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ABSTRACT

Somatic hypermutations of immunoglobulin (Ig)
genes occurring during affinity maturation drive B-
cell receptors’ ability to evolve strong binding to
their antigenic targets. The landscape of these mu-
tations is highly heterogeneous, with certain regions
of the Ig gene being preferentially targeted. However,
a rigorous quantification of this bias has been dif-
ficult because of phylogenetic correlations between
sequences and the interference of selective forces.
Here, we present an approach that corrects for these
issues, and use it to learn a model of hypermuta-
tion preferences from a recently published large IgH
repertoire dataset. The obtained model predicts mu-
tation profiles accurately and in a reproducible way,
including in the previously uncharacterized Comple-
mentarity Determining Region 3, revealing that both
the sequence context of the mutation and its absolute
position along the gene are important. In addition, we
show that hypermutations occurring concomittantly
along B-cell lineages tend to co-localize, suggesting
a possible mechanism for accelerating affinity matu-
ration.

INTRODUCTION

B cells are a crucial player in the adaptive immune system.
Swift eradication of pathogens is enabled by the production
of immunoglobulins (Ig) that bind tightly to antigens, help-
ing in their detection, neutralization, and removal. Achiev-
ing high accuracy and breadth relies on the extraordinary
diversity of the B cells repertoire. The process of V(D)J re-
combination results in a highly diverse population of naive
cells (1–7). In addition, B cells undergo affinity maturation,
a Darwinian process (8) in which mutations are introduced
to the immunoglobulin-coding gene and highest affinity

mutants are selected (9). This process is driven by a very
high rate of somatic hypermutations (SHM), ∼10−3 per
basepair per cell division (10), targeting the Ig genes. Some
receptor genes can ultimately accumulate up to 30% amino
acid substitutions, considerably altering the initial geno-
type. The broad diversity created by SHM ultimately en-
sures the emergence and selection of strong antigen binders.
Understanding SHM and their statistics is key to designing
better vaccination strategies (11,12).

Like the VDJ recombination process, SHM are charac-
terized by heterogeneous preferences. Mutational pathways
affect the Ig genes unevenly, with ‘cold’ and ‘hot’ spots
along the receptor gene, even before somatic selection in-
troduces further biases (12). SHM is initiated by activation-
induced cytidine deaminase (AID) through the deamina-
tion of deoxycytidines triggering an array of error-prone re-
pair pathways (13). AID and repair enzymes preferentially
target certain regions of the gene. However, a quantitative
picture of how these processes and their context dependen-
cies result in the observed heterogeneous mutational land-
scape is lacking. High-throughput repertoire sequencing of
the Ig gene (2,3,14,15) has facilitated the development of
effective models from a detailed analysis of mutational pro-
files of Ig sequences before (5,16,17) or after selection (18–
22). However, the spatial organization of mutations, their
context preferences, and their interplay with selection dur-
ing affinity maturation are still poorly understood, in part
due to a number of confounding factors.

A fundamental issue is the bias of selection, which fa-
vors beneficial mutations over deleterious ones in the ob-
served repertoire. This bias can be partially circumvented
by analyzing synonymous substitutions (16), with the lim-
itation that extrapolation is required to generalize to non-
synonymous ones. Another way around selection is to study
passenger nonproductive sequences, which are unsuccessful
products of VDJ recombination and thus unaffected by se-
lection (5,17,22). These sequences make up a minority of
DNA sequences, and are rarely found in mRNA sequences
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because of allelic exclusion, which limits their use to very
large datasets.

Another confounding factor arises from phylogenetic bi-
ases due to the complex multi-lineage structure of the reper-
toire. While methods have been developed to infer sub-
stitution rates from lineages in a lineage-specific (21) or
repertoire-wide way (23), they do not aim to correct for se-
lection and do not address the question of hypermutation
targeting.

Here, we propose a new framework for quantifying and
predicting immunoglobulin mutability. The model is trained
on the reconstructed phylogenies of nonproductive lineages
from very large published B cell repertoires totalling around
half a million nonproductive sequences (7), allowing us
to overcome previous limitations of dataset sizes. The ap-
proach accounts for both phylogenetic and selection biases,
and allows us to study in detail the spatial and context pref-
erences of hypermutation targeting, and to reveal the co-
localization of contemporary mutations.

MATERIALS AND METHODS

Repertoire-wide framework to model intrinsic mutabilities
from out-of-frame lineages

Out-of-frame Ig sequences are byproducts of the VDJ re-
combination process that are made non functional by a
frameshift in the CDR3 region. Since each cell has two
copies of the Ig genes, out-of-frame rearrangements may
survive in the cell if recombination on the second chromo-
some is successful. The mechanism of allelic exclusion en-
sures that only the functional variant is expressed. Yet, out-
of-frame IgH sequences comprise ∼ 2% of rearrangements
in Ig mRNA sequencing experiments, and ∼ 9% in genomic
DNA (6). When a B-cell clone harboring both an out-of-
frame and a functional rearrangement undergoes affinity
maturation, the out-of-frame sequence acts as a passenger
and mutates alongside the functional sequence, with the se-
lection pressure acting only on the latter. While the two se-
quences share the same phylogeny, mutations found in out-
of-frame lineages are not expected to be subject to selection.

To model the process of SHM, we reconstruct the evo-
lutionary history giving rise to the observed mutation pat-
terns in nonproductive rearrangements. We analysed data
consisting of the IgG repertoires of nine individuals from
(7), obtained by the targeted mRNA sequencing of the
Ig heavy (IgH) chain locus. We pre-processed and aligned
raw IgH sequences to keep only out-of-frame sequences.
We then grouped sequences into clonal families that orig-
inate from the same ancestor using single linkage clustering
(Figure 1A). The size of clonal families typically follows a
power-law distribution (Figure 1C). As a result, many lin-
eages are represented by one or a few sequences. We fo-
cused on sufficiently large lineages (comprised of at least
six distinct sequences) and reconstructed their lineage struc-
ture, using maximum likelihood (24,25) to infer the topol-
ogy of the underlying tree, and marginal reconstruction for
the identity of ancestral states. This provides us with a list
>200 000 mutation events occurring between the most re-
cent common ancestor of lineages and their leaves.

Using lineage information is essential for multiple rea-
sons. First, it allows for a better estimate of the sequence

context in which a mutation appears. In this paper we define
the context as the 5-mer sequence comprising the mutated
basepair flanked by 2 bp on each side. In the absence of lin-
eage information, the best guess for the 5-mer context would
be given by the genomic sequence of the V, D or J segment
where the mutation arose. But that context may itself be af-
fected by other prior mutations. The tree structure allows
us to identify the order of mutations and reconstruct the
probable 5-mer context in which each mutation occurred.
Second, for the same reason, the tree structure can help
identify mutations in the hyper-variable CDR3 region, in-
cluding in the junctions made of nontemplated insertions.
This makes it possible to estimate the hypermutation rate
in these regions. Together, these improvements mean that
mutations can be identified within a broader range of 5-
mer contexts, and their corresponding mutabilities better
estimated. Third, lineage structure helps reduce contamina-
tion from sequences that have been under some selection.
In some rare events, during affinity maturation a somatic
insertion or deletion may be introduced in the CDR3 of a
productive sequence, which would lead us to classify it as
out-of-frame, even though it has been subject to selection
prior to the frame-shift event. Focusing on mutations hap-
pening downstream of the most recent common ancestor,
which is already out of frame, help us discards those con-
taminating events.

Given a model P(s → s′|t, �) of sequence evolution from s
to s′, where t is fraction of mutated positions between s and
s′, (called branch length, equal to the number of mutations
divided by alignment length), and � denotes model param-
eters, we can write the joint likelihood of mutation events in
each lineage as

P(S|T, θ ) =
∏

(i, j )∈T

P(si → s j |tj , θ ), (1)

where S is the set of sequences (observed and reconstructed)
at each node of the tree, and T encodes the reconstructed
phylogenetic tree through its branches (i, j).

We assume every position x of the sequence s evolves in-
dependently inside each branch. Mutations occur accord-
ing to a set of Poisson clocks with sequence- and position-
dependent rates, �s, x, expressed per unit time of branch
length. During t some positions will mutate and others will
remain unchanged, so that

P(s → s ′|t) =
∏

x | s(x)�=s ′(x)

(1 − e−μs,xt)
∏

x | s(x)=s ′(x)

e−μs,xt. (2)

We assume that mutability depends independently on the
local 5-mer sequence context centered around the mutation,
w(s, x) = (s(x − 2), . . . , s(x + 2)), and on the absolute po-
sition x along the gene (measured as the distance from the
5′ end of the gene), so that �s, x = �w(s, x)�x. In absence of
context and position dependence, we would have � = 1 by
construction. Thus values of �w or �x above 1 imply higher
mutabilities than average, and vice versa for values below 1.
To lift the degeneracy in overall scale between �x and �w,
we impose 〈�x〉 = 1.

Overall, the model has 45 = 1024 parameters for �w cor-
responding to each 5-mer, and L = 400 parameters for �x
corresponding to each possible position. We infer these pa-
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Figure 1. Repertoire-wide framework to model somatic hypermutations (SHM) in out-of-frame lineages. (A) Examples of out-of-frame clonal families.
(B) An example of a phylogeny with marked pre- and post-Most Recent Common Ancestor (MRCA) mutations. Only post-MRCA mutations are used for
learning the somatic hypermutation model. (C). Clonal family size distribution. Phylogenies were inferred for families with more than 5 unique sequences.
(D) Branch length distribution. Mutations encoded in branches shorter than 10 mutations were used for model inference. (E) Context and position depen-
dence of the mutation rate across a sequence. In this example, the underlined C mutates to A, in the GACCG context denoted as w(s, x). The mutation
rate �s, x depends both on the sequence s and the position x, through the context dependent rate �w(s, x) and the position dependent rate �x.

rameters from repertoire-wide sequencing data by maximiz-
ing the total log-likelihood of mutations in all branches in
all lineages, L(β, γ ) = ∑

(S,T) ln P(S|T, β, γ ), with respect
to (�, � ), using an iterative procedure.

Data and preprocessing

We perform the analysis on recently published high-
throughput RNA sequencing of Ig heavy genes at great
depth (7).

The sequences were barcoded with unique molecular
identifiers (UMI) to correct for the PCR amplification bias.
However, UMI cannot be used to correct sequencing er-
rors, as most UMI were represented by a single sequence:
the number of UMIs used is of the same order as the to-
tal number of cells in use. We aligned raw sequences using
presto of the Immcantation pipeline (26) with setup allow-
ing to correct for errors in UMIs and deal with insufficient
UMI diversity. The V region primers were masked and the C
region primers were used to distinguish the two isotypes of
sampled B cells: the IgM and IgG classes. The study of mu-
tation profiles in the two groups revealed a much lower mu-
tational load in the IgM cohort and hence a higher relative
level of sequencing errors, as well as shallower tree topolo-
gies. For further analysis we chose to focus exclusively on
the IgG class. Reads were filtered for quality and paired us-
ing default presto parameters. Pre-processed data was then
aligned to V, D and J templates from IMGT (27) database
using IgBlast (28). In total there were 3.6 × 106 IgG se-
quences per person (average 3.6 × 106, median 1.8 × 106),

of which up to 2% were unproductive (average 5.7 × 104,
median 2.9 × 104).

Inference of evolutionary trajectories

Sequences with a frameshift in the CDR3 region were then
selected and used to reconstruct clonal families as follows.
In the first step, reads were aligned to the V and J tem-
plates and grouped into classes of sequences with the same
V and J gene assigned, as well as equal CDR3 length. In
the out-of-frame classes we inferred clonal lineages by sin-
gle linkage clustering with a threshold of 90% on CDR3
region identity (29). We reconstruct maximum likelihood
topologies, as well as the identity of ancestral states, un-
der a simple K80 model of character evolution (30) for all
lineages comprising at least 6 unique sequences. The model
does not capture the complexity of the observed mutation
profile, but avoids fitting multiple parameters independently
in small lineages of relatively short alignment. The existing
repertoire-wide method (23) is incompatible with out-of-
frame lineages since it operates on 61 productive codons.
Ancestral states are found through marginal reconstruc-
tion. Germline V and J sequences were used as an outgroup
to inform the phylogenetic inference and root the lineage.

Model inference

With the exception of the initial branch, which joins the
germline sequence and the most recent common ancestor of
the lineage, all branches shorter than 10 substitutions were
used for model inference.
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Our task is to find a set of parameters {�w}, {�x} that
maximise the log-likelihood

L =
∑

S,T;(i, j )∈T

⎡
⎣ ∑

x′ | si (x′)�=s j (x′)

ln
(
eγw(si ,x

′ )βx′ t − 1
)

−
∑

x

γw(si ,x)βxt

]
,

(3)

where S is the set of sequences (observed and reconstructed)
at each node of the tree, and T encodes the reconstructed
phylogenetic tree through its branches (i, j), with recon-
structed ancestral states si and sj. The rates �s, x = �x�w(s,
x) are defined so that the length of each branch t is ex-
pressed in terms of the expected number of substitutions per
basepair (total number of substitutions divided by the total
alignment length). Imposing ∂L/∂γw = 0 yields an implicit
expression for �w as a function of {�x}, but independent
of {γw′ }w′ �=w, which can be solved by one-dimensional root
finding. Likewise, setting ∂L/∂βx = 0 gives an implicit ex-
pression for �x as a function of {�w}. We can perform the
following iteration:

γ n = arg max
γ

L(γ, βn) (4)

βn+1 = arg max
β

L(γ n, β), (5)

which converges to the maximum of L with respect to the
joint {�w, �x}.

To estimate the uncertainty of inferred parameters we
sample with replacement from the set of all branches to cre-
ate 400 bootstrap copies. We report 95% confidence inter-
vals.

Substitution models

Not only the targeting rate, but also the identity of the sub-
stitution is known to depend on the identity of neighboring
bases (16). In our formulation of the model, inference of
the targeting rates does not require knowing the substitu-
tion type, however we can easily extend the framework to
include this dependence. The probability of mutating from
w to w′ over a period t can be expressed as

P(w → w′|t) = 1 − e−γwωw→w′βxt, (6)

where
∑

w′ ωw→w′ = 1 and ωw→w′ �= 0 if w′ is a result of a
substitution at the central position of w. This way we add
2 × 45 = 2048 parameters to the model. We can infer the
maximum likelihood estimates of ωw→w′ using the same it-
erative scheme introduced in the previous section.

Synthetic datasets

We created synthetic datasets using the S5F model of mu-
tability (downloaded from clip.med.yale.edu/shm) for �w.
We used a flat profile, �x = 1 as well as sinusoidal pro-
files ln β1

x = 2 sin(x/δ) − 1 and ln β2
x = 2 cos(x/δ) − 1 with

� = 50. For each branch (i, j), we compute the mutability
μsi ,x as a function of x, and then introduce mutations at

n random positions picked without replacement according
to μx/

∑
x′ μx′ , where n is the number of mutations on the

branch (fixed by the lineage structure taken from the real
data).

RESULTS

Validation on synthetic data

We first tested the ability of the inference framework to re-
cover true mutability parameters using synthetic datasets.
Synthetic data was designed to mimic as closely as possible
the features of the real repertoire data to be analyzed. We
used tree topologies inferred on out-of-frame lineages from
nine individuals of (7). The sequence at the root of each tree
was replaced by a random sequence drawn using IGoR, a
model of stochastic VDJ recombination (22). Random mu-
tations were then introduced along the tree structure, fol-
lowing the same number of mutations on each branch as
in the original lineage, and according to the SHM model
(equation 2). Context-dependent parameters �w were set
to the previously published S5F model (16) , and three vari-
ants of the position dependent �x were tested: flat, and two
sinusoidal profiles (see Methods). Finally we collected se-
quences at the leaves of the trees into a synthetic dataset.

Starting from this dataset, we performed alignment,
clonal family inference, tree reconstruction and finally
model inference using the exact same procedure as for real
data. We compared parameters inferred this way to the true
values of �w and �x (Figure 2). We were able to recover
these rates with excellent accuracy (Pearson’s r 2 = 97% for
both � and �).

The fact that the procedure recovers the correct position-
dependent profile �x, including a flat one (Figure 2B), shows
that the framework successfully corrects for the two fol-
lowing confounding factors. First, sequence conservation
across the different V, D and J segments means that con-
text and position are often intertwined, making the extrac-
tion of each dependence difficult. Second, high variability in
the CDR3 may cause errors in the assignment of sequences
into clonal families, and makes it harder to reliably call mu-
tations than in the germline regions. This remains true in
the presence of large variations of the mutability along the
position, including in the CDR3, as demonstrated on the
sinusoidal profiles (Figure 2C). On the other hand, the pos-
sibility to use the CDR3 sequence for model inference gives
access to a more diverse range of possible contexts, leading
to better estimates for contexts that are underrepresented in
the germline genes.

To assess the impact of errors in the reconstruction of
clonal families and lineages on the inferred parameters, we
repeated the procedure using the true tree topologies instead
of the reconstructed ones. This only modestly improved ac-
curacy (r 2 = 98%, see Supplementary Figure S1), suggest-
ing that the procedure is robust to lineage misassignments.

Mutabilities depend on both sequence context and position

Confident that our procedure is able to infer rates reliably,
we next applied it to real data, consisting of the out-of-
frame lineages from (7). The inferred dependencies of mu-
tability with context and position are presented in Figure 3.
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Figure 2. Validation of the SHM model inference framework on synthetic data generated with the S5F model (16). (A) Inference of context mutabilities
�w. (B,C) Inference of position mutabilities �x for flat (B) and sinusoidal (C) profiles. Error bars correspond to 95% confidence intervals. The frequency
at which a given position belongs to the CDR3 region is indicated with the grey shaded area.

We represent context dependence using a flat variant of the
‘hedgehog’ plots used in (16), for A-, T- , C- and G-centered
motifs (Figure 3A–D). Full parameter tables are available at
https://github.com/statbiophys/shmoof.

Context dependent rates for A-centered motifs corre-
spond well to the standard WA classification (31): 76% of
A-centered 5-mers with �w > 1 are of the WA type, and
only 7 of 128 WA 5-mers have �w� 1. T-centered motifs are
dominated by coldspots and their mutabilities do not align
well with their corresponding reverse complement counter-
parts. This is in agreement with the known property of Poly-
merase � to be prone to errors at A nucleotides on the top
strand (32).

The C- and G-centered motifs have largely reverse-
complement-symmetric rates (see Supplementary Figure
S2). As previously noted (16), this is in agreement with the
strand-symmetric targeting of C/G-centered motifs by the
AID enzyme.

The previously reported WRCY/RGYW motif (13,33)
predicts high mutability reasonably well, while the
SYC/GRW class of motifs (34) explains well a good
fraction of coldspot motifs. Importantly, a large number of
high or low mutability 5-mers do not belong to any of the
previously reported motifs (see Supplementary Tables S1
and S2).

The rugged profile of position dependence (Figure 3E)
shows clear enrichment in mutations in the CDR1 and
CDR2 regions, reflected in the up to 2-fold increase of the
position-dependent rates. Framework regions are less mu-
tated and we also observe a slight drop in the mutabilities
of the positions beyond the Cysteine anchor of the CDR3
region. We also learned models where the position was de-
fined from the 3’ end of the sequence in the J segment
(Supplementary Figure S3), yielding similar results but no
clear improvement over 5’-based position. High mutability
of CDR1 and CDR2 was already noted (35) and justified
as an enrichment in highly mutable motifs (as quantified
with the S5F model). Our findings suggest that there is a
secondary mechanism of this enrichment, having to do ei-
ther with accessibility of mutation-inducing enzymes or a

superposition of context-dependent effects that evade the
assumption of independent evolution at different sites and
the limitation of 5-mer motifs.

Note that introducing the explicit position dependence
does affect the learning of the context-dependent parame-
ters: learning �w with no position dependence (fixing �x
= 1) yields similar but markedly different parameters than
when learning a free �x (r 2 = 81%, Supplementary Figure
S4).

Model is consistent across individuals and explains data bet-
ter than previous approaches

To check the model’s generality, we estimated its variability
across individuals by computing Pearson’s correlation co-
efficient between the context (�w, Figure 4A) and position
(�x, Figure 4B) mutability profiles of different donors. The
precision with which we can estimate model parameters de-
pends on the number of sequences used for inference, par-
ticularly for rare 5-mer contexts. Because two individuals
had many more reads than the other 7, we pooled together
these seven individuals to make comparisons with similar
dataset sizes (Figure 4C). We then compared the two indi-
viduals and one meta-individual with each other and with
a model learned on data from all individuals. For the two
individuals with the largest repertoire datasets, the results
are highly reproducible with Pearson’s r 2 = 78% for context
and r 2 = 70% for position parameters (Figure 4A), suggest-
ing that the model captures universal biochemical proper-
ties of the hypermutation process.

To further validate the model’s accuracy, we compared
its prediction to data on the V-specific mutation profiles,
which consist of the position-dependent mutation rate for
each V segment. These rates result from the combined ef-
fect of position and context, but they are not fitted directly
by the model. A typically good example of such a profile
is shown in Figure 4D. The prediction is generally excellent
(Pearson’s r 2 ∼ 50 − 80%), and is poorest for V segments
for which little data was available (Figure 4E). Similarly, the
model predicts well the mutability on Framework Region 4
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Figure 3. Context and position dependent model parameters. Context-dependent mutabilities �w for A- (A), T- (B) ,C- (C) and G-centered (D) 5-mers.
The colors indicate known hopspot and coldspot motifs. (E) Position-dependent mutabilities �x. Gray shadings show the probability to be in the CDR1,
CDR2 or CDR3 regions. Error bars correspond to 95% confidence intervals. See Supplementary Figure S5 for an full analysis of parameter uncertainty.

(FWR4), which encompasses the J segment (Figure 4F), as
well as in the CDR3 (Figure 4G and H), which is usually ig-
nored in other approaches. Performance is best for the most
frequent CDR3 length (Figure 4H).

We compared the results of our inference to the S5F
model (16), which was trained on independent data. The
S5F model is defined by a mutability table �w with no
attempt to disentangle position dependence, so a direct
comparison is subject to caution. Besides, S5F mutabilities
are learned from synonymous mutations of productive se-
quences, requiring extrapolation methods to cover all 1024

contexts, all of which do not occur with synonymous mu-
tations. Yet, the two sets of mutabilities �w correlate fairly
well (r 2 = 36%, Figure 4 I). Correlation rises to r 2 = 44%
for contexts appearing in synonymous mutations, versus
r 2 = 18% for the other contexts for which S5F recourses to
extrapolation, emphasizing the limitations of that extrapo-
lation.

A summary of the performances of the different model-
ing approaches on the mutabilities in the different regions
of the IgH gene is shown in Figure 4J. We also checked for
overfitting by dividing the dataset into a training and a test-
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Figure 4. The model explains the data. Observed profiles were measured across the entire dataset used for model inference. See Supplementary Figure S6
for an equivalent figure when data was divided into training and testing sets. Reproducibility of parameters for individual-specific models: context (A) and
position (B) mutabilities. (C) Number of mutations used for inference (D) An example mutation profile in the most common V gene. (E) Model performance
across V genes. (F) Mutation profile in the FWR4 region. (G) An example mutation profile in the CDR3 region for CDR3 length of 50 nts. (H) Model
performance across CDR3 lengths. (I) Comparison with the S5F model. (J) Summary of models performance across sequence regions. We compare the
full context- and position-dependent model (�w�x) with purely context- (�w) and position- (�x) dependent models as well as with the S5F default model.
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ing, finding similar results (Supplementary Figure S6). The
full position and context dependent model (�s, x = �w�x)
performs better than models with context or position alone
(�s, x = �w and �s, x = �x). While the context explains the
bulk of the mutation profile, adding positional effects sub-
stantially boosts performance. Our model clearly outper-
forms the S5F model, although it should be reminded that
S5F was trained on a distinct dataset. Re-training S5F on
the productive sequences from the present datasets using
the procedure described in the original article (16) actually
yielded worse performance (data not shown), for reasons
that are unclear to us. Overall, accounting for phylogeny
and disentangling the combined effects of context and po-
sition allows our model to accurately predict mutabilities
including in the hyper-variable CDR3 region.

Co-localization of mutations cannot be explained by context
and position bias

It was previously observed that hypermutations tend to
cluster along genomic position in nonproductive sequences
(22). However, the origin of this phenomenon and its de-
pendence on confounding factors such as phylogeny and
heterogeneous hot spot concentration were not fully char-
acterized.

Clustering of mutations can be directly observed by plot-
ting the fraction n(r) of pairs of mutations at distance r
from each other as a function r (normalized by the total
number of pairs at that distance, see Supplementary Fig-
ure S7), which is also called a spatial correlation function in
physics. Focusing on lineages with at least 6 leaves, and it-
erating through all branches with fewer than 10 mutations,
we evaluated this correlation function for pairs of mutations
occurring in the same branch of the phylogeny versus dis-
tant branches, as schematized in Figure 5A). We then com-
pared this correlation function to our model predictions
(Supplementary Figure S8). The enrichment of closeby mu-
tations can be quantified by the correlation function f(r) =
n(r)/nm(r), where n(r), the fraction of pairs of mutations dis-
tant by r in the same tree branch is normalized by the model
prediction nm(r) (Figure 5B).

Pairs of mutations in distinct branches are well explained
by the model, suggesting that they are independent of each
other, in agreement with the biological picture that they
occur at different rounds of affinity maturation. The en-
richment of closeby mutations in distant branches can be
entirely explained by the clustering of hotspot regions. In-
terestingly, both context and position dependencies of the
mutability are needed to explain the data (Supplementary
Figure S8). In contrast, pairs of mutations inside branches
tend to occur closer to each other than predicted by the
model. The enrichment of closeby mutations is up to five-
fold, pointing to an additional mechanism causing hyper-
mutation clustering. We observe that this enrichment per-
sists in the presence of selection, as verified by comput-
ing the correlation function f(r) in productive lineages (Fig-
ure 5C).

Minimal model of co-localization

To explain the observed excess of co-localized mutations, we
propose a simple phenomenological model. Targeted muta-

tions, following the context and position dependent profiles
described so far, cause additional nearby ‘follow-up’ muta-
tions due to error-prone DNA repair. Given a substitution
at x0 drawn from the same distribution as before, each po-
sition x �= x0 can subsequently mutate with probability

p(x|x0) = ε e−|x−x0|/ξ , (7)

where � is the correlation length and 	 is small. The to-
tal number of follow-up mutations is approximately Pois-
son distributed with mean

∑
xp(x|x0) 
 2	/(1 − e−1/� ). To

simulate this process, we followed the same procedure as de-
scribed earlier for synthetic data, but allowing for follow-up,
as well as targeted mutations, while keeping the total num-
ber of mutations in each branch constant. We then com-
puted the correlation function f(r), and compared it to true
profiles (Figure 5B). We obtain a good agreement for � =
10 and ε = 5% corresponding to an average of ∼1 follow-
up mutation per targeting event. This result suggests that
as many as 50% of observed mutations are follow-up muta-
tions.

We asked whether this large number of non-targetted mu-
tations may bias the inference of the targeting model, which
assumes no follow-up mutations. To assess this effect, we re-
inferred the rates {�x} and {�w} from synthetic datasets
simulated with � = 10, ε = 5%, with data-inferred context
profile �w, and with data-inferred or flat position profiles
�x (Supplementary Figure S9). We find that the re-inferred
mutabilities mostly agree with the true ones, with a slight
shrinkage of values and enhanced mutabilities of cold spots,
owing to the equalizing effect co-localization. Importantly,
co-localization does not introduce additional features in the
re-inferred position-dependent profile, indicating that our
inference procedure is robust to co-localization effects.

DISCUSSION

The mutational landscape of antibody repertoires results
from many entangled effects, which are often lumped to-
gether into effective models of hypermutations (12,16,36).
First, hypermutations have intrinsic preferences for certain
positions along the IgH gene, regardless of their impact on
protein function. In addition, selection for antibody func-
tion, which includes protein stability and antigen affinity,
favors beneficial mutations and suppresses deleterious ones
(13). While intrinsic SHM preferences are believed to be
universal, selective forces vary across lineages which are in-
volved in distinct immune responses (21), and may also de-
pend on the individual’s immune status (37). Repertoire se-
quencing gives a snapshot of a rapidly adapting population
subjected to these forces, making it hard to disentangle in-
trinsic SHM preferences from the combined effects of selec-
tion and genetic drift. By focusing on non-productive lin-
eages and using a phylogeny-based approach, we overcome
the biases arising from the dynamics of affinity maturation
to obtain a comprehensive picture of SHM intrinsic prefer-
ences.

Each hypermutation occurs through a series of events
of DNA damage and repair. The action of each enzyme,
including AID to error-prone DNA repair enzymes, may
each have their own sequence preferences, and the inter-
play of these different biases results in the observed pro-
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Figure 5. Co-localization of subsequent hypermutations. (A) Co-localization model explained on an example phylogeny. An initial mutation is drawn from
the context- and position-dependent model. Then, follow-up mutations are drawn in its vicinity within the same branch. (B) Correlation function f(r) for
pairs of mutations: inside (red) and between (green) branches and for simulated mutations according to the co-localization model (7) with ε = 5% and �
= 10. (C) Co-localization of subsequent hypermutations in productive lineages from the two largest individuals’ datasets (ID = 326651 and ID = 326713).
Correlation function f(r) for pairs of mutations inside branches compared to the out-of-frame result. The first multiplicities of the codon frame length, r
= 3, 6, 9, 12 are marked with dotted lines to guide the eye. Shaded areas represent 95% confidence intervals.

file. In our approach, these complex mutational pathways
are subsumed into an effective model with a limited num-
ber of interpretable parameters in terms of effective context
and position dependence. As a result, the context dependent
weights �w do not simply reflect the binding preference of
AID, but also account for the biases of other biochemical
steps. Our framework enables direct measurement of the
mutability �w of a wide range of 5-mer contexts, recovering
the known classifications of hot and cold spots (16,33). We
show that our model outperforms existing methods as well
as purely context or position dependent models in terms of
explaining the data.

The introduction of an explicit and universal position de-
pendence, �x, allows us to unveil an excess of mutations in
the CDR1 and CDR2 regions. This enrichment of muta-
tions cannot be simply explained by their harboring more
hotspot contexts. We cannot exclude that this residual po-
sition dependence is due to more complex context effects
missed by our model (based e.g. on 7-mers, which would
be impractical to infer from the present dataset). Alterna-
tively, SHM may preferentially target these regions inde-
pendently of their sequence context, possibly through epige-
netic mechanisms. Such preference is known to exist at the
genome-wide level to mutate the Ig loci without affecting
other genes (13), so it is plausible that the same mechanism
targets some specific positions within Ig. The enrichment
of mutations in the CDR1 and CDR2 regions is even more
marked in productive sequences, meaning that these muta-
tions are more likely to be selected during affinity matura-
tion. This suggests that the intrinsically enhanced mutabil-
ity of these regions may carry an evolutionary advantage,
by focusing hypermutations on regions where they are the
most beneficial (35). The stability of the immunoglobulin re-
lies on the FWR regions and most of the substitutions are
expected to be deleterious. The purifying nature of selection

in FWR regions has been quantified in (38) and contrasted
with positive selection in CDR regions.

By studying mutations along lineages, we were able to
study mutations in the probable context in which they oc-
curred, rather than relative to the germline sequence, allow-
ing us to take into account the order of mutations and to
sample a broader diversity of 5-mer contexts. This approach
also allowed us to study and characterize hypermutations
in the CDR3, which has been neglected in previous work
(11) owing to the difficulty to separate these mutations from
junctional diversity.

The phylogenetic methods employed in this study were
not specifically designed to study B cell repertoires. In par-
ticular the assumptions allowing for fast likelihood compu-
tations do not account for the context dependence of the
mutation rate beyond the codon frame (23). The position-
dependent model introduced here could offer a compro-
mise. While it does not account for the the full complex-
ity of SHM biases, it captures the variation of the muta-
tion rate observed in out-of-frame data well (Figure 4), and
can operate under the assumption of independent site evo-
lution. Our framework could also be easily extended to
include position-dependent selection in the nucleotide or
amino acid representation.

Our analysis confirmed a phenomenon of co-localization
of mutations along the sequence. While this effect had been
previously reported (22), here we showed that it could not
be explained by phylogenetic bias or the existence of regions
of higher and lower mutabilities. We proposed a minimal
quantitative model of hypermutation targeting, followed by
error-prone DNA repair that causes follow-up mutations,
which explains the data well. While ideally we would like
to infer the position and context mutability profiles taking
these follow-up mutations into account, the task is imprac-
tical because it would require to identify the origin of each
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mutation. We expect that doing so would only renormal-
ize the values of the context preferences. While the adaptive
advantage of co-localized mutations is unclear, we find the
correlation function in productive lineages follows the un-
productive baseline with additional enrichment enhanced
at multiples of the codon length, 3, suggesting signatures
of selection (Figure 5C). We speculate that nearby muta-
tions occurring simultaneously could help cross barriers of
positive sign epistasis, whereby two or more mutations are
deleterious by themselves, but beneficial together. This phe-
nomenon could accelerate affinity maturation by favoring
compensatory or epistatic mutations at amino acids that in-
teract strongly within the antibody protein (39,40).

The obtained mutability models make predictions about
the likelihood and plausibility of particular trajectories of
affinity maturation. They could be useful in designing vacci-
nation strategy, by helping choose targets with a greater po-
tential for accumulating beneficial mutations towards anti-
bodies with desired properties such as neutralization power,
or broadness in the case of fast evolving pathogens such as
influenza or HIV (11,41).
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