
J Stat Phys (2008) 131: 1121–1138
DOI 10.1007/s10955-008-9543-x

Random Subcubes as a Toy Model for Constraint
Satisfaction Problems

Thierry Mora · Lenka Zdeborová

Received: 23 October 2007 / Accepted: 4 April 2008 / Published online: 19 April 2008
© Springer Science+Business Media, LLC 2008

Abstract We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces the struc-
ture of the solution space of the random k-satisfiability and k-coloring problems, and un-
dergoes the same phase transitions as these problems. The comparison becomes quantitative
in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied.
The model is also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.

Keywords Constraint satisfaction problems · Clustering of solutions · Exactly solvable
models

1 Introduction

Combinatorial optimization and Constraint Satisfaction Problems (CSPs) arise in a wide
array of scientific branches, including statistical physics, information theory, inference and
machine learning. These problems, which involve a large number of variables interacting
through a large number of constraints or cost terms, are in general very hard to solve, and
in most cases no algorithm seems to be able to find a solution within a reasonable time, as
formalized by the P �= NP conjecture [1].

In order to circumvent this intrinsic difficulty and possibly to identify (or avoid) “hard”
instances, random ensembles of optimization problems were introduced and used as test
beds for theories and algorithms. This line of research has considerably benefited from
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the methods and concepts of statistical mechanics [2–5]. In particular, a spectacular break-
through was made by the development of the survey propagation algorithm [5, 6] which is
able to solve large random instances of CSPs in the so-called “hard-SAT” region. The key
to the success of the physics approach lies in the understanding of the rugged energy land-
scape (reminiscent of glassy phases) exhibited by these problems, which survey propagation
exploits and integrates into a sophisticated message-passing [7] scheme.

The structure and organisation of solutions has been analyzed in detail for several CSPs,
including the satisfiability problem (k-SAT) [8], the colorability of random graphs (k-COL)
[8–10], and systems of linear Boolean equations (k-XORSAT) [11–13]. It was shown that
as the density of constraints is increased the space of solutions undergoes several phase
transitions. At low density of constraints the solution space is concentrated in one big er-
godic component, called “cluster” or “state”. For higher densities the systems undergoes a
clustering transition, whereby the solution space breaks into an exponential number of well-
separated clusters (this separation can be energetic or entropic). For even higher densities a
second transition occurs, which reduces these clusters to a finite number. Finally, all clusters
disappear at the SAT-UNSAT threshold.

Since the clustering phenomenon is one of the main building blocks underlying the sta-
tistical physics approach,1 substantial efforts have been made to give a rigorous base to it
[15, 16]. Some mathematical results were also obtained in the ergodic phase [17], and in the
simple case of linear Boolean equations [18]. Remarkably, pure states play an central role in
spin-glass theory, and they have been extensively studied in that context. However, the geo-
metrical organization of glassy phases is not yet fully understood, and the classical picture
of complex energy landscapes with many “valleys” still lacks an appropriate representation.

In this paper we introduce an exactly solvable random-subcube model2 (RSM), in the
spirit of Derrida’s Random Energy Model (REM) [19]. This model is inspired by the struc-
ture of hard CSPs and optimization problems, and reproduces most of their phenomenology.
It can be also thought of as an attempt to construct a minimal setting that is able to reproduce
the structure of solutions in hard CSPs. Its purpose is mainly pedagogical, and it offers an
excellent testing playground for ideas and methods in combinatorial optimization and glass
physics, while being fully tractable.

Despite its simplicity, the RSM undergoes the same phase transitions as those observed
in random CSPs such as k-SAT [6, 8] or k-COL [8, 10]. The connection even becomes
quantitative in the large-k limit of these problems. So far only the zeroth order of this limit
was intuitively known and related to Shannon’s random code model [20–22], in which clus-
ters are uniformly distributed singletons. One of our most notable results is that the RSM
provides the first-order approximation of this large-k limit, reproducing the cluster size dis-
tribution and freezing properties of the original models.

We also generalize the RSM to deal with continuous energy landscapes resembling those
observed in glassy systems and hard optimization problems, and show how static and dy-
namical properties can be related explicitly. This energetic RSM displays temperature chaos,
undergoes a dynamical transition, and has a Kauzmann temperature.

The paper is organized as follows: In Sect. 2 we define the model and describe its basic
properties, as well as the connection with the random k-SAT and k-COL problems. We
also analyze the behaviour of physics-guided decimation schemes. In Sect. 3 we discuss

1Technically, clustering is closely related to the one-step replica-symmetry breaking ansatz used in the
replica/cavity method [6, 14].
2Independently of our work A. Montanari inspired by an idea of D. Achlioptas also introduced this model
and worked out some parts of our Sect. 2.
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the relation between its dynamical and geometrical properties. In Sect. 4 we extend the
definition to energetic landscapes, compute static and dynamical properties, and comment
on some ideas from the physics of glassy systems. Finally we present a general discussion
of our results in Sect. 5.

2 The Random-Subcube Model

2.1 Definition

Most constraint satisfaction problems are defined by a set of constraints on N variables
σ = (σ1, . . . , σN) with a finite alphabet, e.g. {0,1}. In contrast, the random-subcube model
is defined directly by its solution space S ⊂ {0,1}N ; we define S as the union of �2(1−α)N�
random clusters (where �x� denotes the integer value of x). A random cluster A being
defined as:

A = {σ | ∀i ∈ {1, . . . ,N}, σi ∈ πA
i }, (1)

where πA is a random mapping:

πA : {1, . . . ,N} −→ {{0}, {1}, {0,1}} (2)

i 	−→ πA
i (3)

such that for each variable i, πA
i = {0} with probability p/2, {1} with probability p/2, and

{0,1} with probability 1 − p. A cluster is thus a random subcube of {0,1}N . If πA
i = {0} or

{1}, variable i is said “frozen” in A; otherwise it is said “free” in A. One given configuration
σ might belong to zero, one or several clusters. A solution belongs to at least one cluster.

The parameter α is analogous to the density of constraints in CSPs; clearly the SAT-
UNSAT transition occurs at αs := 1, where clusters cease to exist. The parameter p gives
the probability that a variable is frozen, and plays a role similar to the clause size k in k-SAT,
or to the number of colors k in k-coloring, as we will see later. Note that in the special case
p = 1, the RSM is equivalent to the random code model with rate R = 1 − α [21].

Frozen variables and the structure of the solution space have been introduced to mimic
the situation observed in random CSPs. However there are important differences between
the RSM and models like k-SAT. First, in real CSPs the clusters are not necessarily sub-
cubes of {0,1}N . We stress here that when speaking about clusters in the RSM we have in
mind the above definition, whereas in the context of the CSPs the notion of cluster is more
general [5, 8]. Further, in real CSPs the sets of frozen variables associated with clusters are
correlated by the underlying graph, instead of being distributed uniformly. Moreover, free
variables in CSPs do not enjoy the same freedom as in the RSM, as clusters usually do not
fill up the whole subcube allowed by the frozen variables. In fact, free variables can be cor-
related within each cluster in a highly nontrivial way, and these correlations may even be so
strong that they create clusters without the help of frozen variables. Clusters without frozen
variables are indeed very important, as discussed recently in [10, 23].

2.2 The Basic Structural Phase Transitions

We now describe the static properties of the RSM in the thermodynamic limit N → ∞ (the
two parameters α and p being fixed and independent of N ). The internal entropy s of a
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cluster A is defined as 1
N

log2 |A|, i.e. the fraction of free variables in A. The probability
P(s) that a cluster has internal entropy s follows the binomial distribution

P(s) =
(

N

sN

)
(1 − p)sNp(1−s)N . (4)

Let N (s) be number of clusters of entropy s. This number follows a binomial law of para-
meter P(s) with 2N(1−α) terms. Then the mean and the variance of N (s) read:

EN (s) = 2N(1−α)P(s), VarN (s) = 2N(1−α)P(s)[1 −P(s)]. (5)

By Markov’s inequality:

P [N (s) ≥ 1] ≤ E [N (s)] , (6)

and by Chebyshev’s inequality:

P

{∣∣∣∣ N (s)

EN (s)
− 1

∣∣∣∣ > ε

}
≤ VarN (s)

[EN (s)]2ε2
≤ 1

2N(1−α)ε2P(s)
for all ε > 0, (7)

we get, with high probability (w.h.p.: with probability going to 1 as N → ∞):

lim
N→∞

1

N
log2 N (s) =

{
�(s) := 1 − α − D(s ‖ 1 − p) if �(s) ≥ 0,

−∞ otherwise,
(8)

where D(x ‖ y) := x log2
x
y

+ (1 − x) log2
1−x
1−y

is the binary Kullback-Leibler divergence.
Throughout the paper, the same Markov/Chebyshev argument will apply every time we will
have to deal with a number of clusters with a specific property.

We now compute the total entropy stot = 1
N

log2 |S|. First note a random configuration
belongs on average to 2N(1−α)(1 − p

2 )N clusters. Therefore, if

α < αd := log2 (2 − p), (9)

then with high probability the total entropy is stot = 1.
Now assume α > αd . The total entropy is given by a saddle-point estimation:

∑
A

2s(A)N = [1 + o(1)]N
∫

�(s)≥0
ds2N[�(s)+s], (10)

whence stot = max
s

[�(s) + s | �(s) ≥ 0]. (11)

We denote by s∗ = argmax[. . .] the fraction of free variables in the clusters that dominate
the sum. Note that in this sum solutions belonging to several clusters have been counted too
many times. This does not affect the validity of our estimation, since in every cluster the
fraction of solutions belonging to more than one cluster is exponentially small as long as
α > αd .

Define s̃ := 2(1 − p)/(2 − p) such that ∂s�(s̃) = −1. The complexity of clusters with
entropy s̃ reads:

�(s̃) = p

2 − p
+ log2(2 − p) − α. (12)
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Fig. 1 (Color online) Top: graphical construction of the maximum of �(s)+s by a Legendre transformation.
In the top left figure (α < αc), the line of slope −1 tangent to the complexity function gives the saddle-point
s∗, as well as the total entropy stot by the intercept on the s-axis. In the top right figure (α > αc), the
supporting line of slope −1 gets “stuck” at sM , where the derivative is −m > −1. Bottom: represented as a
function of α: total entropy stot, total complexity �tot = 1 − α, typical entropy s∗, complexity of dominating
clusters �∗ = �(s∗), and m = −∂s�(s∗). The condensation point αc marks the separation between the two
regimes illustrated above

s̃ maximizes (11) as long as �(s̃) ≥ 0, that is if

α ≤ αc := p

(2 − p)
+ log2 (2 − p). (13)

Then the total entropy reads

stot = 1 − α + log2 (2 − p) for α ≤ αc. (14)

For α > αc , the maximum in (11) is realized by the largest possible cluster entropy sM ,
which is given by the largest root of �(s). Then stot = s∗ = sM . In this phase the dominating
clusters3 have size 2Ns∗+�, where � = O(1) is asymptotically distributed according to a
Poisson point process of rate 2−m�, i.e., for d� � � the probability that there is at least one
state of size between 2Ns∗+� and 2Ns∗+�+d� is 2−m�d�, where m = −∂s�(s∗). Extreme
value study of this process leads to the Poisson-Dirichlet [24–26] distribution of weights
of clusters.4 In particular it follows that an arbitrary large fraction of the solutions can be
covered by a finite number of clusters. Such a phase is called condensed.

3The “dominating clusters” are the minimal set of clusters covering almost all solutions.
4Strictly speaking in the RSM Ns∗ + � can only be an integer, then � is a discrete random variable. Some
detailed properties of the extreme values might thus differ from the properties of the well known Poisson-
Dirichlet process.
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In summary, for a fixed value of the parameter p, and for increasing values of α, four
different phases can be distinguished:

(a) Liquid phase, α < αd : almost all configurations are solutions.
(b) Clustered phase with many states, αd < α < αc: an exponential number of clusters is

needed to cover almost all solutions.
(c) Condensed clustered phase, αc < α < αs = 1: a finite number of the biggest clusters

cover almost all solutions.
(d) Unsatisfiable phase, α > αs : no cluster, hence no solution, exists.

The very same series of phase transitions is observed in random k-coloring and random k-
satisfiability, where α is the density of constraints [8, 10]. The condensation transition at
αc corresponds to the Kauzmann temperature [27] in the theory of glasses; at αc the total
entropy stot(α) has a discontinuity in its second derivative with respect to α, in analogy with
the discontinuity of the specific heat at the Kauzmann temperature.

Keeping in mind the similarity between the RSM and real CSPs, it can be useful to men-
tion some of the properties that are commonly discussed in the statistical physics analysis
of these problems (for brevity we omit the proves of these statements). Among them is
the probability distribution of mutual overlaps P (q), where q(σ ,σ ′) = ∑N

i=1[2δ(σi, σ
′
i ) −

1]/N . Below the condensation transition, α < αc , we have P (q) = δ(q), reflecting the fact
that random pairs of solutions are uncorrelated. For α > αc , the overlap function consists of
intra-cluster and inter-cluster overlaps: P (q) = wδ[q − (1− stot)]+ (1−w)δ(q), where w is
the sum of squares of weights of all the clusters, it is a non-self-averaging random variable,
the distribution of which can be computed from the Poisson-Dirichlet process [26, 28].

An equivalent way of characterizing the condensed phase is to consider the k-point cor-
relation function, with k ≥ 2:

∑
x1,...,xk

|P(σ1 = x1, σ2 = x2, . . . , σk = xk) − P(σ1 = x1) . . .P(σk = xk)|. (15)

This quantity decays to zero as N goes to infinity in the non-condensed phase, whereas it
remains bounded away from zero in the condensed phase.

2.3 The Large k-Limit of Random k-SAT and k-COL

One of the most interesting properties of the random-energy model [19] is its equivalence
with the large-p limit of the p-spin glass [28]. In the same spirit, although the justification
is slightly different, the random-subcube model is found to be equivalent to random k-SAT,
random k-COL, and presumably other constraint satisfaction problems in the limit k → ∞,
for connectivities close to the satisfiability threshold. Let us detail this statement.

It was already known that at zeroth order (when k → ∞) random k-SAT and k-COL
behave as a random-code model (random-subcube model with p = 1), in which clusters are
uniformly distributed singletons. Recent large-k calculations of the cluster size distribution
�(s) in k-SAT and k-COL [8, 10] allow a direct comparison with the RSM.

The control parameters of the RSM are rescaled as:

p = 1 − ε, α = 1 + ε
1 + γ

ln 2
, (16)

with ε � 1 and γ = �(1). The cluster size distribution in the RSM is then, at leading order:

�(s) ln(2) = s
[
1 − ln

s

ε

]
− ε(2 + γ ) + o(ε). (17)
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while the condensation and satisfiability thresholds read, in terms of the rescaled variable γ :

γc = −2 ln 2, γs = −1. (18)

In k-SAT and k-COL, identifying ε and γ in the following way:

SAT : ε = 1

2k+1
,

M

N
= 2k ln 2 − ln 2

2
+ γ

2
, (19)

COL : ε = 1

2k
,

M

N
= k lnk − lnk

2
+ γ

2
, (20)

where M is the number of constraints (edges in coloring), and N the number of variables,
gives a perfect match5 for the complexity function (17), as computed in [8, 10]. This illus-
trates the analogy between α and the density of constraints M/N , as well as between p

and k.
This equivalence goes further than simply having identical cluster size distributions. The

cavity analysis of k-SAT shows that the fraction of free variables in a cluster scales exactly
as its internal entropy s. The entropy of clusters is thus maximal, from which we infer that
clusters fill up the whole subcube prescribed by their frozen variables, like in the RSM. The
same is true for k-COL (compare (E14) and (E27) in [10]) with the small difference that for
every unfrozen variable only two (out of k) colors are allowed.

Note that this comparison is valid only in a finite vicinity of the satisfiability threshold, for
γ = �k(1). In particular, it does not encompass the clustering transition, which for k-SAT
(resp. k-COL) occurs for constraint densities scaling as 2k ln 2/k (resp. k ln k/2).

2.4 Decimation

An important contribution of statistical physics to the field of combinatorial optimization has
been to exploit the information provided by message-passing algorithms to devise physics-
guided decimation schemes.

Message-passing algorithms exchange information between units (variables and con-
straints) in order to obtain estimates of marginal probabilities (beliefs) or other related
quantities (e.g. surveys, see below). Subsequently, this information is used to find a solu-
tion. A usual way to do this, called decimation, proceeds as follows: fix randomly the value
of one6 variable according to its estimated belief, then re-run the message-passing algorithm
on the reduced system, and loop. A trivial statement is that a perfect estimate of all marginal
probabilities would always cause the decimation procedure to find a solution (if any).

In the RSM there is no underlying graph, therefore message-passing cannot be defined.
However, it is possible to study decimation schemes based on exact marginal probability
estimators. Although such procedures should really be viewed as thought experiments, they
can be used to gain some insight on real algorithms. Here two idealized algorithms are
considered:

– Belief estimator: outputs the exact marginal probabilities μi(σi) = ∑
σ \i μ(σ ), where

μ(σ ) = I(σ ∈ S)/|S|.
– Survey estimator: outputs “surveys”, i.e. marginal probabilities over the clusters: νi(πi) =∑

π \i ν(π), where ν(π) = ∑
A I(π = πA)/�2N(1−α)�.

5Note the difference in the logarithmic base between here and [8, 10].
6In practice the number of variables fixed at each step can range from one to a small fraction of the variables.
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In real CSPs, belief and survey propagation arguably provide asymptotically accurate
estimators, as long as the number of clusters dominating the measure μ (or ν for survey
propagation) scales exponentially with N , and as long as the one-step replica symmetry
breaking description is the correct one [10, 14]. However, belief-guided and survey-guided
decimation schemes are difficult to analyze in real CSPs—see [29] for an empirical study
on surveys and [30] for recent analytical study on beliefs in k-SAT.

Let us study decimation in the RSM. As long as the phase is non-condensed, the belief
estimator always outputs μi(σi) ≈ 1/2 for all i in the limit N → ∞. Likewise, the survey
estimator will output νi({0}) ≈ νi({1}) ≈ p/2, νi({0,1}) ≈ 1 − p. In both cases, the dec-
imation procedure is completely unbiased: it will fix a random variable i to 0 or 1, with
probability 1/2. This observation remains true in the subsequent decimation steps as long
as the number of clusters dominating the reduced measure μ (or ν) remains exponential.
Within this assumption, after T = tN (0 ≤ t ≤ 1) decimation steps, T variables will be
fixed randomly and independently. We are then left with a restricted space of solutions com-
patible with these T fixed variables. The logarithm of the number of clusters of entropy sN

is then

N�t(s) = N

[
1 − α + t log2

(
1 − p

2

)
− (1 − t)D

(
s

1 − t
||1 − p

)]
. (21)

Rescaling by the number of unfixed variables (1 − t)N : �t = (1 − t)�̄t , s = (1 − t)s̄, we
obtain

�̄t (s̄) = 1 − α − tαd

1 − t
− D(s̄||1 − p). (22)

The parameter ᾱ(t) := (α − tαd)/(1 − t) now plays the same role as α in the analysis
of the RSM. Consequently, the system undergoes the same condensation and unsatisfiabil-
ity transitions as t is increased. Assume for example that αd < α < αc . Fixing a fraction
tc := (αc − α)/(αc − αd) of the variables will cause the system to condense. The belief es-
timator will then be dominated by a finite number of clusters, yielding instance-dependent
biases on variables. An extensive number of variables become suddenly near-frozen, i.e.,
μi(1) ≈ 0 or ≈ 1, and remain so for t > tc . At ts := (1 − α)/(1 − αd), the total complexity
goes to zero, and near-frozen variables become truly frozen, i.e. μi(1) = 0 or 1, as all sub-
dominant clusters disappear. By contrast, the survey estimator will output unbiased marginal
probabilities as long as the total number of clusters is exponential in N , that is if t < ts . At
t = ts , decimation concentrates on a single cluster, causing a freezing avalanche in the sur-
veys, i.e. for each variable i, νi({0,1}) = 1 or νi({0}) = 1 or νi({1}) = 1. For both estimators,
any slight error at ts will cause the failure of the decimation process.

Note that in real CSPs, belief propagation is not expected to be correct in the condensed
phase, beyond tc; in fact, it will not detect condensation, nor near-frozen variables. For a
recent study of the belief-propagation-guided decimation in k-SAT see [30]. Remarkably, in
real CSPs, survey-guided decimation usually simplifies the problem: after a certain number
of decimation steps, it outputs νi({0,1}) = 1 for all i, and the problem can then be passed
over to a simple local search algorithm [6, 29]. Although the RSM, which is intrinsically
clustered, is unable to capture this property, it sheds some light on why decimation may not
work in some cases.
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3 Distance and Ergodicity

The geometrical organization of solutions to CSPs is thought to play an important role in
setting intrinsic limits to the performance of search algorithms. In particular, the clustering
phenomenon, by which the solution space is fragmented into many connected components
far from each other, has been proposed by physicists as a possible explanation for the failure
of most known algorithms [4–6]. Also, the role of frozen variables was recently discussed in
[10]. Conversely, the success of survey propagation [6] is usually explained by the fact that it
explicitly incorporates the existence of clusters. The separability of clusters has been proved
in the k-SAT problem, in compliance with the predictions of statistical physics [15]. Despite
this evidence, the precise relation between geometry and algorithms still lacks a rigorous
base. The random-subcube model offers an excellent opportunity to study these questions in
a well controlled framework.

3.1 The Dynamical Transition

Let us first argue why the clustering transition at αd , defined by (9), actually corresponds
to what is commonly refered to as the dynamical (ergodicity breaking) transition in real
CSPs [8, 10, 12, 31–33]. To this end we study a uniform unbiased random walk on the
space of solutions: at each step, one is allowed to move from one solution to the other by
flipping only one spin. We choose this dynamics for the sake of simplicity, but most of the
arguments below hold for more general dynamical rules, like for example the flipping of a
sub-extensive number of spins at each step.

We have already pointed out that an arbitrary configuration belongs to 2(1−α)N (1−p/2)N

different clusters w.h.p. if α < αd , and to none if α > αd . Therefore below αd almost all con-
figurations are solutions, and any reasonable dynamics will explore the entire phase space
uniformly.

On the other hand, when α > αd , solutions become exponentially rare. Let A be a cluster
of internal entropy s. What is the probability that after t steps, a random walker ends up in
another cluster B of internal entropy s ′? Let a denote the proportion of variables that are
free in A and frozen in B . The probability distribution of a is given by the total number
of partitions of {1, . . . ,N} into four categories: frozen in A and B , only frozen in A, only
frozen in B , and frozen neither in A nor B . This probability reads:

q(a) = 1(
N

Ns

)(
N

Ns′
) N !
(Na)![N(s − a)]![N(1 − s ′ − a)]![N(s ′ − s + a)]! . (23)

In order for the walker to reach B from A, it has to match perfectly the prescriptions
(freezings) of B on these aN variables. If t = �(Nd), the probability of this happening
is ≈ t2−aN . Additionally, variables that are frozen in both clusters must coincide, so that A

and B have a non-empty intersection. For a random choice of B , this happens with proba-
bility 2N(s′+a−1).

Consequently, the probability that the walker wanders in any other cluster of entropy s ′
after t steps is union-bounded by:

φ(s → s ′) ≤ 2N�(s′) ∑
a

q(a)t2−aN 2N(s′+a−1). (24)

The maximum of 1
N

log2 q(a) tends to zero when N → ∞, so that:

lim sup
N→∞

1

N
log2 φ(s → s ′) ≤ �(s ′) + s ′ − 1. (25)
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This quantity remains negative for all s ′, as long as α > αd . Therefore, in this regime, hop-
ping from one cluster to the other is very unlikely in a sub-exponential number of steps, even
though clusters are not disjoint. In this sense we say that ergodicity is broken. Remarkably,
the space of solutions becomes non-ergodic as soon as it becomes non-trivial, at αd .

Let us stress the importance of the entropic barriers between clusters in our analysis.
In the real CSPs and optimization problems the energetic barriers are usually thought of
as more important, and clusters are even sometimes described as separated (by an exten-
sive distance). The importance of entropic barriers and the possibility of non-extensively
separated clusters should, however, not be neglected in the studies of richer models.

3.2 x-Satisfiability

The notion of x-satisfiability was first introduced as a tool to study the geometrical structure
of the solution space of CSPs [15]. An instance of CSP is said x-satisfiable if and only
if it admits a pair of solutions separated by a Hamming distance ∼ xN . In other words,
x-satisfiability gives the distance spectrum of the solution space. This spectrum is estimated
using three quantities:

a) d1 = x1(α)N : the maximum distance between two solutions inside one cluster,
b) d2 = x2(α)N : the minimum distance between two solutions from two distinct clusters,
c) d3 = x3(α)N : the maximum distance between any two solutions (presumably from two

different clusters).

The first of these quantities is estimated by noting that the maximum distance between
any two solutions in a given cluster, i.e. its diameter, equals its entropy s. Therefore the
maximum diameter/entropy x1 is given w.h.p. by the largest internal entropy sM , i.e. the
largest root of �(s) = 1 − α − D(s ‖ 1 − p).

Now take two clusters A and B at random, and consider the probability that their distance
be xN . This distance is given by the number of variables which are frozen in both clusters,
but in a contradictory way, such that πA(i) �= πB(i). This happens independently with prob-
ability p2/2 for each variable, so that the number of such variables follows a binomial law of
parameter p2/2. Therefore, the number N (x) of pairs of clusters at distance xN coincides
w.h.p. with its mean value:

E[N (x)] = 22(1−α)N

(
N

Nx

)(
1 − p2

2

)(1−x)N(
p2

2

)xN

� 2Ns2(x) (26)

if s2(x) := 2(1 − α) − D(x ‖ p2/2) > 0, and N (x) = 0 w.h.p. if s2(x) < 0. Consequently
the smallest possible distance between any two clusters is given by x2N , where x2(α) is
the smallest root of s2(x). A similar argument gives the largest distance between any two
solutions from two different clusters: x3(α) = 1 − x2(α).

To sum up, we find that a random instance is x-satisfiable w.h.p. if α < αs(x), and is
x-unsatisfiable w.h.p. if α > αs(x), with:

αs(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ∈ [0,1 − p] ∪ [p2/2,1 − p2/2]
1 − D(x ‖ 1 − p) if x ∈ [1 − p,x0]
1 − 1

2 D(x ‖ p2/2) if x ∈ [x0,p
2/2]

1 − 1
2 D(1 − x ‖ p2/2) if x ∈ [1 − p2/2,1]

(27)

where x0 is solution to D(x ‖ p2/2) = 2D(x ‖ 1 − p).
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Fig. 2 (Color online) The x-satisfiability threshold is constructed from the three distances x1(α), x2(α)

and x3(α). Below a threshold αgap, distance spectra fail to detect the fragmentation of the solution space
(there is no more “gap” between intra and inter-cluster distances). Below another threshold αsep, clusters
cease to be all well separated, although ergodicity is still broken. The condensation threshold αc is shown
for information. The dynamical threshold αd lies outside the picture, and its value is ≈ 0.070. In this figure
p = 0.95

Figure 2 shows how αs(x) can be constructed from the three distances x1, x2, x3. We put
αsep := 1 + (1/2) log2(1 − p2/2) > αd , the threshold below which some pairs of clusters
have a non-empty intersection. An interesting observation is that ergodicity can still be bro-
ken even below this threshold. We can also define the αgap := αs(x0) > αsep, below which
distances from the same cluster and distances from distinct clusters overlap. This thresh-
old sets the limit below which the notion of x-satisfiability fails to detect clustering. The
random-subcube model allows us to make a clear and intelligible distinction between the
three thresholds αd < αsep < αgap. We expect this distinction to hold in most CSPs.7

4 Random Energy Landscape

4.1 Definition

The random-subcube model can be enriched by adding the notion of energy to the defini-
tion of states. The motivation for doing this is to mimic the optimization version of CSPs
(where energy is defined as the number of unsatisfied constraints), but it can also be used to
reproduce some properties of glassy systems.

For each energy level E0, we define N (E0) = �2N�(E0/N)� valleys of energy E0, where
�(e0) is an increasing complexity function. This function can be arbitrary, but for simplic-
ity we will restrict our examples to the form8 �(e0) = a + be0 − ce0 ln(e0), where a > 0
corresponds to a SAT phase, and a < 0 to an UNSAT phase.

Each valley is defined as a subcube V , chosen at random in the same way as clusters
in the previous sections, cf. (1). In the following, the freezing probability p will be fixed

7With the notable exception of k-XORSAT, where αd = αsep. Incidentally in k-XORSAT we also have
αc = αs .
8This form corresponds to the function used to fit data from the cavity method in the k-SAT problem [6].
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for all energies, but one could easily generalize the model by making it energy-dependent:
p = p(e0).

The number N (E0, S0) of valleys of energy E0 = e0N and entropy S0 = s0N is w.h.p.:

N (E0, S0) � 2N�(e0,s0) if �(e0, s0) := �(e0) − D(s0 ‖ 1 − p) ≥ 0

= 0, otherwise.
(28)

Given a configuration σ , we define its energy as a trade-off between the energy of sur-
rounding valleys and their distance. Let us denote the energy of a valley V by E0(V ). Then
the energy of σ is:

E(σ ) := min
V

[E0(V ) + d(σ ,V )] (29)

where d(σ ,V ) is the distance between σ and the nearest element of V . By definition, we
say that σ belongs to the basin of attraction of V if V minimizes the sum. Observe that
with this definition, it may happen that some valleys are not represented at all in the energy
landscape. In the following, the term “state-bottom energy” shall refer to the energy E0 of
the valley minimizing the sum, and the term “state-bottom entropy” to the entropy S0 of that
valley.

4.2 Static Description of the Energy Landscape

What is the energy of an arbitrary configuration σ ? Let us start with the typical case: for
each e0 = E0/N , we compute the distance to the nearest valley with energy E0. Standard
arguments show that the number of valleys of state-bottom energy e0N at distance d = ωN

is governed by the exponent:

�(e0) − D(ω ‖ p/2).

Then, the minimum distance is given, in the N → ∞ limit, by δ[�(e0),p/2]N , where
δ(x, y) is solution to: x = D(δ ‖ y). Then, the typical energy is obtained as the best com-
promise between state-bottom energy and distance:

e∗ = E/N = min
e0

{e0 + δ[�(e0),p/2]} , (30)

The argmin gives the typical state-bottom energy e∗
0 of a random σ .

As we just saw, most configurations have roughly the same energy, and belong to valleys
with the same state-bottom energy. At finite temperature however, thermodynamics will be
dominated by configurations of lower energy than e∗N . We thus need to estimate the entropy
function (governing the number of configurations of given energy), the Legendre transform
of which shall give us the free energy. Given a valley V of energy E0 = e0N and entropy
S0 = s0N , the number of configurations of energy E belonging to this valley is:

NV (E) = 2S0

(
E − E0

N − S0

)
,

� 2NsV (e|e0,s0), with sV (e|e0, s0) := s0 + (1 − s0)H

(
e − e0

1 − s0

)
,

(31)

where H(x) = −x log2 x − (1 − x) log2 (1 − x) is the entropy function. Summing up over
all valleys, the total number of configurations with energy E = eN is:

N (E) =
∑
S0,E0

2S0

(
E − E0

N − S0

)
2N�(E0/N,S0/N) � 2Ns(e), (32)
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with s(e) = max
e0,s0

�(e0,s0)≥0

[sV (e|e0, s0) + �(e0, s0)] . (33)

Here we have implicitly assumed that all elements in the sphere of radius E −E0 and center
V are in the basin of attraction of V , as long as E < e∗N . This is not true in general, as
some configurations may in fact belong to a more favorable basin, and may thus have lower
energies. However, such configurations remain exponentially rare in comparison to the total
weight of the sphere. Therefore the previous estimate holds.9

Canceling the derivative w.r.t. s0 in (33) yields the saddle for s0:

s̃0 = (1 − p)(1 − e + e0)

1 − p/2
. (34)

Provided that the maximum is reached in a region where �(e0, s̃0) > 0, we get:

s(e) = max
e0

[
1 − D(e − e0 ‖ p/2) + �(e0)

]
for ec < e < e∗. (35)

This will be valid from e = e∗ (for which we find s(e∗) = 1 as expected) down to a certain
condensation energy ec . Below that energy (e ≤ ec), the phase is condensed: �(e0, s̃0) < 0,
and the maximum in (33) is reached on the border on the definition domain, where
�(e0, s0) = 0. If we denote by sM(e0) the biggest valley of energy e0 (i.e. the largest of
root of �(e0, s0) = 0), we get:

s(e) = max
e0

{sV [e|e0, sM(e0)]} for e < ec. (36)

So far we have worked in the microcanonical ensemble, but the same arguments hold in
the canonical ensemble. In particular the condensation temperature is Tc = (∂s/∂e|e=ec )

−1.
The number of dominating states in the condensed phase follows again a Poisson-Dirichlet
process [25, 26] with parameter m, where m/T is the slope of the curve �T (f ) at its smallest
root. The function �T (f ) is the canonical counterpart of �(e0, s0), and reads:

�T (f ) = max
e0,s0:fV (T |e0,s0)=f

�(e0, s0), (37)

where fV (T |e0, s0) is the single-state free energy, obtained as the Legendre transform of
sV (e|e0, s0) in (31).

In both low-temperature phases (condensed and non-condensed), equilibrium is reached
for different values of (e0, s0) as e varies. Said differently, the states dominating the micro-
canonical measure at e and at e + δe are completely distinct. In the canonical language, we
say that the system exhibits temperature chaos [34–36]: slightly changing the temperature
from T to T + δT dramatically modifies the free-energy landscape, reshuffling the ordering
of states. Consequently, correlations are nonexistent between T and T + δT . This phenom-
enon of free-energy crossings is illustrated (in the condensed phase) by Fig. 3, where the
maximum of (36) is constructed geometrically.

9This argument is similar to the one used in (10), where some solutions were counted several times, but with
no consequence at the exponential scale.
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Fig. 3 (Color online) Illustration of the temperature chaos by construction of the microcanonical entropy
in the condensed phase, cf. (36), and level crossing. We have represented three entropy curves sV (e) cor-
responding to three extremal states V1, V2 and V3, the envelope of all these curves is the microcanonical
entropy. These states are maximally atypical; they realize a balance between low state-bottom energies and a
high state-bottom entropies, which are related by s0 = sM(e0) (thick curve). As the temperature (or energy)
is decreased, the curves sV (e) cross each other, and the system is dominated by states of lower state-bottom
energies and entropies. These data were obtained for number of valleys �(e0) = −0.05 − 0.5e0 ln e0 and
p = 0.2

4.3 Relation with Dynamics

We now undertake to describe the dynamical properties of this energetic landscape. To that
end we shall make use of the static picture, which we know precisely from bottom-up con-
struction.

Our reasoning proceeds in two steps. First, we study the behavior of a single spin-flip
Monte-Carlo dynamics with detailed balance evolving in a single valley of state-bottom en-
ergy e∗

0 , and state-bottom entropy s∗
0 . In a second step, we argue that the same dynamics run

on the full rugged energy landscape is entirely governed by this single-state-like behavior.
The thermodynamics of a single typical state is given by:

s(e|e∗
0, s

∗
0 ) = s∗

0 + (1 − s∗
0 )H

(
e − e∗

0

1 − s∗
0

)
(38)

where s∗
0 = (1 − p)(1 − e∗ + e∗

0)/(1 − p/2) is the typical state-bottom entropy of a random
configuration, computed from (34). Supposing now that the energy landscape is made of
this state only, we can easily convince ourselves that the dynamics is ergodic: the energy
landscape is convex, and there are neither energetic nor entropic barriers. Both the quenched
and annealed10 dynamics in this simple landscape is then given by the thermodynamics.

We know from the previous paragraphs that states extend up to energy e∗, where a “crest”
connects the different valleys. This crest is actually more of a plateau, as it embeds almost all
configurations: s(e∗) = 1. Therefore, our dynamics will remain there as long as the temper-

10By quench, resp. annealing, we mean a fast, resp. slow, change of temperature from T1 > Td to T2 < Td

and some time (a finite number of Monte Carlo sweeps) spent at T2 afterwards.
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ature does not allow configurations of lower energy. This happens at Td := (∂s/∂e|e=e∗)−1,
where exploring valleys starts to be more favorable.

Below Td , the system will find itself trapped in one state, since barriers between valleys
are extensive. This randomly picked state has typical properties: in particular, its bottom-
energy is e∗

0 and its bottom-entropy is s∗
0 .

We argue that below Td everything happens as if this trapping state was put in isolation,
as we have described above. The justification comes from the fact that a valley does not
“see” its neighbors as long as e < e∗: even though many configurations of energy e < e∗

in the isolated state actually belong other valleys in the full landscape, their proportion is
exponentially small. In other words, although there may be some directions for which the
energy barrier is lower than e∗ − e, these directions are beaten entropically.

With this reasoning, both the quenched and annealed dynamics are described by the
microcanonical entropy of a single typical state: sdyn(e) = s(e|e∗

0, s
∗
0 ). We note in passing:

T −1
d = ∂s

∂e

∣∣∣∣
e=e∗

= ∂sdyn

∂e

∣∣∣∣
e=e∗

, (39)

as partial derivatives w.r.t. e0 and s inside (33) cancel at the maximum. The dynamical
temperature Td is thus well defined.

Note that this analysis is exact: the fact that it purely relies on static arguments should be
attributed to the simplicity of the model. In richer mean-field models this kind of arguments
might also apply, but will most probably not give the full picture.

4.4 Glassy Behaviour

The analysis of the energy landscape in the RSM is summarized in the energy-temperature
phase diagram of Fig. 4. As anticipated, the behaviour of the RSM resembles the one
observed in glasses and spin-glasses. The two distinct glassy transitions (dynamical and
condensation), as well as the phenomenon whereby the physical dynamics gets stuck in
metastable states, have been described for example in the p-spin glass [28], the spherical
p-spin glass [37], the Potts glass [38] and the lattice glass [39]. Several related examples of
energy-temperature diagrams were derived recently in [40].

In the aforementioned mean-field models, the static behaviour is better understood than
the dynamics. Static properties are usually analyzed by the replica/cavity method, with the
help of Parisi’s replica symmetry breaking scheme. A satisfactory analytic treatment of the
dynamics exists only for the spherical p-spin glass [37], in which all states have the same
entropy. A remarkable step towards connecting the static picture and dynamical behaviour
in a rather general framework was done in [31–33]. The RSM could provide a tractable
playground for studying several aspects of glassy dynamics, e.g. aging and rejuvenation
[41].

We would like to emphasize the freedom we can enjoy in the definition of the energy
landscape. First, arbitrary numbers and sizes of valleys at each energy e0, �(e0) and p(e0),
can be considered. Second, the definition of the configurational energy E(σ ) in (29) could
be generalized to an arbitrary function of all valleys V and σ ; E(σ ) = F({V },σ ). By tuning
these parameters, one could hope to reproduce the dynamics of more complex models on a
quantitative level.
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Fig. 4 (Color online) Energy as a function of temperature. At temperature T > Td , the system is in a liquid
state: the dynamics is exploring ergodically all configurations of energy e∗. Below the dynamical temperature
ergodicity is broken. The upper “dynamical” curve shows the result of a quench/annealing in temperature,
whereby the systems remains stuck in a typical state of bottom energy e∗

0 . For Tc < T < Td , equilibrium ther-
modynamics is dominated by an exponential number of states (curve “glass”). Below the condensation (Kauz-
mann) temperature thermodynamics is dominated by a finite number of states (curve “condensed glass”). This
number is given by a Poisson-Dirichlet process of parameter m (plotted in the upper part of the diagram).
The dashed line shows the result of a quench/annealing starting from an equilibrium state at temperature
Tc < T < Td . The bottom line shows the bottom energies of the thermodynamically dominating states. These
curves were obtained for �(e0) = −0.05 − 0.5e0 ln e0 and p = 0.6

5 Conclusions

The random-subcube model is a simple exactly solvable model capturing several interesting
properties of random constraint satisfaction problems. Rather than an attempt to construct a
new realistic model for practical instances of constraint satisfaction problems, it allows us
to identify which properties of random CSPs can be reproduced by a simple probabilistic
structure, and conversely, which of these properties may be intrinsically non-trivial. Exam-
ples of reproducible properties include condensation, non-monotony of the x-satisfiability
threshold, temperature chaos and dynamical freezing in metastable states. From this point
of view, the RSM stands just next to the random-energy model [19], the random-code model
[20–22] or the random-energy random-entropy model [36].

Since the relation between the RSM and the large-k limit of random k-SAT and k-COL
is based on non-rigorous results from [8, 10], it would be interesting to establish this equiv-
alence rigorously. Further, the RSM should be helpful for understanding some properties
which are too difficult to study in more realistic models, such as finite-size corrections or
some aspects of glassy dynamics.

Finally, our work addresses the broad question of producing, inferring, and representing
complex and rugged structures of the hypercube. Although we retained the simplest choice
of subcubes for clusters, more sophisticated alternatives could be explored and used to re-
produce detailed geometrical features of solution spaces in CSPs.



Random Subcubes as a Toy Model for Constraint Satisfaction 1137

Acknowledgements We would like to thank Florent Krząkała and Marc Mézard for fruitful discussions
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