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The scale invariance of natural images suggests an analogy to the statistical mechanics of physical

systems at a critical point. Here we examine the distribution of pixels in small image patches and show

how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging

specific heat, which corresponds to large fluctuations in how ‘‘surprising’’ we find individual images, and

in the quantitative form of the entropy vs energy. We identify special image configurations as local energy

minima and show that average patches within each basin are interpretable as lines and edges in all

orientations.
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Providing a precise mathematical description of the
structure in the visual world is a challenging problem.
One approach is to seek a generative model of the proba-
bility distribution of images such that randomly drawn
samples resemble images from the natural environment.
Such a model would provide a rigorous basis for practical
algorithms in image coding, processing, and recognition
[1]. Previous work, for example, has applied techniques
drawn from Ising models and statistical mechanics to
problems such as image restoration [2]. It is also plausible
that our brains have learned an approximation to this
probabilistic model, allowing for efficient representations
and effective solutions of many seemingly difficult com-
putational problems. In this view, aspects of vision ranging
from the responses of individual neurons to gestalt percep-
tual rules would be seen not as artifacts of the brain’s
circuitry, but rather as matched to the statistical structure
of the physical world [3–6].

One statistical feature of natural images that hints about
the nature of the underlying probability distribution is scale
invariance. In particular, Field observed that the spatial
patterns of image intensity from natural environments
have power spectra that approximate SI / 1=k2, which is
consistent with the hypothesis of scale invariance and
simple dimensional analysis, and he suggested a direct
connection to the distribution of receptive field parameters
across neurons in visual cortex [7]. The intuition that scale
invariance is a strong constraint on the form of the proba-
bility distribution comes from statistical mechanics. For
most physical systems at generic values of the temperature
and other parameters, correlations and power spectra ex-
hibit a characteristic length � beyond which structures

approach statistical independence. Scale invariance
emerges only when we tune the temperature to a special
value Tc, a critical point which marks a second order phase
transition between two different phases such as ferromag-
net and paramagnet [8]. In the modern theory of critical
phenomena such scale invariance can occur while violating
the naive expectations of dimensional analysis, so that
power spectra can acquire ‘‘anomalous dimensions,’’ S /
1=k2��. Further, scaling extends beyond low order statis-
tics, so that the full probability distributions are predicted
to be invariant (but non-Gaussian) under appropriate scal-
ing transformations. Both anomalous scaling and invariant
non-Gaussian distributions for local features have been
observed in an ensemble of natural scenes [9,10].
The analogy between scaling in natural images and

physical systems at their critical point raises the question
of whether there are analogs to the thermodynamic features
of criticality. For example, can we generalize a given
natural image ensemble to a family of ensembles indexed
by a ‘‘temperature,’’ and show that there is something
special (i.e., critical) about the temperature of the real
ensemble? If there is an analog of the diverging specific
heat at Tc, what does this say about the nature of images?
What are the order parameters that characterize the under-
lying phase transition?
To address these questions we analyzed the image en-

semble of Ref. [9] and focused on the 45 images with
256� 256 pixel regions covering �15� � 15� scenes in
the woods of Hacklebarney State Park in New Jersey; an
example is shown in Fig. 1(a). We sampled the distribution
of images in small patches and we quantized the gray-scale
images into two levels, with the quantization threshold
chosen so that the numbers of black and white pixels are
equal over the ensemble.
In the quantized images, an L� L pixel region can take

on 2L
2
possible states, and our data set provides �3� 106

samples of these states. Thus the distribution is well
sampled for L ¼ f2; 3; 4g. A direct estimate of the entropy
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gives Sð4� 4Þ ¼ 11:154� 0:002 bits, much less than
the 16 bits from random pixels; similarly Sð3� 3Þ ¼
6:580� 0:003< 9 bits. Thus, substantial local structure
remains in the discretized patches.

We test for scaling by analyzing how the distribution of
states in L� L patches evolves when we coarse grain the
images. Following the approach for spin systems [11], we
take the quantized image �ð ~xÞ and create new quantized
images by applying majority rule to the pixels in 3� 3
blocks. This can be iterated and we denote the resulting
distributions of states Pn, where P0 is the distribution
without blocking. Scale invariance implies that the Pn

are the same, independent of n, because the distribution
of states is at a fixed point of this renormalization trans-
formation [8]. In Fig. 1(c) we test this prediction, showing
that scaling is accurately obeyed over four decades in
probability; small deviations are partly due to aliasing
and diminish as we iterate away from single-pixel resolu-
tion. Importantly, this test of scale invariance involves the
full patch distribution, and thus goes beyond the power law
behavior of the spectrum (a second order moment) or the
invariance of distributions of features (e.g., the outputs of
local filters) evaluated at a single point. Similar results hold
for 4� 4 patches.

Each patch of our discrete images is described by a
set of binary variables ~�. We imagine that the distribution
Pð ~�Þ is the Boltzmann distribution for a physical
system at temperature T ¼ 1, with an ‘‘energy’’ function

Eð ~�Þ describing each possible patch, Pð ~�Þ ¼ 1
Z e

�Eð ~�Þ.

Following similar methods from dynamical systems
[12,13], we define the distribution at any temperature T,

PTð ~�Þ � 1

ZðTÞ e
�Eð ~�Þ=T ¼ 1

ZðTÞ ½Pð ~�Þ�
1=T; (1)

where ZðTÞ ¼ P
~�½Pð ~�Þ�1=T . The entropy is SðTÞ ¼

�P
~�PTð ~�Þ logPTð ~�Þ and the heat capacity is given by

the usual thermodynamic relation, CðTÞ ¼ T@SðTÞ=@T.
We also note that the heat capacity is proportional to
the variance in energy or log probability, CðTÞ ¼
h½�Eð ~�Þ�2iT=T2, where h� � �iT denotes an average in the
distribution PTð ~�Þ.
In a system with a critical point, the specific heat

diverges at Tc in the thermodynamic limit, corresponding
here to patches with many pixels. Are there precursors
of this divergence in the small patches that we can accu-
rately sample? Figure 2(a) shows the specific heat for
2� 2, 3� 3, and 4� 4 patches in our image ensemble,
calculated directly from the distributions Pð ~�Þ. Even when
normalized by the number of pixels N ¼ L2 in each patch
(since the heat capacity is extensive), larger patches reveal
a larger specific heat with a clear peak as a function of
temperature, and this peak is shifting toward T ¼ 1.
To calibrate our intuition about the specific heat esti-

mated from small patches, we show analogous computa-
tions on the nearest neighbor ferromagnetic Ising model in
two dimensions, defined by Eð ~�Þ ¼ �J

P
ðijÞ�i�j, whereP

ðijÞ denotes a sum over neighboring pairs of pixels.

Monte Carlo simulations of this model generate binary
‘‘images,’’ and so many of the practical sampling questions
are very similar. In Fig. 2(b) the specific heat again shows
a peak which grows and moves toward the true critical
temperature Tc ¼ 1 for larger patches [14]. Quantitatively
the behavior is less dramatic than in the images, perhaps
because the divergence of the specific heat in the
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FIG. 1 (color). Natural images and patch scaling. (a) An ex-
ample from the ensemble [9] and after quantizing into two
equally-populated levels (b). Though most intensity information
is lost, the image retains substantial structure. (c) The distribu-
tion of black and white pixels in 3� 3 patches is invariant
to block scaling. We quantify the difference in distributions
through the Jensen-Shannon divergence DJS and find
DJS½P1; P0� ¼ 8:5� 0:1� 10�3 bits while DJS½P2; P1� ¼
3:3� 0:2� 10�3 bits.

C/N

30 1

1.6

2
T

C/N

Natural Images Ising Model

T

)b()a( 2x2
3x3
4x4

Thermodynamic
limit

2x2
3x3
4x4

30 1

1.6

2

FIG. 2 (color). Diverging specific heats of natural images.
(a) The specific heat C=N constructed from natural images for
L� L patches of linear dimension L ¼ 2, 3, 4 pixels. Away
from the natural operating temperature (T ¼ 1) the distribution
is defined by Eq. (1). The peak in the specific heat near T ¼ 1
suggests that natural images are drawn from a critical ensemble.
(b) As in (a) but constructed from Monte Carlo simulations of an
Ising model with Tc ¼ 1; also shown is the exact behavior in the
thermodynamic limit [28]. Even small patches display hints of
underlying critical behavior.
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thermodynamic limit is very gentle (logarithmic).
Although this Ising system is much simpler than the en-
semble of images, the similarities of Figs. 2(a) and 2(b) are
consistent with an underlying divergence of the specific
heat at a critical temperature near T ¼ 1.

A complementary perspective on thermodynamics is the
microcanonical ensemble, corresponding to fixed energy
rather than fixed temperature. Recall that all thermody-
namic quantities can be recovered from the partition func-

tion, ZðTÞ ¼ P
~�e

�Eð ~�Þ=T . We rewrite this sum by grouping
together all states that have the same energy,

ZðTÞ ¼ X
~�

e�Eð ~�Þ=T ¼
Z

dE

�X
~�

�ðE� Eð ~�ÞÞ
�
e�E=T

¼
Z

dE�ðEÞe�E=T; (2)

which defines the density of states �ðEÞ. For a large
system, the density of states becomes a smooth function,
and we can define an entropy SðEÞ at fixed energy as the
log of the number of states in a narrow range of energies�,

so that �ðEÞ ¼ ð1=�ÞeSðEÞ and ZðTÞ ¼ 1
�

R
dEeSðEÞ�E=T .

Further, both the energy and entropy are extensive varia-
bles proportional to the size of the system N, taken here to
be the number of pixels in a patch. We define � ¼ E=N and
sð�Þ ¼ SðE ¼ N�Þ=N, and the partition function becomes

ZðTÞ ¼ N

�

Z
d�eN½sð�Þ��=T�: (3)

For large N, the integral is dominated by the point where
the exponent is maximal, an energy such that dsð�Þ=d� ¼
dSðEÞ=dE ¼ 1=T. This connects the (microcanonical)
description at fixed energy with the (canonical) description
at fixed temperature. In this language, the specific heat,

C ¼ N
T2 ½� d2sð�Þ

d�2
��1 diverges where the second derivative of

the entropy vs energy vanishes, the hallmark of a second
order phase transition.

To apply the microcanonical framework to our image
ensemble we define E for every observed state as the log of
the probability,

Eð ~�Þ ¼ � lnPð ~�Þ þ c; (4)

where c sets the (arbitrary) zero of energy and is chosen so
that the most probable state has zero energy. We now define
the cumulative distribution, N ðEÞ ¼ R

E
0 dE

0�ðE0Þ, which
counts the number of possible image patches for which the
observed log probability is greater than �Eþ c. If SðEÞ is
increasing, then this integral is dominated by the behavior
near its upper limit, so that

N ðEÞ ¼ N

�

Z E=N

0
d�eNsð�Þ 	 N

�

�
N
dsð�Þ
d�

��1
eNsð�¼E=NÞ

) sð�Þ ¼ 1

N
lnN ðE ¼ N�Þ þ lnðT=�Þ

N
: (5)

Note that the second term in this equation vanishes for
large N, and so we approximate the entropy per pixel as a
function of energy per pixel by the first term.
By counting the number of possible image patches with

probability greater than a certain level, we can use Eq. (5)
to construct the entropy vs energy and hence derive all
other thermodynamic functions. We do this in Fig. 3(a)
using rectangular L� L0 patches of size from 8 pixels up
to 50 pixels; in Fig. 3(b) we show the same analysis for the
Monte Carlo simulations of the Ising model. We note that
sampling problems are less serious at low energies (states
with high probability), so we expect that even if we look at
regions where we can’t sample the whole distribution we
will get the correct low energy behavior.
The results on different sized image patches are remark-

ably consistent, which is indicative of the thermodynamic
limit despite the small region sizes. Since the real image
ensemble is at T ¼ 1, we seek the energy at which
dS=dE ¼ 1 which is difficult, since the plot is very nearly
linear with unit slope. However, if the point where
dS=dE ¼ 1 is also a place where d2S=dE2 ¼ 0, then
T ¼ 1 is a critical point. The fact that S=N vs E=N is
linear with unit slope is direct evidence that the ensemble
of natural images is at criticality.
Our approach to the thermodynamics of images is con-

nected to Zipf’s law [15] for which the probability of the
rank order rth most common word drawn from English text
is pr / 1=r. Many other authors have considered general-
ized Zipf-like distributions [16], pr / 1=r�, and there has
been much discussion about the meaning of these relation-
ships. Suppose we identify the Zipf-like distribution
pr ¼ A=r� with a Boltzmann distribution at T ¼ 1, pr ¼
ð1=ZÞe�Er . Then the energy of the state at rank r is Er ¼
� lnr� lnðAZÞ. In the limit of a large system with many
possible states, r has a uniform distribution, and hence
�ðEÞ 	 jdEr=drj�1; this gives �ðEÞ ¼ r=�. But we also

have r ¼ ðAZÞ1=�eEr=�, so we find

�ðEÞ ¼ 1

�
ðAZÞ1=�eE=� ) SZipfðEÞ ¼ E=�þ const:

Thus a generalized Zipf’s law is equivalent to an entropy
that is (exactly) linear in the energy. The original Zipf’s
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FIG. 3 (color). Indication of critical behavior in the plot of
entropy vs energy. (a) The results for rectangular image patches
of size 8 to 50 pixels (different colors). (b) Results for
Monte Carlo simulations of the 2D Ising model.
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law (� ¼ 1) corresponds to a unit slope, as we have found
for image patches. Further, this simple linear relation
corresponds exactly to a critical point [17,18].

Since the specific heat is the variance in the energy,
criticality in the image ensemble means that the log proba-
bility has a broad distribution, with a formally divergent
second moment. One consequence is that the approach
toward typicality in the sense of information theory [19]
is slow, which may be related to difficulties in compressing
large natural images, or even in estimating their entropy
(e.g., Ref. [20]). This large variance also implies large
fluctuations in how surprised we should be by any given
scene or segment of a scene, a relatively common
experience.

Critical points mark the transition between phases char-
acterized by different forms of order. What ordering would
emerge if the distribution of natural images could be
‘‘cooled’’ from T ¼ 1 toward T ¼ 0? Ultimately, this is a
question about the nature of the image patches that corre-
spond to the low energy states. The lowest energy states of
small patches are solid black or white blocks, as in a
ferromagnet with aligned spins. But, searching through
all 4� 4 patches, we find �100 states that are local
minima, such that flipping any single pixel results in
increased energy or reduced probability. In Fig. 4(a) we
show 49 of these states, ordered in decreasing probability.
We see that many of these states are interpretable, for
example as edges between dark and light regions, and
that much of the multiplicity arises from the different
ways of realizing these patterns (e.g., the six possible cases
of a single vertical edge). We can think of these local
minima in the energy landscape [21] as being like the
attractors in the Hopfield model of neural networks [22],
or like the codewords in statistical mechanics approaches
to error-correcting codes [23]. While we usually think of
error-correcting coding as a construct, here it seems intrin-
sic to the natural signals (see Ref. [24] for a discussion of
similar questions in neural systems).

We speculate that such image features acquire their
importance due to their intrinsic properties of error correc-
tion. If this is true, then the visual system might build
neurons which serve to identify the basins of attraction
defined by these local minima in energy. If such cells
respond only when the original gray-scale image corre-
sponds to an image within a particular basin of attraction,
then it is easy to compute the response-triggered average
within our natural image ensemble, with the results shown
in Fig. 4(b). These results have a strong resemblance to the
spike-triggered average responses of neurons in visual
cortex to natural scenes [25]. In more detail we find that
perceptron-like models based on filtering through a single
receptive field do rather poorly. Thus, if visual cortex
builds a representation of the world based on the identi-
fication of these local minima, the computations neces-
sarily involve nonlinear combinations of multiple filters
[26], as observed [27].
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