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Abstract

Immune repertoires rely on diversity of T-cell receptors and
immunoglobulins to protect us against foreign threats. The
ability to recognize a wide variety of pathogens is linked to the
number of different clonotypes expressed by an individual. Out
of the estimated ~10'2 different B and T cells in humans, how
many of them express distinct receptors? We review current
and past estimates for these numbers. We point out a funda-
mental limitation of current methods, which ignore the tail of
small clones in the distribution of clone sizes. We show that
this tail strongly affects the total number of clones, but it is
impractical to access experimentally. We propose that
combining statistical models with mechanistic models of
lymphocyte clonal dynamics offers possible new strategies for
estimating the number of clones.
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Introduction

The diversity of immune repertoires plays an important
role in the host’s ability to recognize and control a wide
range of pathogens. While actual recognition of an an-
tigen depends on having a relatively specific T-cell re-
ceptor (TCR) or immunoglobulin (Ig), multiple
experimental examples show that reduced receptor

diversity may limit the efficacy of adaptive immune
repertoires [1,2]. This effect becomes especially pro-
nounced in individuals infected with cytomegalovirus
[3—5], or with immunosenescence [6], when naive
clonotypes are significantly reduced, and the organism is
left to rely on reduced immune diversity.

The number of different clonotypes, called species
richness in ecology, is thus an important quantity to
estimate, both biologically and clinically. Here we
review some of the experimental and theoretical ap-
proaches that have been used to estimate the number of
distinct clonotypes in TCR and Ig repertoires, in naive,
memory, or unfractionned repertoires. Based on existing
repertoire data and computational models, we demon-
strate that no statistical method can overcome the
limitations of small sampling. We argue that this prob-
lem, which is inherent to all existing methods, could be
overcome by combining repertoire data with stochastic
models of lymphocyte population dynamics, taking into
account the caveats of convergent recombination and
experimental noise.

Past estimates

The variable part of each TCR beta (and Ig heavy) chain
is composed by putting together variable (V), diverse
(D) and joining (J) segments, which are encoded in the
germline genome. TCR alpha (and Ig light) chains only
have Vand J genes and no D genes. Additionally each
chain experiences additions and deletions of nucleotides
at the gene junctions, which increases the diversity. This
junctional rearrangements have been identified as the
main contributor to sequence diversity [7]. The alpha
and beta chain generations in TCR are separated in
time, and have been shown to be independent [8,9].
The total number of different alpha-beta pairs that the
generation machinery can produce is muck greater than
the total number of receptors in the whole human
population [8,10,11]. Thus, each person harbors only a
small fraction of the potential diversity of receptors. To
estimate the number of distinct receptors, we need to
count them.

An early quantitative direct estimate of the size of the
TCR repertoire dates back to Arstila et al. [12],
following earlier considerations [7,13]. Their approach
was to focus on a subclass of receptors (either alpha or
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beta) with a specific V-J class and length, and sequence
them using low-throughput methods. The number of
different sequences in that subclass is then extrapolated
back to the get the full diversity by dividing by the
known frequency of V-] and length usage. The authors
were very careful to verify their estimate in different V-]
classes and donors, and to account for rare clonotypes
that might have escaped sequencing. A total of ~ 10°
different TCR beta chains were thus estimated in a
sample of 10® T-cells. Each beta chain paired with 25
different alpha chains, resulting in ~25+10° distinct
TCR alpha-beta. Much smaller TCR alpha-beta di-
versity was reported in the memory subset, ~ 2+ 103,
consistent with the idea that memory cells form a
selected and thus restricted subset.

With the onset of high-throughput sequencing of
immune receptor repertoires [14—22] came the reali-
zation of the importance of the sampling problem. In
sequenced repertoires, many clonotypes are seen just
once, suggesting that there are possibly many more that
have similar or slightly smaller sizes but were not
sequenced, simply by chance. This issue does not only
affect “small” clones, where a clone comprise cells with
the same TCR or Ig clonotype. A clone of 10° cells
among a total of 3+10'! T cells will often not be seen
even once in a typical sample of 10° cells. To deal with
this issue, a commonly adopted approach has been to
use statistical estimators (see Ref. [23] for a overview).

Using the Poisson abundance statistical method [24],
Robins et al. [15] obtained estimates of ~10° TCR beta
nucleotide clonotypes for CD8 and CD4 naive cells, and
~5+10°-10° for CD8 and CD4 memory TCR beta. Qi
et al. [6] used another method called the Chao2 esti-
mator [25], which uses multiple replicates of the
sequencing experiment, to estimate T'CR species rich-
ness. They obtained much larger estimates than Robins
etal.: ~2-10% TCR beta nucleotide clonotypes in CD4
and CDS8 naive repertoires, ~1.5-10° clonotypes in
CD4 memory repertoires, and about 5—10 times fewer
in CD8 memory. All those numbers decreased with age.
Using the Poisson abundance method, diversities of ~
1-2+10? for naive and ~5-107-10% for memory Ig heavy
chains were reported [26]. Recent estimates of Ig
heavy-chain species richness using an advanced statis-
tical estimator [27] yielded smaller diversities, ranging
from ~107 [28] to 107-10° [29], presumably because
they focused on amino acid rather than nucleotide
clonotypes and ignored hypermutations in the Vand ]
segments.

The sampling problem

The approaches described above share the common
problem that it is impossible to extrapolate what
happens for small clones from small samples, which
capture the largest clones [23,27]. Getting

information on the small clones is in fact impractical:
it would require sequencing essentially all lympho-
cytes in an organism. Humans harbor of the order of
3+10'"! Tcells (and roughly the same order of B cells).
Of these, only a few percents are contained in blood,
of which a small fraction (~10°) is sampled in typical
experiments (Figure 1A). In addition, blood may not
be representative of other tissues. Even in mice,
which contain fewer lymphocytes (~108 T cells) and
can be sacrificed to isolate all the body’s lymphocytes,
cell loss during the experiment hampers this
approach.

In Figure 1B—D, we illustrate with simulations what
happens when one analyses samples of 10° cells from
three synthetic repertoires. These repertoires are
described by different clone size distributions, corre-
sponding to a widely different number of clones: a pure
power law (Figure 1B), a mixture of a power law and
neutral model [30] (Figure 1C), and a power law with a
low-frequency cut-off (Figure 1D). Their species rich-
ness are widely different, ranging from N~7-10° to
1.6-10'%. Yet, the sampled repertoires show similar
clone size distributions, and comparable observed di-
versity (10°—10°), because they behave similarly for
large clone sizes, but drastically differ in the tail of small
clone sizes.

Any statistical method that extrapolates from observa-
tions assumes, knowingly or implicitly, an underlying
model for how the clone size distribution behaves for
the smallest clones. The Poisson abundance and Chao
estimators [24,25,31] discussed earlier both assume a
well peaked distribution of clone sizes, which is not the
case in our examples. As a result, the Chaol [31] esti-
mator can underestimate species richness by up to a
1000-fold factor (Figure 1B). A more advanced and
increasingly used estimator such as Recon [27] gives
similar estimates, as can be expected because Recon is
not meant to capture small clones whose frequency lies
below the sampling limit.

Real repertoires are likely affected by this problem. The
sampled (large clone) part of their clone size distribu-
tion has been shown to follow a power law both for TCR
and Ig [10]. Naive subsets display shorter tails of large
clones [32], suggesting that the power-law behaviour in
unfractioned repertoires is dominated by memory
clones. Our three synthetic examples are consistent
with power laws for large clones, but differ greatly for
small clones, yielding very different species richness.
Extrapolating the distribution of clone sizes is the key
idea behind DivE [33] and Recon [27], which were
proposed to estimate diversity in TCR subsets. How-
ever, these approaches work when the behaviour at large
clones is informative for small clones, which may not
always be true.
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Figure 1
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Estimating the total number of B or T cell clonotypes from small samples is generally impossible. a. Orders of magnitude for the number of T cells.
Only one or a few percent of all T~3-10"" T cells circulate in blood at any given time. Among these, typical sequenced samples contain about a million
cells, which is a tiny fraction of the total repertoire. The number of T cells in a mouse is shown for comparison. Similar numbers hold for B cells. b.-d.
Rank—frequency plots of three synthetic repertoires showing the frequency of B- or T-cell clones versus their rank (from most frequent to least frequent).

The corresponding clone size distribution is shown in the inset: b) power-law
main text); d) power-law distribution with low-frequency cutoff. A random of sa

distribution; ¢) mixture of power-distribution and neutral distribution (see
mple of 10° cells (in red) fails to capture most of the true rank—frequency

relation (in blue). While the sampled distribution looks similar in all three cases, the true distributions are very different in the domain of low clonal fre-

quencies, and correspond to a widely different number of clones Nie. That nu

mber is very poorly estimated by the number of sampled clones (Nsampie),

or by statistical estimators such as Chao1 (Nghao) [31], or Recon (Nrecon) [27].

Proposed solution: stochastic modeling

To access small clones that cannot be directly probed
experimentally, we need to explicitly model the biolog-
ical processes that shape these distributions, without
having to take a leap of faith. Unlike extrapolation, such
models might predict behaviours for small clones that are
quantitatively different than the trend suggested by
large clones. Of course, model assumptions should be
tested experimentally, their parameters estimated from
measurements, and confidence intervals put on their
predictions. We now briefly review two simple models
that have been proposed to describe the dynamics and
clone size distributions of naive and memory repertoires.

Cells in naive repertoires have not experienced strong
proliferation due to antigen recognition. Nevertheless
not all clones are of the same size, in part because clones
leave the thymus with different initial sizes, and in part
because they undergo stochastic division and death.
The simplest model of naive repertoires is Hubbell’s
neutral model of ecology [30], which assumes constant
division and death rates (v < u) for each cell, with new
clones introduced with rate 0 and constant initial size £

(Figure 2A, left). More complex variants of that model
may include intrinsic fitness differences between clones
or cells, e.g. through competition for self-antigens [34]
or cytokines [35].

Under that simple model, the steady state distribution
of clones can be computed analytically [35—37], and
falls off exponentially for clones larger than £ (Figure 2A,
right), meaning that large clones are rare. The total
number of clones N can also be calculated analytically as
a function of the model parameters |, v, and £, as well as
the total number of cells 7" (Figure 2C). Unless cell
division almost exactly balances death (v~u), or the
introduction clone size £ is large, the typical naive clone
size is fairly small. This means that the total number of
clones is very large, and comparable to the total number
of cells. To get a more precise estimate would require to
measure the division rate of naive T cells v, and initial
clone size 4.

A limitation of this approach is the assumption that the
clone size distribution quickly reaches a steady state.
Naive T cells are very long-lived u=! ~ 3 years [38], and
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Figure 2
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Lymphocyte population dynamics models can be used to estimate the number of clones. a. Neutral model for lymphocyte dynamics. New clones
come out of the thymus (for T cells) or bone marrow (for B cells) with rate 0, with initial clone size k. Then each cell may divide with rate v, and die with rate
u>v. The clone size distribution at steady state can be calculate and falls off rapidly (right). b. A minimal clonal selection model. Instead of dividing
randomly, cells of the same clone all proliferate m-fold upon immune stimulation, which occurs with rate r. The clone size distribution of this process
behaves as a power law for large clones. The exponent of the power law can be expressed as a function of the model parameters. ¢.-d. The total number
of clones can be expressed as a function of the model parameters for ¢) the neutral model d) the clonal selection model, and the total number of cells in
the body, T = 3-10'". In the neutral model, the typical size of clones increases and diverges when division and death balance each other, u~ », leading
to reduced diversity for a fixed number of cells. In the selection model, a similar divergence is observed as the power law exponent o gets close to 1.

the size of the naive pool changes with age, so that
steady state may never be reached. Transient models of
naive repertoires remain to be explored in more detail. A
recent experimental study suggests that some T-cell
naive clones are much larger than predicted by the
neutral theory [36]. However the origin of these outliers
is not yet well understood, and may have to do with the
inadequacy of our current definitions of naive and
memory cells through surface markers.

Modeling memory repertoires requires taking into ac-
count the expansion and then contraction dynamics after
an infection. These dynamics are driven by new patho-
gens that infect the host, are recognized and then cleared
[39], which leads to a constantly changing antigenic
landscape [35]. This random encounter with antigens
can be simply modeled by bursts of division events for all
cells of the same clone, with rate 7, causing each cell to
effectively multiply 7 times into memory following an-
tigen clearance (Figure 2B, left). Again, this model can be
solved exactly in the continuous limit at steady state.
The clone size distribution follows a power law for large
clones (Figure 2B, right). The predicted number of
clones /Vdepends critically on the power law exponent a.,
and can be calculated as a function of the model

parameters (Figure 2D). N drops to zero for power law
exponent o close to 1. Interestingly, measured exponents
o from unfractioned T cell beta chain repertoires (whose
large-clone tail is believed to be dominated by memory
clones) range from 1 to ~ 1.5 [10]. This high sensitivity
to parameters makes estimates from data very difficult.

Extensions of this model include the emergence of
antigenic “niches” [40], where clonal expansion is
limited by antigen availability, leading to diminishing
returns upon multiple stimulation events [41]. Such
mechanisms would limit the size of the largest clones
and would cut off the power law behaviour, which is not
observed in data.

Connecting models to data

Several caveats and corrections must be taken into ac-
count when linking stochastic models of population
dynamics such as discussed above to repertoire data. Of
importances are the issues of convergent recombination
and experimental noise.

Population dynamics models focus on clones, defined as
the set of cells originating from a common recombina-
tion event. However, two recombination events can lead
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to exactly the same sequence. The two corresponding
clones would be indistinguishable, and form a single
clonotype in the repertoire. This effect can be corrected
for by using models of recombination [42,43]. These
models, which are inferred from data, can predict the
distribution of generation probabilities of full receptors,
or of single chains, both at the level of nucletoide or
amino acid sequences, as shown in Figure 3A for TCR.
From this distribution, the probability of convergent
recombination can be computed to predict the number
of distinct clonotypes as a function of the number of
“clones”, defined as independent recombination events
(Eqg. (7) of [11]). In Figure 3B we plot that prediction
for the alpha, beta, and alpha-beta TCR in humans, for
both nucleotide and amino acid clonotypes. These
computations show that, for the full TCR alpha-beta
clonotypes, convergent recombination is so rare that it
hardly affects species richness. For the alpha and beta
chains alone, however, the effect is substantial. Since
most repertoire data are of single chains, this correction
should be applied when linking data to the type of
models discussed above, as was done in Ref. [36].

An additionnal issue complicates the comparison of
models to data: experimental noise in the observed
frequencies of clonotypes. In practice the number of
reads (or unique molecular identifiers when they are
used) 7 observed in data for a given clonotype is not
simply the result of random sampling, and is not
distributed according to a Poisson law, as was assumed in
Figure 1 and in all previous work on diversity estimation.
Instead, noise is over-dispersed, due to additional noise
caused by DNA amplification and library preparation

Figure 3

prior to sequencing. This noise model can be fitted
using replicates of the repertoire sequencing experi-
ment. This inference is impossible to separate from the
inference of the clone size distribution p(f). The two
must thus be learned simultaneously from replicates by
maximizing the likelihood of observed abundances,
which depend on both the clone size distribution and
the noise properties [44]. Applying this approach to the
beta chain of unpartioned T cells with p(f)ocf=17¢,
yields species richness of N ~10% — 10%, with power-law
exponent «=1-1.2 [44]. In this estimate, the power law
is taken as a given, and not linked to a model of clonal
dynamics. A full mechanistic model treatment com-
bined with the statistical model remains an interesting
direction to explore, which could help shed light on the
differences between memory and naive repertoires.

Sampling and repertoire sharing

Several recent papers have focused on shared immune
receptors from high throughput Ig repertoire data
[28,29,45]. These high profile analyses report absolute
percentages of shared clonotypes. However, it was shown
in the context of TCR (but the same holds for Ig) that
these fractions are not absolute properties of the reper-
toires, but rather depend on sampling depth and the
number of individuals that share the clonotypes [10,11].
Sharing estimates based on samples of the repertoire are
bound to grossly underestimate the true sharing fraction.
Therefore, reporting sharing percentages without
appropriate information about sample sizes is meaning-
less. Fortunately a new standard for reporting repertoire
sequencing data [46] contains this information.
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Convergent recombination. a. Distributions of generation probabilities for the alpha and beta chains as well as alpha-beta pairs of T-cell receptors, for
both nucleotide and amino-acid sequences, calculated using the OLGA software [43]. Most clonotypes have very low probability and are therefore unlikely
to occur in two clones independently. High-probability clonotypes, however, will be generated several times in distinct T-cell clones (convergent
recombination), reducing their diversity. b. Impact of convergent recombination on clonotype diversity. The ratio of the number of clonotypes to the number
of clones is calculated using a model of recombination using OLGA, with the additional assumption that a random fraction q of recombination events fail to
pass selection [11]. This ratio decreases as the number of clones increases, as redundant recombination events become more likely. The magnitude of
this effect depends on the definition of clonotype (single chains or alpha-beta pairs, amino acids or nucleotides). It is small for full alpha-beta pairs. Inset:
number of distinct clonotypes as a function of the number of clones. Selection parameter q. q, = 0.046, gg = 0.0091, and q.s = g.qs (taken from

Refs. [8,11]).

Current Opinion in Systems Biology 2019, 18:104—-110

www.sciencedirect.com


www.sciencedirect.com/science/journal/24523100

How many different clonotypes do immune repertoires contain? Mora and Walczak 109

"To assess the true overlap between the repertoires of
two or more individuals, we would need to sequence all
their lymphocytes, which is impractical. However, sta-
tistical model of sequence probabilities can be used to
extrapolate sharing estimates to the full repertoire size
N, provided that number is known [11]. For instance,
clonotypes whose probability p is larger than 1/ N are
expected to be present in 1 —¢?Y >63% of in-
dividuals, and can be considered “public”. Recombina-
tion models such as the one of Figure 3A can be used to
estimate the fraction of clonotypes that are public. For
example, for N = 101% the model predicts that about
15% of TCR beta amino acid clonotypes expressed by
human individuals are public [11].

Conclusions

While we have focused our review on the number of
distinct clonotypes, what really matters for biological
function is the number of different specificities. Due to
cross-reactivity, each receptor can recognize many anti-
gens and each antigen can be recognized by many re-
ceptors with different strengths. To account for this
degeneracy, we would need to define a functional
coverage of the antigenic space [47]. However, we
currently do not have a comprehensive sequence-to-
function maps for TCR and Ig that would allow us to
estimate such a quantity.

Simply counting clonotypes also ignores their relative
abundances. Clonotypes expressed by very few cells may
not be as relevant for immune protection as very
frequent clonotypes. Other diversity measures such as
Hill numbers account for differences in frequencies
[10,48]. Some of these measures are in fact more robust
than species richness, because they put more focus on
large clones and are less susceptible to sampling noise.
Depending on the question, these measures may be
better suited than species richness.

Our discussion has focused mostly on T cells, and has
ignored the complications of hypermutations in Ig,
which cause lineages to split into many clonotypes.
Whether diversity is defined at the level of lineages or
clonotypes will lead to different answers [26,28,29].
Developping specialized population dynamics models of
B cell development and affinity maturation that include
hypermutations is an interesting research direction.

We emphasized that estimating species richness cannot
be disentangled from estimating the full distribution of
clone sizes. As we gain insight into various aspects of
lymphocyte dynamics, from thymic output to infection
and memory formation, better mathematical de-
scriptions can be leveraged to propose refined forms for
the clone size distribution, and to fit their parameters to
observations. Only with such a combination of modeling

and data will we be able to get a better picture of
repertoire diversity and immune coverage.
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