−L1�s��. �9�

The two rate functions L0�s� and L1�s� may differ, meaning
that the average exponent can be associated with atypical
codes. Such atypical codes correspond themselves to large
deviations of the potential �C�x�. For fixed values of x, we
define a rate function L� ,x� as

PN�C:�C�x�/N = � � e−NL�,x�. �10�

In a thermodynamic formalism, L� ,x� is again associated
with a potential ��x ,y� defined by

TABLE I. The analogy with spin glasses or, more generally, the statistical physics of disordered system
with quenched disorder.

Spin glass Average Typical Multistep, step 1 Multistep, step 2

Disorder Couplings Jij Typical codes C0 Codes C at y

Configurations Spins �	i�i Noise+codes �� ,C� Noise � Noise � Codes C
Observable E=
ijJij	i	 j SN�� ,C� SN�� ,C0� SN�� ,C� LC�s�
Entropy s�e=E /N� L0�s=SN /N� L�s=SN /N� L� ,x�
Temperature−1 �=�es x=�sL1 x=�sL0 x=�sL y=�L
Potential �f =�e−s 1=xs−L1 0=xs−L0 =xs−L �=y−L
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eN��x,y� = EC��E��exSN��,C���y� = EC�ey�C�x�� = deN�y−L�,x��.

�11�

We refer to this hierarchical embedding of large deviations as
a multistep large deviation structure �15�, a term meant to
reflect the formal equivalence with the multistep replica
symmetry breaking scenario developed for spin glasses �20�
�see Table II�. In the limit N→� where the integral is domi-
nated by its saddle point we obtain the Legendre transforma-
tion

��x,y� = y − L�,x�, y = �L�,x� . �12�

Within this extended framework, we recover the average
case by taking y=1. Indeed, from the definitions �9� of 1�x�
and �11� of ��x ,y� it follows that

eN��x,1� = EC�E�e
SN��,C�� = E��,C��exSN��,C�� = eN1�x�, �13�

that is,

��x,y = 1� = 1�x� . �14�

This average case differs in general from the typical case
which corresponds to y=0. Indeed, by definition �see Eq.
�10��, typical codes are associated with the potential 0 mini-
mizing L� ,x�, with L�0 ,x�=0, yielding y=�L=0. Note
that the potential 0 is related to ��x ,y� by 0�x�
=limy→0�1/y���x ,y�, which can also be viewed as a corol-

lary of Gärtner-Ellis theorem �13�, best known in statistical
physics as the replica trick �20� �see Table II�. In the lan-
guage of the replica method, the average case �y=1� and the
typical case �y=0� are, respectively, referred to as the an-
nealed and quenched computations.

The previous discussion assumed that the potentials were
analytical functions of their parameters x and y, but this may
not be the case, and we will find that phase transitions can
occur when these temperatures are varied. In such cases, tak-
ing naively the limit y→0 leads to erroneous results. We will
discuss how to overcome such difficulties when encountering
them.

III. LDPC CODES OVER THE BEC

We now proceed to illustrate our formalism with LDPC
codes over the binary erasure channel. We start with rederiv-
ing the typical phase diagram by means of the cavity method,
a slightly different approach than the replica method origi-
nally used in �27�. This sets the stage for the analysis of error
exponents that follows.

A. Typical phase diagram

1. Formulation

Consider a LDPC code C with parity-check matrix A; its
encoding CSP �the constraint satisfaction problem whose
SAT assignments define the codewords� has cost function

HC�	� = 

a=1

M

Ea�	�, with Ea�	� = 

i=1

N

Aai	i �mod 2� .

�15�

Since Ea�	�� �0,1�, the cost function HC�	� counts the num-
ber of constraints violated by the assignment 	= �	i�i=1,. . .,N

�where 	i� �0,1��. When a codeword 	*, satisfying HC�	*�
=0, goes through a BEC, each of its bits 	i has probability p
to be erased. A given realization of the noise can be charac-
terized by a vector �= ��1 , . . . ,�N� with �i=1 implying that
the bit 	i

* is lost and �i=0 that it is unaffected. If we denote
by E the set of indices i for which �i=1 �erased bits�, the
decoding task consists in reconstructing �	i

*�i�E from the re-
ceived bits �	i

*�i�E and knowledge of the encoding CSP HC.
This decoding problem defines a new constraint satisfaction
problem, the decoding CSP, obtained from the encoding CSP
by fixing the values of the noncorrupted bits. More explicitly,
the decoding CSP has cost function HC

����	����=
aEa
����	����

where 	���= �	i�i�E and

Ea
����	���� = 


i�E
Aai	i + 


i�E
Aai	i

* �mod 2� . �16�

Decoding is possible if and only if �	i
*�i�E is the only SAT

assignment of the decoding CSP.
If NN�� ,C� denotes the number of solutions of the decod-

ing CSP, SN�� ,C� can be taken as SN�� ,C�� ln NN�� ,C�. This
entropy fulfills the desired properties: namely, SN�� ,C��0 if
decoding is successful, and SN�� ,C�
0 otherwise.

TABLE II. Analogy with the replica approach of spin
glasses. The replica-symmetric method prescribes that the typical
partition function Z0 of a disordered system is given by Z0

�E�ZN
n �1/n with n→0 or, more precisely, if �N=ln ZN, the typical

value of �=�N /N is �0=limn→0limN→��1/Nn�ln E�en�N�. This is
mathematically justified by the Gärdner-Ellis theorem which more-
over provides a rigorous basis for the interpretation of nonzero
values of n in terms of large deviations, as discussed in the
text. According to this theorem, if the function �x�
=limN→��1/N�ln E�ex�N� exists and is regular enough �see, e.g.,
�13� for a rigorous presentation�, then a large deviation principle
holds for � with a rate function being the Legendre transform of
�x�; if we assume the functions differentiable, L���=�x−�x�
with �=�x�x�. As a corollary of this theorem, the typical value �0,
which by definition satisfies L��0�=0 and x=��L��0�=0, is given
by �0=�x�x=0�=limx→0��x� /x��x=0�, as predicted by the rep-
lica method. Note also that n=1, with Z1=E�ZN�, corresponds to the
so-called annealed approximation.

Replica �symmetric�
theory of spin glasses

Multistep large deviations
for LDPC codes

Hamiltonian HJ�	�=
ijJij	i	 j SN�� ,C�
Disorder �Jij�ij Codes C
Configurations �	i�i Noise �

Number of replicas n Temperature−1 y

Physical temperature−1 � Temperature−1 x

Annealed approximation n=1 Average codes y=1

Quenched computation n→0 Typical codes y→0
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The particularity of LDPC codes compared to other error-
correcting codes is that the decoding CSP has same form as
the encoding CSP �both are XORSAT problems�. As a con-
sequence, the Z2 symmetry of the group of codewords is
always preserved, at variance with what happens in other
CSP’s where fixing variables breaks a symmetry. The BEC is
also particular compared with other channels, since the set E
of corrupted bits is known to the receiver �this will not be the
case with the BSC, where identifying the corrupted bits is
part of the decoding problem�. This entails that bits can only
be fixed to their correct value.

2. Cavity approach

Before considering large deviations, it is instructive to
recall the typical results—i.e., the values taken by SN�� ,C0�
when C0 is a typical code from a given ensemble specified by
c�x� and v�x�, and � a typical realization of the noise from
the probability distribution specified by p. We resort here to
the cavity method at zero temperature �14�, whose validity is
based on the treelike structure of the factor graphs associated
with typical LDPC codes. The essentially equivalent replica
method has been used in the past: in �28�, SN�� ,C� is thus
obtained by first computing a free energy with the replica
method and then taking the zero-temperature limit to obtain
SN�� ,C�, viewed as the entropy of the zero-energy ground
states.

The approach we follow here, which corresponds to a
particular implementation of the entropic cavity method pre-
sented in �29�, has several advantages over the replica ap-
proach: it involves neither a zero-replica limit nor a zero-
temperature limit, it emphasizes the specificities of LDPC
codes associated with the underlying Z2 symmetry, and it
naturally connects to the algorithmic analysis of single
codes. In the common language of the replica and cavity
methods, the calculation to be done is coined one-step rep-
lica symmetry breaking �1RSB� and the entropy s=SN /N is
referred to as a complexity. This is reflected in what follows
by the fact that we strictly restrict to SAT assignments and
assume that all constraints are satisfied �the reweighting pa-
rameter �, as denoted in �25�, is here infinite, �=��. This
1RSB approach is known to exactly describe XORSAT prob-
lems �23,24�.

Let Pi�	i� be the probability, taken over the set of solu-
tions of the decoding CSP, that the bit i assumes the value
	i� �0,1�. Due to the preservation of the Z2 symmetry, no
bit can be nontrivially biased: either it is fixed to 0 or 1,
corresponding to Pi=�0 and Pi=�1, respectively, or it is com-
pletely free, corresponding to Pi= ��0+�1� /2, where we de-
note ���	�=��,	. In technical terms, the evanescent fields that
are generically required to compute entropies in CSP �29�
have here a trivial distribution, thus explaining that they can
be safely ignored, as was done in �28�.

Let � be the probability, taken over the N nodes of a
typical factor graph, that a bit i is free—i.e., that Pi= ��0

+�1� /2. Since a free node has equal probability to be 0 or 1,
its contribution to the entropy is ln 2 and the mean entropic
contribution per node is � ln 2. This value is, however, only
an upper bound �known as the annealed, or first moment,

bound� on the entropy density s=SN /N that we wish to cal-
culate. In fact, it holds only if the bits are independent: in-
deed, two bits may both be free but, by fixing one, the sec-
ond may be constrained to a unique value, in which case the
joint entropic contribution of the two nodes is ln 2 and not
2 ln 2. The correct expression is given by the Bethe formula,
which can be heuristically derived as follows. First, we sum
the entropic contributions �S�+��� of each node �, including
the corrections due to its adjacent parity checks �� �. Sec-
ond, we note that each parity check � is involved in k�

terms, with k� being the connectivity of �. To count it only
once, we therefore subtract �k�−1� times the entropic con-
tribution �S� of each parity check �. This leads to

s =
1

N�

�

�S�+��� − 

�

�k� − 1��S��
= ��S�+���� −

���
�k� 
k

ck�k − 1���S�
�k�� , �17�

where ��S�+���� represents the average of �S�+��� over the
nodes � and ��S

�

�k�� the average of �S� over the parity
checks � with connectivity k�=k; the factor ��� / �k� ac-
counts for the ratio of the number M of parity checks over
the number N of nodes.

To compute �S�+���, we need to know whether the bits of
the nodes adjacent to � are fixed or not, in the absence of the
“cavity node” �. As the cavity node is connected to its neigh-
bors through parity checks �see Fig. 4�a��, we can decompose
the computation in two steps. First, we observe that a given
neighboring parity check constrains the value of the cavity
node if and only if all the other nodes to which it is con-
nected have themselves their bit fixed in the absence of the
cavity node. Denoting by � the probability of this event and
by � the probability for a node to be free in the absence of
one of its adjacent parity check, we thus have

� = 

k

kck

�k�
�1 − �1 − ��k−1� = 1 −

c��1 − ��
�k�

, �18�

where kck / �k� is the probability for a parity check be con-
nected to k−1 nodes in addition to the cavity node �see Fig.
4�a�� and 1− �1−��k−1 is the probability that at least one of
these k−1 nodes is free in the absence of the parity check.
Next, we observe that the probability for the cavity node to

FIG. 4. �Color online� Illustration of cavity fields: �a� addition of
a variable node, �b� addition of a parity check, and �c� cavity
iteration.
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be free is the probability that none of its adjacent parity
checks is constraining—that is,

� = p

�

v��� = pv��� . �19�

In order to close the equations, we also need the probabil-
ity for the cavity node to be free in the absence of one of its
connected parity check �see Fig. 4�c��, which is

� = p

�

�v�

���
��−1 = p

v����
���

, �20�

where �v� / ��� represents the probability for a node to be
connected to �−1 parity checks in addition to the one ig-
nored. The “cavity fields” � and �, determined by Eqs. �18�
and �20�, contain all the information needed to evaluate the
entropy. Thus ��S�+���� is given by

��S�+���� = �ln 2��pv��� − ����� . �21�

The first term �ln 2�pv��� corresponds to �ln 2�� see �Eq.
�19��, the average entropic contribution of a node �, and the
second term −�ln 2����� subtracts the entropic reductions of
its adjacent parity-check nodes; indeed, they are ��� on av-
erage and each is constraining the cavity node with probabil-
ity �. Similarly, the average entropic reduction due to a parity
check alone is

��S�
�k�� = − �ln 2��1 − �1 − ��k� �22�

since 1− �1−��k is the probability that at least one of the k
connected nodes is free in the absence of the parity check
�see Fig. 4�b��. To sum up, the entropy is determined by the
formulas

s = �ln 2��pv�1 −
c��1 − ��

�k�
� −

���
�k�

�1 − c�1 − ��

− �c��1 − ���� , �23�

� = p
v��1 − c��1 − ��/�k��

���
. �24�

Equation �24� can admit two kinds of solution �see Fig.
5�. The first kind, referred to as ferromagnetic, describes the
situation where decoding is possible, with only one code-
word being solution of the decoding CSP: this solution has
�=0 �all bits are fixed to 	*� and s=0. The second kind,
referred to as paramagnetic �but strictly speaking corre-
sponding to a 1RSB glassy solution�, describes the situation
where decoding is impossible and has �
0. It is found to
exist only for p greater than the so-called dynamical thresh-
old, denoted by pd. It is, however, relevant only when asso-
ciated with a positive entropy, s
0, a condition which de-
fines the static threshold, denoted by pc and satisfying pc

 pd. The static threshold corresponds to the threshold above
which decoding is doomed to fail, as confirmed by rigorous
studies.

3. Algorithmic interpretation

The cavity method is related to a particular decoding al-
gorithm known as belief propagation �BP�. Its principle is
the following: starting from a configuration where only the
noncorrupted bits are fixed to their values, one goes through
each node of the factor graph, checks if its immediate neigh-
boring environment constrains it to a unique value, fixes it to
this value if it is the case, and iterates the whole procedure
until convergence. At the end, some bits may still not be
fixed, which certainly occurs if the decoding CSP has not a
unique solution, but if all the bits end up fixed, one is en-
sured to have correctly decoded. Similar message-passing
algorithms can be defined with different channels. They are
responsible for the practical interest of LDPC codes as they
provide algorithmically efficient decoding �yet suboptimal,
as discussed below�. With the BEC, these algorithms are par-
ticularly easy to analyze thanks to the fact that one can never
be fooled by fixing bits to an incorrect value. To perform the
analysis of the possible outcomes of the belief propagation
algorithm, we can assume without loss of generality that the
transmitted message is �0, . . . ,0� �the Z2 symmetry implies
that all codewords are equivalent�. We thus start with 	i=* if
i�E and 	i=0 otherwise. Cavity fields are attributed to each
oriented link of the factor graphs and are updated with the
following rules, where t indexes iteration steps:

hi→a
�t+1� = �0 if 	i = 0 or if ub→i

�t� = 1 for some b � i − a ,

� otherwise,

ua→i
�t+1� = �1 if hj→a

�t� = 0 for all j � a − i ,

� otherwise.
�25�

Here, ua→i
�t� =1 ��� means that the parity check a is con-

straining �is not constraining� i. hi→a
�t� =0 ��� means that 	i is

fixed �not determined� to its correct value 0 without taking

FIG. 5. Reduced entropy vs noise level p for an LDPC code
with k=6 and �=3. When p=0.4� pd �left inset�, �=0 is the only
solution to the cavity equation �24�, yielding s=0. When p=0.48

 pd �right inset�, two more solutions appear, one of which is stable.
The entropy of this solution crosses zero at the critical noise pc,
above which the entropy become strictly positive, causing failure of
decoding.
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into account the constraints due to a. The algorithm is ana-
lyzed statistically by introducing

��t� =
1

���N 

�i,a�

��hi→a
�t� ,0�, ��t� =

1

�k�M 

�i,a�

��ua→i
�t� ,1� .

�26�

As suggested by our notations, the evolution for these
quantities exactly mimics the derivation of the formulas for
the cavity fields, yielding

��t+1� = p
v����t��

���
, ��t+1� = 1 −

c��1 − ��t��
�k�

. �27�

The fixed point is given by Eq. �24�. When p� pd, the
algorithm converges towards the unique, ferromagnetic,
fixed point ����=����=0 and decoding is successfully
achieved. When pd� p� pc, a paramagnetic fixed point ap-
pears in addition to the ferromagnetic fixed point and the
iteration leads to this second paramagnetic fixed point. The
belief propagation algorithm thus fails to decode above the
dynamical threshold pd, before reaching the static threshold
pc below which no algorithm can possibly be successful �in
this sense, BP is suboptimal�.

B. Average error exponents

1. Entropic (1RSB) large deviations

The previous section recalled the properties of typical
codes subject to typical noise. With finite codewords, N
��, failure to decode may also be due to atypical noise with
unusually destructive effects. This is the purpose of our large
deviation approach to investigate such events. We first focus
on the simplest case: namely, the computation of the average
error exponent where both the codes C and the noise � are
treated on the same footing �see Sec. II E�. Our procedure to
deal with the statistics over atypical factor graphs is an ap-
plication of the cavity method for large deviations proposed

in �15�. For the sake of simplicity, we restrain ourselves here
to regular codes, where nodes and check nodes have both
fixed connectivity, � and k, respectively, and defer the gen-
eralization to irregular codes to Appendix D.

As explained in Sec. II E, the thermodynamic formalism
assigns a Boltzmann weight exSN�C,�� to each “configuration”
�C ,��. The parameter x plays the role of an inverse tempera-
ture or, in other words, is a Lagrange multiplier enforcing the
value of SN. Taking the infinite-temperature limit x=0 �no
constraint on the value of SN� will thus lead us back to the
typical case discussed above.

The cavity equations are as before derived by considering
the effect of the addition of a node. As adding a new node,
along with its adjacent parity checks, inevitably increases the
degrees of the other nodes, strictly restraining to regular
graphs is not possible and we must work in a larger frame-
work. Accordingly, we consider ensembles where the degree
of parity checks is fixed to k, but where the degree of nodes
has a distribution �vL� �meaning that degree L has probability
vL, independently for each node�. We will describe the regu-
lar ensemble by taking vL=��,L in the final formulas. Adding
a new node with � parity checks brings us from an ensemble
characterized by vL to an ensemble characterized by vL�, with

vL� = �1 −
��k − 1�

N
�vL +

��k − 1�
N

vL−1 = vL +
��k − 1�

N
�vL,

�28�

where �vL=vL−1−vL, since ��k−1� nodes have their degree
increased by 1. Let denote by L�s , �vL�� the rate function for
the probability to observe SN /N=s in an ensemble character-
ized by �vL�—that is,

PN��C,��:SN�C,��/N = s��vL�� � e−NL�s,�vL��. �29�

We introduce P
�+���

��� ��S�, the probability distribution of the
entropy contribution caused by the addition of the new nodes
along with its � adjacent parity checks. The passage from N
nodes to N+1 nodes can then be described by

PN+1�s = S/�N + 1���vL�� � e−�N+1�L�S/�N+1�,�vL�� = 

�

v� d�SP�+���
��� ��S�PN�s = �S − �S�/N��vL − � �k − 1�/N�vL��

� 

�

v� d�SP�+���
��� ��S�e−NL��S−�S�/N,�vL−��k−1�/N�vL��. �30�

Expanding for large N, one gets

s�x� = xs − L�s,�vL��

= ln

�

v� d�SP�+���
��� ��S�ex�S+z��k−1�, �31�

with

z = 

L

�vL
�L�s,�vL��

�vL
. �32�

The parameter z is determined by noting that the addition of
a new parity check changes the node degree distribution in
the same way as in Eq. �28�, with vL�=vL+ �k /N��vL, yielding
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e−NL�S/N,�vL�� � d�SP���S�e−NL��S−�S�/N,�vL−�k/N��vL��,

�33�

where P���S� is the probability of the entropy reduction
caused by the addition of a new parity check. Expanding
here also for large N leads to an equation for z,

z = −
1

k
ln d�SP���S�ex�S. �34�

Following the same line of reasoning as in the typical
case, the two distributions P

�+���

��� and P� can be expressed
by means of cavity fields � and �. First consider the addition
of a node: If the bit of the new node is fixed, either because
it was not erased or because one its adjacent parity checks
constrains it, there is an entropic reduction −ln 2 per noncon-
straining adjacent parity check and thus a weight 2−x. Other-
wise, if the new node is free, which occurs with probability
p��, the entropy shift is �ln 2��1− � �, giving a weight 2x�1−��.
Taking vL=�L,�, Eq. �31� therefore reads

s�x� = ln���2−x + 1 − ��� − p��2−x�� + p��2x�1−���

+ � �k − 1�z , �35�

with

� = 1 − �1 − ��k−1. �36�

Similarly, a new parity check removes a degree of freedom if
and only if one of its adjacent node is free, which happens
with probability 1− �1−��k, yielding

z = −
1

k
ln�1 − �1 − �1 − ��k� + �1 − �1 − ��k�2−x� . �37�

Finally, we obtain a self-consistent equation for � by consid-
ering the addition of a new �cavity� node in the absence of
one of its adjacent parity checks:

� = P�cavity node free�

� d�SP�→���S�cavity node free�ex�S+z��−1��k−1�,

�38�

1 − � = P�cavity node fixed�

� d�SP�→���S�cavity node fixed�ex�S+z��−1��k−1�,

�39�

where P�→� corresponds to P
�+���

��−1� , taken either under the
condition that the cavity node be free or that be is fixed. We
obtain

� =
p2x��2−x��−1

��2−x + 1 − ���−1 + p�2x − 1���2−x��−1 . �40�

Alternatively, these equations can be obtained by differentia-
tion of Eq. �35�, which is variational with respect to the
cavity �. The large deviation cavity equations �36� and �40�
allow us to compute the generating function s�x� using Eqs.
�35� and �37�, from which the rate function L�s � �vl=�l,��� is
deduced by Legendre transformation as discussed in Sec.
II E.

Again, two kinds of solutions, paramagnetic or ferromag-
netic, can be present. For a given value of p, we find that a
nontrivial, paramagnetic solution to Eq. �40� exists only for
x�xd�p�. In agreement with the observation reported in the
previous section that the paramagnetic solution typically ex-
ists only when p� pd, we have xd�p��0 for p
 pd and
xd�p�
0 for p� pd �the typical case is indeed associated
with x=0�. We obtain the average error exponent by select-
ing the value of L�s� where s=0: our results are illustrated in
Fig. 6. By extension of the concept of dynamical threshold
pd, one could define a “dynamical” error exponent as Ed�p�
=L(xd�p�)=xd�p�s(xd�p�)−(xd�p�) with xd�p� correspond-
ing to the temperature of the spinodal for the paramagnetic
solution. The relevance of this concept is, however, limited
by the fact that the algorithmic interpretation presented in
Sec. III A 3 does not extend to large deviations �see also Sec.
III C 3�.

More interestingly, we find an additional threshold �see
Table III�, denoted p1RSB, below which the equation s�x�=0
has no longer a solution �see Fig. 6�. This inconsistency of
the 1RSB solution is indicative of the presence of a phase
transition occurring at some pe
 p1RSB. The following sec-
tion is devoted to computing pe and describing the nature of
the new phase present for p� pe.

FIG. 6. �Color online� Rate function L�s� as a function of the entropy s, here illustrated with a regular code with k=6 and �=3 �for the
BEC channel�. The three regimes are represented. �a� p=0.2� p1RSB: the spinodal of the paramagnetic solution is for sd
0. �b� p=0.35
� �p1RSB, pd�: the spinodal is now for sd�0. �c� p=0.45� �pd , pc�: the spinodal is preceded by a minimum �the typical value�, with xd

=�sL�s=sd��0. The typical dynamical and static transitions can be read on the s=0 axis: by definition of pd and pc, this equation has a
solution s̄ for p
 pd and this solution is positive, s̄
0, for p
 pc �not represented here�.
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2. Energetic (RS) large deviations

The previous “entropic �1RSB� approach” attributed er-
rors to the presence of an exponential number of solutions in
the decoding CSP. The same assumption was underlying the
analysis of the typical case, in Sec. III A 2, where rigorous
studies support the conclusions drawn from this hypothesis.
This view is also consistent with the phase diagram of XOR-
SAT problems to which the encoding CSP belongs. The
structure of the well-separated codewords corresponds in this
context to a “frozen 1RSB glassy” phase. As p departs from
the value p=1, however, the decoding CSP deviates increas-
ingly in nature from the initial encoding CSP. As the number
of constraints increases �as p decreases�, the presence of an
exponential number of solutions �glassy phase� in addition to
the isolated correct codeword becomes less and less prob-
able. An alternative rare event possibly dominating the prob-
ability of error at low p is the presence of a second isolated
�ferromagnetic� codeword close to the correct one. This can
lead to a new phase transition that has no counterpart in the
typical phase diagram, reflected by a nonanalyticity of the
error exponent.

In our framework, investigating an alternative source of
error requires considering for SN another quantity than the
entropy of the number of solutions. A possible choice, asso-
ciated with a replica symmetric �RS� ansatz, is the energy EN
of the ground state of the decoding CSP, giving the minimal
number of violated parity checks. Ignoring the correct code-
word, a second isolated codeword is present if and only if
EN=0 �otherwise EN
0�. Large deviations of this energy are
described by the rate function L1�e� defined as

P��,C:EN��,C�/N = e� � e−NL1�e�. �41�

The generating function for the rate function L1�e�, defined
by

eNe�x� = E�,C�exEN��,C�� = deeN�xe−L1�e��. �42�

is given by �see �24� for a similar calculation�

1�x� = ln�p 	
a=1

�

duaQ�ua�exp�− x�

a=1

�

�ua� − �

a=1

�

ua���
+ �1 − p�  	

a=1

�

duaQ�ua�exp�− 2x

a=1

�

�ua,−1��
−

��k − 1�
k

ln 	
i=1

k

dhiP�hi�exp�− x��	
i=1

k

hi,− 1�� ,

�43�

with

P�h � + �� � p 	
a=1

�−1

duaQ�ua�

�exp�−
x

2
�


a=1

�−1

�ua� − �

a=1

�−1

ua���
���h − 


a=1

�−1

ua� , �44�

P�h = + � � � �1 − p�  	
a=1

�−1

duaQ�ua�exp�− x

a=1

�−1

�ua,−1� ,

�45�

Q�u� = 	
i=1

k−1

dhiP�hi���u − S�	
i=1

k−1

hi�� , �46�

where S�x�=1 if x
0, −1 if x�0, and 0 if x=0. Since u
only takes values in �−1,0 , +1� and h is restrained to integer
values, we can introduce

Q�u� = q+��u − 1� + q−��u + 1� + q0��u� �47�

and

p+ = 
h
0

dhP�h�, p− = 
h�0

dhP�h�, p0 = 1 − p+ − p−.

�48�

Our interest is here in zero-energy ground states, described
by the limit x→�, where the equations simplify to

TABLE III. Values of some thresholds p1RSB, pRS, pe, pd, and pc for different regular ensembles of LDPC
codes on the BEC.

�k , � � p1RSB pRS pe pd pc

�4,3� 0.325 262 970 9 0.546 574 881 1 0.606 872 016 6 0.647 425 6494 0.746 009 7025

�6,3� 0.266 856 875 4 0.337 837 464 1 0.349 188 490 2 0.429 439 8144 0.488 150 8842

�6,5� 0.013 008 205 24 0.427 701 036 8 0.714 365 751 3 0.551 003 5344 0.833 315 3204

�10,5� 0.044 128 845 46 0.243 565 689 4 0.334 772 117 6 0.341 550 0230 0.499 490 7179
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e�x = + �� = − L�e = 0� = ln��1 − q−�� + p�1 − q+�� − pq0
��

−
��k − 1�

k
ln�1 −

1

2
��p+ + p−�k − �p+ − p−�k�� , �49�

with

p+ � �1 − q−��−1 − pq0
�−1, �50�

p− � p�1 − q+��−1 − pq0
�−1, �51�

p0 � pq0
�−1, �52�

q+ =
1

2
��p+ + p−�k−1 + �p+ − p−�k−1� , �53�

q− =
1

2
��p+ + p−�k−1 − �p+ − p−�k−1� , �54�

q0 = 1 − �p+ + p−�k−1. �55�

We find that the only stable solution to these cavity equations
satisfies q0= p0=0, which allows us to further simplify the
formulas

e�+ � � = ln�q+
� + p�1 − q+���

−
��k − 1�

k
ln�1

2
�1 + �2p+ − 1�k�� , �56�

with

p+ =
q+

�−1

q+
�−1 + p�1 − q+��−1 , �57�

q+ =
1

2
�1 + �2p+ − 1�k−1� . �58�

The resulting RS average error exponent, given by Ee�p�=
−�+� �, is represented in Fig. 7.

We identify the transition pe as the point where the 1RSB
and RS error exponents coincide, which satisfies pe
 p1RSB.
We find that the RS solution is limited by a spinodal point
and is only defined for p� pRS. While we conjecture that the
1RSB estimate is exact for p
 pe, the existence of pRS sug-
gests that either an additional phase transition occurs at some
pe�
 pRS or, more radically, that our description of the phase
p� pe is incorrect. The limit case of random codes, however,
indicates that the energetic method is valid in the limit
k, �→�.

3. Limit of random codes

The only limiting case where the average error exponent
has been obtained integrally so far is the fully connected
limit where k , � →� with � /k=�=1−R fixed. This limit
corresponds to the random linear model, where each parity
check is connected to each node with probability 1 /2. In this
limit, the entropic 1RSB approach gives

Es�k, � →�� = L�s = 0� = D�1 − R�p� , �59�

where D�q � p�=q ln�q / p�+ �1−q�ln��1−q� / �1− p�� is known
as the Kullback-Leibler divergence, while the energetic RS
approach gives

Ee�k, � →�� = − e�+ � � = − �R − 1�ln 2 − ln�1 + p�
�60�

�with p+=1/1+ p and q+=1/2�. The two expression coincide
at the critical noise pe, with

pe = �1 − R�/�1 + R� . �61�

We thus predict the average error exponent of the RLM to be

E1�RLM� = ��1 − R�ln 2 − ln�1 + p� if p �
1 − R

1 + R
,

D�1 − R � p� if
1 − R

1 + R
� p � 1 − R .

�62�

This result coincides with the exact expression �see Appen-
dix B for a direct combinatorial derivation�, thus validating
our approach in this particular case.

As explained above, we are not able to fully account for
the small noise regime as soon as k and � are finite, even
though the solutions are found to be stable with respect to
further replica symmetry breakings in the space of code-
words �30�. This does not exclude that a similar replica sym-
metry breaking occurs in the space of codes. Remarkably,
previous attempts reported in the literature have also failed to
obtain error exponents in the low p regime.

C. Typical error exponents

1. Cavity equations

The typical error exponent is encoded into a potential
��x ,y�, as defined in Eq. �13�. The equations for ��x ,y� are
obtained from the cavity method for large deviations by fol-
lowing very closely the path leading to �x� �31�. As noticed
in Sec. II, the formalism with finite y provides a generaliza-
tion of the average case which is recovered by taking y=1,
with ��x ,y=1�=�x�. We will therefore only quote our re-
sults. In the entropic �1RSB� case, we find
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�s�x,y� = ln���2−xy + 1 − ��� − ��2−xy�� + ���p2x + 1 − p�y2−�xy� −
��k − 1�

k
ln��1 − ��k + �1 − �1 − ��k�2−xy� , �63�

with

� =
��−1�p2x�y2−��−1�xy

��2−xy + 1 − ���−1 − ��2−xy��−1 + ��−1�p2x + 1 − p�y2−��−1�xy ,

� = 1 − �1 − ��k−1. �64�

In the energetic �RS� case with x= +�, we find

�e�x = + � ,y� = ln�q+
� + py�1 − q+���

−
��k − 1�

k
ln�1

2
�1 + �2p+ − 1�k�� , �65�

with

p+ =
q+

�−1

q+
�−1 + py�1 − q+��−1 , �66�

q+ =
1

2
�1 + �2p+ − 1�k−1� . �67�

In each case, from the potential ��x ,y�, the rate function is
obtained as L� ,x�=y−��x ,y�, with �x�=�y��x ,y�. By
definition, a typical code corresponds to a minimum of L,
with L=0, which, when L is analytical at this minimum, is
associated with y=�L=0.

As a generic feature, we find that L�y ,x� is an increasing
function of y for fixed x, going from negative values for y
�yc�x� to positive ones for y
yc�x�. Negative rate func-
tions, as thus obtained, are certainly unphysical. As negative
entropies in the usual cavity-replica method, we attribute
them to analytical continuations of physical solutions. The
simplest way to circumvent them is, as with the frozen 1RSB
ansatz in the replica method, to select yc�x� with L�y ,x�=0.
When yc�x��1, meaning that L�y=1,x�
0, we consider
that the average exponent is associated with atypical codes
and therefore differs from the typical exponent, described by
L(yc�x� ,x)=0. Using this criterion, we find that the two ex-
ponents indeed differ for the lowest values of p, when p
� py, where py � pe �see Fig. 8 for an illustration�. In general
the situation is complicated by the fact that the cavity equa-
tions may fail to provide solutions in this regime, as already
seen in the average case when p� pRS �corresponding here to
y=1�; the random code limit, where this complication is ab-
sent, is thus the most instructive.

2. Limit of random codes

In the limit k, �→�, we obtain the following results. In
the entropic regime, p
 pe, the average and typical expo-
nents are found to coincide. This conclusion extends in the
energetic regime only for a restricted interval �py , pe�. When
p� py, we have yc�x��1 and average and typical error ex-

ponents differ. The formula we obtain for the typical error
exponent reads

Etyp�RLM� = �− �GV�R�ln p if p � py ,

Eav�RLM� if py � p � pc,
�68�

with

py =
�GV�R�

1 − �GV�R�
. �69�

�GV�R� denotes the smallest solution to �R−1�ln 2+H���=0,
whose interpretation is discussed in Appendix B. This result,
which does not seem to have been reported previously in the
literature, coincides with the union bound presented in Ap-
pendix C, which strongly suggests that it is indeed exact.

For LDPC with finite connectivity, a similar phase dia-
gram is expected. In the entropic regime, we find indeed that
average and typical exponents are identical. In the energetic
regime, we face the problem that the cavity equations have
no solution below some value of p, which precludes us from
estimating py.

3. Algorithmic implications

The cavity formalism has the attractive property of corre-
sponding formally to message passing algorithms. Based on
this analogy, new algorithmic procedures have been system-
atically proposed to analyze single finite graphs; each time
the cavity approach was found to operate at the ensemble
level. With a phase transition occurring at the ensemble
level, we have, however, here a system where such a corre-
spondence is no longer meaningful. Following the usual pro-
cedure, it is indeed straightforward to implement the cavity
approach for average error exponent on a single graph, but in
the regime p� py, this algorithm is doomed to fail: for any
typical graph, in the limit of large size, the message passing
algorithm will yield the average error exponent, which, as we
have seen, is distinct for the correct, typical, error exponent.

IV. LDPC CODES OVER THE BSC

A. Definition

We now turn to error exponents for LDPC codes on the
binary symmetric channels. One motivation for repeating the
analysis with this channel is that it is representative of a
broader class of channels, where bits are not simply erased as
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with the BEC, but can be corrupted, in the sense that their
content 0 or 1 is changed to other admissible values. This
clearly complicates the decoding as corrupted bits cannot be
straightforwardly identified; in fact, with the BSC, no
scheme can guarantee to identify the corrupted bits and the
receiver is never certain that his decoding is correct. We will,
however, see that the overall phase diagram is very similar to
that obtained with the BEC.

By definition, maximum-likelihood decoding consists in
inferring the most probable realization of the noise a poste-
riori. The a posteriori probability can be expressed from the
a priori probability thanks to Bayes’ theorem. If x denotes
the transmitted message and y the received message, the a
priori probability to receive y given x is

Q�y�x� = 	
i=1

N

�1 − p��xi,yip1−�xi,yi. �70�

To make contact with physical models of disordered systems
�12�, it is convenient to adopt a spin convention 	i= �−1�xi,
�i= �−1�yi, and to rewrite the previous relation as

Q����� � exp�

i=1

N

hi�i�, hi � h0	i, h0 �
1

2
ln�1 − p

p
� .

�71�

This formulation emphasizes the analogy with the random
field Ising model �32�, a prototypical disordered system. Us-
ing the group symmetry of the set of codewords, we can
assume, without loss of generality, that the sent codeword is
�= �+1, . . . , +1�. With this simplification, the random field
takes value hi=h0 with probability 1− p and −h0 with prob-

ability p. Bayes’ formula for the a posteriori probability that
the message � was sent reads

P����� =
P�����P���


��
P������P����

=
1

Z���
exp��


i=1

N

hi�i�	
a=1

M

���a = 1� , �72�

where �a is a shorthand for 	i�a�i: in the present spin con-
vention, the constraint induced by the parity check a indeed
reads �a=1. To continue the analogy with statistical mechan-
ics, we have also introduced a temperature �, called the de-
coding temperature, whose value is here fixed to �=1
�Nishimori temperature—see �11��. Given the a posteriori
probability, the selection of the most probable codeword
d��� can still be done according to different criteria, among
which are the following.

�i� Word maximum a posteriori �word MAP�, where
one maximizes the posterior probability in block by taking
dblock�	�=argmax�P�� ���. This scheme minimizes the
block-error probability Pblock= �1/M�
�P�d������.

�ii� Symbol maximum a posteriori �symbol MAP�,
where one maximizes the posterior probability bit
per bit by taking dbit���i=argmax�i


�j�i
P�� ���. This

scheme minimizes the bit-error probability Pbit
= �1/M�
��1/N�
iP�d���i�	i�.

In physical terms, the word-MAP procedure consists in
finding the ground state of the system with partition function
Z��� given by the normalization in Eq. �72�; this amounts to
studying the zero-temperature limit �→�. Conversely, sym-
bol MAP is equivalent to taking the sign of the local magne-
tizations at temperature �=1,

�i
bit = sgn���i�� = sgn�


�

�iP������ . �73�

We will treat the two cases in a common framework by con-
sidering an arbitrary temperature ��1.

FIG. 7. Average error exponent as a function of the noise level
p for the regular code ensemble with k=6 and �=3, on the BEC.
Numerical estimates of the error probability, based on 106 runs of
exact maximum-likelihood decoding �using Gauss elimination� on
samples of sizes ranging from N=500 to N=1500, yield reasonably
good estimates of the error exponent using an exponential fit. These
numerical results agree well with our theoretical prediction. The
union bound �C11� and the random linear limit �62� are also repre-
sented for comparison.

FIG. 8. Rate function L�Le�=L�−e�+� �� of the energetic error
exponent for an LDPC code with k=24, �=12 on the BEC. When
p
 py �solid curve�, the rate function is negative �and therefore
unphysical� for all 0�y�1, entailing that the typical and average
error exponents should coincide. When p� py �dashed curve�, we
postulate that the typical error exponent is given by the inverse
“freezing temperature” yc at which the rate function cancels.
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From the physical perspective, the original codeword is
recovered if it dominates the Gibbs measure defined in Eq.
�72�. This can be expressed by decomposing the partition
function Z��� as

Z��� = Zcorr��� + Zerr���, Zcorr��� = e�
i
hi,

Zerr��� = 

��1

e�
i
hi�i	

a

���a − 1� . �74�

We define the corresponding free energies Fcorr���=
−�1/��ln Zcorr��� and Ferr���=−�1/��ln Zerr���. The first one
corresponds physically to a ferromagnetic phase �as with the
BEC�, while the second will be shown to correspond to ei-
ther a paramagnetic or a glassy phase, depending on the val-
ues of � and p. Decoding is successful if, and only if, the
ferromagnetic phase has lower free energy, Fcorr�Ferr. The
quantity SN�� ,C� introduced in Sec. II E can therefore be
defined here as

SN = Fcorr��� − Ferr��� , �75�

where the dependence in the noise � and the code C is im-
plicitly understood.

B. Cavity analysis and the 1RSB frozen ansatz

As with the BEC, explicit calculations can be performed
by means of the replica or cavity methods. Details can be
found in Appendix E, and we only discuss here the points
where differences with the BEC arise. For any fixed p, a
replica-symmetric calculation, whose derivation follows the
derivation of the paramagnetic solution with the BEC, is
found to undergo an entropy crisis—i.e., sRS���
=�2��fRS����0 for �
�g. This feature is indicative of the
presence of a glassy phase and points to the need to break the
replica symmetry. The glassy phase of LDPC codes is, how-
ever, of the “frozen 1RSB” type, which implies that the
glassy free energy ferr can be completely inferred from the
replica-symmetric solution fRS. This simplicity stems from
the “hard” nature of the constraints: changing a bit automati-
cally violates all its surrounding checks, forcing the rear-
rangement of many variables �33,34�. When the degree of all
nodes is �i�2, one can indeed show �24� that changing one
bit while keeping all checks satisfied requires the rearrange-
ment of an extensive ��N� number of variables �in the lan-
guage of �24�, factor graphs of LDPC codes have no leaves�.

The consequence, expressed in the replica language, is that
the 1RSB “states” are reduced to single configurations and
thus have zero internal entropy. The 1RSB potential �� ,m�
whose optimization over m� �0,1� is predicted to yield ferr

�20� thus simplifies to �� ,m�= fRS��m� �35�, since

e−N�m��,m� � 

states �

e−N�mf���� = 

�

e−N�me� = e−�mfRS��m�.

�76�

According to whether one is above or below the freezing
temperature �g

−1, defined by

sRS��g� = �g
2��fRS��g� = 0, �77�

the free energy ferr��� is given either by fRS��� �paramag-
netic phase� or by fRS��g� �glassy phase�. This is summa-
rized as follows:

ferr��� = max
����

fRS���� = � fRS��� if � � �g,

fRS��g� if � 
 �g.
�78�

Finally, we note that as in the BEC case, a nonferromag-
netic solution fRS��� exists only for large enough p. The
threshold pd��� giving the smallest noise level at which a
nonferromagnetic solution exists is again called the dynami-
cal threshold and can be shown here also to coincide with the
dynamical arrest of BP �28�.

C. Average error exponent: LDPC codes

In the region relevant for error exponents, where p� pc
and ��1, the ferromagnetic solution is typically dominant
�this is the definition of p� pc� and metastable phases de-
scribed by ferr are typically glassy, since �g�1. Therefore, to
compute error exponents, we have to consider ferr���
= fRS��g� and not ferr���= fRS���. This leads us to introduce
an extra temperature �e distinct from the decoding tempera-
ture �, which is to be set to �g by requiring that the entropy
sRS be zero. Similarly, we introduce a ferromagnetic tem-

FIG. 9. �Color online� Large deviation rate L1�f f − fe ,se=0� as a function of the difference between the ferromagnetic and the nonferro-
magnetic free energies, here for regular codes with k=6 and �=3 on the BSC. The thresholds are p1RSB�0.058 and pc�0.100. The three
regimes are represented. From left to right, p=0.045, p=0.07, and p=0.09.

THIERRY MORA AND OLIVIER RIVOIRE PHYSICAL REVIEW E 74, 056110 �2006�

056110-14



perature � f, set to � f =�, and define the rate function
L1�fe , f f� and its Legendre transform as

P��,C:FRS��e�/N = fe,Fcorr�� f�/N = f f� � e−NL1�fe,f f�,

eN1��e,�f,xe,xf� = E�,C�e−xe�eFRS��e�−xf�fFcorr��f��

= dfedf fe
N�−xe�efe−xf�f f f−L1�fe,f f��. �79�

The potential 1 contains all the necessary information about
both solutions:

− �afa = �xa
1, sa = �xa

1 −
�a

xa
��a

1, �80�

where the index a=e , f corresponds to the two possible
phases. For the purpose of computing error exponents, we
need only to control fe− f f and se for all temperatures �e
��. Note that the ferromagnetic solution f f has no entropy,
sf =0, which is here reflected by the fact that the potential 1
depends upon � f and xf only through mf �� fxf. These obser-
vations allow us to focus on a simplified potential

̂��e,m� = 1��e,xe =
m

�e
,mf = − m� , �81�

which satisfies

�m̂ = f f − fe, ��e
̂ = − mse. �82�

As with the BEC, the average error exponent is identified
with the smallest value of L1 such that se�0 and f f − fe�0.
The present formulation is in fact equivalent to the presenta-
tion based on the replica method given in �10�. A remarkable
consequence of the analysis is that the average error expo-
nent is predicted to be the same for any ��1. Indeed, both
the glassy and the ferromagnetic free energies are tempera-
ture independent for ���g. In particular, symbol and word
MAP are predicted to have same error exponents.

Based on the cavity equations given in Appendix E, the
potential ̂ can be computed numerically by population dy-

namics. As an illustration, we plot in Fig. 9 the rate function
L1�f f − fe ,se=0� for a regular code with k=6, �=3. As in the
case of BEC, three regimes can be distinguished, according
to the value of p.

�i� p� p1RSB: no zero-entropy RS solution typically
exists and fe� f f for the metastable solutions.

�ii� p1RSB� p� pd�: no zero-entropy RS solution typi-
cally exists but the dominant metastable solutions have fe

 f f.

�iii� pd�� p� pc: a zero-entropy RS solution is typi-
cally present.

The major difference with the BEC is that the threshold
pd�, defined by pd�= pd(�g�pd��) does not coincide with the dy-
namical threshold pd���: indeed here pd� is defined in relation
to the existence of a solution with positive entropy, while, in
the framework of BP, the dynamical arrest pd is related to the
existence of a paramagnetic solution at decoding temperature
�−1 �28�. In Fig. 10, we plot the average error exponent for
regular codes with k=6, �=3.

D. Random code limit

1. Average error exponent

As with the BEC, the k , � →� limit can be computed
exactly, yielding

E1
�1� = L1�f f = fe,se = 0� = D„�GV�R� � p… , �83�

where �GV�R� denotes the smallest solution to R−1+H���
=0. In this regime, errors are most likely to be caused by
large noises driving the received message beyond the typical
nearest-codeword distance.

As pointed out in �10�, a second ferromagnetic solution is
present in this limit �see Appendix E for details�, yielding the
error exponent

E1
�2� = − ln

1

2
�1 + 2�p�1 − p�� − R ln 2. �84�

Such a solution also exists for finite k ,�, but is clearly un-
physical �it predicts negative exponents for k=6, �=3�. Yet it
correctly describes the low p phase �B14� in the k , � →�
limit, where failure is caused by the existence of one �or a

FIG. 10. Average error exponent as a function of the noise level
p for the regular code ensemble with k=6 and �=3 through the
BSC. Here p1rsb�0.058. The union bound �C17� and the random
linear model �k , l→ � � limit �B14� are also represented for
comparison.

FIG. 11. Rate function L�L� for the RLM on the BSC with R
=1/2 and p=0.005
 py �solid curve� and p=0.001� py �dashed
curve�.
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few� unusually close codewords. In that sense it plays the
same role as the energetic solution in the BEC analysis, with
the difference that it is not extensible to any case with finite
connectivities. The critical noise pe below which such a sce-
nario occurs is given by

�pe

�pe + �1 − pe

= �GV�R� . �85�

We thus predict the average error exponent to be

E1�RLM� = �D„�GV�R� � p… if p � pe � pc,

− ln
1

2
�1 + 2�p�1 − p�� − R ln 2 if p � pe.

�86�

This expression coincides with the exact result �B14� of the
RLM.

2. Typical error exponent

The typical exponent of the RLM can be evaluated using
the two-step potential:

eN���e,m,y� = EC�eNŷ��e,m�� = d̂eN�ŷ−L�̂,�e,m��. �87�

The details of the calculations by the cavity method are
given in Appendix E. As in the average case, two distinct
solutions appear. The first one is the counterpart of the solu-
tion discussed in Sec. IV C. It yields, in the random linear
limit,

���e,m,y� = ŷ��e,m� . �88�

A consequence of the linear dependence on y is that ̂ al-
ways takes the value obtained from the average calculation,

irrespectively of y. Therefore, the average and typical error
exponents coincide in this regime and are given by Eq. �83�.

This solution is, however, only valid in the high-noise
regime �p
 pe�. As in the average case, for low p, the errors
in decoding are dominated by the presence of a subexponen-
tial �zero entropy� number of close codewords. The associ-
ated solution has for potential

��y� = − yL − L = �R − 1�ln 2 + ln�1 + �2�p�1 − p��y� .

�89�

We observe two types of behavior according to the value of
p: for py � p� pe, L�y� is negative for 0�y�1, whereas for
p� py, it crosses 0 at yc�1 �see Fig. 11�. Interpreting, as in
the BEC analysis �see Sec. III C 1�, negative values of L as
evidence of a glassy transition in the space of codes, we
deduce that the typical error exponent is given by L�yc� when
yc�1, in which case it differs from the average error expo-
nent. To sum up,

E0�RLM� = �L�yc� = − �GV�R�ln�2�p�1 − p�� if p � py ,

L�y = 1� = E1�RLM� if py � p � pc,
�90�

where the critical noise py�R� is a solution of

2�py�1 − py�

1 + 2�py�1 − py�
= �GV�R� . �91�

This exponent coincides with the RLM limit of the union
bound �C18� and is rigorously established �7� to be the cor-
rect typical error exponent on the BSC.

V. CONCLUSION

Since Shannon laid the basis for information theory, the
analysis of error-correcting codes has been a major subject of
study in this field of science �4�. Error-correcting codes aim

at reconstructing signals altered by noise. Their performance
is measured by their error probability—i.e., the probability
that they fail in accomplishing this task. For block codes,
where the messages are taken from a set of 2M codewords of
length N, it is known that when the rate R=M /N is below the
channel capacity Rc, the probability of error behaves, in the
limit of large N, at best, as Pe�exp�−NE�R�� �4�. This error
exponent E�R�, also called reliability function, provides a
particularly concise characterization of performance.

For a given code ensemble, two classes of error exponents
can generally be distinguished, due to the presence of two
levels of “disorder,” one associated with the choice of the
code itself and a second associated with the realization of the
noise. Average error exponents correspond to take the error
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probability Pe with respect to these two levels simulta-
neously, while typical error exponents refer to fixed, typical,
codes.

In the present paper, we tackled the computation of these
two error exponents for a particular class of block codes, the
low-density parity-check codes, with two particular chan-
nels, the binary erasure channel and the binary symmetric
channel. We considered decoding under maximum-
likelihood decoding, the best conceivable decoding proce-
dure. We framed the problem in terms of large deviations and
applied a recently proposed extension of the cavity method
designed to probe atypical events in systems defined on ran-
dom graphs �15�. This method provides an alternative to the
replica method used in �10� to address similar problems, with
the advantage of being based on explicitly formulated proba-
bilistic assumptions. With respect to this earlier contribution,
our work offers several clarifications, notably on the nature
of the different phases, and various extensions, notably to the
BEC channel. With this particular channel, our results are
analytical, and in the high-noise regime, we conjecture them
to be exact. Recent mathematical results on the typical phase
diagram �36� foster hope for a confirmation of our results in
that context.

From a statistical physics perspective, error exponents are
interesting for the richness of their phase diagram, which
comprises two phase transitions of different natures. These
transitions are observed when the level of noise p is varied at
fixed rate R �or, equivalently in the special case of random
codes, when the rate R is varied at fixed p�. Close to the
static threshold, for pe� p� pc, errors are mostly due to the
proliferation of many incorrect codewords in the vicinity of
the received message. We interpreted this feature in terms of
the presence of a glassy phase, and accordingly, we were
able to describe this regime by considering a one-step replica
symmetry breaking approach. Below pe, errors become
dominated by the effect of single isolated codewords, which
we attributed to a transition towards a ferromagnetic state or
1RSB to RS transition. The noise pe has its counterpart in the
“critical rate” Re of information theory �4�, which marks the
point below which only bounds on the reliability function are
known. The replica-symmetric approach we employed to in-
vestigate the regime p� pe also turns out to be only approxi-
mate, except in the limit of infinite connectivity, where we
recovered the error exponents of random linear codes �7�. We
also described a second transition occurring at py � pe, below
which atypical codes come to dominate the average expo-
nent, causing it to differ from the typical error exponent. As
it takes place in the space of graphs, this is an example of a
critical phenomenon whose description is not accessible to
the standard cavity method �14�, but only to its extension to
large deviations �15� �see also �37� for an other example�.
However, this second transition should be taken with utmost
care, as it relies on an approximate ansatz.

The numerous efforts made in the information theory
community to account for the low rate regime R�Re have so
far resulted only in upper and lower bounds for the reliability
function �6�. Maybe not too surprisingly, this is also the re-
gion of the phase diagram where our methods encounter dif-
ficulties. Several examples are, however, now available
which demonstrate that statistical physics methods can pro-

vide exact solutions to notoriously difficult mathematical
problems. The solutions thus obtained generally sharpen our
comprehension both of the system at hand and of the tech-
niques themselves, besides often paving the way for rigorous
derivations. In the light of some recent such achievements,
extending the present statistical physics approach to reach a
thorough understanding of error exponents seems to us a
valuable challenge.
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APPENDIX A: A NOTE ON THE EXPONENTIAL
SCALING

The thermodynamic approach is based on the assumption
that the leading contribution to the probability of error de-
cays exponentially with N. However, as initially shown by
Gallager, for ensembles of LDPC codes, the probability of
error decays only polynomially in N to the leading order. In
physical terms, this is due to a few codes �whose number is
a polynomial in N� which display a second, metastable, fer-
romagnetic state at a smaller distance from the ground state
�corresponding to the correct codeword� than the numerous
configurations forming the paramagnetic state.

To overpass this spurious effect in the simplest, yet purely
theoretical way, Gallager focused on the so-called “expur-
gated ensemble” where the half of the codes with smallest
minimum distance is disregarded. On this restricted en-
semble which excludes the codes with multiple ferromag-
netic states, the error probability decays now exponentially
in N at the leading order and can be characterized with an
average error exponent. Needless to say, this construction
only makes sense as a convenient theoretical way to access
good codes.

As the large deviation method automatically overlooks
any polynomial contribution, its results actually apply to the
“expurgated ensemble.” This is, however, only true to the
extent that the expurgation does not affect the distribution of
graphs in the ensemble �i.e., does not change the distribution
of degrees, of loops, etc.�. This is presumably the case, as
supported by the construction presented in �38�, where an
expurgated ensemble much tighter than Gallager’s one is de-
fined by explicitly associating to any random code an expur-
gated code obtained by modifying only a number O�1� of
small loops.

APPENDIX B: RANDOM LINEAR MODEL

Definition

A parity-check code is defined by a M �N matrix A over
Z2 and its codewords are the vectors x= �x1 , . . . ,xN� satisfy-
ing Ax=0. Code ensembles are therefore subsets of the set of
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all 2MN possible matrices. Taking this complete set �with all
possible matrices having same probability� defines the so-
called random linear model. In contrast with LDPC codes,
since a typical matrix from the RLM is not sparse, the belief
propagation algorithm cannot be used to decode. While of
little practical interest due to this absence of efficient decod-
ing algorithm, the RLM has, however, two major theoretical
advantages, both originating from its “maximally random”
nature: typical codes from the RLM saturate the Shannon
bounds, and error exponents can be derived rigorously. We
review here some of the established results, which we used
in the main text as a reference point to compare our nonrig-
orous results. Error exponents for the RLM are indeed ex-
pected to provide upper bounds for error exponents of LDPC
ensemble, which are reached only in the limit of infinite
connectivity k , l→� �this limit is similar to that in which
p-spin models approach the random energy model when p
→� �27��.

Weight enumerator function

We first characterize the geometry of the space of code-
words by means of the so-called weight enumerator function.
Given a code C with matrix A, this function gives the num-
ber NC�d� of codewords x at �Hamming� distance d= �x �
�
i=1

N xi from the origin:

NC�d� = 

x

��d,

i=1

N

xi���Ax,0� , �B1�

where the sum is over all codewords and ��x ,y� enforces the
constraint x=y. The average weight enumerator function is
obtained by averaging over the code ensemble and satisfies

N̄�d� � EC�NC�d�� = �N

d
�2−M � eN��R,�=d/N�,

��R,�� = �R − 1�ln 2 + H��� , �B2�

where the limit of infinite block length, N→�, is taken with
M =N�1−R� and d=Nx. The exponent ��R ,x� defines the
so-called average weight enumerator exponent. A critical
distance is the distance �GV�R� defined as the smallest �

0 such that ��R ,��=0. Codewords at distance d=N� with
�
�GV�R� proliferate exponentially. On the other hand, the
probability of existence of a codeword at distance d=N�

with ���GV�R� is upper-bounded by N̄�d� and thus decays
exponentially with N. Consequently, for any ��N� such that
��N�→� �e.g., ��N�=�N�, only an exponentially small frac-
tion of the codes in the ensemble have a minimal nonzero
distance d=N� smaller than N�GV�R�−��N�. Excluding these
“worst” codes from the RLM defines the expurgated RLM
ensemble.

Average error exponent over the BEC

Due to the group symmetry of the set of codewords, we
can assume without loss of generality that the transmitted
codeword is �0, . . . ,0�. For a given realization of the disorder

due to a BEC, we denote by E� �1, . . . ,N� the subset of
erased bits in the received string and d the number of ele-
ments in E. If A is the M �N matrix representing the code,

the submatrix ÃE induced by A on E defines the decoding
CSP problem: decoding is impossible if and only if the ker-

nel of ÃE is nonzero. When all matrices A are sampled with

uniform probabilities as in the RLM, the submatrices ÃE are
also represented with uniform probability. Given a noise re-
alization E of magnitude d, the error probability is the prob-

ability that a random M �d matrix ÃE is noninjective,

EC�PN
�B��0�� = 


d=0

N �N

d
�pd�1 − p�N−d

�P�∃x � 0 such that ÃEx = 0� . �B3�

When d
M, ÃE is necessarily noninjective. When d�M, on
the other hand, a straightforward inductive argument �8�
gives

P�∃x � 0 such that ÃEx = 0� = 1 − 	
i=0

d−1

�1 − 2i−M� .

�B4�

Consequently, the exact expression for the average error
probability of the RLM reads

EC�PN
�B��0�� = 


d=0

M �N

d
�pd�1 − p�N−d�1 − 	

i=0

d−1

�1 − 2i−M��
+ 


d=M+1

N �N

d
�pd�1 − p�N−d. �B5�

In the N→�, this expression can be evaluated by the saddle-
point method. When p� �1−R� / �1+R�, the dominant contri-
bution comes from the first sum, with



d=0

M �N

d
�pd�1 − p�N−d�1 − 	

i=0

d−1

�1 − 2i−M��
� e−N��1−R�ln 2−ln�1+p�� �B6�

and typical number of errors d=N2p / �1+ p�. When p
 �1
−R� / �1+R� �and p�1−R to stay below the capacity�, the
dominant contribution comes from the second sum, with



d=M+1

N �N

d
�pd�1 − p�N−d � e−ND�1−R�p� �B7�

and the typical number of errors d=N�1−R�. We thus obtain
for the average error exponent of the RLM the expression
given in Eq. �62�,
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E1�RLM� = ��1 − R�ln 2 − ln�1 + p� if p �
1 − R

1 + R
,

D�1 − R � p� if
1 − R

1 + R
� p � 1 − R .

�B8�

In physical terms, the transition between the two regimes can
be interpreted as a transition between a ferromagnetic �RS�
phase and a glassy �1RSB� phase. In the high-noise regime
p
 �1−R� / �1+R�, the error is indeed most probably due to
the noise driving the received string into a “glassy phase” of
exponentially numerous incorrect codewords, as reflected by

the fact that then P�∃x�0 such that ÃEx=0�=1. In contrast,
in the low-noise regime, p� �1−R� / �1+R�, the error is most
probably due to the noise driving the received string into a
“ferromagnetic phase” where an isolated incorrect codeword
happens to be closer than the correct codeword; this is re-

flected by the fact that P�∃x�0 such that ÃEx=0� differs
from 1 only by an exponentially small term in N, as seen
from Eq. �B4�.

Average error exponent over the BSC

With the binary symmetric channel, starting again from
the transmitted codeword is �0, . . . ,0�, the received string y
cannot be decoded if there exists x�0 such that Ax=0 and

�x−y � � �y�. Denoting Pe�y� the probability of this event, the
probability of error is

EC�PN
�B��0�� = 


d=0

N �N

d
�pd�1 − p�N−dPe�y�d�� , �B9�

where y�d� is a generic string of weight d—e.g., yi=1 if i
�d, yi=0 if i
d. If d /N
�GV�R�, Pe�y�d�� goes to 1 in the
infinite block-length limit. Although no published proof is
available in the literature, it is reported as proved �7� that,
when d /N��GV�R�, Pe�yd� is asymptotically equivalent to
its union bound approximation �see the following
appendix�—i.e.,

Pe�y�d�� � EC�

x�0

��d − �x − y�d�����Ax,0�� �B10�

�

i=0

d

EC�NC�i,y�d��� �B11�

�EC�NC�d,y�d��� , �B12�

where NC�i ,y�d�� is the number of codewords at distance i
from y�d� and ��x�=1 if x
0 and 0 otherwise. Straightfor-
ward combinatorics shows that the asymptotic behavior of
ECNC�i ,yd� is given by the standard weight enumerator ex-
ponent ��R , i /N�. In the limit N→� where �=d /N is kept
fixed, a saddle-point evaluation leads to the following ex-
pression of the average error exponent:

E1�RLM� = − max
���GV

���R,�� − D�� � p�� �B13�

=��1 − R�ln 2 − ln�1 + 2�p�1 − p�� if
�p

�p + �1 − p
� �GV�R� ,

D„�GV�R� � p… otherwise.

�B14�

FIG. 12. Expurgated union bounds for the BEC �left� and BSC �right�. From bottom to top, �k , � �= �6,3� , �8,4� , �12,6� and the RLM
limit, expurgated �top solid curve� and not expurgated �bottom solid curve� with R=1/2. The points indicate the transition between the three
regimes, as well as eUB.
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This result with two distinct regime is very similar to that
obtained previously for the BEC.

APPENDIX C: UNION BOUNDS

The so-called union bound exponent is a rigorous lower
bound of the average error exponent in the expurgated en-
semble. We show in this appendix how the average weight
enumerator exponent of �regular� LDPC codes can be used to
derive this union bound exponent, for both the BEC and
BSC. We will thus recover results first established by Gal-
lager in �4,39�. In a nutshell, the idea of the union bound is to
upper-bound the probability that at least one �bad� codeword
causes an error by the sum of the probabilities that each does.
Remarkably, this union bound turns out to be tight for the
RLM ensemble.

Weight enumerator function

The weight enumerator function �see Eq. �B1� for the
definition� of regular LDPC codes with k=6 and �=3 was
computed in �4� and reads

EC�NC�d�� = 

x

���x�,d�EC���Ax = 0��

= �N

d
�EC���Ax�d� = 0�� �C1�

EC�NC�d = �N�� � eN��k,l,��, �C2�

with

��k,l,�� = min
�
�2� � � + �1 − � �H��� +

�

k
ln C���� ,

�C3�

and

C��� =
1

2
��1 + e−2��k + �1 − e−2��k� . �C4�

We introduce �m, the smallest � such that ��k , l ,���0. By
construction, the average enumerator exponent in the expur-
gated ensemble is

�exp�k,l,�� = ���k,l,�� if ��k,l,�� 
 0 �i.e.,if � 
 �m� ,

− � otherwise.

�C5�

This expurgated average enumerator exponent �exp�k , l ,�� is
believed to coincide with the typical enumerator exponent
�40,41�.

Union bound for the BEC

Given the set E of erased bits, we want to estimate the
probability Pe�d� that the CSP-decoding problem has at least
two solutions, when a code C is drawn at random from its

ensemble. We call A the matrix characterizing C, ÃE the

submatrix induced by A on E, and d the number of erased
bits. The union bound consists in the following inequality:

Pe�d� = P�∃ x̃ � �0,1�d � 0 such that ÃEx̃ = 0� �C6�

�min�

x̃�0

P�ÃEx̃ = 0�,1� . �C7�

Let w= �x̃� and x be constructed from x̃ by setting xi= x̃i for

i�E, xi=0 otherwise: x̃ belongs to the kernel of Ã if and
only if x belongs to the kernel of A. The probability of the
latter event reads

EC�NC�w���N

w
�−1

. �C8�

The error probability is consequently bounded by

EC�PN
�B�� = 


d=0

N �N

d
�pd�1 − p�N−dPe�d� �C9�

�

d=0

N �N

d
�pd�1 − p�N−d

�min�

w=0

d �d

w
�EC�NC�w���N

w
�−1

,1� . �C10�

In the infinite block-length limit, a saddle-point estimate
yields, as upper bound for the expurgated average error ex-
ponent, the exponent

Eexp�k,l� � EUB

= − max
�
�− D�� � p�

+ min�max
�
����� + �H��

�
� − H����,0��

= − max
���UB

�− D�� � p� + max
�
�m

min
�
��H��

�
�

+ 2���−�H��� +
�

k
ln C����� , �C11�

where �=d /N, �=w /N, and �UB is the largest � such that
max�(����+�H� �

�
�−H���) is nonpositive.

As p is varied, three regimes can be distinguished. For
small p, the maximum over � is reached on the boundary �m,
meaning that errors are dominated by the nearest codewords.
For large p instead, the maximum over � is reached at �UB, in
which case the union bound is simply replaced by 1, physi-
cally corresponding to a large number of bad codewords aris-
ing from the large amplitude of the noise. Finally, in the
intermediate region of p, the extremum is reached in the
interior of the �� ,�� domain. Note that this last regime is not
always present when k and � are too small �for k=6 and �
=3 in particular�. These three regimes are given in the limit
k , � →� by
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E0�RLM� =�
− �GV�R�ln p if p � py ,

�1 − R�ln 2 − ln�1 + p� if py � p �
1 − R

1 + R
,

D�1 − R � p� if
1 − R

1 + R
� p � 1 − R ,

�C12�

with py defined as in Eq. �69�. Union bounds for the BEC are
plotted in Fig. 12 for several regular ensembles.

Union bound for the BSC

The union bound for the BSC is derived following the
same steps than for the BEC. The counterpart of Eq. �C6�
reads

Pe�d� = P�∃x � 0 such that �x − y�d�� � d and Ax = 0� ,

�C13�

where y�d� is a generic string of weight d. Let x be a string a
weight w and Q�w ,d ,g� be the probability for y�d� to be at
distance g from x, conditioned on �y�d� � =d:

Q�w,d,g� = � w

�d − g + w�/2
�� N − w

�d + g − w�/2
��N

d
�−1

.

�C14�

The probability for y�d� to be at distance g from any code-
word x is upper-bounded by



w

EC�NC�w��Q�w,d,g� , �C15�

and we can write

Pe�d� � min�

w,g

EC�NC�w��QC�w,d,g�,1�
� min�


w

EC�NC�w��QC�w,d,d�,1� . �C16�

From this inequality and Eq. �C9�, we obtain the union
bound for the error exponent via the saddle-point method:

Eexp�k,l� � EUB = − max
�

�− D�� � p� + min�max
�

„����

+ L��,�,��…,0��

=− max
���UB

�− D�� � p� + max
�
�m

min
�
�2� � � + �1

− � �H��� +
�

k
ln C��� + L��,�,���� ,

L��,�,�� = �H�� − � + �

2�
� + �1 − ��H�� + � − �

2�1 − �� � − H��� .

�C17�

As for the BEC, three regimes can be distinguished, accord-
ing to the value of p. In the limit k , � →�, these three re-
gimes are

E0�RLM�

= �− �GV�R�ln�2�p�1 − p�� if p � py ,

�1 − R�ln 2 − ln�1 + 2�p�1 − p�� if py � p � pe,

D„�GV�R� � p… if pe � p � �GV�R� ,

�C18�

where py and pe are given by Eq. �91� and �85�
Union bounds for the BSC are plotted in Fig. 12.

APPENDIX D: IRREGULAR CODES

Definition of the ensemble

In this appendix we discuss the generalization to irregular
graphs. We shall only treat the entropic large deviations with
the BEC, but our arguments can easily be generalized to the
other cases. With irregular codes, it is necessary to specify
more precisely the definition of the ensemble. The usual defi-
nition is via the degree distributions v� and ck. It is, however,
possible to define different ensembles having same distribu-
tion and sharing the same typical properties, but differing at
the level of atypical properties, including error exponents
�see also �15� for similar nonequivalences in an other con-
text�.

The simplest construction takes all factor graphs with ex-
actly v�N checks of degree �, ckM variables of degree k, and
pick them with uniform probability. Such ensembles are used
to build actual codes, and we shall therefore analyze them
with some details.

Average error exponent

We revisit the arguments of Sec. III B and emphasize the
differences with the regular case.

A crucial modification is the introduction of Lagrange
multipliers enforcing the number of nodes of each degree.
Call N� the number of variables of degree � and Mk the
number of checks of degree �. Denote n�=N� /N and mk
=Mk /N. The rate L1 is now a function of the n� and mk. Its
multiple Legendre transform is defined as

�x,����,��k�� � xs + 

�

��n� + 

k

�kmk − L1, �D1�

with

x = �sL1, �� = �n�
L1, �k = �mk

L1.

Let us consider the addition of a new bit. � checks are
added along with it, where � is drawn with probability v�.
Each of these checks, in turn, is connected to ka−1 old bits
�a=1, . . . , � �, where ka is drawn with probability kacka

/ �k�.
Equation �31� is modified in the following way:
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�x,����,��k�� = ln

�

v� 

�k1,. . .,k��

	
a=1

� kacka

�k�

� d�SP�+���
��,k1,. . .,k����S�exp�x�S + 


a=1

�

��ka

− 1�zka
+ �ka

� + ��� . �D2�

The addition of a variable of degree � is reflected by a
factor e�� and the addition of a check of degree k by a factor
e�k. Call the k degree the degree of a variable with respect to
checks of degree k. Here zk is related to the increase of k
degrees in the ensemble. Let us consider for a moment a
more general setting, where the ensemble is determined by
the k-degree distributions, denoted by v�

�k� �42�. Then zk is
defined by

zk = 

�

�v�
�k��L1�s,�v�

�k���
�v�

�k� , �D3�

where �v�
�k�=v�−1

�k� −v�
�k�. zk is obtained in a very similar way

as z in Eq. �37�:

zk = −
1

k
ln d�SP�

�k���S�ex�S+�k, �D4�

where P
�

�k���S� now depends on the degree k.
The cavity equation �24� is modified in a very similar way

as the expression of 1 in Eq. �D2�. The inversion of the
Legendre transformation allows one to recover the relevant
quantities:

s = �x, n� = ���
, mk = ��k

 . �D5�

Replacing P
�+���

��,k1,. . .,k����S� and P
�

�k���S� by their values,
we obtain

1 = xs − L1 = ln�v�A� + p�2x − 1�v�B�� , �D6�

with

A = e��

k

kck

k̄
e�k−1�zk+�k�2−x + �1 − 2−x��1 − ��k�,

B = 2−xe��

k

kck

k̄
e�k−1�zk+�k�1 − �1 − ��k−1� ,

zk = −
1

k
ln�2−x + �1 − 2−x��1 − ��k� −

�k

k
,

� =
p2xv��B�

v��A� + p�2x − 1�v��B�
.

To evaluate L1 as a function of s, we simply need to tune
the parameters �� and mk such that the conditions n�=v� and
mk=�ck are satisfied.

In Fig. 13, we represent the error exponent for the irregu-
lar ensemble with v�x�= �1/2�x3+ �1/2�x4 and c�x�= �1/2�x6

+ �1/2�x8.

APPENDIX E: CALCULATIONS IN THE BSC

Belief propagation and the Bethe approximation

In this section we write down the BP equations for a given
code over the BSC or, equivalently, the cavity equations at
the RS level. The expression of the free energy is also given.

The cavity equations read

p�i

�i→a� � 	
b�i−a

q�i

�b→i�e−�hi�i,

q�i

�b→i� = 

�b−i

	
j�b−i

p�j

�j→b�� ��b = 1� . �E1�

p�i

�i→a� is the probability that the variable i takes the value �i

in the absence of a, and q�i

�b→i� is proportional to the prob-
ability that the variable i takes the value �i when connected
to b only.

Denoting p�i

�i→a�=e�hi→a	i / cosh �hi→a and q�i

�b→i�

=e�ub→i�i / cosh �ub→i, the cavity equations simplify to

hi→a = ĥ�hi,�ub→i�� � hi + 

b�i−a

ub→i,

ub→i = û��hj→b�� �
1

�
arctanh� 	

j�b−i

tanh �hj→b� . �E2�

The local magnetization is given by �	i�=tanh �Hi, with
Hi=hi+
a�iua→i. The Bethe approximation to the free en-
ergy reads

FRS��� = 

i

�Fi − 

a

�ka − 1��Fa, �E3�

with

�Fi = �F�+�����ua→i�� �
1

�


a�i

ln�2 cosh��ua→i��

−
1

�
ln�2 cosh��hi + �


a�i

ua→i�� ,

FIG. 13. Average error exponent of a given code as a function of
the noise level p for irregular codes with ck= �1/2���k,6+�k,8� and
v�= �1/2����,3+�k,4� through the BEC.
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�Fa = �F���hi→a�� � −
1

�
ln�1 + 	i�a

tanh �hi→a

2
� . �E4�

Define

P�h� =
1

N���
EC�


�i,a�
��h − hi→a�� ,

Q�u� =
1

N���
EC�


�i,a�
��u − ua→i�� . �E5�

Averaging �E1� over the codes, the noise, and the edges, we
obtain the self-consistency equations

P�h� = 

�

�v�

���  	
a=1

�−1

duaQ�ua��� �h − ĥ�h�,�ua����h�
, �E6�

Q�u� = 

k

kck

�k�  	
i=1

k−1

P�hi�� �u − û��hi��� , �E7�

where h�=h0 with probability 1− p and −h0 with probability
p. The RS free energy reads

fRS��� = 

�

v� 	
a=1

�

duaQ�ua���F�+����h�,�ua���h�

− 

k

ck�k − 1�  	
i=1

k

dhiP�hi��F���hi�� . �E8�

Large deviations

As in the BEC, we study the statistics of BP over the
codes, under the measure �exp�−xf� fFcorr�� f�
−xe�eFRS��e��. The large deviation cavity equations read, for
a regular code,

P�h� � 	
a=1

�−1

duaQ�ua�
���h − h� − 
a=1

�−1
ua�e�fxfh��2 cosh��e�h� + 
a=1

�−1
ua���xe�h�

	a=1

�−1 �2 cosh��eua��xe
,

Q�u� = 	
i=1

k−1

dhiP�hi���u −
1

�
arctanh�	

i=1

k−1

tanh��phi��� , �E9�

and the potential

�� f,�e,xf,xe� = ln 	
a=1

�

duaQ�ua�
�e�fxfh��2 cosh��e�h� + 
a=1

�
ua���xe�h�

	a=1

�
�2 cosh��eua��xe

−
�

k
�k − 1�ln 	

i=1

k

dhiP�hi�� 1 + 	i=1

k
tanh��ehi�

2
�xe

. �E10�

The solution to �E9� is obtained numerically. In the limit
k , � →�, this solution simplifies:

Q�u� = ��u�, P�h� = �1 − p���h − h0� + p��h + h0� , �E11�

yielding the error exponent �83�.
Another solution, called “type I” in �10�, also exists:

Q�u� = ��+��u� + �1 − ���−��u� ,

P�h� = ��+��h� + �1 − ���−��h� , �E12�

with

� =
��−1

��−1 + �1 − ���−1�e−2yh0	�	

, � =
1

2
�1 + �2� − 1�k−1� .

�E13�

We automatically have sp=0, and the condition fp= f f im-
plies m=�exe=1/2. Then the rate function reads

L1�fp = f f� = −  = − ln��� + �1 − ����e−h0	�	�

−
�

k
�k − 1�ln�1

2
�1 + �2� − 1�k�� . �E14�

This solution �E12� is numerically unstable, and the rate
function thus obtained is clearly unphysical. However, for
k , � →�, � /k=1−R, we have �=�=1/2 and the resulting
rate function

L1�fp = f f� = − ln
1

2
�1 + 2�p�1 − p��

− R ln 2 = ln 2�R0�p� − R� �E15�
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coincides with the error exponent of the RLM in the low-p
regime �B14�.

Two-step large deviations

The potential ���e ,m ,y� defined in Eq. �87� is obtained
by extremizing the following expression with respect to P�h�
and Q�u�:

���e,m,y� = ln 	
a=1

�

duaQ�ua�

���e−mh��2 cosh��e�h� + 
a=1

�
ua���m/�e�h�

	a=1

�
�2 cosh��eua��m/�e �

y

−
�

k
�k − 1�ln 	

i=1

k

dhiP�hi�

�� 1 + 	i=1

k
tanh��ehi�

2
�ym/�e

. �E16�

We can only handle this calculation in the k , � →� limit.
Equations �E11� are still a solution in this case and yield

���e,m,y� = ŷ��e,m� , �E17�

where ̂��e ,m� is obtained from the average case. Therefore,
the typical exponent is the same as the average error expo-
nent in the high-p regime.

There also exists a counterpart of solution �E12�, which
gives

���e,m,y� = �R − 1�ln 2 + ln�1 + ��1 − p�1−mpm

+ p1−m�1 − p�m�y� . �E18�

The condition �m�=0 is again enforced by setting m=1/2.
Thus we get

��y� = − yL − L = �R − 1�ln 2 + ln�1 + �2�p�1 − p��y� .

�E19�

This expression yields the rate function L�L� by inverse Leg-
endre transformation.
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