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Abstract Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR)

recognize antigens in the adaptive immune system. The development of immunoglobulin receptor

repertoire sequencing methods makes it possible to perform repertoire-wide disease association

studies of antigen receptor sequences. We developed a statistical framework for associating

receptors to disease from only a small cohort of patients, with no need for a control cohort. Our

method successfully identifies previously validated Cytomegalovirus and type one diabetes

responsive TCRb sequences .

DOI: https://doi.org/10.7554/eLife.33050.001

Introduction
T-cell receptors (TCR) and B-cell receptors (BCR) are hypervariable immunoglobulins that play a key

role in recognizing antigens in the vertebrate immune system. TCR and BCR are formed in the sto-

chastic process of V(D)J recombination, creating a diverse sequence repertoire. These receptors con-

sist of two hypervariable chains, the a and b chains in the case of TCR. Progress in high throughput

sequencing now allows for deep profiling of TCRa and TCRb chain repertoires, by establishing a

near-complete list of unique receptor chain sequences, or ‘clonotypes’, present in a sample. Most

sequencing data available correspond to TCRb only, but the same principles discussed below apply

to TCRa repertoires, or to paired ab repertoires.

Comparison of sequenced repertoires has revealed that in any pair of individuals, large numbers

of TCRb sequences have the same amino acid sequence (Venturi et al., 2011). Several mechanisms

leading to the repertoire overlap have been identified so far. The first mechanism is convergent

recombination. Due to biases in V(D)J recombination process, the probability of generation of some

TCRb sequences is very high, making them appear in almost every individual multiple times and

repeatedly sampled in repertoire profiling experiments (Britanova et al., 2014). This sharing does

not result from a common specificity or function of T-cells corresponding to the shared TCRb clono-

types, and may in fact correspond to cells from the naive compartment in both donors
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(Quigley et al., 2010), or from functionally distinct subsets such as CD4 and CD8 T-cells. The second

possible reason for TCR sequence sharing is specific to identical twins, who may share T cell clones

as a consequence of cord blood exchange in utero via a shared placenta (Pogorelyy et al., 2017).

Note that in that scenario both the b and a chains are shared together. The third and most interest-

ing mechanism for sharing the sequence of either the b or a or both chains is convergent selection

in response to a common antigen. From functional studies, such as sequencing of MHC-multimer

specific T-cells, it is known that the antigen-specific repertoire is often biased, and the same anti-

gen-specific TCR b or a chain sequences can be found in different individuals (Miles et al., 2011;

Dash et al., 2017; Glanville et al., 2017).

Reproducibility of a portion of the antigen-specific T-cell repertoire in different patients creates

an opportunity for disease association studies using TCRb repertoire datasets (Faham et al., 2017;

Emerson et al., 2017). These studies analyse the TCRb sequence overlap in large cohorts of healthy

controls and patients to identify shared sequences overrepresented in the patient cohort. Here we

propose a novel computational method to identify clonotypes which are likely to be shared because

of selection for their response to a common antigen, instead of convergent recombination. Our

approach is based on a mechanistic model of TCR recombination and is applicable to small cohorts

of patients, without the need for a healthy control cohort.

Results
As a proof of concept, we applied our method to two large publicly available TCRb datasets from

Cytomegalovirus (CMV)-positive (Emerson et al., 2017) and type one diabetes (T1D) (Seay et al.,

2016) patients. In both studies the authors found shared public TCRb clonotypes that are specific to

CMV-peptides or self-peptides, respectively. Specificity of these clonotypes was defined using MHC-

multimers. We show that TCRb chain sequences functionally associated with CMV and T1D in these

studies are identified as outliers by our method.

The main ingredient of our approach is to estimate the probability of generation of shared clono-

types, and to use this probability to determine the source of sharing (see Figure 1). Due to the lim-

ited sampling depth of any TCR sequencing experiment, chances to sample the same TCRb

clonotype twice are low, unless this clonotype is easy to generate convergently, with many indepen-

dent generation events with the same TCRb amino acid sequence in each individual (convergent

recombination), or if corresponding T-cell clone underwent clonal expansion, making its concentra-

tion in blood high (convergent selection). Thus, we reasoned that convergently selected clonotypes

should have a lower generative probability than typical convergently recombined clonotypes. To test

this, we estimated the generative probability of the TCRb’s Complementarity Determining Region 3

(CDR3) amino-acid sequences that were shared between several patients. Since no algorithm exists

that can compute this generative probability directly, our method relies on the random generation

and translation of massive numbers of TCR nucleotide sequences using a mechanistic statistical

model of V(D)J recombination (Murugan et al., 2012), as can be easily performed for example using

the IGoR software (Marcou et al., 2017).

In Figure 2A we plot for each clonotype the number of donors sharing that clonotype against its

generation probability. Disease-specific TCRb variants validated by functional tests in source studies

are circled in red. Note that validated disease-specific TCRb sequences have a much lower genera-

tion probability than the typical sequences shared by the same number of donors. We developed a

method of axis transformation (see Materials and methods) to compare the model prediction with

data values on the same scale (Figure 2B), so that outliers can be easily identified by their distance

to identity line. Our method can be used to narrow down the potential candidates for further experi-

mental validation of responsive receptors. Additional information, like the expansion of the identi-

fied TCRb clonotype in the inflammation site, the presence of the same clonotype in the repertoire

of activated or memory T-cells, or absence in a cohort of healthy controls, could provide additional

evidence for functional association of identified candidates with a given condition.

Our method also identifies other significant outliers than reported in the source studies (shown in

red, and obtained after multiple-test correction – see Materials and methods), which may have three

possible origins. First, they may be associated with the condition, but were missed by the source

studies. Second, they may be due to other factors shared by the patients, such as features involved

in thymic or peripheral selection, or reactivity to other common conditions than CMV (e.g. influenza
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infection). Third, they can be the result of intersample contamination. Our approach is able to diag-

nose the last explanation by estimating the likelihood of sharing at the level of nucleotide sequences

(i.e. synonymously), as detailed in the Materials and methods section.

Discussion
Antigen receptor sequencing currently has little clinical applications. One of the most important

ones is diagnostics and tracking of malignant T-cell and B-cell clones in lymphomas, where it allows

for directly measuring the abundances of certain clones at different timepoints. Our method allows

for a sequence-based theoretical prediction of T-cell abundances at the population level, and for the

identification of T-cell clones associated with infectious and autoimmune conditions. Extensive data-

bases of condition-associated clones can provide a means of disease diagnostics and extend the clin-

ical utility of antigen receptor repertoire sequencing technologies.

This method may also be useful in the analysis of known antigen-specific TCR clonotypes. The

typical source of such TCR sequences are MHC-multimer positive cells isolated from one or a few

donors (Shugay et al., 2018; Tickotsky et al., 2017). Some of these antigen-specific clonotypes are

private, and are hard to find in other patients, providing limited diagnostic value. Our method is

able to distinguish these clones from publicly responding clonotypes that are likely to be shared by

many patients using only their CDR3 amino acid sequences.

Figure 1. Method principle and pipeline. (Top left) Sequence overlap between two TCR or BCR repertoires.

(Bottom left) There are two major mechanisms for sequence sharing between two repertoires: convergent

recombination and convergent selection. Because convergent recombination favors sequences with high

generation probabilities, these two classes of sequences have different distributions of the generative probability,

PgenðsÞ. (Right) We estimate the theoretical PgenðsÞ for each sequence s and compare it to PdataðsÞ, which is

empirically derived from the sharing pattern of that sequence in the cohort. Comparison of these two values

allows us to calculate the analog of a p-value, namely the posterior probability that the sharing pattern is

explained by the convergent recombination alone, with no selection for a common antigen.

DOI: https://doi.org/10.7554/eLife.33050.002
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The cohort size necessary for the identification of antigen-specific clonotypes with our method

varies (see ‘Designing the experiment’ subsection in Materials and methods). It depends on the

strength and diversity of the response to the given antigen. CMV and other Herpesviridae (EBV,

HSV), are able to cause a persistent infection, and a large fraction of the TCR repertoire of CMV-pos-

itive donors are believed to be specific to them—on average, up to 10% of CD8 +cells are specific

to a single CMV epitope in elderly individuals (Khan et al., 2004). However, it was shown that in a

human acute infection model of yellow fever vaccination, virus-specific T-cell clones are one of the

most abundant in the TCR repertoire and occupy up to 12% of the CD8 +T cell repertoire. This

response is short-lived and contracts significantly a month after immunization (Miller et al., 2008).

So the peak of an immune response is the best timepoint to search for antigen-specific TCRs in

acute infections using this method. T-cell response to herpesviruses is also not unique in terms of

public clonotype involvement—in ankylosing spondylitis (Faham et al., 2017), 30–40% of patients

share a certain TCRb aminoacid sequence, which is more than the fraction of patients sharing CMV-

specific clonotypes that we analysed in this study.

Our approach can be used on other hypervariable receptor chains (TCRa, BCR heavy and light

chains), as well as other species (mice, fish, etc.). Both a and b chains contribute to T-cell receptor

specificity. Single-cell or paired sequencing technologies (Zemmour et al., 2018) could identify part-

ner receptor chains for condition-associated TCR a or b chain sequences identified with our

approach. Antigenic peptides recognized by complete T-cell receptors could then be recovered in

vitro using yeast-display libraries of peptide-MHC (Gee et al., 2018). As paired sequencing becomes

Figure 2. Identification of condition-associated clonotypes using generative probability (A) CDR3aa of antigen specific clonotypes (red circles) have less

generative probability than other clonotypes shared among the same number of donors. The number of in silico rearrangements obtained for each

TCRb sequence in our simulation (which is proportional to generation probability for each clonotype in a given VJ combination PpostðsÞ), plotted

against the number of patients with that TCRb clonotype. (B) Model prediction of generative probabilities agrees well with data. To directly compare

PpostðsÞ to data, we estimate the empirical probability of occurrence of sequences, PdataðsÞ, from its sharing pattern across donors (see

Materials and methods). In A. and B. red dots indicate significant results (adjusted P<0:01, Holm’s multiple testing correction), while red circles point to

the responsive clonotypes identified in the source studies.

DOI: https://doi.org/10.7554/eLife.33050.003
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more widespread, our method can be extended to the analysis of full paired TCR by applying the

exact same analysis using the joint recombination probability of ab clonotypes.

Recent advances in computational methods allow us to extract TCR repertoires from existing

RNA-Seq data (Bolotin et al., 2017; Brown et al., 2015). Huge numbers of available RNA-Seq data-

sets from patients with various conditions can be used for analysis and identification of novel virus,

cancer, and self reactive TCR variants using our method. The more immunoglobulin receptors with

known specificity are found using this type of association mapping, the more clinically relevant infor-

mation can be extracted from immunoglobulin repertoire data.

Materials and methods

Statistical analysis
Problem formulation
Our framework is applicable to analyze the outcome of a next generation sequencing experiment

probing the immune receptor repertoires of n individuals with a given condition, for example CMV

or Type one diabetes. We denote by Mi the number of unique amino acid TCR sequences in patient

i, i ¼ 1; . . . ;N. For a given TCR amino acid sequence s, we set xi ¼ 1 to indicate that s is present in

patient i’s repertoire, and xi ¼ 0 otherwise. For a given shared sequence s, we want to know how

likely its sharing pattern is under the null hypothesis of convergent recombination, correcting for the

donors’ different sampling depths. In other words, is s overrepresented in the population of inter-

est? If s is significantly overrepresented, we also want to quantify the size of this effect.

Overview
Under the null hypothesis, the presence of s in a certain number of donors is explained by indepen-

dent convergent V(D)J recombination events in each donor. Given the total number of recombina-

tion events that led to the sequenced sample of donor i, Ni, the presence of given amino acid

sequence s in donor is Bernoulli distributed with probability

pi ¼ xih i ¼ 1�Ppost sð Þ
� �Ni ; (1)

PpostðsÞ ¼ PgenðsÞ�Q; (2)

where PpostðsÞ is the model probability that a recombined product found in a blood sample has

sequence s under the null hypothesis. It is formed by the product of PgenðsÞ, the probability to gener-

ate the sequence s, estimated using a V(D)J recombination model (see the following subsection), and

Q, a constant correction factor accounting for thymic selection (see Estimation of the correction factor

Q subsection). The number of independent recombination events Ni leading to the observed unique

sequences in a sample i is unknown, because of convergent recombination events within the sample,

but it can be estimated from the number of unique sequences Mi, using the model distribution Ppost

(see Estimation of Ni subsection).

We also calculate the posterior distribution of PdataðsÞ, corresponding to the empirical counterpart

of PpostðsÞ in the cohort, inferred from the sharing pattern of s across donors. We use information

about the presence of s in our donors, x1; . . . ; xn and the sequencing depth for each donor, N1; . . . ;Nn

(see Estimation of PdataðsÞ subsubsection), yielding the posterior density: �ðPdatajx1; . . . ; xNÞ.

Finally, we estimate the probability, given the observations, that the true value of Pdata is smaller

than the theoretical value Ppost predicted using V(D)J recombination model, analogous to a p-value

and used to identify significant effects:

PðPpost>PdataÞ ¼

Z Ppost

0

�ðPdatajx1; . . . ;xnÞdPdata: (3)

To estimate the effect size qðsÞ we compare Pdata to Ppost,

qðsÞ ¼
PdataðsÞ

PpostðsÞ
: (4)
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Estimation of Pgen, the probability of generation of a TCR CDR3 amino acid
sequence
To procedure outlined above requires to calculate PgenðsÞ, the probability to generate a given CDR3

amino acid sequence. Methods exist to calculate the probability of TCR and BCR nucleotide sequen-

ces from a given recombination model (Murugan et al., 2012; Marcou et al., 2017), but are imprac-

tical to calculate the probability of amino acid sequences, because of the large number of codon

combinations that can lead to the same amino acid sequence,
QL

a¼1
ncodonsðsðaÞÞ, where L is the

sequence length, and ncodonsðtÞ the number of codons coding for amino acid t. The number is about

1:4� 10
7 for a typical CDR3 length of 15 amino acid.

Instead, we estimated PgenðsÞ using a simple Monte-Carlo approach. We randomly generated a

massive number (Nsim ¼ 2� 10
9) of recombination scenarios according to the validated recombina-

tion model (Murugan et al., 2012):

Pb
rearr ¼ PðVÞPðD;JÞPðdelV jVÞPðinsVDÞ

�PðdelDl;delDrjDÞPðinsDJÞPðdelJjJÞ:
(5)

The resulting sequences were translated, truncated to only keep the CDR3, and counted. PgenðsÞ

was approximated by the fraction of events thus generated that led to sequence s. This approxima-

tion becomes more accurate as Nsim increases, with an error on PgenðsÞ scaling as ðPgenðsÞ=NsimÞ
1=2.

Estimation of the correction factor Q
Not all generated sequences pass selection in the thymus. Pgen systematically underestimates the fre-

quency of recombination event that eventually make it into the observed repertoire. To correct for

this effect, we estimate a correction factor Q, as was suggested in (Elhanati et al., 2014):

PpostðsÞ ¼ PgenðsÞ�Q: (6)

Contrary to (Elhanati et al., 2014), which learned a sequence-specific factor for each individual,

here we assume that all observed sequences passed thymic selection. Q is a normalization factor

accounting for the fact that just a fraction Q�1 of sequences pass thymic selection. This factor is

determined for each VJ-combination as an offset when plotting logPgen against logP�
data (see the fol-

lowing subsection for definition of P�
data), using least squares fitting.

Estimation of PdataðsÞ, the probability of sequence occurrence in data
The variable xi indicates the presence or absence of a given TCR amino acid sequence s in the ith

dataset with Ni recombination events per donor. We want to estimate PdataðsÞ, which is a fraction of

recombination events leading to s in the population of interest. According to Bayes’ theorem, for a

given s, the probability density function of Pdata reads:

�ðPdatajx1; . . . ;xnÞ ¼
Pðx1; . . . ;xnjPdataÞ�priorðPdataÞ

R

1

0
Pðx1; . . . ;xnjPdataÞ�priorðPdataÞdPdata

: (7)

The likelihood is given by a product of Bernouilli probabilities:

Pðx1; . . . ;xnjPdataÞ ¼
Y

N

i¼1

1�ð1�PdataÞ
Ni

� �xi
ð1�PdataÞ

Ni
� �1�xi

; (8)

and a flat prior �priorðPdataÞ ¼ const is used.

We estimate P�
data (shown in Figure 2B) as the maximum of the posterior distribution:

P�
data ¼ argmax

Pdata

�ðPdatajx1; . . . ;xnÞ: (9)

Estimation of Ni, the number of recombination events
The total number Ni of recombination events in ith dataset is unknown, but we can count the num-

ber of unique CD3 acid sequences Mi observed in the sequencing experiment. For a typical TRB

experiment, convergent recombination is relatively rare and one could use Ni »Mi as an
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approximation. However, for less diverse loci (e.g TRA), or for much higher sequencing depths, one

should correct for convergent recombination, as the the observed number of unique aminoacid

sequences could be much lower than the actual number of corresponding recombination events.

The average number of unique sequences resulting from Ni recombination events is, in theory:

hMii ¼
X

s2T

ð1�PpostðsÞÞ
Ni : (10)

where T is the set of sequences that can pass thymic selection. To estimate that number, we gener-

ate a very large number Nsim of recombinations, leading to Nuni unique CDR3 amino acid sequences

for which Pgen is estimated as explained above. We take T to be a random subset of unique sequen-

ces, T � fs1; . . . ;sNuni
g, of size jTj ¼Nuni=Q, and we apply Equation 8.

Using this equation we plot the calibration curve for the TRBV5-1 TRBJ2-6 VJ datasets in Figure 3.

For comparison the case of no thymic selection (Q ¼ 1) is shown in red. The inversion of this curve

yields Ni as a function of Mi.

Pipeline description
In this section we describe how to apply our algorithm to real data. All the code and data necessary

to reproduce our analysis is available online on github (https://github.com/pogorely/vdjRec/; copy

archived at https://github.com/elifesciences-publications/vdjRec/).

We start with annotated TCR datasets (CDR3 amino acid sequence, V-segment, J-segment), one

per donor. Such datasets are produced by MiXCR (Bolotin et al., 2015), immunoseq (http://www.

Figure 3. Calibration curve for TRBV5-1 TRBJ2-6 combination. Here we plot the fraction of unique amino acid

sequences to recombination events against the logarithm of the number of recombination events. The blue line

corresponds to the theoretical solution with selection, the red line corresponds to the theoretical solution without

selection.

DOI: https://doi.org/10.7554/eLife.33050.004
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adaptivebiotech.com/immunoseq) and most other software for NGS repertoire data preprocessing.

Data we used was in immunoseq format, publicly available from https://clients.adaptivebiotech.com/

immuneaccess database.

We proceed as follows:

1. Split datasets by VJ combinations. The resulting datasets correspond to lists of unique CDR3
amino acid sequences for each donor and VJ combination. All following steps should be done
independently for each VJ combination.

2. (Optional). Filter out sequences present in only one donor to speed up the downstream
analysis.

3. Generate a large amount of simulated nucleotide TCR sequences for a given VJ combination.
Extract and translate their CDR3, and count how many times each sequence appears in the
simulated set (restricting to sequences actually observed in donors for better efficiency). The
resulting number divided by the total number of simulated sequences is an estimate of Pgen.

4. Estimate P�
data for each sequence in the dataset, see Estimation of PdataðsÞ subsection.

5. Using P�
data and Pgen, estimate for each VJ combination the normalization Q by minimizing

Pn
j¼1

ðlogP�
dataðsjÞ � logPgenðsjÞ � logQÞ2, see Estimation of the correction factor Q subsection,

where sj, j ¼ 1; . . . ; n are the shared sequences.
6. Calculate Ppost ¼ Q� Pgen. Calculate the p-value (Equation 1) and effect size (Equation 2).

Usage example
Data sources
Data from (Emerson et al., 2017) and (Seay et al., 2016) is publicly available from the immuneac-

cess database: https://clients.adaptivebiotech.com/immuneaccess. For our analysis, we only consid-

ered VJ combinations for which the authors identified condition-associated clonotypes with MHC-

multimer proved specificity. CDR3 aminoacid sequences and V and J segment of these TCR clono-

types are given in Table 1.

Analysis results
We applied our pipeline to identify CMV-specific and self-specific TCR sequences listed in Table 1.

For our analysis we used only case cohorts, without controls. For each dataset we followed our pipe-

line described in Pipeline description subsection. We found that sequences reported in the source

studies as being both significantly enriched in the patient cohort, and antigen-specific according to

MHC-multimers, were the most significant in 3 out of 4 datasets (See Table 2). In the remaining

TRBV12 dataset, the sequence of interest was the top 40 most significant out of 27; 699 sequences

present in at least two CMV-positive donors.

Identifying contaminations
Intersample contamination may complicate high-throughput sequencing data analysis in many ways.

It could occur both during library preparation or the sequencing process itself (Sinha et al., 2017).

Contaminations have the same nucleotide and amino acid sequence in all datasets, and so our

method identifies them as outliers, because their sharing cannot be explained by a high recombina-

tion probability.

Our method provides a tool to diagnose contamination. Given an amino-acid sequence present

in many donors, we measure its theoretical nucleotide diversity using the same simulation approach

we used to calculate the generative probability Pgen of the amino acid sequence (see Estimation of

Table 1. Published antigen-specific clonotypes used to test the algorithm.

CDR3aa V-segment J-segment Antigen source Ref.

CASSLAPGATNEKLFF TRBV07-06 TRBJ1-4 CMV (Emerson et al., 2017)

CASSPGQEAGANVLTF TRBV05-01 TRBJ2-6 CMV (Emerson et al., 2017)

CASASANYGYTF TRBV12-3,�4 TRBJ1-2 CMV (Emerson et al., 2017)

CASSLVGGPSSEAFF TRBV05-01 TRBJ1-1 self (Seay et al., 2016; Gebe et al., 2009)

DOI: https://doi.org/10.7554/eLife.33050.005
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Pgen subsection). If the diversity of the simulated nucleotide sequences is much larger than observed

in the data, it is a sign of contamination.

We applied this approach to the CDR3 sequence CASSLVGGPSSEAFF associated to Type one

diabetes, and found 19 recombination events consistent with that amino acid sequence out of our

simulated dataset. We found 18 different nucleotide variants out of the 19 total possible. In contrast,

in the data this clononotype had the same nucleotide variant in all of the eight donors in which it

was present. That variant was absent from the simulated set. A one-sided Fisher exact test gives a

p<10�6 probability of this happening by chance, indicating contamination as a likely source of

sharing.

Designing the experiment
Our approach also allows us to obtain important estimates for experiment design. A number of vari-

ables affect detection of an antigen-specific clone using our approach: the abundance of the clone

in the general population (represented by Pdata in our approach), the cohort size, the sequencing

depth Ni in each donor in the cohort, and also the effect size. Fixing any two of these variables

results in a constraint between the other two and the affects the probability to detect an antigen-

specific clonotype, which translates into the statistical power of the method. As an example of such

an analysis, we fix the cohort size at 10, 30 or 100 donors (see Figure 4A–C respectively) and the

sequencing depth at Ni ¼ 1000 unique clones sequenced per repertoire for a given VJ-combination

in each donor in the cohort. We ask how frequently a disease specific clone with ~Pdata abundance in

the population and effect size q ¼ ~Pdata=Ppost is detected with our method. To address this question

for each value ~Pdata we perform a simulation: we simulate x1; x2; . . . ; xn Bernoulli variables, each with a

pi ¼ 1� e�Ni
~Pdata success probability. For a given value of ~Pdata and q there is a single value of

Ppost ¼ ~Pdata=q. Then we calculate

PðPpost>PdataÞ ¼

Z Ppost

0

�ðPdatajx1; . . . ;xnÞdPdata; (11)

where �ðPdatajx1; . . . ;xnÞ is the posterior density, and check if PðPpost>PdataÞ is below a significance

threshold of 0.0001. Such a low significant threshold in this example is chosen to take into account

the multiple testing correction: we assume that about 1000 shared clones would be tested in a such

analysis and p¡0.01 after multiple testing is chosen as the significance threshold in this study, which

gives p¡0.0001 before the Bonferroni multiple testing correction. Then we plot the number of simula-

tions in which a significant result was obtained for given effect size q and ~Pdata for the clone of inter-

est and the fraction of donors with this sequence in the simulated cohort (see Figure 4E, blue

curve). Unsurprisingly, the effect size plays a role in the probability to detect an antigen specific

clone, and the detection is not possible at all if the clone is not shared between several donors in

the cohort (in our example this happens for ~Pdata<10
�5) irrespective to the effect size. Larger cohort

sizes can help to resolve clones with lower abundances, but sequencing depth also has a strong

effect on the power of the approach. In Figure 4D and E we show simulation results for a fixed q¼

10 and different sequencing depths Ni of 100, 1000 or 10000 clones per donor in a given VJ combi-

nation. Interestingly, a large sequencing depth (black curve) can lead to a situation when an abun-

dant and frequently generated clone will not be detected by the algorithm, because it will be found

in all donors in the cohort. An additional test that checks the predictions by lowering the sequencing

depth in silico by downsampling can solve this problem.

Table 2. Output of the algorithm for sequences from Table 1.

CDR3aa V J Ag.source . p-value rank p-value Effect size

CASSLAPGATNEKLFF 07–06 1–4 CMV 1/1637 1:2� 10
�17 8.8

CASSPGQEAGANVLTF 5–01 2–6 CMV 1/5549 1:8� 10
�17 42.3

CASASANYGYTF 12–3,�4 1–2 CMV 40/27669 2:5� 10
�14 28.8

CASSLVGGPSSEAFF 5–01 1–1 self 1/2646 9:5� 10
�19 524
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Another complicated question is how Pdata is related to the number of clones and the fraction of

the repertoire involved in the response to the infection in a given donor. If the same antigen-specific

clone is present in every donor, Pdata is close to the average abundance of this clone in the reper-

toire. However one can imagine an opposite situation where the response is so diverse and private

that different clones respond to a given antigen in each donor. It was previously shown that the

diversity and publicness of responding T-cell clonotypes varies a lot across antigens (Dash et al.,

2017). Our approach is restricted to the identification of public antigen-specific clonotypes, which

may not exist for all antigens.
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possible to resolve clonotypes with lower abundance in the population. In panel (D) we show the effect of sequencing depth for fixed q ¼ 10: larger

numbers of clonotypes sequenced per donor allow us to resolve less frequent clones, since a clone of a given ~Pdata is detected in a larger fraction of

donors (panel E).

DOI: https://doi.org/10.7554/eLife.33050.007

Pogorelyy et al. eLife 2018;7:e33050. DOI: https://doi.org/10.7554/eLife.33050 10 of 13

Tools and resources Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.33050.007
https://doi.org/10.7554/eLife.33050


Additional information

Competing interests

Aleksandra M Walczak: Reviewing editor, eLife. The other authors declare that no competing inter-

ests exist.

Funding

Funder Grant reference number Author

Russian Science Foundation 15-15-00178 Dmitriy M Chudakov
Ilgar Z Mamedov
Yuri B Lebedev

European Research Council 724208 Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Mikhail V Pogorelyy, Conceptualization, Data curation, Software, Formal analysis, Validation, Investi-

gation, Visualization, Methodology, Writing—original draft, Writing—review and editing; Anastasia

A Minervina, Data curation, Software, Investigation; Dmitriy M Chudakov, Ilgar Z Mamedov, Yuri B

Lebedev, Conceptualization, Resources, Supervision, Funding acquisition, Investigation, Methodol-

ogy, Project administration, Writing—review and editing; Thierry Mora, Conceptualization, Resour-

ces, Formal analysis, Supervision, Funding acquisition, Investigation, Methodology, Writing—original

draft, Project administration, Writing—review and editing; Aleksandra M Walczak, Conceptualiza-

tion, Resources, Supervision, Funding acquisition, Investigation, Methodology, Writing—original

draft, Project administration, Writing—review and editing

Author ORCIDs

Mikhail V Pogorelyy http://orcid.org/0000-0003-0773-1204

Dmitriy M Chudakov https://orcid.org/0000-0003-0430-790X

Thierry Mora https://orcid.org/0000-0002-5456-9361

Aleksandra M Walczak http://orcid.org/0000-0002-2686-5702

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.33050.014

Author response https://doi.org/10.7554/eLife.33050.015

Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.33050.008

Major datasets

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Emerson RO, De-
Witt WS, Vignali M,
Gravley J, Hu JK,
Osborne EJ, Des-
marais C, Klinger
M, Carlson CS,
Hansen JA, Rieder
M, Robins HS

2017 Immunosequencing identifies
signatures of cytomegalovirus
exposure history and HLA-
mediated effects on the T cell
repertoire

http://dx.doi.org/10.
21417/B7001Z

Publicly available at
ImmuneAccess.

Pogorelyy et al. eLife 2018;7:e33050. DOI: https://doi.org/10.7554/eLife.33050 11 of 13

Tools and resources Computational and Systems Biology Immunology and Inflammation

http://orcid.org/0000-0003-0773-1204
https://orcid.org/0000-0003-0430-790X
https://orcid.org/0000-0002-5456-9361
http://orcid.org/0000-0002-2686-5702
https://doi.org/10.7554/eLife.33050.014
https://doi.org/10.7554/eLife.33050.015
https://doi.org/10.7554/eLife.33050.008
http://dx.doi.org/10.21417/B7001Z
http://dx.doi.org/10.21417/B7001Z
https://doi.org/10.7554/eLife.33050


Seay HR, Yusko E,
Rothweiler SJ,
Zhang L, Posgai AL,
Campbell-Thomp-
son M, Vignali M,
Emerson RO, Kad-
dis JS, Ko D, Na-
kayama M, Smith
MJ, Cambier JC,
Pugliese A, Atkin-
son MA, Robins HS,
Brusko TM

2016 Tissue distribution and clonal
diversity of the T and B cell
repertoire in type 1 diabetes

http://doi.org/10.21417/
B73S3K

Publicly available at
ImmuneAccess

References
Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, Hemmers S, Putintseva EV,
Obraztsova AS, Shugay M, Ataullakhanov RI, Rudensky AY, Schumacher TN, Chudakov DM. 2017. Antigen
receptor repertoire profiling from RNA-seq data. Nature Biotechnology 35:908–911. DOI: https://doi.org/10.
1038/nbt.3979, PMID: 29020005

Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, Chudakov DM. 2015. MiXCR:
software for comprehensive adaptive immunity profiling. Nature Methods 12:380–381. DOI: https://doi.org/10.
1038/nmeth.3364, PMID: 25924071

Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov
S, Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM. 2014. Age-related decrease in TCR repertoire
diversity measured with deep and normalized sequence profiling. The Journal of Immunology 192:2689–2698.
DOI: https://doi.org/10.4049/jimmunol.1302064, PMID: 24510963

Brown SD, Raeburn LA, Holt RA. 2015. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome
Medicine 7:125. DOI: https://doi.org/10.1186/s13073-015-0248-x, PMID: 26620832

Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO,
Kedzierska K, La Gruta NL, Bradley P, Thomas PG. 2017. Quantifiable predictive features define epitope-
specific T cell receptor repertoires. Nature 547:89–93. DOI: https://doi.org/10.1038/nature22383, PMID: 2
8636592

Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM. 2014. Quantifying selection in immune receptor
repertoires. PNAS 111:9875–9880. DOI: https://doi.org/10.1073/pnas.1409572111, PMID: 24941953

Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, Desmarais C, Klinger M, Carlson CS, Hansen
JA, Rieder M, Robins HS. 2017. Immunosequencing identifies signatures of cytomegalovirus exposure history
and HLA-mediated effects on the T cell repertoire. Nature Genetics 49:659–665. DOI: https://doi.org/10.1038/
ng.3822, PMID: 28369038

Faham M, Carlton V, Moorhead M, Zheng J, Klinger M, Pepin F, Asbury T, Vignali M, Emerson RO, Robins HS,
Ireland J, Baechler-Gillespie E, Inman RD. 2017. Discovery of T cell receptor b motifs specific to HLA-B27-
positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis & Rheumatology 69:774–784.
DOI: https://doi.org/10.1002/art.40028, PMID: 28002888

Gebe JA, Yue BB, Unrath KA, Falk BA, Nepom GT. 2009. Restricted autoantigen recognition associated with
deletional and adaptive regulatory mechanisms. The Journal of Immunology 183:59–65. DOI: https://doi.org/
10.4049/jimmunol.0804046, PMID: 19535636

Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT, Fischer S, Yang X, Gomez-
Eerland R, Bingham DB, Sibener LV, Fernandes RA, Velasco A, Baltimore D, Schumacher TN, Khatri P, Quake
SR, Davis MM, Garcia KC. 2018. Antigen identification for orphan T cell receptors expressed on tumor-
infiltrating lymphocytes. Cell 172:1–15. DOI: https://doi.org/10.1016/j.cell.2017.11.043, PMID: 29275860

Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM, Pettus C, Haas N, Arlehamn
CSL, Sette A, Boyd SD, Scriba TJ, Martinez OM, Davis MM. 2017. Identifying specificity groups in the T cell
receptor repertoire. Nature 547:94–98. DOI: https://doi.org/10.1038/nature22976, PMID: 28636589

Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA. 2004. Herpesvirus-
specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection.
The Journal of Immunology 173:7481–7489. DOI: https://doi.org/10.4049/jimmunol.173.12.7481, PMID: 15585
874

Marcou Q, Mora T, Walczak AM. 2017. IGoR: a tool for high-throughput immune repertoire analysis. bioRxiv.
https://arxiv.org/abs/1705.08246.

Miles JJ, Douek DC, Price DA. 2011. Bias in the ab T-cell repertoire: implications for disease pathogenesis and
vaccination. Immunology and Cell Biology 89:375–387. DOI: https://doi.org/10.1038/icb.2010.139,
PMID: 21301479

Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL,
Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R.
2008. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:
710–722. DOI: https://doi.org/10.1016/j.immuni.2008.02.020, PMID: 18468462

Pogorelyy et al. eLife 2018;7:e33050. DOI: https://doi.org/10.7554/eLife.33050 12 of 13

Tools and resources Computational and Systems Biology Immunology and Inflammation

http://doi.org/10.21417/B73S3K
http://doi.org/10.21417/B73S3K
https://doi.org/10.1038/nbt.3979
https://doi.org/10.1038/nbt.3979
http://www.ncbi.nlm.nih.gov/pubmed/29020005
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/nmeth.3364
http://www.ncbi.nlm.nih.gov/pubmed/25924071
https://doi.org/10.4049/jimmunol.1302064
http://www.ncbi.nlm.nih.gov/pubmed/24510963
https://doi.org/10.1186/s13073-015-0248-x
http://www.ncbi.nlm.nih.gov/pubmed/26620832
https://doi.org/10.1038/nature22383
http://www.ncbi.nlm.nih.gov/pubmed/28636592
http://www.ncbi.nlm.nih.gov/pubmed/28636592
https://doi.org/10.1073/pnas.1409572111
http://www.ncbi.nlm.nih.gov/pubmed/24941953
https://doi.org/10.1038/ng.3822
https://doi.org/10.1038/ng.3822
http://www.ncbi.nlm.nih.gov/pubmed/28369038
https://doi.org/10.1002/art.40028
http://www.ncbi.nlm.nih.gov/pubmed/28002888
https://doi.org/10.4049/jimmunol.0804046
https://doi.org/10.4049/jimmunol.0804046
http://www.ncbi.nlm.nih.gov/pubmed/19535636
https://doi.org/10.1016/j.cell.2017.11.043
http://www.ncbi.nlm.nih.gov/pubmed/29275860
https://doi.org/10.1038/nature22976
http://www.ncbi.nlm.nih.gov/pubmed/28636589
https://doi.org/10.4049/jimmunol.173.12.7481
http://www.ncbi.nlm.nih.gov/pubmed/15585874
http://www.ncbi.nlm.nih.gov/pubmed/15585874
https://arxiv.org/abs/1705.08246
https://doi.org/10.1038/icb.2010.139
http://www.ncbi.nlm.nih.gov/pubmed/21301479
https://doi.org/10.1016/j.immuni.2008.02.020
http://www.ncbi.nlm.nih.gov/pubmed/18468462
https://doi.org/10.7554/eLife.33050


Murugan A, Mora T, Walczak AM, Callan CG. 2012. Statistical inference of the generation probability of T-cell
receptors from sequence repertoires. PNAS 109:16161–16166. DOI: https://doi.org/10.1073/pnas.1212755109,
PMID: 22988065

Pogorelyy MV, Elhanati Y, Marcou Q, Sycheva AL, Komech EA, Nazarov VI, Britanova OV, Chudakov DM,
Mamedov IZ, Lebedev YB, Mora T, Walczak AM. 2017. Persisting fetal clonotypes influence the structure and
overlap of adult human T cell receptor repertoires. PLoS Computational Biology 13:e1005572. DOI: https://doi.
org/10.1371/journal.pcbi.1005572, PMID: 28683116

Quigley MF, Greenaway HY, Venturi V, Lindsay R, Quinn KM, Seder RA, Douek DC, Davenport MP, Price DA.
2010. Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. PNAS 107:
19414–19419. DOI: https://doi.org/10.1073/pnas.1010586107, PMID: 20974936

Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis
JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. 2016. Tissue
distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1:1–19.
DOI: https://doi.org/10.1172/jci.insight.88242

Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE,
Egorov ES, Eliseev AV, Van Dyk E, Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB,
Douek DC, et al. 2018. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity.
Nucleic Acids Research 46:D419–D427. DOI: https://doi.org/10.1093/nar/gkx760, PMID: 28977646

Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF, Nabhan AN, Su T, Morganti RM, Conley
SD, Chaib H, Red-Horse K, Longaker MT, Snyder MP, Krasnow MA, Weissman IL. 2017. Index switching causes
“spreading-of-signal” among multiplexed samples in illumina hiseq 4000 dna sequencing. bioRxiv. DOI: https://
doi.org/10.1101/125724

Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. 2017. McPAS-TCR: a manually curated catalogue of
pathology-associated T cell receptor sequences. Bioinformatics 33:2924–2929. DOI: https://doi.org/10.1093/
bioinformatics/btx286, PMID: 28481982

Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, Asher TE, Almeida JR, Levy S, Price DA,
Davenport MP, Douek DC. 2011. A mechanism for TCR sharing between T cell subsets and individuals revealed
by pyrosequencing. The Journal of Immunology 186:4285–4294. DOI: https://doi.org/10.4049/jimmunol.
1003898, PMID: 21383244

Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. 2018. Single-cell gene expression reveals a
landscape of regulatory T cell phenotypes shaped by the TCR. Nature Immunology 19:291–301. DOI: https://
doi.org/10.1038/s41590-018-0051-0, PMID: 29434354

Pogorelyy et al. eLife 2018;7:e33050. DOI: https://doi.org/10.7554/eLife.33050 13 of 13

Tools and resources Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.1073/pnas.1212755109
http://www.ncbi.nlm.nih.gov/pubmed/22988065
https://doi.org/10.1371/journal.pcbi.1005572
https://doi.org/10.1371/journal.pcbi.1005572
http://www.ncbi.nlm.nih.gov/pubmed/28683116
https://doi.org/10.1073/pnas.1010586107
http://www.ncbi.nlm.nih.gov/pubmed/20974936
https://doi.org/10.1172/jci.insight.88242
https://doi.org/10.1093/nar/gkx760
http://www.ncbi.nlm.nih.gov/pubmed/28977646
https://doi.org/10.1101/125724
https://doi.org/10.1101/125724
https://doi.org/10.1093/bioinformatics/btx286
https://doi.org/10.1093/bioinformatics/btx286
http://www.ncbi.nlm.nih.gov/pubmed/28481982
https://doi.org/10.4049/jimmunol.1003898
https://doi.org/10.4049/jimmunol.1003898
http://www.ncbi.nlm.nih.gov/pubmed/21383244
https://doi.org/10.1038/s41590-018-0051-0
https://doi.org/10.1038/s41590-018-0051-0
http://www.ncbi.nlm.nih.gov/pubmed/29434354
https://doi.org/10.7554/eLife.33050

