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Abstract

T cells recognize a wide range of pathogens using surface receptors that interact directly
with peptides presented on major histocompatibility complexes (MHC) encoded by the HLA
loci in humans. Understanding the association between T cell receptors (TCR) and HLA
alleles is an important step towards predicting TCR-antigen specificity from sequences.
Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors
to systematically infer such associations, by looking for overrepresentation of TCRs in indi-
viduals with a common allele. TCRs, associated with a specific HLA allele, exhibit sequence
similarities that suggest prior antigen exposure. Immune repertoire sequencing has pro-
duced large numbers of datasets, however the HLA type of the corresponding donors is
rarely available. Using our TCR-HLA associations, we trained a computational model to pre-
dict the HLA type of individuals from their TCR repertoire alone. We propose an iterative pro-
cedure to refine this model by using data from large cohorts of untyped individuals, by
recursively typing them using the model itself. The resulting model shows good predictive
performance, even for relatively rare HLA alleles.

Author Summary

The deep sequencing of immune repertoires from blood samples promises to offer diag-
nostic and precision medicine tools, and to help with the analysis of treatments and vacci-
nations and the design of immunotherapies. This study shows how, by training models on
large datasets of annotated and unannotated repertoire sequencing, the human leukocyte
antigen (HLA) type of patients can be computationally determined from their T-cell rep-
ertoire. This tool could be useful for typing repertoires for which the HLA is unknown,
and to gain insight into the HLA restriction of T-cell receptor epitope specificity. It also
provides lists of T-cell receptors that are associated to each HLA allele.
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Introduction

T cells are one of the building blocks of adaptive immunity. They accomplish a highly precise
and tailored immune response using membrane-bound antigen-specific T cell receptors
(TCR), a heterodimer composed of an alpha and a beta chain. To cover all possible pathogens,
T cells rely on their large TCR sequence diversity [1]: the gene of each chain undergoes somatic
V(D)] recombination during T cell development, resulting in the generation of extensive
genetic heterogeneity in the TCR repertoire.

The a8 TCR interacts with short peptide fragments displayed on the surface of antigen pre-
senting cells by the major histocompatibility complex (MHC) molecule. In humans, these
structures are encoded by the highly polymorphic human leukocyte antigen (HLA) genes.
Each individual carries up to 2 alleles of each of the 3 class-I (A, B, and C) and multiple class-II
(DP, DQ, and DR) MHC genes, each binding a large but restricted set of different peptides
with common sequence features [2-4]. This MHC restriction introduces an extra layer of com-
plexity to TCR specificity to particular combinations of peptides and MHC molecules [5, 6],
with strong heterogeneity across individuals. Despite its importance for antigen specificity,
most efforts focus on disentangling peptide specificity [7-10], while the interaction between
HLA type and the TCR repertoire remains poorly understood, especially for less common
HLA alleles.

Advances in high-throughput repertoire sequencing [11] have allowed for unprecedented
insights into the composition of immune repertoires, which constitutes a dynamic register of
the immune challenges encountered by the organism [12]. Public TCR clones, which are
found in several individuals, have raised great interest as possibly playing functional roles in
antigen recognition [13, 14]. Many factors affect TCR sharing, including biases in the VD]
recombination process and convergent recombination [15-19], thymic and peripheral selec-
tion [20], as well as shared diseases and HLA background [12, 21-23].

Here we analyze the TCR repertoire of 1039 HLA-typed human donors from three different
cohorts. We follow and expand on prevoius approaches [12, 21, 24] to identify public TCR
sequences that are enriched in individuals with a given HLA allele. We use those sequences to
build a reliable predictor of HLA type from repertoire data. Our analysis combines alpha and
beta chain information, and makes predictions for both class-I and IT HLA alleles, leading to
more accurate and comprehensive predictions than previous approaches, by leveraging larger
datasets and accounting for 4-digit resolution of HLA alleles. Our HLA type predictor is
encoded in new software package, HLAGuessr, available at https://github.com/statbiophys/
HLAGuessr. Finally, we demonstrate that our method can be used to discover new HLA-TCR
associations from the repertoires of untyped individuals based on our predictor, opening up
the possibility to aggregate data from a large body of datasets for which the conventional HLA
typing is unavailable.

Results
Disovery of HLA-associated TCRs

We first sought to identify lists of TCRs associated with each HLA allele, using an aggregate
dataset of TCR repertoires of 1039 HLA-typed donors from three different sources compris-
ing: the Russell et al. dataset with 718, 000 unique TCRe and 1, 016, 000 unique TCRJ3
sequences from 237 donors [25], the Emerson et al. dataset with more than 7 x 10" TCR S8
unique sequences from 610 donors [21] and the Rosati et al. dataset with 7 x 10° TCRa and

1 x 10" TCRp sequences from 192 healthy and Crohn’s disease patients [26]. We only consid-
ered TCR sequences that were seen in at least 3 people across the cohorts, leaving us with
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654,535 alpha chains, and 4,927,204 beta chains to analyse. For each individual, the HLA type
was encoded in a list of up to 6 HLA type [ alleles (2 of each of A, B, C) and at least 10 for HLA
type II (4 possible isoforms of DP, 4 of DQ and 2 of DR1, while DR3-5 have variable presence
in humans). There were 316 HLA alleles in total.

For each TCR sequence (alpha or beta), and each HLA allele, we performed Fisher’s two-
tailed exact test to ask whether the presence of that TCR in individuals was associated with the
presence of that allele (see Methods for details) in each cohort. To control for multiple testing,
we set the p-value threshold for a significant association using the Benjamini-Hochberg proce-
dure, so that the false positive rate is 1%. This procedure yields a list of TCRa and TCRf
sequences that are associated with a particular HLA allele, with a level of significance indicated
by the p-value (see S1 Fig and S1 Table). The results for each of the three cohorts analysed sep-
arately are summarized in the Venn diagrams of Fig 1A, where the overlap refers to TCR clo-
notypes that were associated with the same HLA in different cohorts. We found associations in
the Russell et al. cohort between 894 TCRa with 51 HLA alleles, and between 863 TCRS and 58
HLA alleles. In the Emerson et al. cohort, we report 17889 TCRp associated to 116 HLA alleles;
this number broadly agree with the previous analysis of [12] with minor discrepancies due to a
different definition of alleles: we restrict our analysis to single HLA alleles, while [12] also con-
sidered haplotypes or co-occurence of several alleles. In the Rosati et al. cohort, we find 384
TCRa associated with 48 HLA alleles, and 1147 TCRS associated to 58 HLA alleles. The num-
ber of significant associations is largely determined by the number of sequences in each data-
set, which explains large differences between the cohorts.

As a first check of the consistency of the discovered associations, we verified that the CD4/
CD8 phenotype of each TCR reported in the Russell et al. dataset (as determined by flow
cytometry) matched their associated HLA class 1T and class I alleles. CD4™ cells recognize anti-
gens presented on class II MHC molecules (encoded by the DP, DQ, and DR HLA genes),
while CD8" respond to antigens presented on class | MHC molecules (encoded in the A, B,
and C HLA genes) [27]. Fig 1B shows the number of CD4 and CD8 TCR ¢ and 3 sequences
that were associated to any HLA of class I or I As expected, the majority of CD8" TCRs are
associated to HLA alleles of class I, and the majority of CD4" TCRs to HLA alleles of class II.
Exceptions to this rule are not necessarily all due to noise, since some sequences are simulta-
neously marked as CD4 and CDS8 cells, probably because the same alpha or beta chain may be
used in two distinct T cell clones with different HLA specificities. We find more HLA-II asso-
ciated clones, in agreement with previous studies [12]. A likely explanation for this is the over-
all higher abundance of CD4+ T cells in peripheral blood, which biases the results towards a
higher number of HLA-II-associated clones.

HLA-associated TCR predict the HLA type

To maximize statistical power, we repeated the association discovery procedure on a random
70% training portion of the merged dataset combining all three cohorts, resulting in a list of
2570 TCRa and 63060 TCRJ sequences significantly associated to at least one HLA allele. This
number is much larger than the sum of the numbers of associations from each cohort taken
separately. For each HLA allele, we fit a logistic regression model on the training set predicting
whether a given donor has this allele or not, depending on whether it has or not each TCR
sequence (both alpha and beta) found to be associated to that allele. We excluded from this fit
sequences from the Emerson et al. dataset whenever the alpha chains were used. Regression
was done with an L1 regularization, which strength was tuned to optimize the accuracy of the
prediction on the testing set made of the remaining 30% portion of the data (see details in
Methods).
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Fig 1. Summary of HLA predictor performance. (A) Venn diagram of the alpha and beta chains significantly associated with an HLA allele after
performing the Fisher’s exact test in our three different cohorts of data. Overlap corresponds to sequences associated to the same HLA in the different
datasets. (B) The number of HLA-associated TCRs show concordance between their CD4+ and CD8+ phenotype and the MHC class of the HLA allele.
(C-D) Correlation between the precision of the classifier with (C) the number of found associations and (D) the frequency of the HLA allele in the cohort.
Dots are color-coded to identify the corresponding HLA locus. (E) Receiving Operator Characteristic (ROC) of the classifier for the A*02:01 allele in the
validation data set, using either each chain separately or together. (F) Comparison of the area under the curve (AUC) of the ROC for each of the tested
alleles when training the model only with beta chain (x axis) vs. with beta + alpha chain (y axis). The performance reaches its best when using both chains in
26 out of 47 alleles. (G) Performance metrics of the HLA classifier on the validation dataset. Specificity = TN/(TN+FP), Sensitivity = TP/(TP+FN),
Accuracy = TP+TN/(TP+TN+FP+FN), Precision = TP/(TP+FP), where T/F stand for true/false, and P/N for positives/negatives.

https://doi.org/10.1371/journal.pcbi.1012724.001

Model predictions were then evaluated on an independent dataset of 46 HLA-typed indi-
viduals from Milighetti et al [28]. Four measures of performance for each analysed HLA allele
are reported in Fig 1G: accuracy (proportion of individuals for which the prediction is correct),
precision (proportion of true positives among positive predictions), specificity (propotion of
people without the HLA allele who are correctly predicted), and sensitivity (proportion of peo-
ple with the HLA allele who are correctly predicted). The accuracy and specificity are good for
almost all alleles, due to the fact that the prevalance of each HLA allele is relatively low in the
population, meaning that there many more negative than positive examples. We expect that
HLA alleles with lower prevalence are harder to predict [29-31]. Indeed, precision is correlated
with both the total number of TCR associated to the HLA allele (Pearson p = 0.63,
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p=6x 10" Fig 1C), and the prevalence of that HLA allele in the cohort (Pearson p = 0.66,
p=1.2x10""% Fig 1D). A more complete way to report the performance of the classifier is to
plot the Receiver Operating Characteristic (ROC) curve, which shows sensitivity as a function
of specificity as one varies the threshold on the logistic regression score (this threshold was set
earlier by the logistic regression to maximize cross-entropy, see Methods). Example ROC
curves are shown in Fig 1E for HLA A*02:01, using either both alpha and beta chains, or each
separately. The intrinsic imbalance of the classification problem, where most individuals are
negative for any given HLA allele, suggests that other metrics than the ROC may be more
appropriate to quantify the accuracy of the prediction, such as the precision-recall curve,
which is often used for such imbalanced tasks. Using that metric instead of the ROC gives sim-
ilar results (S2A Fig).

The ROC curve may be conveniently summarized in a threshold-independent manner by the
area under the curve (AUC), which is 1 if the predictor is perfect, and 0.5 if it is random. Fig 1F
shows the AUC of all HLA alleles, comparing predictors using only beta chain or both of them
together. Although TCRa and TCRp could be used for HLA typing independently, the alpha
chain predictive power is overall lower (AUC = 0.84 + 0.13, p = 8 x 10~°, Wilcoxon test) than
beta chain (AUC = 0.95 + 0.07). Using both chains together confer a slight advantage compared
to the beta chain alone (AUC = 0.97 + 0.05, p = 0.02), confirming that both chains have informa-
tion about the HLA restriction (S2B Fig and S2 Table). This is further confirmed with the outlier
shown in Fig 1F, corresponding to the allele B*32:01, which is detected using only alpha chains.

Fuzzy TCR sequence matching improves HLA-typing

We also tested two variants of the algorithm. Since TCR specific to the same target often have
similar sequences [21, 32-35], one could extend the search for the presence of HLA-associated
TCRs to their neighbors in sequence space. We re-trained the logistic regressor by counting
each HLA-associated sequence as present if either that exact sequence or a variant with one
amino acid mismatch in CDR3 was found in the repertoire. Fig 2A shows that this more liberal
way to include HLA-associated sequences leads to increased performance on average, as mea-
sured by the AUC (0.95 + 0.05, p = 5 x 10~® Wilcoxon test). While this inexact matching
improves HLA prediction quality, it is more computationally expensive. For this reason, we
used the basic classification algorithm in further analysis.

In the second variant, which is equivalent to the original method of Ref. [21] and requires
no logistic regression, the prediction of whether the individual is positive or negative for an
HLA is just determined by the total number of HLA-associated sequences found in their reper-
toire. Fig 2B shows this simpler strategy offers a similar quality of prediction
(AUC =0.91 £0.10, p = 0.96 Wilcoxon test) to logistic regression. This is probably due to the
type of penalty used for the inference of our model (L1), which encourages sparse solutions as
the penalty becomes more stringent. S3 Table contains a more direct comparison to the results
of Ref. [21], as well as Ref. [24], which uses the same idea but using TCR associated to HLA by
an approximate y test instead of Fisher’s exact test. In those original work prediction was
made on 2-digit HLA instead of 4 digits as we do in this work, which yields higher perfor-
mances at the expense of HLA typing resolution. We also trained a classifier using an L2 pen-
alty to quantify the different contributions from distinct TCRs to the prediction score (S3 Fig).
However, the L1 penalty resulted in a better sensitivity, and so we used L1 for further analysis.

Features of HLA-associated TCRs

We then asked whether HLA-associated TCRs share some common features, focusing on
HLA A*02:01, the most abundant HLA allele in our dataset. Fig 3A shows the CDR3 amino

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012724  January 6, 2025 5/15


https://doi.org/10.1371/journal.pcbi.1012724

PLOS COMPUTATIONAL BIOLOGY

Learning predictive signatures of HLA type from T-cell repertoires

=

1 mismatch
w/ weights

S =
S o
S o S
I I I

B

100 = MHC 11
,‘/’( < 3 ;,’,"
% fo MHC I
g gz 0.75 - .
2 =
22
) ¢ & 0.50 .

1.0 0.5

exact match
w/ weights

|
0.5
exact match
w/ weights

Fig 2. Algorithm variants. (A) Comparison of AUCs between the basic classifier (based on exact matches with HLA-associated TCR),
and a classifier where single amino acid variants are counted as a match. (B) Comparison of AUCs between the basic classifier, where
the weights associated to each HLA-associated TCR are learned using logistic regression, and a simpler classifier that simply counts the
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https://doi.org/10.1371/journal.pchi.1012724.9002

acid length distribution for both alpha and beta chain (28 and 221 sequences, respectively).
The CDR3-length distribution of the beta chain of HLA A*02:01-associated sequences seems
to be heavily skewed towards shorter sequences. a chains strongly deviates as well when com-
pared with random TCRs (Fig 3A). Since TCR:pMHC binding takes place through the V gene-
encoded CDRI1 and CDR2 contacting the conserved helical residues of the MHC [36], we
expect that some conserved structural footprint might be observed in V gene usage.
A*02:01-associated TCRs showed a biased usage of V genes relative to generic TCRs, with fre-
quency enrichment in TRBV10 (0.03 vs 0.006), TRBV19 (0.2 vs 0.1), TRBV29 (0.06 vs 0.01),
TRBVS5 (0.03 vs 0.008), and under-representation of TRBV15, TRAV24, TRAVS5 V gene fami-
lies (see Fig 3B). We reasoned that the usage of those genes may be biased in the whole reper-
toire (not restricted to the HLA-associated TCR) of A*02:01 positive individuals as well. We
found significant differences between the usage of TRBV19 and TRBV 15 (the two genes with
the largest deviation) of A*02:01 positive versus negative individuals (p = 1 x 10™* and

p =6x10""7, Mann-Whitney U test, see Fig 3C). This suggests that A*02:01-associated TCRs
biases towards certain V genes could affect the repertoire of A*02:01 positive people as a
whole. However, while V gene usage biases might be influenced by the MHC molecule, it is
more likely that they arise from selection by specific epitopes within the context of an immune
response. Certain epitopes might preferentially engage TCRs with particular V genes, leading
to an enrichment of these TCRs in the repertoire. Ref. [12] reported that some of the most
strongly A*02:01-correlated TCRs using TRBV19 and TRBV5 were found to be positive for
two viral epitopes, specifically influenza M1sg and Epstein-Barr virus BMLF1 g4 [33]. This sug-
gests that the V gene bias may be partly driven by particular epitopes rather by direct binding
to MHC.

Next, we investigated if similar TCRs are associated with the same HLA alleles, as already
suggested by the improved performance of the mismatch-tolerant version of the HLA-type
predictor (Fig 2A), where similar TCR to the ones actually associated to the HLA also help
determine if an individual is positive for that HLA.
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A11-AVFDRKSDAK

HLA A

A02-GLCTLVAML
AO2-FLYALALLL

HLA B

B07-TPRVTGGGAM
B08-FLRGRAYGL

B35-EPLPQGQLTAY
B44-NEGVKAAW

C07-CRVLCCYVL

Fig 3. Features of the HLA-related sequences. (A) CDR3 length distribution of A*02:01-associated TCRs, compared to all TCRs. (B) V gene frequency
usage comparison between the same two subsets. Some V gene families are preferentially used in A*02:01-related TCRs (TRBV10, TRBV19, TRBV29) while
other genes are underrepresented (TRBV15,TRAV24,TRAV21). (C) Whole-repertoire frequencies of two representative differentially used genes, TRBV19
and TRBV15, in A*02:01 positive vs negative individuals show small but statistcally significant difference in those genes. (D) Network analysis of TCRS
chains associated with different A, B and C HLA-alleles (TCRa were excluded since they formed negligible networks). Each node represent an amino acid
CDR3 + V gene clonotype. Edges connect clonotypes that have at most on amino acid mismatch but the same length and V gene. Each color represent the
specific HLA to which the TCR is responsive. Shadow color correspond to epitopes for which those TCRs are found to be responsive from the VD]db

database [37].

https://doi.org/10.1371/journal.pcbi.1012724.9003
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In Fig 3D, we represent HLA class I-associated TCRs as similarity networks, where nodes
represent TCR clonotypes, defined by the CDR3 sequence and the V gene family, and edges
are drawn between two sequences of the same length that differ by at most one amino acid.
Each HLA allele may be represented by several clusters, corresponding to distinct specificity
classes within the same HLA, and some of these specificity classes can be mapped out onto spe-
cific antigens by matching clonotypes from the VD]db database [37]. We downladed human
TCRs from VD]Jdb (accessed on 22 September 2023), and excluded sequences from the 10x
Genomics highly multiplexed dextramer dataset [38]. We then searched for exact matches of
both CDR3 amino acid sequence and V gene family. Almost all clusters associate with a single
HLA allele, with no mixing (Fig 3D). This suggests that during thymic selection and further
clonal expansion driven by antigen recognition each HLA selects exclusive clusters of closely
related TCR sequences.

The number of memory T cells progressively increases with age due to antigen exposure
[39, 40], and we expect the repertoire to focus on specific HLA types during that process. We
asked how the number of HLA-related TCRs in each individual from Britanova et al. changes
with age. We found that the relative number of HLA-related TCRs found in repertoires from
individuals from 0 to more than 100 years old shows a weak yet significant correlation with
age (r=10.29, p = 0.01, $4 Fig).

Predicting HLA alleles in untyped repertoires

Our HLA predictor was trained on the repertoires of individuals whose HLA type was known.
However, there exist many more datasets for which this information is absent. We asked if we
could leverage this large amount of untyped repertoire data to improve the performance of the
classifier in an iterative way, by first typing untyped repertoires computationally using our
logistic predictor, and then use these repertoires to discover new TCR-HLA associations. To
demonstrate the feasibility of this approach, we used two additional TCRp repertoire datasets:
one comprising 108 healthy individuals from Ref. [41], and the second including 1414 donors
with a confirmed SARS-CoV-2 infection at various timepoints following the peak of the dis-
ease, totaling 1.6 x 10® reads [42], and focused on 4 carefully selected HLA alleles. We picked
A*02:01, DPB1%04:01 and DQB1%01:02 because of their high prevalence (around 50%) in the
population, which allows for more robust statistics. The initial classifier showed only moderate
accuracy for DPB1¥04:01 and DQB1%01:02 despite their abundance, suggesting room for
improvement. We chose the 4th allele DPB1¥02:01 because of its mediocre performance in the
initial classifier (AUC of 0.77), again to test the potential for improvement of an iterative
approach.

We divided the cohort of untyped individuals into random subgroups of 100. We then
applied the following recursion to each of the 4 HLA alleles. We first used the classifier previ-
ously trained on the typed cohort to predict the HLA positive or negative status of the first sub-
group of 100. We then added this newly typed subgroup to the initial cohort, and re-ran the
Fisher’s exact test to obtain a new list of HLA-associated TCR sequences. This updated list of
HLA-associated sequences is expected to be longer than the previous one, as it is based on a
larger cohort. We use this list to re-train a logistic regression classifier on the augmented
cohort (initial cohort plus the 100 subgroup), using again a 70%/30% split between training
and testing to optimize the regularization parameter. The new classifier is used to type the next
subgroup of 100 individuals. The procedure is repeated until all subgroups have been typed.

With each iteration and the inclusion of more individuals, the statistical power is increased,
leading to an exploding number of HLA-associated TCR, notably after the 10th iteration (see
Fig 4A). However, since there are errors in the computational typing, one might worry that
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Fig 4. Iterative HLA-typing process. (a) Number TCRs found to be significantly related to the HLA alleles A*02:01, DQA1*01:02, DPB1*04:01,
DPB1%02:01 after recursively applying our HLA predictor in two untyped datasets [41, 42]. In this procedure, donors are iteratively typed by groups
of 100 patients. The HLA related sequences found in our newly typed subcohort are used to infer the HLA type of the next 100 patients. (b)
Comparison of the AUC when predicting in the validation dataset using the sequences inferred in the first round from our initial typed cohort (blue
bar) the ones learned exclusively from the untyped cohorts after 14 iterations (green bar) or the combination of both subcohorts (orange bar). The
performance is shown to be maximized when using all the available HLA-related TCRs, supporting the quality of the information acquired through
this iterative process.

https://doi.org/10.1371/journal.pcbi.1012724.9004

these errors get amplified and propagated through the iterations. In order to mitigate this
effect and also to avoid overfitting due to a very large number of associated sequences, we tune
the threshold on the p-value of the Fisher’s exact test so that the number of HLA-associated
sequences is proportional to the number of included donors, with a ratio fixed to its value
found in the initial cohort.

Fig 4B shows that the performance (AUC) of the classifier on the validation cohort is
improved in the iterative procedure (orange) compared to the original classifier (blue), sug-
gesting that the new associations provide additional information. To further validate the new
associations, we trained a third logistic classifier using the presence or absence of the novel
HLA-associated TCR only, i.e. sequences that were not present in the original list. This classi-
fier yielded comparable and sometimes even better performance (in green) than the original
classifier, despite being based on sequences that were identified using untyped cohorts. This
demonstrates the potential of the iterative method to uncover novel associations with strong
predictive power.

Discussion

Despite the advances in the high-throughput sequencing technology of immune repertoire
made over the last decade, decoding the individual’s past and present immunological status
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from TCR repertoire remains a formidable challenge. This is mainly due to the lack of tools to
decipher T cell specificity just from the T cell receptor amino acid sequence. This problem
involves three components—TCR, peptide, MHC. While the peptide-MHC binding can now
be well predicted [43], progress on TCR-antigen binding prediction has been hindered by lack
of data, despite some recent progress on the computational side [44-46]. However, direct asso-
ciation between the MHC and the TCR has not been much studied, although recent work has
shown that HLA association could be predicted from the sequence features of the TCR using
machine learning methods [47, 48]. Our results shed light on this problem by deciphering the
HLA restriction of public TCRs found in the repertoires of large cohorts of donors.

Our method is based on a combination of a statistical test for HLA-TCR association, and a
classifier for predicting the presence of absence of HLA, originally introduced in Ref. [21] for
beta chains. The main reason for our improved preformance is the incorporation of a larger
dataset, including alpha as well as beta chains. In addition, we provide predictions with up to
4-digit resolution. Another key contribution of this paper is the iterative “bootstrapping”
approach, which allowed us to extract HLA association information from repertoires that were
untyped, by leveraging our computational typing predictions.

An interesting question is whether TCRs with the same HLA restriction share sequence fea-
tures that would be predictive of MHC binding. Our network analysis carried out through
similarity clusters confirms previous intuition [49, 50] that TCRs having similar protein
sequences are likely to be specific to the same HLA allele, and we could match some of those
clusters to particular viral epitopes. These observations are consistent with reports that HLA
restriction is predictable from the TCR sequence alone [47, 48], which could in turn help refine
models of TCR specificity, by accounting for HLA restriction.

Our analysis combines deep bulk @ and ff repertoires, allowing us to explore how the alpha
chain influences the HLA preference of the TCRs. For some HLA alleles (e.g. B*15:18,
DRB3*01:01, DRB4*01:03 or DRB5*01:01), most of the associations we found correspond to
alpha clonotypes. However, the 3 chain alone was sufficient to type donors computationally,
with little or no improvement upon adding o chain information. We expect HLA restriction
to be determined by the combination of both chains. Since the repertoire data we used was
unpaired, we cannot exclude the possibility that HLA associations learned from paired data
could have more predictive power. However, such datasets (deep, chain-paired repertoires of
large cohorts of typed individuals) do not exist to the best of our knowledge.

Because the predictive power of our method depends crucially on the number of donors,
especially in the HLA-TCR association discovery step, it is limited to common HLA types.
Some HLA types are genetically linked, meaning that they tend to occur together. A more gen-
eral statistical framework could leverage these correlations to improve prediction. Another
way to improve statistical power could be to relax the notion of publicness used to allow for
imperfect matches (e.g. 1 amino acid different). We showed that this helped the logistic classi-
fier step. Applying this idea to the association discovery step is less straightforward as it would
require generalizing the Fisher’s exact test, but it could help increase number of found associa-
tions, potentially boosting the predictive power of the classifier.

Our algorithm ignores constraints and biases imposed by the genome. For instance, indi-
viduals can only harbor 2 distinct alleles for each locus. This could be imposed a posteriori in
our method by selecting the best 2 predicted ones. In addition, some loci are genetically linked
(e.g. Band C), implying priors about what combination of HLA alleles is expected to be found
in a given haplotype. Integrating these effects with appropriate controls for unintended biases
could help further improve HLA prediction.

In addition to our core method, we presented an iterative way to exploit information from
untyped repertoires to find new HLA-TCR associations. As the number of publicly available
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repertoires increases, often from donors for which the HLA type is unreported, this method
could prove useful to leverage future datasets to populate expanded lists of HLA-associated
TCRs, and to improve the predictions of computational HLA-typing.

Methods
Datasets

The repertoires initially used for the training of the HLA classifier were extracted from three
different datasets described in the main text. The Russell et al. dataset [25] is available in The
BioProject database under accession code PRINA762269. The Emerson et al. dataset [21] is
available at https://clients.adaptivebiotech.com/pub/Emerson-2017-NatGen. The Rosati et al.
TCR dataset [26] is available on the ENA database with study accession number PRJEB50045,
while HLA genetic data was obtained from the authors upon request. The Milighetti et al. vali-
dation dataset [28] is available at https://github.com/innate2adaptive/
CovidsortiumTCRExpanded. All subjects included for the learning phase were typed at 4 digits
resolution. For the iterative procedure, the first dataset [41] was downloaded from the NCBI
SRA archive using the Bioproject accession PRJNA316572 [41] and the second [42] with
donors following a confirmed SARS-CoV-2 infection [42]. From every dataset we excluded
donors with incomplete HLA-typing results (i.e. not all loci were known) and duplicated rep-
ertoire samples (i.e. coming from different time points) from the same donor Raw sequencing
reads were then aligned against a reference database of human V-, D- and J- segments using
the MiXCR pipeline [51]. The resulting T cell receptor CDR3 repertoires were further filtered
to remove out-of-frame and stop codon-containing CDR3 variants.

HLA prediction

From the list of HLA-related TCRs, we trained a logistic regressor to predict a given HLA phe-
notype of an individual from TCR sequencing data.

This input format allows the model to learn and assign different weights to each sequence,
maximizing those that are crucial for identifying an allele while minimizing the possible noise
introduced by incorrectly identified alleles.

In the logistic model, the probability for a donor to be positive for a particular HLA allele a
reads:

P = ! (1)

o 1 + e War*¥1——WanXn—Vay ’

where xy, . . ., x,, denote the absence (x; = 0) or presence (x; = 1) of each HLA-associated TCR
indexed by i in the individual. w,; are TCR- and HLA-specific weights learned during training.
v, is an extra learnable parameter to encode the information that the alpha chain was
sequenced (y = 1) or not (y = 0) in that individual.

A model was separately trained for each allele a on 70% of the typed individuals from the
merged cohort (training set) by maximizing the log-likelihood, or equivalently by minimizing
the logistic cross-entropy loss, with an L1 penalty which weight was optimized to minimize the
loss function on the remaining 30% of individuals (testing set).

Supporting information

S1 Fig. Number of TCRs contributing to the determination of each loci. Number of specific
CD4+ / CD8+ TCRs found to be specific to each loci. For both chains, the main CD4 and CD8
contributions are to the DQ and B loci determination, respectively. A residual (and likely false
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positive) association is found between CD4 TCRs and B loci.
(TIFF)

S2 Fig. Additional parameters to describe HLA predictor performance. (A) Precision-recall
curve of the classifier for the A*02:01 allele in the validation data set. (B) Area under the curve
(AUC) of the ROC for each of the tested alleles. The average value of each group is indicated
with the horizontal black line.

(TIFF)

S3 Fig. Weights vs. significance comparison. (A) For each of the associations found for HLA
A*02:01, the weight assigned by the logistic regression algorithm with L2 penalty (y-axis) is
plotted against the significance of the TCR-HLA correlation, i.e. the p-value after Benjamini-
Hochberg correction (x-axis). These p-values and weights exhibits a remarkable inverse corre-
lation (Pearson —0.62, p-value: 3 x 10~*%), confirming the idea that significantly HLA-associ-
ated TCRs are more helpful to determine the MHC type of the individual. (B) The use of L1
penalty promotes sparsity in the dataset, with most weights having zero value. The correlation
between weight and significance is weaker in this case (Pearson coefficient: —0.30, p-

value:3 x 107°).

(TIFF)

S4 Fig. HLA-related TCRs per age range. From Britanova et al. [41] the relative number of
HLA-associated TCRs found in every individual is plotted against its age. Despite the suspicion
that repertoires from older people may contribute with a higher number of associations due to
successive antigen exposure and HLA-epitope restricton driven selection across lifetime, not a
clear correlation is found (Pearson correlation coefficient: 0.29, p-value: 0.01).

(TIFF)

S1 Table. Table of HLA-associated TCRs for both alpha and beta chain, containing their
CDR3 amino acid sequence, V gene family, the number of individuals containing the given
TCR and the subset of them that also are positive for the corresponding HLA allele, the cor-
rected p-value (ppy) that characterizes their association as well as the kind of this last one (if
there is a significant overexpression or underexpression of a TCR for the given HLA).
(XLSX)

$2 Table. Summary of classifier parameters. Comparison of all classification metrics depend-
ing on the use of TCRf chain alone or together with TCRa chain.
(XLSX)

$3 Table. Prediction comparison. Summary of the results (F1 score (A) and AUC (B))
reported in Akerman et al. 2023 [24] and DeWitt et al. 2018 [12] for the prediction of HLA-A
and HLA-B alleles using only TCR chain. Instead of the 4 digit resolution for the allele repre-
sentation used in this work (e.g. A*02:01), these works made use of only two digits (e.g. A*02)
leading to a better precision in prior works. HLAGuessr provides an overall improved perfor-
mance by AUC of the ROC curve.

(XLSX)
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