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We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model

explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at

various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds

(the ‘‘knee’’) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the

proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe

the discreteness of the energy source, analogous to measurements of charge quantization in super-

conducting tunnel junctions.
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The bacterial flagellar motor is a molecular machine that
rotates a helical filament and thereby powers the swimming
of bacteria like E. coli [1]. Motor rotation is typically
driven by Hþ ions that generate torque by passing into
the cell via the motor, down an electrochemical gradient
called the proton motive force (PMF). Although much
work has been devoted to understanding proton transloca-
tion and its coupling to torque generation, biochemical
details are lacking and many questions remain unanswered.
An important one is whether ion translocation is coopera-
tive, i.e., whether protons translocate individually or in
groups. Here, we present a minimal physical model for
torque generation (Fig. 1) that not only explains a variety of
previous experimental observations, but also suggests a
way to measure the cooperativity of proton translocation.
Specifically, the model predicts that at low loads, motor
diffusion is dominated by proton shot noise with a strong
(quadratic) dependence on proton cooperativity.

The flagellar motor operates with near-perfect efficiency
at low speeds [2]. As the speed is increased, e.g., by
reducing the load, the torque and efficiency initially remain
high—the ‘‘plateau’’ of the torque-speed relationship
(TSR)—and then drop abruptly at a ‘‘knee’’ (cf. Fig. 2).
This knee occurs at higher speeds as temperature is in-
creased. Despite much experimental [3–6] and modeling
progress [6–11], the origin of the knee is still poorly under-
stood. In [11,12], the cause of the knee was argued to be the
gating of proton translocation by the relative position
between stator and rotor. In [9], a detailed model of motor
kinetics was proposed in which the knee arises from the
crossover between two time scales, one governing me-
chanical relaxation and the other proton translocation. In
our model, proton translocation, which is assumed to be the
rate-limiting step, is modeled by a barrier crossing event as
in [11], with the difference that the barrier height depends
on the mechanical tension between stator and rotor. The

knee in the TSR then arises from the kinetically limited
rate of proton translocation. Importantly, our model fully
incorporates proton thermodynamics and yields the sepa-
rate dependence of the TSR on the electrical and chemical
parts of the PMF.
Three ingredients underlie our model. (i) Each torque-

generating unit (MotA/B stator) contributes independently
and additively to the total torque, in agreement with ex-
perimental observations 2 [13]. (ii) The torque from each
MotA/B stator is applied to the rotor by a protein spring.
Proton translocation into the cell causes the stretching of a
protein spring to its next attachment site (Fig. 1) [10,14].
This assumption enforces the tight coupling between pro-
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FIG. 1 (color). Schematic model of the bacterial flagellar
motor. Left: The passage of a proton, or possibly a group of
protons, through a torque-generating unit (a MotA/B stator—
only one stator of about 10 is shown) causes a protein spring to
stretch to its next attachment site, represented by circles, on the
rotor. Right: To translocate, a proton must pass through an
external gate, over a barrier, and finally through an internal
gate, with all the steps assumed to be reversible. The net energy
difference driving proton translocation is the electrical potential
energy, �e�c , minus the work, ���, necessary to stretch the
protein spring by ��, where � is the torque applied by the spring
to the rotor.
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ton current and rotation speed [2]. (iii) Assuming a coop-
erativity index of n, translocation occurs through three
reversible steps: first n protons load into an external gate,
then all n cross an energy barrier to an internal gate, and
finally all n are released into the cell. The barrier crossing
event is the rate-limiting step. The external and internal
gates are necessary to explain the nonlinear dependence of
the TSR on proton concentrations [Fig. 2]. (We define the
distance between two attachment sites as n�� so that the
average displacement per proton is ��.)

The external and internal gates are assumed to be in fast
equilibrium with the external and internal proton concen-
trations, respectively. Their dissociation constants are de-
noted by Kext and Kint so that the occupancy of the external
gate is Hn

ext=ðKn
ext þHn

extÞ, where Hext is the proton con-
centration outside the cell, and similarly for the internal
gate. The energy difference between the internal and ex-
ternal gates is n½e�c þ ���þ kBT logðKint=KextÞ�.�c is
the transmembrane electric potential (c int � c ext), and
��� is the work necessary to stretch the protein spring.
When �c ¼ 0 and � ¼ 0, the energy barrier per pro-
ton to inward translocation is U0

in, and the barrier to

outward translocation is U0
out, with U0

in �U0
out ¼

kBT logðKint=KextÞ. In general, some fraction � of the
electric potential and some fraction � of the work contrib-
ute to the inward barrier so that the barriers per proton to
inward and outward translocations are, respectively, Uin ¼
U0

in þ �e�c þ ���� and Uout ¼ U0
out � ð1� �Þe�c �

ð1� �Þ���. For simplicity, we have neglected any depen-
dence of Kint;ext on �c and �. Then the rate of inward

proton translocations is

Jin ¼ nJ0
Hn
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�
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J0 is a kinetic constant (in Hz), and the other prefactors
represent the occupancies of the external and internal
gates. The outward rate Jout is given by a similar expression
so that the net inward proton flux is

Jin�Jout¼nJ0e
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(2)

�p :¼ �c þ ðkBT=eÞ logðHint=HextÞ is the PMF com-
posed of the electrical and chemical potential differences.
Its value is approximately�150 mV in normal conditions.
To account for the data, we assume that the height of the
barrier may depend on temperature, and we expand the

prefactor to linear order in temperature: J0e
�U0

in
ðTÞ=kBT ¼

~J0e
�ðT�T0Þ, where T0 ¼ 17:7 �C, is chosen as a reference

temperature.
Rotation is then described by coupled stochastic equa-

tions for the angular position of the rotor � and the stretch-
ing of the protein springs i ¼ 1; . . . ; N, where N is the
number of stators, each exerting a torque �i on the rotor

d�

dt
¼ 1

�

XN
i¼1

�i þ �ðtÞ; (3)

d�i
dt

¼ kð�iÞ
�
� d�

dt
þ�ð�iÞ þ ��

i ðtÞ
�
: (4)

� is the frictional drag coefficient of the load, and kð�Þ is
the spring constant of the (possibly non-Hookean) protein
springs. The spring constant need not be specified as none
of the observables computed below depend on it. In the
second equation, each spring relaxes as the rotor moves
(backreaction of the rotor onto stators, �d�=dt), but gets
restretched by proton translocations (�ð�iÞ :¼ ðJin �
JoutÞ��). �ðtÞ is the thermal noise on the load and satisfies
the Einstein relation: h�ðtÞ�ðt0Þi ¼ 2ðkBT=�Þ�ðt� t0Þ. ��

i

is the shot noise at each stator i, due to the randomness of
proton translocation events. To obtain the average speed !
and torque per stator � ¼ h�ii, we solve Eqs. (3) and (4), at
steady state (d�i=dt ¼ 0) with no noise, yielding: ! ¼
d�=dt ¼ N�=� and �i ¼ �, with �ð�Þ ¼ !. Along with
Eq. (2), this gives a closed set of equations from which we
obtain the TSR. Note that the resulting expression depends
separately on the electrical and chemical potential for
protons. At stall (� ! 1), the system is in equilibrium.
The energy necessary for a protein spring to move to its
next attachment site, which is proportional to the torque �
it exerts on the rotor, is matched by the PMF, ���þ
e�p ¼ 0. Consequently, the total torque grows linearly
with the PMF, N� ¼ �Ne�p=��, and the efficiency
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FIG. 2 (color). The torque-speed relationship (TSR) of the
E. coli flagellar motor. Rotation speed is measured with beads
of various loads (data points) attached to a flagellar stub, under
different pH conditions (colors) [5]; solid curves: model fits.
Inset: Total torque vs speed from [6], normalized by the number
of stators. Data collapse indicates that stators contribute inde-
pendently and additively to the total torque. Solid curve: model
TSR for a single stator using the same parameters as in the main
figure and Fig. S2 [17], with the temperature fit as 21 �C and the
stall torque fit as 300 pN � nm.
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near stall is �100%, in agreement with experiments
[15,16].

Our model with no cooperativity (n ¼ 1) can fit all
existing measured TSR of the E. coli motor. Some our
model’s parameters are fixed properties of the motor and
thus are fit by single values: (�� ¼ 4:6�, Kint ¼
1:2� 10�8, Kext ¼ 2� 10�7, ~J0 ¼ 670 Hz, � ¼ 0:2,
� ¼ 0:078, � ¼ 0:11 K�1) while others depend on con-
ditions (T, Hint;ext, �c , number of stators N), and may or

may not have been measured in the experiments.
Figure 2 shows fits of TSRs measured under various pH

conditions [5]. The electric potential �c was not mea-
sured and so was used as a fitting parameter for each set of
pH conditions. Our fit indicates that j�c j increases with
pH (Fig. S1 [17]), consistently with previous measure-
ments [18,19].

Electrorotation experiments [3,7] have been used to
apply an external torque on the load via an oscillating field.
When the motor is driven backwards (upper-left quadrant
of the TSR), the internal torque is approximately equal to
its stall value up to speeds of�100 Hz [7]. When the motor
is driven to speeds larger then the maximum operating
speed (lower-right quadrant of the TSR), the motor resists
rotation, resulting in a negative internal torque. In this
regime, the slope of the TSR remains approximately the
same as for positive torques beyond the knee [3]. Our
model agrees with measurements in both regimes. The
absence of a barrier to backward rotation follows from
the reversibility of proton translocation. For negative tor-
ques, the model predicts an inflection of the TSR, as seen
for the red curve in Fig. 2.

Within our model, the proton flux is limited by the
loading of the external and internal gates and by the barrier
crossing. This limitation on flux accounts for the knee of
the TSR. In Fig. 2, the position of the knee strongly
depends on pH values: as the internal proton concentration
increases, the internal gate gets saturated, preventing pro-
tons from translocating inwards, and thus limiting the
stretching of stator springs and the applied torque.

Our model also accounts quantitatively for measure-
ments of the TSR at different temperatures (Fig. S2 [17])
[4], as well as for measurements with different numbers of
stators [Inset of Fig. 2] [6]. We compared the model to
earlier measurements at different temperatures [3] (data
reported in [4]), with no additional fitting parameters, and
found excellent agreement (Fig. S3 [17]).

Experiments by Gabel and Berg (Fig. 3) [20] have been
interpreted to imply that the rotation speed is proportional
to PMF, even at high speeds beyond the knee of the TSR.
Our model predicts that speed is proportional to PMF at
low speeds, in the plateau region of the TSR. However, at
high speeds, the torque is limited by the proton flux, and
therefore both torque and speed grow sublinearly with
PMF. Nevertheless, our model (with n ¼ 1) is fully con-
sistent with the measurements reported in [20].
Experimentally, speeds were simultaneously recorded for

two motors of the same cell, one rotating the cell itself
(high load) and the other rotating a small polystyrene bead
(low load), as shown schematically in the lower inset of
Fig. 3. These two loads correspond to the two dashed lines
in the upper inset of Fig. 3. As cells were deenergized by
the introduction of a respiratory poison, the PMF �p
regressed from �150 mV to 0, and the motors slowed,
with the two speeds approximately proportional to each
other, even at low temperature where the low-load, high-
speed motor was in the kinetically limited regime. We
fitted the data for each cell, using N=�cell and N=�bead as
free parameters, and assuming that during deenergization
the electric and chemical parts of the PMF regressed in
fixed ratio to each other. The model fits are consistent with
the data, both at 24 �C (Fig. S6 [17]) and at 16:2 �C
(Fig. 3). However, a further reduction of the low load
would be predicted to lead to a strong deviation from
proportionality (dotted line in Fig. 3).
Adding cooperativity (n > 1) to the model still captures

the general shape of the TSR, as well as its temperature
dependence (Fig. S4 [17]), but agrees poorly with the
observed pH dependence (Fig. S5 [17]), as it implies a
stronger dependence of proton current on ion concentra-
tions. The model with n > 1 is consistent with the Gabel-
Berg data for most cells (Fig. S7 [17]), although it breaks
down for the two cells with the largest high speeds.
Although n ¼ 1 appears to best explain the data, mea-

surements of average rotation speeds do not allow us to
discriminate with certainty the proton cooperativity. In
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FIG. 3 (color). Relationship between the high-speed (low-
load) and low-speed (high-load) regimes of the E. coli flagellar
motor, as the PMF varies from �150 mV to 0, at temperature
T ¼ 16:2 �C. Symbols: Experimental data from individual cells
[20]. Solid curves: model fits with the same parameters as in
Fig. 2. Dotted curve: the model predicts loss of proportionality at
very low loads. Lower inset: schematic of the experiment [20].
Upper inset: model TSR for PMFs of �150, �100, and
�50 mV; the dashed lines show the low- and high-load lines
of the cell represented by e in the main panel, and the dotted
line is the load line corresponding to the dotted curve in the main
panel.
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contrast, our model predicts that diffusion of the rotor
angle at low loads should depend very strongly on proton
cooperativity. The discrete nature of proton translocations
implies the existence of shot noise ��

i ðtÞ in the stretching of
the protein spring at each stator i. We can approximate the
shot noise as Gaussian white noise: h��

i ðtÞ��
i ðt0Þi ¼

2Dshot�ðt� t0Þ, with Dshot ¼ ð1=2ÞðJin þ JoutÞn��2 (this
approximation is valid for times much larger than J�1

in

and J�1
out ). Solving Eqs. (3) and (4), including shot noise

��
i ðtÞ and thermal noise �ðtÞ, we find an exact expression

for the effective diffusion coefficient of the rotor angle:

Deff :¼ lim
t!1

1

2t
ðh�ðtÞ2i � h�ðtÞi2Þ

¼ kBT

�

�
1� N	

�þ N	

�
2 þDshot

N

�
N	

�þ N	

�
2
; (5)

whereN is the number of stators and	ð�Þ ¼ �ðd�=d�Þ�1

is minus the local slope of the TSR. Figure 4 shows the
effective diffusion coefficient as a function of motor speed
for different proton cooperativities. Parameters were
chosen so that the speed at zero torque is 200 Hz.

At high loads (� � 	), diffusion is entirely due to
thermal noise:Deff � kBT=�. However, at low loads (� �
	), diffusion is dominated by shot noise: Deff � Dshot=N.
In fact, the thermal noise is completely suppressed in the
low-load limit: e.g., a small thermally induced backward
jump in rotor angle causes the stretching of all springs,
which then rapidly pull the rotor forward, thus canceling
the jump. Notice that in the low-load limit, the shot-noise
contribution is inversely proportional to the number of
stators. Intuitively, a small jump in the angular stretch
��i of one protein spring ultimately only causes the rotor
to move ��i=N because the rotor is equally coupled to all
N stators. The variance per jump is therefore ð��i=NÞ2,
and with N independent stators, the resulting diffusion
scales as 1=N.

Equation (5) could be used to infer n experimentally. In
the low-load limit, we have Jin � Jout, and therefore n �
2Deff=ð!��Þ. �� can be determined by measuring the
torque per stator and the PMF at stall: �� ¼ �e�p=�.
Our analysis of rotor diffusion suggests a novel experi-

mental test to investigate the cooperativity of proton trans-
location. Some rotational diffusion measurements have
already been made [21,22], but not in the regime of very
low load, where shot noise is expected to dominate.
Although we have derived the expression for diffusion in
the specific framework of our minimal spring model, the
same approach is generalizable to more detailed models of
the bacterial flagellar motor.
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FIG. 4 (color). Effective diffusion as a function of rotation
speed for a single stator (N ¼ 1), with different ion translocation
cooperativities n ¼ 1; . . . ; 4 (bottom to top). Inset: schematic of
cooperative ion translocation.
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