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ABSTRACT: Genetically identical cells in the same population can take on phenotypically variable
states, leading to differentiated responses to external signals, such as nutrients and drug-induced
stress. Many models and experiments have focused on a description based on discrete phenotypic
states. Here, we consider the effects of selection acting on a single trait, which we explicitly link to the
variable number of proteins expressed by a gene. Considering different regulatory models for the
gene under selection, we calculate the steady-state distribution of expression levels and show how the
population adapts its expression to enhance its fitness. We quantitatively relate the overall fitness of the population to the
heritability of expression levels and their diversity within the population. We show how selection can increase or decrease the
variability in the population, alter the stability of bimodal states, and impact the switching rates between metastable attractors.

1. INTRODUCTION

Within one population, individual organisms often display a
large amount of observed diversity. In naturally occurring
populations, some of the diversity is explained by genetic
differences between the organisms. However, even in
genetically identical populations, such as bacteria or yeast
grown in the laboratory,1 we observe phenotypic diversity, such
as the variable protein levels in particular cells of the same
population cultured in the same environment. This phenotypic
diversity is linked to intrinsic molecular noise in gene
expression stemming from relatively small copy numbers of
transcription factors and the probabilistic nature of chemical
reactions. While molecular noise is unavoidable, imposing
physical limits to the precision of biochemical regulatory
systems, it may also have a functional role.2 In particular, it
leads to a natural diversification of a genetically identical and
otherwise homogeneous population. Such cell-to-cell variability
can be useful for surviving in an unexpectedly changing
environment or large random fluctuations in external signals.
Such arguments have been brought forward to explain the
larger variable duration of competence in the native circuit of B.
subtilis than in the less noisy “synex” system.3,4 Another classical
example is antibiotic resistance, when a fraction of bacterial cells
become dormant by entering an antibiotic-resistant state
without external signals, allowing the population to explore
two different strategies.5−7 In some controlled situations,
phenotypic diversity was shown to underly the speed and
degree of adaptation8,9 or the capacity to switch to a more
favorable phenotypic state.10,11

Phenotypic selection under fluctuating environments has
recently been studied theoretically.12−18 These studies have
formalized the observation that it is beneficial for populations
to “hedge their bets” against possible environmental stresses by
keeping small, specialized subpopulations able to survive in
various stress conditions, at the cost of a lower fitness in normal
conditions. To achieve this, cells switch stochastically between
different phenotypic states, with rates adapted to the statistics
of environmental changes. In this description however, the

phenotypic space is usually reduced to a discrete set of states
and does not account for the molecular basis of noise.
Phenotypic differences can be directly linked to the noisy

molecular nature of regulatory circuits. For example, in the
competent system, small comK copy numbers are responsible
for the observed noisy duration of the competent state.4 The
large variability of gene expression is genetically encoded in the
design of the circuit, for example, in networks exhibiting
bimodal expression.1 Phenotypic variability may also take the
form of “epigenetic” modifications, in particular, on chromatin,
which play an important role in eukaryotic cells. Unlike genetic
variations, these different sources of phenotypic variability are
not transmitted to the daughter cells in a hardwired manner.
They allow populations to recover from environmental stress
on much faster time scales than traditional genetic changes. As
such, they allow cells to try out faster and more easily reversible
strategies than genetic evolution.
The variability of protein copy numbers in monoclonal

populations has been extensively studied both theoretically and
experimentally.19−23 The effect of protein concentration
fluctuations on the growth rate of a genetically identical cell
taking the cell cycle into account has been studied by Tanase-
Nicola and ten Wolde.18 It was shown that if the mean protein
concentration is close to the value that maximizes the growth
rate, fluctuations in the concentration reduce the growth rate,
whereas if the mean concentration is far from the optimal,
fluctuations can enhance the growth rate. A simpler continuous
model of phenotypic variation under selection was studied by
Sato and Kaneko.17 In this paper, we want to examine how
selection acting on a population of genetically identical, but
phenotypically variable cells, shapes the observed variability and
the stability of the phenotypic states in this population. As is
often done in experiments, we associate our phenotypic state
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with the protein copy numbers of a given type of protein. We
explicitly model the stochastic dynamics of this protein, the
expression of which is under the control of a simple gene
regulatory network. Selection acts on the population of cells as
a function of the numbers of copies of this protein. This model
allows us to study the effects of phenotypic selection on
observable traits in monoclonal populations.
We first study the effects of various types of selection

pressures on the observed distribution in a simple model of
constitutive (unregulated) gene expression. We then consider a
self-activating gene, which can result in a bistable dynamical
system, and we study the effect of selection on the steady-state
occupancy of the two states, as well as the switching rates
between them. We also look at the effects of selection on a gene
whose expression state changes on slow time scales compared
to the time scale for protein change, which results in a bimodal
distribution of protein copy numbers.

2. MODEL OF PHENOTYPIC SELECTION
We assume that selection acts on a single traitthe
concentration or number of copies of a given protein in the
celldenoted by n. The individual fitness of cells is defined by
the n-dependent growth rate s(n). Within each cell, we consider
the explicit dynamics of the gene expression network that
produces the proteins governing the fitness of the cell. For
simplicity of exposition, we first assume that the gene
producing these proteins is constitutively expressed. We reason
directly at the level of proteins by assuming that the dynamics
of mRNAs is fast. The generalization of our framework to more
complicated modes of gene expression is straightforward, and
we will later go beyond constitutive expression to model self-
regulation.
We describe the population by the mean number of cells ρn

expressing n proteins, ignoring fluctuations stemming from
small numbers of cells. We will show below that this
approximation works well as soon as the population is large
enough.
The change in ρn is described by a simple birth−death

process accounting for the synthesis and degradation of protein
molecules in each cell and a growth rate sn experienced by each
cell

ρ ρ ρ ρ ρ∂ = + + − + +− +b d n b dn s n( 1) ( ) ( )t n n n n n1 1 (1)

ρ ρ∂ =t (2)

The growth rate is the net effect of cell division and cell death,
and may be negative. Figure 1 summarizes the processes
governing the internal dynamics of cells as well as the
population dynamics. More complex modes of regulation or
gene expression dynamics can be modeled by choosing
different forms for L.
Within this model, we account for the changes in the protein

concentration caused by cell division by the effective
degradation rate d, which describes the average dilution rate
of proteins over a cell cycle. By doing this, we do not explicitly
model cell division, but we describe its consequences on the
change in the protein concentration by this average rate. This is
a common approach when modeling gene regulatory net-
works,24 which was shown not to have a significant effect on
protein concentrations (see, e.g., ref 25). Explicitly accounting
for the effects of this punctual reduction in concentration is
quite subtle and also requires accounting for the change in
cellular volume. During cell division, both of these quantities

are reduced, and because the concentration of proteins is the
relevant variable for regulation, this will mostly affect the
properties of the noise. As a result, in this exploratory analysis,
we choose to describe all dilution and degradation terms by the
effective degradation rate d. We also neglect burst-like
production effects,26,27 as well as the existence of an mRNA
step23 and replication forks affecting the birth rate.28 While
these effects could alter the results, analytical progress on our
simplified model points the way toward more precise
treatments in the future.
Given the dynamics of the population in eq 2, the normalized

probability of finding a cell with n protein copies is given by pn
= ρn/∑n′ ρn′ and follows

∂ = − ⟨ ⟩p s p1( )t (3)

where ⟨s⟩ = ∑n s(n)p(n). The addition of the selection term
breaks detailed balance and introduces a nonlinearity in the
master equation. A general closed-form analytical solution
cannot be found for the steady-state distribution. Assuming that
we know the value of ⟨s⟩, which must be expressed in terms of
the parameters of the problem, we can still write the steady-
state solution in the form of a series because the problem is
one-dimensional. In practice, we can easily find solutions
numerically by iterative Euler integration. However, in certain
special cases that we present below, we can find an analytical
solution for the steady-state distribution given ⟨s⟩.
When the number of expressed proteins is large, it is useful

to turn to a continuous description where the protein
concentration is described by a continuous variable x.
Expanding eq 3 to second order, we get for the evolution of
the probability density function P(x)

∂ = −∂ + ∂

+ − ⟨ ⟩

P x t f x P x t D x P x t

s x s P x t

( , ) [ ( ) ( , )] [ ( ) ( , )]

( ( ) ) ( , )
t x x

2

(4)

where f(x) = b − dx and D(x) = (b + dx)/2 are the effective
“drift” and diffusion coefficient, respectively. ⟨s⟩ = ∫ dx s(x)
P(x,t) is the average fitness in the population. f(x) and D(x)
can take more general forms to account, for example, for self-
regulation. This general class of models was studied in ref 17
and solved in the case of a linear s(x).

3. LINEAR SELECTION
We first consider an exactly solvable model where the selection
pressure is linearly proportional to the number of protein

Figure 1. Model of phenotypic selection by a single gene. In each cell,
the number of protein n undergoes a birth−death process describing
the synthesis (with rate b) and degradation (with rate d) of proteins.
With rate s(n), cells divide. In order to keep the population size
constant, the new offspring displaces another cell picked at random,
creating a global and uniform death rate ⟨s(n)⟩.
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copies in the cells, s(n) = s0 + sn. The evolution of the mean
number of proteins is given by

⟨ ⟩ = − ⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩n
t

b d n s n n
d

d
( )2 2

(5)

which combines the deterministic effect of birth and death with
Fisher’s relation.29

The steady-state solution of eq 3 can readily be found in
generating function space (see Appendix A for details).
Formally, we find an infinite family of solutions for each
possible ⟨n⟩, only one of which is numerically stable (stability is
checked by evolving eq 3 iteratively using Euler’s integration
method). This solution is a Poisson distribution with a rescaled
mean

⟨ ⟩ =
−

n
b

d s (6)

At long time scales, positive selection s > 0 acts as an effective
antidegradation term; it helps cells with large protein copy
counts survive and eliminates cells with low copy numbers. As a
result, the mean of the Poisson distribution is shifted to higher
protein copy numbers. Negative selection s < 0 has the exact
opposite effect. The impact of selection on the average fitness
of the population is

⟨ ⟩ = + ⟨ ⟩ = +
−

= +
−

s s s n s
bs

d s

s
bs

d d s( )

0 0

1

2

(7)

where s1 = s0 + bs/d is the mean value of s(n) when following a
single cell. The benefit of adaptation scales like s2 > 0, whether
selection is positive or negative, as the population adapts to find
a better place in phenotypic space.
On the basis of this simple model, we see the general effect of

selection that will come back in more complex systems. If we
consider the potential landscape of the regulatory network, the
system reaches a balance between the selection force s that is
perturbing the protein concentration in the cell and the
restoring force coefficient d due to the birth−death process. For
this reason, to see visible and nontrivial effects of selection, the
time scales of selection and the restoring force must be
comparable. For very strong selection, the mean number of
proteins grows uncontrollably (⟨n⟩ → ∞ when s → d) as
selection amplifies very rare cells with abnormally large protein
numbers. As we shall see, these effects have more visible
consequences when regulation, and, even more, bimodality,
come into play.
As a general test of our mean-field approximation, whereby

we reduce the system to a density function pn, we verify our
analytic result against Gillespie simulations of populations of
cells. We explicitly consider N cells, in which the gene
regulatory network is modeled by a standard time-varying
Monte Carlo (Gillespie) algorithm,30,31 which appropriately
models the regulation function for the different systems that we
consider (constitutive expression, self-activation). We assume
that all cells divide stochastically with rate s(n). In order to
sample the steady-state distribution, we keep the population
size constant, by compensating for each division by the removal
of a random cell. Figure 2 shows the difference between the
analytic solution and the results of the simulation for increasing
population size N, as measured by the Kullback−Leibler

divergence (DKL). For small populations, the effect of selection
is moderate and even absent in the extreme case of N = 1 where
selection is irrelevant. As the population gets larger, the
theoretical prediction becomes more and more accurate.

4. SELF-REGULATING GENE
We now turn to study the effect of regulation on phenotypic
selection. Regulation is modeled in the simplest manner by
assuming that the birth rate locally depends linearly on n with
coefficient b1 = ∂b/∂n, b(n) ≈ b + b1n. Let us first examine the
behavior when no selection is present. In this case, eq 3 can be
solved using the generating function technique, and the
solution reads (see Appendix B)
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Compared to the case with no regulation, the distribution is no
longer Poisson; the mean shifts to ⟨n⟩ = b/(d − b1), and the
Fano factor is larger, (⟨n2⟩ − ⟨n⟩2)/⟨n⟩ = 1 + b1/(d − b1). Self-
activation increases the mean and the relative variance, while
self-repression decreases them both. Solving eq 3 in the
presence of selection, we find again an infinite family of
solutions. Numerical simulations show that the only stable
solution is the one that cancels one of the poles of the
generating function. This solution takes on the same functional
form as eq 8, where d is replaced by a rescaled death rate
defined as

̂ = − + + + − −d d s b d b s b d
1
2

( ( ) 4 )1 1
2

1 (9)

which simplifies to d̂ = d − s/(1 − b1/d) in the limit of small
selection coefficient s and to d − s − b1s/(d − s) in the limit of
small b1. The relative effect of selection on ⟨n⟩ can be evaluated
for small s:

Figure 2. Validity of the description by a density function. Gillespie
simulations of all cells in the population are compared to the analytic
prediction for pn (the fraction of cells with n proteins) under linear
selection (s(n) = s0+sn) using the DKL between probability
distributions. Numerical results show excellent agreement for large
population sizes. Each simulation was run for a total of 107 cell
divisions to collect good statistics (much more than the equilibration
time, which is of a few generations). When selection is strong (s =
0.3d, right panel) larger population sizes are needed to reach good
agreement than when selection is weak (s = 0.05d, left panel). The
insets show the unselected (dashed line) and selected (full line)
distributions of protein numbers.
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and the population fitness improvement reads ≈s2⟨n⟩s=0d/(d −
b1)

2.
The effect of positive regulation is to lower the effective

restoring force to the mean value, increasing fluctuations in the
protein copy number, as indicated by the increased Fano factor.
These large fluctuations allow cells to explore and find regions
of larger fitness, increasing the mean fitness of the population.
Negative regulation has the opposite effect.
To gain further insight into this as well as other, more

general models of regulation, we consider the continuous limit
of the model, for which we can find an analytic solution in the
small noise approximation. Fluctuations around the steady-state
value are assumed to be small. The mean steady-state
concentration x0 is defined by f(x0) = 0. In the vicinity of x0,
we can expand at leading order in the limit of small
fluctuations: D(x) ≈ D(x0)  D, f(x0) = −k(x − x0), and
s(x) ≈ s0 + s(x − x0). Then eq 4 simplifies to

∂ = ∂ − + ∂ + − ⟨ ⟩P k x x P D P s x x P[( ) ] ( )t x x0
2

(11)

The steady-state solution to ∂tP(x,t) = 0 is given by17 (see
Appendix A)
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As with the discrete birth−death process, the effect of selection
is to change the mean concentration. This shift is proportional
to the selection coefficient s and the noise D. The mean
population growth rate is also affected by this shift in a
quadratic manner

⟨ ⟩ = +s s
Ds
k0

2

2 (13)

The parameter k may physically be interpreted as the stiffness
of a spring. The larger the stiffness, the fewer cells that are
allowed to explore regions of potentially higher fitness and the
smaller the advantage confered by selection to the population.
As noted in refs 8 and 17, this relation is reminiscent of the
fluctuation−dissipation theorem in physics. Within our small
noise expansion, we have b(x0) = dx0, k ≈ d − b′(x0), and D ≈
b(x0). The parameter b′(x0) quantifies regulation and is
equivalent to b1 in the discrete birth−death process. Activation
(b′(x0) > 0) favors fluctuations away from the mean steady-
state value, while repression (b′(x0) < 0) suppresses them. The
critical point b′(x0) = d, where everything diverges, marks the
transition toward a bistable system, which we discuss in section
6.
The scaling of the population fitness improvement (eq 13)

with D and k can be interpreted as follows. D/k is the variance
of protein number fluctuations and thus quantifies the extent to
which cells are allowed to explore better regions of the
phenotypic space. k−1 is the relaxation time of gene expression
and quantifies how long cells keep the memory of their internal
state and how reliably they can transmit it to their offspring
across generations, that is, their memory or heritability. Not
only is it important to hedge one’s bets to adapt quickly to
environmental changes, but cells must also transmit these
fluctuations to offspring for the population to benefit from
them in the long run. The fitness improvement due to selection
is thus the product of these two features, variability (D/k) and
heritability (k−1).

Figure 3. The effects of threshold selection pressures on the mean (A) and Fano factor, σn
2/⟨n⟩, (B) of a population of cells expressing a

constitutively expressed gene. The threshold regulation function is s = ΔsΘ(n − nc). Different values of the position of the threshold, nc, are
compared to a system with no selection for a gene with b = 20 and d = 1. Panel (C) shows examples of the distributions compared to the Poisson
distribution with ⟨n⟩ = b/d that describes the system with no selection for different selection pressures for nc = 30. The variance of the distribution
increases for small selection pressures, and then, the mean shifts to higher values, resulting in the initial increase and then decrease of the Fano factor.
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5. THRESHOLD AND CLIFF SELECTION

Bacterial cells grown in the presence of an antibiotic can
develop resistance to the drug without changing the
genome1,5,32,33 by expressing an antibiotic resistance gene
above a given threshold. To describe this situation, we assume
that cells with at least nc protein copies reproduce with rate s0 in
the presence of the drug, whereas cells with n < nc grow with
rate s1. The selective pressure now takes the form of a step
function, s(n) = s1 + (s0 − s1)Θ(n − nc). We call this scenario
threshold selection. Note that because of normalization, the
distribution of protein levels in the population does not depend
on the absolute scale of s(n), and the only relevant parameter is
Δs = s0 − s1. In the extreme case where cells under the
threshold die, we have Δs = +∞. We call this scenario cliff
selection.
By inspecting the effects of threshold selection on a

constitutively expressed gene with a mean expression of ⟨n⟩
= 20 protein copies in the absence of selection (Figure 3A), we
see that even moderate selection pressures acting within the
variance of the mean of the distribution result in a steep
increase in the mean number of proteins. The cells that express
small numbers of proteins now have a fitness disadvantage, and
hence, the distribution shifts to have a higher fraction of cells
expressing more proteins. For even larger selection pressures,
the cells with n ≥ nc are favored, but the mean production rate
in the cells remains the same. Therefore, a balance is reached
between the restoring force due to protein degradation, which
brings protein copy counts in cells down below the threshold to
n < nc, hindering their reproduction, and the proliferation of
cells with n ≥ nc. The mean number of proteins in a population
thus reaches a plateau for the cliff model, Δs → +∞.
When Δs is large, as the mean number of proteins increases

with selection pressure, the variance decreases, and the
distribution becomes sub-Poissonian, as shown by the decrease
in the Fano factor (see Figure 3B). The variability of the
population is thus reduced. Cells that survive the selection
pressure have more offspring and effectively transmit
information about their expression state to the next generation,
while cells that produce less than the threshold are less likely to
have offspring. However, for a relatively large critical value of nc
(dashed−dotted line in Figure 3B), the Fano factor increases
for small selection pressures. In this case, a small fraction of
cells are to the right of the threshold and bear a selective
advantage. When this advantage is still small, this causes the tail
of the distribution to get slightly fatter, thus widening the
distribution but without significantly affecting the mean. For
larger selection pressures, the advantage of expressing more
proteins becomes significant, and we observe a cusp in the
probability distribution at n = nc (Figure 3C).
In the limit case of cliff selection Δs → +∞, where the effect

of drugs is most detrimental, one can solve formally for the
steady state via the generating function (see Appendix C). As
before, we find a family of solutions pn

(β′), parametrized by a
single number β′ = ncpnc. β′ must be smaller than some critical
β, defined such that for β′ > β, pn

(β) becomes negative, making
the solution unphysical. Numerical stability analysis shows that
the only stable solution is in fact found at this critical value β.
The average growth rate in the population can be calculated
from eq 3, and its value is s0 − βd, the proliferation of cells s0
minus the flux of cells falling off of the cliff, βd. Therefore, β is
the rate of cell death in units of the degradation rate. It is
shown as a function of b/d for several values of nc in Figure 4.

The value β = s0/d marks the transition between the two
phases of population, extinction and proliferation. When β > s0/
d (extinction), the lifespan of the population under stress is
given by log(N0)/(βd − s0), where N0 is the initial population
size. Note that biologically, in the absence of regulation, the
death rate should be larger than the division rate because of
dilution, s0/d ≤ 1. β = 1 therefore represents a best case
scenario where degradation is kept to a minimum and survival
is maximum. The average protein level is given by ⟨n⟩ = [b/d −
β(nc − 1)]/[1 − β]. Therefore, the transition at β = 1 is
obtained at b/d = nc − 1.
We have seen that the effect of regulation was to rescale d to

d − ∂b/∂n, making it possible to have s0/d > 1. In that case, the
transition between extinction and proliferation is reached at
higher β and therefore at smaller mean expression levels b/d
(see Figure 4, bottom left). In other words, positive regulation
and the concomittent increased variability allow the population
to better survive an acute stress.
The continuous counterpart of the cliff model can also be

solved with f(x) = −kx, D(x) = D, and s = s0 for x > xc and −∞
otherwise. As in the discrete case, there exists a βc above which
P(x) becomes unphysical. Numerical experiments show that
this βc is the only stable solution. The average growth rate of
the population is s0 − βD. β = s0/D gives the boundary in phase
space between extinction and proliferation. The average
concentration is given by ⟨x⟩ = (1 − k/βD)−1xc, indicating
that β = k/D when xc = 0. At that particular point, the solution
is simply P(x) = kx/D exp(−kx2/2D).

Figure 4. Effect of cliff selection on the population. (Bottom) From
left to right: cell death rate, mean protein level, and Fano factor
(variance over the mean) as a function of the mean unselected
expression level b/d for various values of nc. Selection increases the
mean protein level above nc. For high thresholds, cells cluster around
nc, resulting in low variances as shown by the Fano factor. This effect
becomes smaller when the unselected expression is large compared to
the threshold, b/d ≫ nc. In the leftmost plot, for a given proliferation
rate s0, β = s0/d marks the transition between extinction and
proliferation. The lines can thus be interpreted as separatrices between
these two phases in the space (b/d,s0/d) for various values of nc. For β
> 1 (dashed line), regulation is needed to achieve values of s0/d that
ensure survival. (Top) Example distributions of protein numbers pn for
the values of unselected expression levels b/d marked by the dotted
lines in the bottom plots. The dashed line shows the location of the
threshold.
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6. MULTISTABILITY

In section 4, we have discussed the importance of the
heritability of the expressed number of proteins for the
population to benefit from selection. One of the mechanisms
that has been proposed1,34 to stabilize phenotypic states of cells
with higher fitness is self-activation of genes. In a large
parameter regime, self-activating gene circuits are bistable.
There are two deterministic steady-state expression states, one
with a high number of protein copies and one with a low
number of protein copies. Self-activation stabilizes these two
states and leads to two stable subpopulations, allowing the
population of cells to respond to different pressures. This
simple scenario has been studied extensively in the
literature.12,13,32,35 Here, we consider the effects of selection
on the diversity of the responses of the population and the

stability of each of these states within a concrete model of gene
expression that displays bistability through a steep self-
regulating function, b(n) = (b0K

2 + b1n
2)/(K2 + n2).

Within the models of selection that we have discussed so far,
the high protein number state is favored by selection. In Figure
5, we show the effects of threshold (Figure 5A) and linear
(Figure 5B) selection on the mean number of proteins in a
population of cells with bistable genes. These genes have a
close-to-equal probability of expressing proteins in high and
low numbers in the absence of selection. As discussed earlier,
cells that express low protein copy numbers are less likely to
reproduce when selection is present. However, bistability
greatly amplifies this difference. For positive selection, the
low protein copy expression state is virtually eliminated, and
the population looses its bimodal nature and hence its diversity.
Analogously, negative selection pressures eliminate the high

Figure 5. The effects of selection on a population of self-activating bistable genes in the case of (A) threshold (s(n) = s1 + ΔsΘ(n − nc)) and (B)
linear (s(n) = s0 + sn) selection. The mean number of proteins is shown as a function of the selection coefficient. Probability distributions for
indicated values of the selection coefficient are plotted in the bottom of each panel. Panel (A) shows a comparison between two critical values of
proteins, nc = 25, which falls between the two expression states (solid line), and nc = 45 > ⟨n⟩. Regulation parameters were chosen to have nearly
equal probability to be in the high and low expression states in the absence of selection, Δs, s = 0. In both cases, b(n) = (b0K

2 + b1n
2)/(K2 + n2). For

threshold regulation, b0 = 2, b1 = 50, d = 1, and K = 22.5. For linear regulation, b0 = 2, b1 = 100, d = 1, and K = 42. This value of K for the linear case
was chosen to ensure slow switching between the two states. For smaller K, the change in ⟨n⟩ as a function of the selection coefficient is even
sharper.
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protein copy number expression state. This is illustrated by the
probability distributions of protein expression shown in Figure
5.
Unlike in the case of the constitutively expressed

(unregulated) gene, where the effects of the linear selection
pressure were quite smooth (⟨n⟩ = b/(d − s)), the bistable
expression results in a population that is very susceptible to
selection and a steep transition in the mean number of
expressed proteins. Selection effectively acts on the expression
states (low/high) and does not discriminate cells that differ by
a few number of proteins, resulting in a threshold response for
linear selection. For this reason, the behavior is not much
affected by the precise form of the selection function. For large,
linear selection pressures, the distribution becomes unimodal,
and then, we recover the same behavior as in the unregulated
gene discussed in section 3, an increase in the mean number of
proteins as ⟨n⟩ = b/(d − s). In the case of threshold selection,
for large selection pressures (positive or negative), the system
also behaves effectively like an unregulated gene, and the mean
number of proteins reaches a plateau.
Large threshold values nc stabilize the expression in the low

state, as illustrated by the dashed lines of Figure 5A. Similarly to
the case of no regulation discussed in section 5, the fraction of
cells above nc is low for moderate Δs, resulting in a less fit but
more diverse population than that for lower values of nc.
As the mean number of proteins expressed by the genes

increases, the response of the system to selection becomes
steeper. The mean number of proteins expressed in the
population in Figure 5B is roughly double that expressed in the
population in Figure 5A. The noise in the latter system is
higher, resulting in more frequent switching between the low
and high expression states. which can be seen by comparing the
height of the barrier between the two states in the probability
distributions in the absence of selection. As a result, low noise
further amplifies the effects of selection by freezing the
expression state in the lifetime of a cell, thus increasing the
heritability of its state.
In the limit of small noise, the system can thus be reduced to

two states: low or high expression. If we know the transition
rates k+ and k− from low to high and from high to low, as well
as the average selection coefficient s− = ∑n<n0 s(n)pn and s+ =

∑n>n0 s(n)pn in the low and high states (where n0 is the
midpoint between the two states), we can write coupled
equations for the number of cells in each of the two states, ρ+ =
∑n>n0 pn and ρ− = ∑n≤n0 s(n)pn

ρ
ρ ρ ρ= − ++

+ − − + + +t
k k s

d

d (14)

ρ ρ ρ ρ= − +−
− + + − − −t

k k s
d
d (15)

These equations are commonly used to describe growing
populations with two states.12 They have been proposed in the
context of bacterial persistence13 to model the switching
between normal and persister cells in E. coli or betwen the low
and high expression states of an antibiotic-resistant gene in S.
cerevisiae32 and have also been used in the context of the
galactose utilization network of S. cerevisiae.35 These equations
can be readily solved at steady state, yielding the fraction of
cells in the high state

ρ
ρ ρ

=
+

=
̅ − Δ + Δ − ̅ + Δ

Δ+
+

+ −

+p
k s k s k s

s

( )

2

2

(16)

where k ̅ = k+ + k− and Δs = s+ − s−. When selection is negligible
compared to the switching rate, Δs ≪ k, one recovers the
equilibrium occupancy of a two-state model, p+ = k+/k.̅ In the
opposite limit, k ≪ Δs, where switching is rare, cells that are in
the most favorable of the two states will proliferate and
outcompete cells from the other state, and will do so much
faster than they switch between the two states, p+ = (1/2)(1 +
sign(Δs)). This describes well the situation shown in Figure 5;
cells in the bistable population lose their diversity, and all
express high (low) numbers of proteins when selection is
positive (negative).

7. SWITCHING RATE BETWEEN METASTABLE STATES

We have seen that selection could destabilize metastable states,
especially when switching is very rare compared to the
differences in growth rate. In that case, if we assume that the
whole population is prepared in the state of lowest fitness, it
typically takes only one cell to make the transition in order for
the whole population to follow suit and switch. Once that first
cell has switched, it proliferates, and its offspring quickly
outcompete the cells that have remained in the state of lower
fitness. This implies that large populations are more likely to
adapt rapidly because of their increased chance of switching, as
confirmed experimentally by Shimizu et al.11 When switching is
even so rare that it is unlikely for a single cell out of a very large
population to switch, Nk+ ≪ 1, selection could have another,
more subtle effect on the switching rate itself by enhancing (or
suppressing) the rare trajectories in gene expression space that
make the transition. Cells that explore rare events toward the
separatrix between the two states may be rewarded (or
punished) by being allowed to reproduce (or made to die),
therefore increasing (or decreasing) the future chance for a cell
or its offspring to make the transition.
In practical terms, we would like to calculate the probability

that a single cell, or one of its offspring, escapes the basin of
attraction of a given state. This is a slightly different problem
than the one that we are faced with when dealing with a
homogeneous population of cells that is not under selection
because selection breaks detailed balance and favors some cells
over others. Because of this, traditional mean first passage
methods are not applicable. However, we can calculate these
rates by solving eq 3 conditioned on cells not switching, which
is implemented by a reflecting boundary condition at the
midpoint n0 between the two states. By computing the rate of
cells that would go through n0, we obtain a numerical estimate
for the rate of first passage of a single cell. Figure 6 shows the
rates between the low and high states in the self-regulating
bistable gene discussed in Figure 5B as a function of the linear
selection coefficient s. The effect of selection is to enhance
transitions from the unfavorable to the favorable state by giving
a selective advantage to cells that venture toward the transition
point.
To better understand this enhancement, we first consider a

simplified version of the problem, where there are only three
effective states, low, high, and an intermediate state low2
between the low state and the transition point between the
high and low states (see Figure 7). The transition rate from low
to low2 is √k, and from low2 to high, it is √k. Time is rescaled
so that the transition rate from low2 to low is set to 1. The
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selective advantage (or disadvantage) along the reaction path is
modeled by setting the growth rate to 0 in the low state and s in
the low2 state. The population maintains a constant population
size N. The transition rates are very low, so that √k ≪ 1 and
kN≪ 1. Starting with all cells in the low state, we ask how long
it takes for at least one cell to transition to high. Before the
transition happens, the system is described by the number of
cells in the low and low2 states, N1 and N2, with N = N1 + N2.
We treat all states where at least one cell made it to the high
state as one big absorbing state. After some relaxation time, the
rate of escape into the absorbing state is given by √k⟨n2⟩,
where ⟨n2⟩ is the average number of cells in the low2 state at
quasi-equilibrium (cf. eq 16 with k+ = √k and k− = 1) and is
given by k1/2N/(1 − s). The rate of passage of the first cell to
the high state is given by

−
kN

s1 (17)

As s → 1, cells in state low2 reproduce almost as fast as they
switch back to low, providing an increasing chance for
switching to the high state.
This first passage problem can also be studied within the

small noise approximation. In this limit, the number of protein
copies x follows a random walk with drift f(x) and diffusion
coefficient D(x) under a selection coefficient s(x) (see
Appendix D). In the limit D(x) → 0, the optimal reaction
path can be calculated and satisfies dx/dt = ±( f(x)2 −
4D(x)(s(x) − ⟨s⟩))1/2, where ⟨s⟩ is the average fitness of the
population in the basin of attraction. The switching rate is given
by the action of the optimal path, ∼exp ( ). In the limit of
small noise, this action reads

∫= + − ⟨ ⟩ | |x s x s f xd [ ( ) ]/ ( )
x

x

0
initial

final

(18)

where 0 is the action in absence of selection. When going
against a constant drift f(x), the enhancement of the rate is just
proportional to the mean selective advantage along the path.
The stronger the adverse drift f(x), the smaller the enhance-
ment. The rarity of switching is typically affected by two factors,
the strength of the adverse drift and the distance to the
transition point in phenotypic space. The enhancement of eq
18 is expected to have a strong effect on transitions limited by
long distances to the transition point and weak adverse drifts,
and only a moderate effect on transitions limited by strong
adverse drifts over short distances. This explains the difference
between the impact of selection on the two rates between the
high and low states in Figure 6. Although the two rates are
comparable in the absence of selection, the transition point n0
≈ 19 is much closer to the low state (n ≈ 2) than to the high
state (n ≈ 100) and therefore is less impacted by selection.
Another interesting case is that of a constant stiffness, f(x) =

−k(x − x0), and linear selection s(x) = s0 + sx. For small s, we
have ⟨s⟩ ≈ s(x0), and we get

= +
−s x s x
k

( ) ( )
0

final initial
(19)

In this case, the improvement in the switching rate is simply
proportional to the fitness difference between the initial and
final states.
Taken together, these different estimates indicate that

selective pressure has a significant ( (Δs)) effect on the rate
of passage of the first cell. This is however a rather moderate
effect compared to that on the steady-state occupancy of the
metastable states (eq 16).

8. NONADIABATIC MODEL
So far, we have assumed that the binding and unbinding of any
regulatory molecules occur on very fast time scales compared to
the time scale on which the protein number changes.
Experiments have shown that in the case of many systems,
the change of the gene expression state36−39 (from enhanced to
basal expression and vice versa) can occur on time scales
comparable with those on which the protein number changes.
These types of models have been shown to result in a bimodal
steady-state distribution of protein numbers,40−42 where one
peak corresponds to protein expression when the gene is in the
enhanced state and the other is when the gene is in the basal
state. In this case, because the protein number and gene states
change on comparable time scales, the protein number state
can equilibrate in each of the gene states before it changes.
Although the detailed positions of these two peaks depend on
the type of regulatory model (self-activation, self-repression,
regulation by an external transcription factor protein), the
general properties do not depend on the details of the binding
rate. Therefore, for simplicity of exposition, we choose to
present the problem for a gene that is regulated by an external
transcription factor, resulting in a constant binding rate ω+. We
then discuss the results for self-activation when the tran-
scription factor protein binds as a dimer, ω+ = hn2/2, where h is
the binding rate coefficient.
Specifically, we consider the joint probability that the gene is

in the enhanced (+) or basal (−) expression state and that n
copies of the protein are present in the cell. Formally, we have
two density functions (ρn

−,ρn
+) and their associated normalized

Figure 6. Rates between the low and high states in the model of a self-
regulating gene discussed in Figure 5B as a function of the linear
selection coefficient.

Figure 7. A toy model for selection-aided switching. Cells transition
from the low to high states via an intermediate state low2, in which
they are allowed to reproduce with rate s.
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densities (pn
−,pn

+) with ∑n (pn
− + pn

+) = 1. We can then write
down the dynamics of this system as an extended birth−death
process, which also accounts for binding and unbinding of the
activating protein

∑ρ ρ ω ρ ω ρ∂ = ′ + − +−

′

−
′

−
+

−
−

+s n[ ( ) ]t n
n

n n n n n,
BD,

(20)

∑ρ ρ ω ρ ω ρ∂ = ′ + − ++

′

+
′

+
−

+
+

−s n[ ( ) ]t n
n

n n n n n,
BD,

(21)

where ±BD, are the birth−death operators describing protein
synthesis in the enhanced or basal gene expression state and ω+
and ω− are the binding and unbinding rates of the transcription
factor.
When selection is linear, s(n) = s0 + sn, an analytical solution

to the steady-state distribution can be found in generating
function space41−43 in terms of Whittaker functions,44 given
that we know the mean number of protein copies in the system,
similarly to the previously discussed systems.
More intuition about the effects of selection can be gained

from the fraction of cells that have genes in the enhanced state,
π+ = ∑n pn

+, which is shown as a function of selection in Figure
8 for the unregulated gene and the self-activated gene, assuming

transcription factors bind as dimers (ω+ = hn2/2) and threshold
selection s(n) = s0 + ΔsΘ(n − nc). An analysis of an effective
two-state system similar to the one presented in section 6 (eq
14) can help us understand the probability for the gene to be
expressed at an enhanced rate, π+, for the constitutive gene.
Summing eq 21 over the number of protein copies and solving
for π+, we obtain

π
ω

ω ω
=

+ Δ ∑

+ + Δ ∑ ++
+ >

+

+ − >
+ −

s p

s p p( )
n n n

n n n n

c

c (22)

As Δs→ 0, we recover the equilibrium result of the binding and
unbinding rates, π+ = ω+/(ω+ + ω−). For large selection
pressures compared to the binding/unbinding rates, π+ =
[(∑n>nc pn

+)/(∑n>nc (pn
+ + pn

−))] is given by the fraction of cells
that have more proteins than the threshold, and their genes are
in the enhanced expression state and tend to 1 for large Δs.
Similarly, for negative selection pressures, (Δs < 0), π− tends to
1 for large negative s0.
This behavior is shown in Figure 8. We choose parameters

for which the probability of the gene to be expressed in the
enhanced and basal state is equal in the absence of selection.
Selecting for a large number of proteins favors cells that are in
the enhanced state and vice versa. This effect, already visible for
constitutive expression, is made more pronounced when
feedback is present. Examples of distributions of the fraction
of cells that have n protein copies and the gene in the enhanced
(pn

+) or basal state (pn
−) are plotted for different selection

coefficients in the case of threshold regulation for a self-
activating gene, assuming transcription factors bind as dimers
(ω+ = hn2/2). The changes in the distributions are qualitatively
similar for the constitutive gene. We explicitly see that strong
positive selection favors the enhanced state.
In summary, as in the case of abiabatic regulation discussed

in section 6, selection destroys the one of the modes in bimodal
systems, reducing the observed variability, even in the absence
of regulation. This effect is expected to be stronger as the
binding/unbinding rate is smaller and is strongly amplified by
positive regulation.

9. CONCLUSION
We have shown how selection acting on a simple phenotypic
trait such as the expression level of a gene could significantly
affect its mean expression level, diversity, and stability, to the
benefit of the population of cells as a whole.
The adaptation of monoclonal populations to challenging

environmental conditions, such as antibiotic stress or nutrition
shortages, as studied experimentally in yeast32,35 and E.
coli,10,11,13 is usually described by models of switching between
a finite number of states. Our approach goes beyond this
coarse-grained description and studies the effects of selection
on the full spectrum of expression levels. In particular, we have
characterized the stability and variability of expression within a
single metastable state, within a simple model of constitutive
expression. In this case, in the small noise approximation, eq 13
quantifies how the population improves its overall fitness
proportionally to the heritability k−1 and the variability D/k of
fluctuations in protein copies. Heritability can be enhanced by
means of positive regulation, which decreases the relaxation rate
k.
When regulation is strong k < 0, the system can become

bistable, with two states of low and high expression level. This
is a case of very strong heritability, in which cells can transmit
their expression state to their offspring over many generations.
We have shown that selection destroys the bimodality of the
distribution of gene expression by favoring the state of highest
fitness. This effect is all the more important when differences in
growth rate between the states are large compared to the
switching rates. The phenomenon provides a simple response
system at the population level, driven by the proliferation of the

Figure 8. The effects of selection on a population of nonadiabatic
genes, slowly transitioning between on and off states. The probability
for the gene to be found in the enhanced expression state, π+, is shown
as a function of the selection pressure for threshold selection pressures
acting on constitutive genes, ω+ = ω−/K, (dashed line) and self-
activating genes with dimers binding, ω+ = hn2/2 (solid line). The
insets show examples of the probability distributions for Δs = −0.4
(○), Δs = 0 (∗), and Δs = 0.4 (×) for the self-activating gene. The
threshold is taken at nc = 25, with b− = 2, b+ = 50, d = 1, and ω− = 0.5.
K = 1 for the constitutive gene and h = ω−/K, and K = 7.7 for the self-
activating gene. We note that in the adiabatic regime (ω ≫ 1), π+ =
0.5 for all Δs for the constitutive gene; however, ⟨n⟩ changes (see
Figure 3). The self-activating gene in the adiabatic regime is discussed
in Figure 5.
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fittest cells rather than by direct cues from a signaling pathway.
The relative importance of this adaptive response, compared to
signaling, was assessed experimentally and discussed in ref 10
for a synthetic toggle switch system in E. coli. In particular, it
was shown that the adaptive response was sufficient to observe
reliable switching to the state of higher fitness.
In multistable systems, selection decreases the variability of a

population by favoring some metastable states over others.
However, within a single metastable state, a linear selection in
the expression level mostly affects the mean and stability of
expression but not its variance. By contrast, when selection is
step-like, with a different growth rate below or above a given
threshold of expression, selection may increase or decrease
variability, depending on the strength of selection. Very
stringent selection tends to decrease the diversity of expression
at the cost of fitness (Figure 4), while a moderate selection
acting on the tail the distribution increases the variance by
amplifying these tails (Figure 3).
In bistable systems, selection has another overlooked effect,

which cannot be grasped by a simple two-state model; it
enhances or suppresses the rate of switching between the two
states by giving a selective (dis)advantage to cells going along
the transition path. This selection-aided switching could serve
as a mechanism for driving and stabilizing a population of cells
through differentiation using a gradual selective pressure, for
example, during development where phenotypic noise plays an
important role.45

Our results show that selective pressure acting on the
expression of a single gene may strongly affect its behavior at
the population level. It would be interesting to test this idea
experimentally by measuring the properties of gene expression
(mean, variance, switching rates) in selective versus non-
selective environments for different modes and strengths of
regulation. For example, such experiments could test the
prediction that positive regulation enhances the effect of
selection on the population mean.
Our approach provides a broad framework for addressing the

effect of selection on observable phenotypic traits in genetically
homogeneous populations, with straightforward generalizations
to arbitrary phenotypic spaces with multiple genes.

■ APPENDIX A

Solution for Linear Selection
To calculate the steady-state distribution for a linear selection
pressure s(n) = sn, we define the generating function for the
probability distribution, as G(z) = ∑n z

npn. In generating the
function space and steady state, assuming that we know ⟨s(n)⟩
= s⟨n⟩, eq 3 becomes

− ̃ − ̃ − =bz b G dz d
G
z

( ) ( )
d
d

0
(A1)

where b ̃ = b + s⟨n⟩ and d ̃ = d − s. Equation A1 can be solved by
direct integration to give

δ
δ

= −
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( ) e

1
1
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where δ = d ̃/d and β̃ = s(b − d⟨n⟩ + s⟨n⟩)/(d − s)2. Note that
this expression for the generating function self-consistently
satisfies G′(1) = ⟨n⟩, so that ⟨n⟩ is not constrained by the
condition of stationarity. We thus have a family of solutions,
parametrized by ⟨n⟩ or equivalently by β̃. An especially simple

solution is given by the condition β̃ = 0, which yields the
generating function of a Poisson distribution

= − −G z( ) e b d s z[ /( )]( 1) (A3)

This solution is the one that we obtain by numerical integration
of eq 3 at steady state.
The Fokker−Planck equation for the continuous case (eq

11) is solved at steady state by going to Fourier space

∫̃ =P p x P x( ) d e ( )pxi
(A4)

Equation 11 then becomes at steady state (we set x0 = 0 with
no loss of generality)

+ ∂ ̃ + + ̅ ̃ =p s P Dp sx P( i ) ( ) 0p
2
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where x ̅ = ∫ dx xP(x). The solution to this equation is
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As in the discrete case, the only stable solution corresponds to x ̅
= Ds/k2. In this case, the exponent in the second term cancels,
and we obtain the Fourier transform of a Gaussian distribution
of mean Ds/k2 and variance D/k.

■ APPENDIX B

Solution with Self-Regulation
Here, we give some details for the calculations of self-regulation
(section 4). The birth rate is assumed to depend on n, b + b1n.
Using the generating function technique, we get the steady-
state solution in the absence of selection
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With selection, the equation for the generating function G(z)
reads

′ = + ⟨ ⟩ −
− − +

G z
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The right-hand side has two poles
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By analogy with the unregulated case, we make the hypothesis
that the only stable solution is such that the pole at z−
disappears. This is satisfied if

⟨ ⟩ =
− + + + − −
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Then, we simply have
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−+

G z
G z

b
b z z
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( ) ( )1 (B6)

and therefore, we get the same form as eq B1, after replacing d
by
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We checked numerically that our assumption about the
cancelation of the z− pole in G′/G was correct.

■ APPENDIX C

Solution for Cliff Selection
This appendix contains details of the calculations in the model
of cliff selection. We start with the discrete case, for which the
evolution equation reads

β∂ = − + + − +− +p b p p d n p np p( ) (( 1) )t n n n n n n1 1 (C1)

for n ≥ nc and pn = 0 for n < nc. β = ncpnc. The last term comes
from the normalization condition and compensates for the loss
of cells off the cliff, which happens with rate dβ. The generating
function can be calculated as a function of β at the steady state

∫ β= − −β
α β α β− − − −G z z y y y( ) e (1 ) d e (1 )z

z
n y

0

1 1c

(C2)

where α = b/d. Note that the form above automatically satisfies
G(z) ≈ pncz

nc as z → 0, and G(1) = ∑n pn = 1. Therefore, β is
unconstrained and entirely determines the solution. Guided by
numerical simulation, we hypothesize that the only stable
solution corresponds to the highest possible β that does not
entail pn < 0 for some n. An analogous analytical solution exists
for the threshold model, with an additional continuity
condition between the two intervals (0,nc − 1) and (nc,+∞).
In the continuous case, the Fokker−Planck equation reads

β∂ = ∂ + ∂ +P k xP D P D P( )t x x
2

(C3)

with β = ∂xP|x=xc. The last term corresponds to the flux of cells
crossing the threshold. The formal solution reads

=
−
−β
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where y(x) = kx2/2D, yc = kxc
2/2D, and Na = ∫ xc

+∞ dx
xe−y(x)a(y(x)), with a = u or m. The functions m(x) and u(x)
are defined as m(x) = M((k − βD)/2k,3/2,x) and u(x) = U((k
− βD)/2k,3/2,x), where M and U are the confluent
hypergeometric functions of the first and second kind,
respectively.

■ APPENDIX D

Optimal Switching Path
Here, we detail the calculation of the optimal reaction path of a
stochastic process under selective pressure. We assume that all
cells are equilibrated in one metastable state, and we consider
the probability of rare paths out of this state. The probability of
a path is given by the usual expression for the action, multiplied
by a term reflecting the historical fitness of the cell relative to
the rest of the population15
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The Lagrangian can be rewritten as
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with g(x) = ±[f(x)2 − 4D(x)(s(x) − ⟨s⟩)]1/2. Note that the
second term in the integrand does not depend on the particular
path taken and that the first term can be made arbitrarily small
by setting dx/dt = g(x) and by choosing the sign of g
appropriately.46,47 We are considering rare paths, which move
against the drift, for example, dx/dt > 0 and f(x) < 0. Then, the
action of the optimal path reads
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