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Distributions of abundances or frequencies play an important role in many fields of science, from biology
to sociology, as does the Rényi entropy, which measures the diversity of a statistical ensemble. We derive a
mathematical relation between the abundance distribution and the Rényi entropy, by analogy with the equivalence
of ensembles in thermodynamics. The abundance distribution is mapped onto the density of states, and the Rényi
entropy to the free energy. The two quantities are related in the thermodynamic limit by a Legendre transform,
by virtue of the equivalence between the micro-canonical and canonical ensembles. In this limit, we show
how the Rényi entropy can be constructed geometrically from rank-frequency plots. This mapping predicts that
non-concave regions of the rank-frequency curve should result in kinks in the Rényi entropy as a function of its
order. We illustrate our results on simple examples, and emphasize the limitations of the equivalence of ensembles
when a thermodynamic limit is not well defined. Our results help choose reliable diversity measures based on
the experimental accuracy of the abundance distributions in particular frequency ranges.
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I. INTRODUCTION

As an increasing number of large datasets are becoming
available in a variety of fields, one often turns to reduced
statistics that can capture important properties of the system, or
help detect deviations from our expectations. Distributions of
abundances have proven useful as such statistics, and have been
used in many different contexts, from biology to linguistics,
astrophysics and sociology. This notion is best explained when
counting biological species from a sample. Say that species 1
was observed n1 times, species 2 n2 times, etc. The abundance
distribution discards information about the identity of the
sampled species, and focuses on the distribution of the counts
themselves n1, n2, etc. This notion is very general and extends
well beyond ecology. Counts can refer to the number of times
a word is used in a text, to the number of people living in
a given city, to the occurrence of specific spiking patterns
in a population of neurons, or to the abundance of specific
lymphocyte clones in the immune system, to give but a few
examples.

An equivalent way of representing the abundance distribu-
tion is to order the counts from largest to smallest, and plot
them as a function of their rank in this ordering. For example, in
the English language, one can order words by their frequency
of occurrence, and study how this frequency decreases with
the rank. In 1949 Zipf observed that this dependency roughly
followed a power law [1], and similar observations have
later been made in a variety of contexts [2]. Because of the
ubiquity of these power laws [3], frequency-versus-rank plots
are commonly represented on a double logarithmic scale.

Abundance distributions can contain useful, albeit indirect,
information about the underlying process at work in the
system. In ecology, they are used as a diagnostic tool for
detecting deviations from the prediction of a neutral model
of population dynamics [4,5]. The Yule speciation process
[6,7], called the preferential attachment process in the context
of networks [8], also predicts a specific form for the abundance
distribution, which is consistent with Zipf’s law in some limit
[7]. The abundance distribution of spike patterns in the retina

has been used to study the critical properties of the underlying
neural network [9], and a similar analysis was performed on
small patches of natural images [10]. The distribution of sizes
of lymphocyte clones in the immune system also seems to
generically follow power-laws, which puts constraints on the
rules of their population dynamics [11].

Abundance distributions are closely related to the notion of
diversity. Diversity can be defined in a number of ways: total
number of types in the distribution, Shannon’s entropy [12],
Simpson’s diversity index, etc. It has long been realized [13]
that these different kinds of diversity can all be brought under
the common definition of the Rényi entropy [14]. This quantity,
which depends on a single parameter called order, generalizes
Shannon’s and Gibbs’ entropy. It is commonly used in ecology
to quantify diversity, but has also received increasing attention
in condensed matter in the context of quantum entanglement
[15] (see [16] for a recent review) and of quantum phase
transitions and critical wave functions [17–22].

Here we show how the Rényi entropy can be geomet-
rically constructed from the abundance distribution in the
thermodynamic limit. This construction allows one to visualize
graphically how different measures of diversity arise from
a given abundance distribution. It indicates which are the
abundances that are determinant in each diversity measure,
and gives a visual assessment of when to trust the estimate of
these measures.

Our result relies on the framework of statistical mechanics,
piecing together previous observations. The equivalence be-
tween rank-frequency curves and the micro-canonical entropy
has been previously reported in [23]. The link between
micro-canonical entropy and free energy is a classical result of
statistical mechanics, known as the equivalence of ensembles
[24]. The mapping between free energy and the Rényi entropy
has been pointed out recently [25]. By bringing these results in
a common framework, we hope to clarify the correspondence
between abundance distributions, the density of states, and
Rényi entropies, and propose a straightforward geometric
method for assessing diversity directly from the abundance
distribution represented in an appropriate manner.
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II. RÉNYI ENTROPY AND FREE ENERGY

Let us define a probability distribution p1(s), where s is a
state or a type that can take a discrete number of values. p1(s)
is a relative abundance, or a frequency, so that

∑
s p1(s) = 1.

The variable s can be a spin configuration of a large system,
a species, a biological sequence, or a spiking pattern from a
population of neurons.

The Rényi entropy of order β is defined as

Hβ = 1

1 − β
ln

[∑
s

p1(s)β
]
. (1)

This quantity generalizes Shannon’s entropy,

H1 = −
∑

s

p1(s) ln p1(s), (2)

to which it reduces in the limit β → 1. The Rényi entropy is
associated with a family of diversity indices, defined as

Dβ = exp[Hβ] =
(∑

s

p1(s)β
) 1

1−β

. (3)

This quantity can be interpreted as an effective number of
states. When β = 0, D(0) is just the raw, total number of
possible types in the system. When β = 2, it is equal to the
inverse of Simpson’s index, also interpreted as an effective
number of types, and related to the Gini-Simpson index (de-
fined as 1 − 1/D2), commonly used to measure inequalities.
When β = 1, D1 is the exponential of Shannon’s entropy, and
is sometimes called the true diversity. In Shannon’s original
work [12], D1 is the effective number of codewords needed to
compress s.

We first derive an equivalence between the Rényi entropy
and the free energy of statistical mechanics, as already reported
in [25]. We formally rewrite the probability distribution p1(s)
as a Boltzmann distribution,

pβ(s) = 1

Zβ

e−βE(s), (4)

where we have set the inverse temperature of the original
distribution p1(s) to β = 1 by definition. For example, this
mapping can be realized by defining E(s) ≡ − ln p1(s) −
ln Z1 and Z1 = 1, but to keep things general we will assume an
arbitrary Z1. We define the free energy at unit temperature as
F1 = − ln Z1. The Rényi entropy can be rewritten as [25,26]

Hβ = 1

1 − β
ln

[∑
s

e−βE(s)+βF1

]
= β(F1 − Fβ)

1 − β
. (5)

In this formula, Fβ is the usual free energy at inverse
temperature β:

Fβ ≡ − 1

β
ln Zβ, (6)

where

Zβ ≡
[∑

s

e−βE(s)

]
(7)

is the partition function.

Thus the Rényi entropy is closely related to the free energy,
after mapping to the Boltzmann distribution. Note that this
mapping is a definition, and does not follow from physical
considerations.

III. ABUNDANCE DISTRIBUTION AND
MICRO-CANONICAL ENTROPY

There also exists a rigorous analogy between the density
of states and the abundance distribution [23]. The abundance
distribution is defined as the distribution over p1(s) itself:

ρ(p) =
∑

s

δ[p1(s) − p], (8)

where δ(·) is Dirac’s δ function. It is more convenient to work
with the cumulative density of p1(s), as it is not plagued with
Dirac δs, and is invariant under reparametrization:

Cp(p) =
∑

s

�[p1(s) − p], (9)

where �(x) is the Heaviside function, equal to 1 for x � 0 and
0 otherwise.

The cumulative distribution of abundances is related to
another representation of diversity, the rank-frequency curve
or Zipf’s plot [1]. In this representation, the system’s states
are ranked from most abundant to least abundant, and their
abundance shown as a decreasing function of the rank. The
rank of a given abundance p is given exactly by Cp(p).
Hence, rank-frequency graphs are simply plots of p versus
Cp(p). In other words, they represent the inverse function of
the cumulative abundance distribution.

Since p and E are related by the Boltzmann distribution (4),
we can equivalently define the cumulative density of states,
which counts all states under a given energy E:

CE(E) =
∑

s

�[E − E(s)]. (10)

This cumulative distribution is related to the cumulative
distribution of p through CE(E) = Cp(e−E/Z1). The usual
density of states,

ρ(E) =
∑

s

δ(E − E(s)), (11)

is obtained as dCE(E)/dE. In order to avoid issues of
definition with Dirac δ functions, we define a cumulative
micro-canonical entropy, or volume entropy [27], as S(E) =
ln CE(E), rather than the usual micro-canonical entropy. In
this definition, for ease of notation we implicitly take the
Boltzmann constant to be kB = 1.

IV. EQUIVALENCE OF ENSEMBLES

Following textbook statistical mechanics, the partition
function (7) can be rewritten entirely as a function of the
density of states:

Zβ =
∫

dEρ(E)e−βE = β

∫
dECE(E)e−βE

= β

∫
dEeS(E)−βE, (12)

052418-2
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where we have used integration by parts in the second equality.
In other words, Zβ is the Laplace transform of the density of
states.

In the standard thermodynamic limit, where both the
entropy and energy are assumed to be extensive, S(E) ∼
E ∼ N , where N is the system’s size, this integral can be
approximated by its saddle point, an approximation also known
as Laplace’s method:

Zβ ≈ β

(
π

|S ′′(E∗)|
)1/2

eS(E∗)−βE∗
, (13)

where E∗, which maximizes the term in the exponential in
Eq. (12), is given by the standard thermodynamic relation

dS

dE

∣∣∣∣
E∗

= β, (14)

or more classically dS/dE = 1/T . The free energy [Eq. (6)]
then reads

Fβ = E∗ − 1

β
S(E∗) − ln(β)

β
− ln(π )

2β
+ ln(|S ′′(E∗)|

2β
. (15)

In the thermodynamic limit the last three terms are subex-
tensive (scaling sublinearly with the system’s size) and
therefore dropped, reducing to the usual definition of the
free energy, F = E − T S. Then the Massieu potential (also
called the Helmholtz free entropy) �(β) = −βFβ and the
micro-canonical entropy S(E) are related by a Legendre
transform:

�(β) = extrE[S(E) − βE], (16)

S(E) = extrβ[�(β) − βE], (17)

in which E and β are conjugate variables. These relations
define the equivalence between the micro-canonical and
canonical ensembles, which is valid as long as S(E) is a
concave function [24]. In this equivalence, different inverse
temperatures β are used to sample states of different typ-
ical energies, acting as a large-deviation parameter. These
relations formally follow from the Boltzmann distribution in
the thermodynamic limit, and are the same as in standard
thermodynamics.

The saddle-point approximation is more than a computa-
tional trick. It also implies that, in the thermodynamic limit,
the measure is dominated by just a few states that all have
practically the same energy E∗. There are of the order of
exp[S(E∗)] such states, which each have roughly the same
probability exp(−βE∗)/Zβ = exp[−S(E∗)]. Their entropy is
then given by Boltzmann’s formula

Sβ = −
∑

s

pβ(s) ln pβ(s) ≈ ln[eS(E∗)] = S(E∗), (18)

where Sβ is the canonical entropy at inverse temperature β,
not to be confused with the Rényi entropy Hβ , even if they
coincide at β = 1: S1 = H1. The result of Eq. (18) can be

shown more rigorously by using the exact identity [26]

Sβ = β[〈E〉β − Fβ] (19)

with 〈x〉β = ∑
s pβ(s)x(s), and by showing 〈E〉β ≈ E∗ using

Laplace’s method.
Note that working with the volume entropy CE(E) restricts

our analysis to positive values of β by virtue of Eq. (14),
because CE(E) and S(E) are increasing functions of E.
However, the case of negative β, which focuses on the very
rare states by making them more likely than the frequent
ones, could be treated by working with the complementary
cumulative distribution,

∑
s �[E(s) − E].

V. LEGENDRE CONSTRUCTION

The Legendre transform (16) can be constructed geomet-
rically, as illustrated by Fig. 1. In this construction, Fβ is
obtained as the intercept of the tangent to S(E) of slope β

(dashed line in Fig. 1) with the abscissa. To see this, we write
the condition for E∗ at the point where the tangent of slope β

touches the S(E) curve, dS/dE = β, which is exactly Eq. (14).
The equation defining the tangent is then given in (E,S) space
by

S = S(E∗) + β(E − E∗). (20)

Solving in E for the intercept with the abscissa, S = 0, gives
E∗ − S(E∗)/β = Fβ , which is the result of Eq. (15) up to the
sub-extensive terms.

We can generalize this construction to the Rényi entropy,
which is obtained as the intersection of two tangents to S(E),
of slopes 1 and β, respectively. To verify this assertion, one
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FIG. 1. Geometric construction of the Rényi entropy from the
density of states. In the classical Legendre construction, the free
energy Fβ is obtained as the intersection of the tangent to the micro-
canonical entropy curve S(E) (in red) of slope β, where β is the
inverse temperature, and the abscissa. The Rényi entropy of order β,
Hβ , is obtained as the intersection between the tangents of slope 1
and β, projected onto the ordinate. Inset: the micro-canonical entropy
curve is equivalent, up to a 90◦ rotation, to the rank-frequency curve
represented on a logarithmic scale.
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writes the system of two linear equations parametrizing these
two tangents in the (S,E) space:

S = E − F1, (21)

S = β[E − Fβ]. (22)

The solution to these two equations in S is β(F1 − Fβ/(1 − β),
which is exactly the Rényi entropy Hβ according to Eq. (5).

As already mentioned, the Rényi entropy reduces to the
classical Shannon or Gibbs entropy, H1, for β = 1:

lim
β→1

Hβ = dFβ

dβ

∣∣∣∣
β=1

= H1. (23)

This limit can also be understood geometrically. When β → 1,
the intersection between the two tangents tends to the point of
tangency of slope 1, dS/dE|E∗ = 1, where S(E∗) is equal to
the Shannon entropy S1 = H1 [Eq. (18)].

VI. FROM THE ABUNDANCE DISTRIBUTION TO RÉNYI
ENTROPY: A GEOMETRIC APPROACH

Now that we have derived analogous relations to standard
thermodynamics, we can use the geometric representation of
the Legendre transform to read off diversity measures from
data. The Legendre construction can be transposed into the
language of the abundance distribution, provided that this
distribution is appropriately represented as a rank-frequency
curve. Recall that S(E) = ln CE(E), where CE is the rank of
states of energy E, ordered from the lowest to the highest
energy, i.e., from the most frequent to the least frequent state.
On the other hand, E = − ln p + F1, where p is the frequency.
Thus, the micro-canonical entropy function, S vs. E, and the
rank-frequency relation in logarithmic scale, ln(p) vs. ln(rank),
are exactly equivalent up to a 90o rotation, as illustrated in the
inset of Fig. 1.

Thanks to this equivalence, the Legendre construction
described above can be applied directly to the rank-frequency
curve plotted on a log-log scale. We illustrate such a
construction with the distribution of generation probabilities
of T-cell receptor β chains [28]. DNA sequences s coding
for the β chain of T-cell receptors, which are involved
in recognizing pathogens, are generated according to the
probability distribution p1(s), which was inferred from the
data. For each generated sequence, its probability of generation
p, and thus its energy E = − ln p, is also output by the
model. This allows us to compute empirically the probability
distribution of E under the model, which is proportional
to the number of states with a certain energy multiplied
by their probability p = e−E , P (E) ∝ ρ(E)e−E , from which
ρ(E) and then CE(E) = ∫ E

0 dE′ρ(E′) are obtained. Note that
this distribution is synthetically created from the model of
generation by drawing random, independent sequences. It
is distinct from clone-size distributions usually found in the
literature [11,29,30], which have a clonal structure and are not
made of independent samples. Also note that this ensemble
has no natural thermodynamic limit, because sequences have
a finite length. It makes for a good test case for our method in
a real-world example.
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FIG. 2. Illustration of the Legendre construction of the Rényi
entropy on the rank-frequency curve of randomly generated T-cell
receptor β chains [28]. The construction is identical to that of Fig. 1,
with slope β replaced by slope −β−1 because of the rotation. The
projection onto the rank axis gives an approximation to the diversity
index of order β, Dβ = exp[Hβ ].

The rank-frequency plot is represented in Fig. 2 in a
double logarithmic scale. Following the previous arguments,
in this representation the diversity index Dβ = eHβ can be
approximated by:

(1) drawing the tangent of slope −1 (black solid line) to
the rank-frequency curve;

(2) drawing the tangent of slope −β−1 (dashed line) to the
same curve;

(3) projecting the intersection point between these two
lines onto the rank axis.

The tangency point of the tangent of slope 1 gives the
true diversity index D1 = ∏

s p1(s)−p1(s), i.e., the exponential
of Shannon’s entropy. In Fig. 2 we illustrate the example
of β = 2, which allows us to read off Simpson’s inverse
index D2 = 1/

∑
s p1(s)2. The exact values for these two

quantities, D1 = 4.9 × 1013 and D2 = 3.4 × 109, are roughly
approximated, although underestimated, by the construction.
The values of the Rényi entropies obtained by the construction,
with or without the sub-extensive corrections of Eq. (15), are
reported in Table I.

In the true thermodynamic limit, which is not strictly
realized but approached in this example, the diversity measure
D(β) is effectively dominated by just a fraction of sequences
whose rank is close to Dβ (on a logarithmic scale), according to
Laplace’s approximation. A consequence of this concentration
is that different diversity measures, such as Shannon’s entropy
or Simpson’s index, may in fact be determined by entirely
distinct sequences.

The construction allows for a quick assessment of whether
the sampling depth can support the estimation of the Rényi
entropy Hβ , and its associated diversity Dβ , for a given index
β. When the tangent of slope −β−1 touches the curve towards
its end, where states are becoming rare and may have been
observed only once, it is probably safe to assume that the Rényi
entropy cannot be reliably computed from the data, because it
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TABLE I. Comparison between the Rényi entropy and its estimate
from the geometric construction of Fig. 2. The tangent point E∗ was
obtained numerically by locally smoothing the derivative of S(E)
over a range of �E = 1, and solving for dS/dE = β. The geometric
estimate is given by Eq. (5) with Fβ = E∗ − S(E∗)/β. The geometric
estimate with correction uses the same formula (5), but with Fβ

given by Eq. (15) including the sub-extensive terms from Laplace’s
approximation.

H1 H2

Direct estimate 31.6 21.9
Geometric estimate 25.1 17.7
Geometric with correction 32.7 20.9

is determined by states which have not been sampled well. This
limitation applies to the Legendre construction as well as to any
other estimate of Renyi’s entropy. Such a diagnosis indicates
which diversity measure might be appropriate to use in a given
context, depending on the shape of the rank-frequency curve.

An extreme case is β = 0: the tangent of slope −β−1 =
−∞ intersects with the rank-frequency curve at the maximal
possible rank, which is also the total number of sampled types.
In most cases (as in this one) this maximal rank does not
represent well the true total diversity, D(0), which should also
include unseen types. A similar underestimation is expected to
happen for finite values of β for which the tangent is ill-defined.

VII. SINGULAR CASES

It is interesting to consider what happens to the Rényi
entropy when the rank-frequency relation is locally a power-
law. In the micro-canonical framework, a power-law in the
cumulative density of abundances [23],

C(p) ∝ 1

pα
, (24)

translates into a linear density of states, S(E) = S0 + α(E −
E0). This behavior, as long as it spans an extensive range of
energies, leads to a discontinuity in the derivative of Fβ at
β = α. For α 
= 1, Eq. (5) implies that the derivative of Hβ

exhibits the same kind of discontinuity at β = α.
For α = 1 the discontinuity is of a different nature. Eq. (5)

can be expanded around β = 1 as

Hβ ≈ H1 + β − 1

2

d2Fβ

dβ2

∣∣∣∣
β=1

, (25)

hence

dHβ

dβ

∣∣∣∣
β=1

= 1

2

d2Fβ

dβ2

∣∣∣∣
β=1

. (26)

Therefore, the discontinuity in dFβ/dβ at β = 1 translates into
a discontinuity in Hβ itself. Again, this discontinuity can be
seen geometrically. Let us assume that S(E) = S0 + (E − S0)
over a range (E1,E2). The tangent of slope 1 coincides with
S(E) throughout this range. As a result, the intersection
between the tangent of slope β jumps from E1 to E2 as β

crosses 1, causing Hβ to jump from S(E1) to S(E2).
This kind of singularity not only implies discontinuities in

the Rényi entropy or its derivatives, but also suggest that the

entropy may ill-defined or hard to estimate when α = 1. In
that case, a whole range of (S,E) pairs, instead of a single
point, are candidates for the tangency point between the line
of slope 1 and the micro-canonical entropy S(E). The entropy
is ultimately determined by corrections that are ignored in the
thermodynamic limit.

The micro-canonical entropy need not be strictly linear over
a portion of energies for a discontinuity to occur. In fact, any
convexity in S(E) is predicted to produce the same effect [24].

For this reason, caution should be used when dealing with
distributions that look like a power law, or are not concave
in logarithmic scale. Not only may the Legendre construction
be unreliable, but so may other more direct estimates of the
Rényi entropy, since the system lacks a characteristic energy
scale. Interestingly, several abundance distributions in biology
have been reported to follow power laws with exponent α = 1
[9,10,23], for which the Rényi entropy is expected to have a
discontinuity.

VIII. DISCUSSION

In this paper we have made an explicit link between classical
representations of diversity in ecology and other fields, and the
framework of classical statistical mechanics. This mapping
allows one to bring many quantities coming under many
different names—species abundance distribution, clone-size
distribution, frequency spectrum, Shannon entropy, Rényi
entropy, Simpson’s index, etc.—within a common framework.
It provides an quick an easy way to simply read off diversity
directly from rank-frequency plots.

Our geometric construction assumes the thermodynamic
limit, which may not be satisfied or even well defined. For
instance, the distribution of abundances predicted by a neutral
model, or Fisher’s log-series P (n) ∝ αn/n [31], does not
admit a natural definition of system’s size, and thus has
no well-defined thermodynamic limit. The same goes for
Pareto distributions P (n) ∝ n−a . In these cases where no
thermodynamic limit exists, the Legendre construction is no
substitute for a direct estimate, which is a hard and much
studied problem when samples are small [32–37], but may
still give a reasonable guess. It can also hint whether such a
direct estimate is possible at all, by identifying the range of
frequencies or abundances that are expected to dominate the
diversity measure.

Depending on how well sampled the distribution is,
different orders β of the Rényi entropy may be appropriate.
The proposed framework can aid in choosing the right
measure depending on the data. In general, the less well
sampled the data are, the higher the order should be chosen. For
instance, Simpson’s index is less sensitive to poor sampling
than the Shannon entropy, which itself is easier to estimate
from the data than the total number of states. Ultimately,
the particular form of the abundance distribution should be
examined to decide which measure can or should be used.
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[18] J. M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier, Shan-
non and entanglement entropies of one- and two-dimensional
critical wave functions, Phys. Rev. B 80, 184421 (2009).
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