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The activity of a neural network is defined by patterns of spiking
and silence from the individual neurons. Because spikes are
(relatively) sparse, patterns of activity with increasing numbers
of spikes are less probable, but, with more spikes, the number of
possible patterns increases. This tradeoff between probability and
numerosity is mathematically equivalent to the relationship be-
tween entropy and energy in statistical physics. We construct this
relationship for populations of up to N = 160 neurons in a small
patch of the vertebrate retina, using a combination of direct and
model-based analyses of experiments on the response of this net-
work to naturalistic movies. We see signs of a thermodynamic limit,
where the entropy per neuron approaches a smooth function of the
energy per neuron as N increases. The form of this function corre-
sponds to the distribution of activity being poised near an unusual
kind of critical point. We suggest further tests of criticality, and give
a brief discussion of its functional significance.
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Our perception of the world seems a coherent whole, yet it is
built out of the activities of thousands or even millions of

neurons, and the same is true for our memories, thoughts, and
actions. It is difficult to understand the emergence of behav-
ioral and phenomenal coherence unless the underlying neural
activity also is coherent. Put simply, the activity of a brain—or
even a small region of a brain devoted to a particular task—cannot
be just the summed activity of many independent neurons. How
do we describe this collective activity?
Statistical mechanics provides a language for connecting the

interactions among microscopic degrees of freedom to the
macroscopic behavior of matter. It provides a quantitative theory
of how a rigid solid emerges from the interactions between atoms,
how a magnet emerges from the interactions between electron
spins, and so on (1, 2). These are all collective phenomena: There
is no sense in which a small cluster of molecules is solid or liquid;
rather, solid and liquid are statements about the joint behaviors of
many, many molecules.
At the core of equilibrium statistical mechanics is the Boltzmann

distribution, which describes the probability of finding a system in
any one of its possible microscopic states. As we consider systems
with larger and larger numbers of degrees of freedom, this proba-
bilistic description converges onto a deterministic, thermodynamic
description. In the emergence of thermodynamics from statistical
mechanics, many microscopic details are lost, and many systems
that differ in their microscopic constituents nonetheless exhibit
quantitatively similar thermodynamic behavior. Perhaps the oldest
example of this idea is the “law of corresponding states” (3).
The power of statistical mechanics to describe collective, emer-

gent phenomena in the inanimate world led many people to hope
that it might also provide a natural language for describing net-
works of neurons (4–6). However, if one takes the language of
statistical mechanics seriously, then as we consider networks with

larger and larger numbers of neurons, we should see the emer-
gence of something like thermodynamics.

Theory
At first sight, the notion of a thermodynamics for neural net-
works seems hopeless. Thermodynamics is about temperature
and heat, both of which are irrelevant to the dynamics of these
complex, nonequilibrium systems. However, all of the ther-
modynamic variables that we can measure in an equilibrium
system can be calculated from the Boltzmann distribution, and
hence statements about thermodynamics are equivalent to
statements about this underlying probability distribution. It is
then only a small jump to realize that all probability distribu-
tions over N variables can have an associated thermodynamics
in the N→∞ limit. This link between probability and thermo-
dynamics is well-studied by mathematical physicists (7), and has
been a useful guide to the analysis of experiments on dynamical
systems (8, 9).
To be concrete, consider a system with N elements; each el-

ement is described by a state σi, and the state of the entire
system is σ ≡ fσ1,   σ2,  ⋯,   σNg. We are interested in the proba-
bility PðσÞ that we will find the system in any one of its possible
states. It is natural to think not about the probability itself but
about its logarithm,

EðσÞ=−lnPðσÞ. [1]

In an equilibrium system, this is precisely the energy of each state
(in units of kBT), but we can define this energy for any probability
distribution. As discussed in detail in Supporting Information, all
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of thermodynamics can be derived from the distribution of these
energies. Specifically, what matters is how many states have EðσÞ
close to a particular value E. We can count this number of states,
nðEÞ, or more simply the number of states with energy less
than E, NðEÞ. Then we can define a microcanonical entropy
SðEÞ= ln NðEÞ. If we imagine a family of systems in which the
number of degrees of freedom N varies, then a thermodynamic
limit will exist provided that both the entropy and the energy are
proportional to N at large N. The existence of this limit is by no
means guaranteed.
In most systems, including the networks that we study here,

there are few states with high probability, and many more states
with low probability. At large N, the competition between de-
creasing probability and increasing numerosity picks out a special
value of E=E*, which is the energy of the typical states that we
actually see; E* is the solution to

dSðEÞ
dE

= 1. [2]

For most systems, the energy EðσÞ has only small fluctuations
around E*, hðδEÞ2i=ðE*Þ2 ≈ 1=N, and, in this sense, most of the
states that we see have the same value of log probability per
degree of freedom. However, hidden in the function SðEÞ are
all of the parameters describing the interactions among the N
degrees of freedom in the system. At special values of these
parameters, ½d2SðEÞ=dE2�E=E* → 0, and the variance of E diverges
as N becomes large. This is a critical point, and it is mathematically
equivalent to the divergence of the specific heat in an equilibrium
system (10).
These observations focus our attention on the “density of states”

NðEÞ. Rather than asking how often we see specific combinations
of spiking and silence in the network, we ask how many states there
are with a particular probability.

Experimental Example
The vertebrate retina offers a unique system in which the ac-
tivity of most of the neurons comprising a local circuit can be
monitored simultaneously using multielectrode array recordings.
As described more fully in ref. 11, we stimulated salamander
retina with naturalistic grayscale movies of fish swimming in a
tank (Fig. 1A), while recording from 100 to 200 retinal gan-
glion cells (RGCs); additional experiments used artificial
stimulus ensembles, as described in Supporting Information.
Sorting the raw data (12), we identified spikes from 160 neu-
rons whose activity passed our quality checks and was stable for
the whole ∼ 2 h duration of the experiment; a segment of the
data is shown in Fig. 1B. These experiments monitored a
substantial fraction of the RGCs in the area of the retina from
which we record, capturing the behavior of an almost complete
local population responsible for encoding a small patch of the
visual world. The experiment collected a total of ∼ 2× 106
spikes, and time was discretized in bins of duration Δτ= 20 ms;
all of the results discussed below are substantially the same at
Δτ= 10 ms and Δτ= 40 ms (Fig. S1). For each neuron i, σi = 1 in
a bin denotes that the neuron emitted at least one spike, and
σi = 0 denotes that it was silent.

Counting States
Conceptually, estimating the function NðEÞ and hence the entropy
vs. energy is easy: We count how often each state occurs, thus es-
timating its probability, and then count how many states have (log)
probabilities in a given range. In Fig. 1 C and D, we show the first
steps in this process. We identify the unique patterns of activity—
combinations of spiking and silence across all 160 neurons—that
occur in the experiment, and then count how many times each of
these patterns occurs.

Even without trying to compute SðEÞ, the results of Fig. 1D are
surprising. With N neurons that can either spike or remain silent,
there are 2N possible states. Not all these states can be visited
equally often, because spikes are less common than silences, but
even taking account of this bias, and trying to capture the corre-
lations among neurons, our best estimate of the entropy for the
patterns of activity we observe is s≈ 0.15  bits=neuron (see below).
With N = 160 cells, this means that the patterns of activity are
spread over 2Ns ≈ 1.67× 107 possibilities, 100 times larger than the
number of samples that we collected during our experiment. In-
deed, most of the states that we saw in the full population oc-
curred only once. However, roughly one thousand states occurred
with sufficient frequency that we can make a reasonable estimate
of their probability just by counting across ∼2 h. Thus, the prob-
ability distribution PðσÞ is extremely inhomogeneous.
To probe more deeply into the tail of low-probability events,

we can construct models of the distribution of states, and we
have done this using the maximum entropy method (11, 13): We
take from experiment certain average behaviors of the network,
and then search for models that match these data but otherwise
have as little structure as possible. This works if matching a
relatively small number of features produces a model that pre-
dicts many other aspects of the data.
The maximum entropy approach to networks of neurons has been

explored, in several different systems, for nearly a decade (14–23),
and there have been parallel efforts to use this approach in other
biological contexts (24–35). Recently, we have used the maximum
entropy method to build models for the activity of up to N = 120
neurons in the experiments described above (11); see Fig. 2. We take
from experiment the mean probability of each neuron generating a
spike (hσii), the correlations between spiking in pairs of neurons
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Fig. 1. Counting states in the response of RGCs. (A) A single frame from
the naturalistic movie; red ellipse indicates the approximate extent of a
receptive field center for a typical RGC. (B) Responses of N= 160 neurons to
a 19.2-s naturalistic movie clip; dots indicate the times of action potentials
from each neuron. In subsequent analyses, these events are discretized
into binary (spike/silence) variables in time slices of Δτ= 20 ms. (C ) The
1,000 most common binary patterns of activity across N= 160 neurons, in
order of their frequency. (D) Number of occurrences of each pattern
(black, left axis), and the cumulative weight of the patterns in the em-
pirical probability distribution (green, right axis), with labels for the total
number of spikes in each pattern.
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(hσiσji), and the probability that K out of the N neurons spike in the
same small window of time [PðKÞ]. Mathematically, the maximum
entropy models consistent with these data have the form

PðfσigÞ= 1
Z
exp½−EðfσigÞ�, [3]

EðfσigÞ=−
XN
i=1

hiσi −
1
2

XN
i, j=1

Jijσiσj −V ðKÞ, [4]

where K =
PN

i=1σi counts the number of neurons that spike simul-
taneously, and Z is set to ensure normalization. All of the param-
eters fhi,   Jij,   V ðKÞg are determined by the measured averages
fhσii, hσiσji,PðKÞg.
This model accurately predicts the correlations among triplets of

neurons (figure 7 in ref. 11), and how the probability of spiking in
individual neurons depends on activity in the rest of the population
(figure 9 in ref. 11). One can even predict the time-dependent re-
sponse of single cells from the behavior of the population, without
reference to the visual stimulus (figure 15 in ref. 11). Most impor-
tant for our present discussion, the distribution of the energy
EðfσigÞ across the observed patterns of activity agrees with the
distribution predicted by the model, deep into the tail of patterns
that occur only once in the 2-h-long experiment (figure 8 in ref. 11).
This distribution is closely related to the plot of entropy vs. energy
that we would like to construct, and so the agreement with exper-
iment gives us confidence.
The direct counting of states (Fig. 1) and the maximum entropy

models (Fig. 2) give us two complementary ways of estimating the

function NðEÞ and hence the entropy vs. energy in the same data
set. Results are in Fig. 3; see also Supporting Information.
As emphasized above, the plot of entropy vs. energy contains all

of the thermodynamic behavior of a system, and this has a meaning
for any probability distribution, even if we are not considering a
system at thermal equilibrium. Thus, Fig. 3 is as close as we can get
to constructing the thermodynamics of this network. With the di-
rect counting of states, we see less and less of the plot at larger N,
but the part we can see is approaching a limit as N→∞, and this
is confirmed by the results from the maximum entropy models.
This, by itself, is a significant result. If we write down a model like
Eq. 4, then, in a purely theoretical discussion, we can scale the
couplings between neurons Jij with N to guarantee the existence of
a thermodynamic limit (5), but with Jij constructed from real data,
we can’t impose this scaling ourselves—either it emerges from the
data or it doesn’t. We can make the emergence of the thermody-
namic limit more precise by noting that, at a fixed value of S=N, the
value of E=N extrapolates to a well-defined limit in a plot vs. 1=N,
as in Fig. 3A, Inset. The results of this extrapolation are strikingly
simple: The entropy is equal to the energy, within (small) error bars.

Interpreting the Entropy vs. Energy Plot
If the plot of entropy vs. energy is a straight line with unit slope,
then Eq. 2 is solved not by one single value of E but by a whole
range. Not only do we have d2S=dE2 = 0, as at an ordinary critical
point, but all higher-order derivatives also are zero. Thus, the
results in Fig. 3 suggest that the joint distribution of activity across
neurons in this network is poised at a very unusual critical point.
We expect that states of lower probability (e.g., those in which

more cells spike) are more numerous (because there are more
ways to arrange K spikes among N cells as K increases from very
low values). However, the usual result is that this trade-off—
which is precisely the trade-off between energy and entropy in
thermodynamics—selects typical states that all have roughly the
same probability. The statement that SðEÞ=E, as suggested in
Fig. 3, is the statement that states which are ten times less prob-
able are exactly 10 times more numerous, and so there is no
typical value of the probability.
The vanishing of d2S=dE2 corresponds, in an equilibrium system,

to the divergence of the specific heat. Although the neurons ob-
viously are not an equilibrium system, the model in Eqs. 3 and 4 is
mathematically identical to the Boltzmann distribution. Thus, we
can take this model seriously as a statistical mechanics problem,
and compute the specific heat in the usual way. Further, we can
change the effective temperature by considering a one-parameter
family of models,

Pðfσig;TÞ= 1
ZðTÞ exp

�
−
1
T
EðfσigÞ

�
, [5]

with EðfσigÞ as before (Eq. 4). Changing T is just a way of
probing one direction in the parameter space of possible models,
and is not a physical temperature; the goal is to see whether there
is anything special about the model (at T = 1) that describes the
real system.
Results for the heat capacity of our model vs. T are shown in

Fig. 4. There is a dramatic peak, and, as we look at larger groups
of neurons, the peak grows and moves closer to T = 1, which is
the model of the actual network. Importantly, the heat capacity
grows even when we normalize by N, so that the specific heat, or
heat capacity per neuron, is growing with N, as expected at a
critical point, and these signatures are clearer in models that pro-
vide a more accurate description of the population activity; for
details, see Supporting Information.
The temperature is only one axis in parameter space, and, along

this direction, there are variations in both the correlations among
neurons and their mean spike rates. As an alternative, we consider
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Fig. 2. Maximum entropy models for retinal activity in response to natural
movies (11). (A) The correlation coefficients between pairs of neurons (red,
positive; blue, negative) for a 120-neuron subnetwork. Inset shows the distri-
bution of the correlation coefficients over the population. (B) The pairwise
coupling matrix of the inferred model, Jij from Eq. 4. Inset shows the distri-
bution of these pairwise couplings across all pairs ij. (C) The average proba-
bility of spiking per time bin for all neurons (sorted). (D) The corresponding
bias terms hi in Eq. 4. (E) The probability PðKÞ that K out of the N neurons spike
in the same time bin. (F) The corresponding global potential VðKÞ in Eq. 4.
Notice that A, C, and E describe the statistical properties observed for these
neurons, whereas B, D, and F describe parameters of the maximum entropy
model that reproduces these data within experimental errors.
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a family of models in which the strength of correlations changes
but spike rates are fixed. To do this, we replace the energy func-
tion in Eq. 4 with

EαðfσigÞ=−
XN
i=1

h′iðαÞσi − α

"
1
2

XN
i, j=1

Jijσiσj +V ðKÞ
#
, [6]

where α controls the strength of correlations, and we adjust all of
the h′iðαÞ to hold mean spike rates to their observed values.
At α= 0, the model describes a population of independent neu-

rons, so that the correlation coefficients are all C= 0 (Fig. 5A, Left).
For α> 1, the distribution of correlations broadens such that at α= 2,
some pairs are very strongly correlated (Fig. 5A, Right). This is
reflected in a distribution of states that cluster around a small
number of prototypical patterns, much as in the Hopfield network
(4, 5). The entropy vs. energy plot, shown in Fig. 5B, singles out the
ensemble at α= 1 (Fig. 5A, Middle): Going toward independence
(smaller α) gives rise to a concave bump at low energies, whereas
α> 1 ensembles deviate away from the equality line more at high
energies. Correspondingly, we see in Fig. 5D that there is a peak in
the specific heat of the model ensemble near α= 1. As we look at
larger and larger networks, this peak rises and moves toward α= 1,
which describes the real system.
The evidence for criticality that we find here is consistent with

extrapolations from the analysis of smaller populations (15, 18).
Those predictions were based on the assumption that spike prob-
abilities and pairwise correlations in the smaller populations are
drawn from the same distribution as in the full system, and that
these distributions are sufficient to determine the thermodynamic
behavior (36). Signs of criticality also are observable in simpler
models, which match only the distribution of summed activity in
the network (22), but less accurate models have weaker signatures
of criticality (Fig. S2).

Couldn’t It Just Be…?
In equilibrium thermodynamics, poising a system at a critical point
involves careful adjustment of temperature and other parameters.
Finding that the retina seems to be poised near criticality should
thus be treated with some skepticism. Here we consider some ways

in which we could be misled into thinking that the system is critical
when it is not (see also Supporting Information).
Part of our analysis is based on the use of maximum entropy

models, and one could worry that the inference of these models is
unreliable for finite data sets (37, 38). Expanding on the discussion
of this problem in ref. 11, we find a clear peak in the specific heat
when we learn models forN = 100 neurons from even one-tenth of
our data, and the variance across fractions of the data are only a
few percent (Fig. S3).
Although the inference of maximum entropy models is accurate,

less interesting models might mimic the signatures of criticality. In
particular, it has been suggested that independent neurons with a
broad distribution of spike rates could generate a distribution of
N neuron activity patterns fσig that mimics some aspects of critical
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behavior (39). However, in an independent model built from the
actual spike rates of the neurons, the probability of seeing the same
state twice would be less than one part in a billion, dramatically
inconsistent with the measured Pc ≈ 0.04. Such independent mod-
els also cannot account for the faster than linear growth of the heat
capacity with N (Fig. 4), which is an essential feature of the data
and its support for criticality.
In maximum entropy models, the probability distribution over

patterns of neural activity is described in terms of interactions
between neurons, such as the terms Jij in Eq. 4; an alternative view
is that the correlations result from the response of the neurons to
fluctuating external signals. Testing this idea has a difficulty that
has nothing to do with neurons: In equilibrium statistical me-
chanics, models in which spins (or other degrees of freedom)
interact with one another are mathematically equivalent to a
collection of spins responding independently to fluctuating fields
(see Supporting Information for details). Thus, correlations always
are interpretable as independent responses to unmeasured fluc-
tuations, and, for neurons, there are many possibilities, including
sensory inputs. However, the behavior that we see cannot be
simply inherited from correlations in the visual stimulus, because
we find signatures of criticality in response to movies with very
different correlation structures (Fig. S4). Further, the pattern of
correlations among neurons is not simply explained in terms of
overlaps among receptive fields (Fig. S5), and, at fixed moments in
the stimulus movie, neurons with nonzero spike probabilities have
correlations across stimulus repetitions that can be even stronger
than across the experiment as a whole (Fig. S6).
When we rewrite a model of interacting spins as independent

spins responding to fluctuating fields, criticality usually requires
that the distribution of fluctuations be very special, e.g., with the
variance tuned to a particular value. In this sense, saying that
correlations result from fluctuating inputs doesn’t explain our
observations. Recently, it has been suggested that sufficiently
broad distributions of fluctuations lead generically to critical

phenomenology (40). As explained in Supporting Information,
mean field models have the property that the variance of the
effective fields becomes large at the critical point, but more
general models do not, and the correlations we observe do not
have the form expected from a mean field model. The fact that
quantitative changes in the strength of correlations would drive
the system away from criticality (Fig. 5D) suggests that the
distribution of equivalent fluctuating fields must be tuned, rather
than merely having sufficiently large fluctuations.

Discussion
The traditional formulation of the neural coding problem makes
an analogy to a dictionary, asking for the meaning of each neural
response in terms of events in the outside world (41). However,
before we can build a dictionary, we need to know the lexicon,
and, for large populations of neurons, this already is a diffi-
cult problem: With 160 neurons, the number of possible re-
sponses is larger than the number of words in the vocabulary of
a well-educated English speaker, and is more comparable to
the number of possible short phrases or sentences. In the same
way that the distribution of letters in words embodies spelling
rules (28), and the distribution of words in sentences encodes
aspects of grammar (42) and semantic categories (43), we expect
the distribution of activity across neurons to reveal structures of
biological significance.
In the small patch of the retina that we consider, no two cells

have truly identical input/output characteristics (44). None-
theless, if we count how many combinations of spiking and si-
lence have a given probability in groups of N > 20 cells, this
relationship is reproducible from group to group, and simplifies
at larger N. This relationship between probability and nume-
rosity of states is mathematically identical to the relationship
between energy and entropy in statistical physics, and the simpli-
fication with increasing N suggests that we are seeing signs of a
thermodynamic limit.
If we can identify the thermodynamic limit, we can try to place

the network in a phase diagram of possible networks. Critical
surfaces that separate different phases often are associated with a
balance between probability and numerosity: States that are a
factor F times less probable also are a factor F times more nu-
merous. At conventional critical points, this balance occurs only in
a small neighborhood of the typical probability, but, in the net-
work of RGCs, it extends across a wide range of probabilities (Fig.
3). In model networks with slightly stronger or weaker correlations
among pairs of neurons, this balance breaks down (Fig. 5), and
less accurate models have weaker signatures of criticality (Fig. S2).
The strength of correlations depends on the structure of visual

inputs, on the connectivity of the neural circuit, and on the state
of adaptation in the system. The fact that we see signatures of
criticality in response to very different movies, but not in model
networks with stronger or weaker correlations, suggests that
adaptation is tuning the system toward criticality. A sudden
change of visual input statistics should thus drive the network to
a noncritical state, and, during the course of adaptation, the
distribution of activity should relax back to the critical surface.
This can be tested directly.
Is criticality functional? The extreme inhomogeneity of the

probability distribution over states makes it possible to have an
instantaneously readable code for events that have a large dy-
namic range of likelihoods or surprise, and this may be well-
suited to the the natural environment; it is not, however, an ef-
ficient code in the usual sense. Systems near critical points are
maximally responsive to certain external signals, and this sensi-
tivity also may be functionally useful. Most of the systems that
exhibit criticality in the thermodynamic sense also exhibit a wide
range of time scales in their dynamics, so that criticality may
provide a general strategy for neural systems to bridge the gap
between the microscopic time scale of spikes and the macroscopic

A B

C D

Fig. 5. Changing correlations at fixed spike rates. (A) Three maximum en-
tropy (maxent) models for a 120-neuron network, where correlations have
been eliminated (Left, α= 0), left at the strength found in data (Middle,
α= 1), or scaled up (Right, α= 2). (Top) The 10,000 most frequent patterns
(black, spike; white, silence) in each model. (Bottom) The distribution of
pairwise correlation coefficients. (B) Entropy vs. energy for the networks in A.
(C) Entropy per neuron as a function of α, for different subnetwork sizes N.
(D) Heat capacity per neuron exhibits a peak close to α= 1. Error bars are SDs
over 10 subnetworks for each N and α.
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time scales of behavior. Critical states are extremal in all these
different senses, and more; it may be difficult to decide which is
relevant for the organism.
Related signatures of criticality have been detected in en-

sembles of amino acid sequences for protein families (29), in
flocks of birds (33) and swarms of insects (45), and in the net-
work of genes controlling morphogenesis in the early fly embryo
(46); there is also evidence that cell membranes have lipid
compositions tuned to a true thermodynamic critical point (47).
Different, dynamical notions of criticality have been explored in
neural (48, 49) and genetic (50, 51) networks, and in the active
mechanics of the inner ear (52–54); recent work connects dy-
namical and statistical criticality, with the retina as an example
(55). These results hint at a general principle, but there is room

for skepticism. A new generation of experiments should provide
decisive tests of these ideas.

Materials and Methods
Experiments were performed on the larval tiger salamander, Ambystoma
tigrinum tigrinum, in accordance with institutional animal care standards at
Princeton University.
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Thermodynamics and Probability Distributions
The fundamental variables of thermodynamics are energy, tem-
perature, and entropy. For the states taken on by a network of
neurons, energy and temperature are meaningless, so it is difficult
to see how we can construct a thermodynamics for these systems.
However, in statistical mechanics, all thermodynamic quantities
are derivable from the Boltzmann distribution, the probability
that the system will be found in any particular state. Thus, all
thermodynamic statements are equivalent to statements about
this underlying probability distribution, and, in this sense, we
should be able to construct thermodynamics for a much broader
range of probability distributions that describe a large number
of variables.
The idea that probability distributions over N variables can

have an associated thermodynamics in the N→∞ limit is pow-
erful but perhaps not so widely used. This connection is well-
studied by mathematical physicists (1) and has been a guide to
the analysis of experiments on dynamical systems (2, 3). We
have used these ideas to construct a thermodynamics of natural
images (4) and have emphasized the connection of thermodynamic
criticality to Zipf’s law (5). Here we give a somewhat pedagogical
discussion, in the hope of making the results accessible to a broader
audience.

The Boltzmann Distribution.We start by recalling that, for a system
in thermal equilibrium at temperature T, the probability of finding
the system in state s is given by

Ps =
1
Z
e−Es=kBT , [S1]

where Es is the energy of the state, and Boltzmann’s constant kB
converts between conventional units of temperature and energy.
The partition function Z serves to normalize the distribution,
which requires

Z=
X
s

e−Es=kBT , [S2]

but, in fact, this normalization constant encodes many physical
quantities. The logarithm of the partition function is proportional
to the free energy of the system, the derivative of the free energy
with respect to the volume occupied by the system is the pressure,
the derivative with respect to the strength of an applied magnetic
field is the magnetization, and so on.
The state of a system is defined by the joint configuration of all

its parts. Thus, in a classical gas or liquid, s is defined by the
positions and velocities of all of the constituent atoms. Different
gases or liquids differ not because these variables are different
but because the energy Es is a different function of these N
underlying variables. However, thermodynamics doesn’t make
reference to all these details. Which aspects of the underlying
microscopic rules actually matter for predicting the free energy
and its derivatives?
We can write the sum over all states as a sum first over states

that have the same energy and then as a sum over energies. We
do this by introducing an integral over a delta function into
the sum,

Z=
X
s

e−Es=kBT

=
X
s

"Z
dE δðE−EsÞ

#
e−Es=kBT

[S3]

=
Z

dE
X
s

δðE−EsÞe−Es=kBT [S4]

=
Z

dE e−E=kBT
"X

s

δðE−EsÞ
#
. [S5]

We see that the way in which the energy depends on each state
appears only in the brackets, a function nðEÞ that counts how
many states have a particular energy,

nðEÞ =
X
s

δðE−EsÞ. [S6]

Looking ahead to the analysis of real data, it will be convenient to
rearrange Eq. S5 slightly. Instead of counting the number of states
that have energy E, we can count the number of states with energy
less than E,

NðEÞ=
X
s

Θ ðE−EsÞ, [S7]

where the step function is defined by

Θðx> 0Þ= 1 [S8]

Θðx< 0Þ= 0. [S9]

However, the step function is the integral of the delta function,
which means that we can integrate by parts in Eq. S5 to give

Z=
1

kBT

Z
dE  e−E=kBTNðEÞ. [S10]

If we think about N variables, each of which can take on only two
states, the total number of states is 2N. More generally, we expect
that the number of possible states in a system with N variables is
exponentially large, so it is natural to think not about the number
of states NðEÞ but about its logarithm,

SðEÞ= ln NðEÞ, [S11]

which is called the entropy.
As a technical aside, we can either define the entropy in terms

of the density of states with energy close to E, what we have called
nðEÞ, or use the number of states with energy less than E, what
we have called NðEÞ. When the number of degrees of freedom is
small, these are both badly behaved functions—nðEÞ is singular,
and NðEÞ has visible steps. However, as N becomes large, both
functions become smooth, and we can do all of the usual oper-
ations of differentiation or integration by parts without worries.
Importantly, when it comes time to analyze experimental data,
using NðEÞ allows us to avoid making bins along the E axis.
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Substituting from Eq. S11 into Eq. S10, the partition function
can be written as an integral determined only by the function
SðEÞ, entropy vs. energy,

Z=
1

kBT

Z
dE  exp

�
−

E
kBT

+ SðEÞ
�
. [S12]

One of the key ideas in thermodynamics is that certain variables
are “extensive,” that is, proportional to the number of particles
or variables in the system, whereas other variables are “inten-
sive,” independent of the system size. Temperature is an inten-
sive variable, whereas energy and entropy are extensive variables.
It is then natural to think about the energy per particle, e=E=N,
and the entropy per particle, SðEÞ=N = sðeÞ. In the limit of large
N, we expect sðeÞ to become a smooth function. Substituting into
Eq. S12, the partition function can be written as

Z=
N
kBT

Z
de  e−Nf ðeÞ=kBT [S13]

f ðeÞ= e− kBTsðeÞ. [S14]

We note that f ðeÞ is the difference between energy and entropy,
scaled by the temperature, and is called the free energy.
Whenever we have an integral of the form in Eq. S13, at largeN,

we expect that it will be dominated by values of e close to the
minimum of f ðeÞ. This minimum e* is the solution to the equation

df ðeÞ
de

= 0⇒
1

kBT
=
dsðeÞ
de

, [S15]

which we can also think of as defining the temperature. Notice that
T being positive requires that the system have dsðeÞ=de> 0, which
means there are more states with higher energies.
If we expand f ðeÞ in the neighborhood of e*, we have

f ðeÞ= f
�
e*
�
−
kBT
2

d2sðeÞ
de2

���
e
*

�
e− e*

�2 +⋯, [S16]

which gives

Z≈
N
kBT

e−Nfðe*Þ=kBT
Z

de  e−Aðe−e*Þ
2

[S17]

A=
N
2

"
−
d2sðeÞ
de2

�����
e
*

#
. [S18]

This looks as if the energy per particle is drawn from an approx-
imately Gaussian distribution, with mean e* and variance

D
ðδeÞ2

E
=
1
N

�
−
d2sðeÞ
de2

���
e
*

�−1
, [S19]

and, indeed, this can be shown more directly from the Boltzmann
distribution.
With the interpretation of e* as the mean energy per particle,

we can use Eq. S15 to calculate how this energy changes when we
change the temperature, and we find

de*
dT

=
1

kBT2

�
−
d2sðeÞ
de2

���
e
*

�−1
. [S20]

The change in energy with temperature is called the heat capacity
C, and, when we normalize per particle, it is referred to as the

specific heat. Combining Eqs. S19 and S20, we see that the spe-
cific heat C=N is connected to the variance in energies,

D
ðδeÞ2

E
= kBT2C

N
. [21]

This relationship also can be proven without resorting to the ap-
proximation in Eq. S16.
Our discussion thus far assumes that the second derivative of

the entropy with respect to the energy is not zero. If we take all our
results at face value, then, when d2s=de2 → 0, the specific heat will
become infinite (Eq. S20), as will the variance of the energy per
particle (Eq. S19). This is a critical point.
There is much more to be said about the analysis of critical

points using the entropy vs. energy. However, our concern here is
how these ideas connect to systems that are not in thermal
equilibrium, so that temperature and energy are not relevant
concepts. What we would like to show is that many of the
thermodynamic quantities nonetheless serve to characterize the
behavior of any probability distribution for a very large number of
variables.

Distributions, More Generally. Rather than trying to compute the
partition function, we can ask, for any distribution, how the
normalization condition is satisfied. We still imagine that there
are states s, built of N different variables, as with the patterns of
spiking and silence in a network of neurons. Each state s has a
probability Ps, and we must have

1=
X
s

Ps. [S22]

We can now follow the same strategy that we used above for the
partition function: We do the sum first by summing over all of the
states that have the same value of the (log) probability, and then
we sum over this value. We start by defining

Es =−ln  Ps, [S23]

as in Eq. 1. Then we have

X
s

Ps =
X
s

Z
dE δðE−EsÞPs. [S24]

However, because Ps = e−Es, we can rewrite this as

X
s

Ps =
Z

dE  e−E
X
s

δðE−EsÞ. [S25]

Integrating by parts, we obtain

X
s

Ps =
Z

dE  e−ENðEÞ, [S26]

where NðEÞ is a cumulative density of states, as in Eq. S7,

NðEÞ=
X
s

ΘðE−EsÞ. [S27]

Again, this is a number of states, so the logarithm of this number is
an entropy, exactly as in Eq. S11. Thus, the statement that the
probability distribution is normalized becomes

X
s

Ps =
Z

dE exp½−E+ SðEÞ�. [S28]
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If we have a system in which the state s is built out of N variables,
then we expect that, for large N, both log probabilities (E) and
entropies (S) are proportional to N. A standard example is in
information theory, where s could label a message built out of
N symbols, and the proportionality E∝N is central to proofs of
the classic coding theorems (6). In the case of interest to us here,
we can look at the states taken on by groups of N neurons, and we
can vary N over some range. The function NðEÞ, and hence the
entropy SðEÞ, is a property of a single system with a particular
value of N, and, to remind us of this fact, we can write SNðEÞ.
What happens as N become large is an experimental question.
However, in many of the examples that we understand—from
statistical physics, from information theory, and indeed from more
general examples in probability theory—there is a well-defined
limiting behavior at large N, which means that there is a function

sðeÞ= lim
N→∞

1
N
SNðE=NeÞ. [S29]

If this limit exists, then the normalization condition on the prob-
ability distribution in Eq. S28 becomes

X
s

Ps →NP0

Z
de e−Nf ðeÞ, [S30]

f ðeÞ= e− sðeÞ. [S31]

Now we can see the correspondence with the description of an
equilibrium thermodynamic system, which leads up to the expres-
sions for the partition function in Eqs. S13 and S14:

i) We can assign an energy to every state of the system, which
is just the negative log probability. The effective tempera-
ture of the system is kBT = 1.

ii) We can count the number of states below a given energy,
and the log of this number is an entropy.

iii) If there are N elements (e.g., neurons) in our system, it is
natural to ask about the entropy per element as a function
of the energy per element. If this function has a smooth
limit as N becomes large, sðeÞ, then we can define a ther-
modynamics for the system.

iv) When we sum over states, the sum is dominated by states
that minimize the free energy, f ðeÞ= e− sðeÞ, just as in or-
dinary thermodynamics, provided that the curvature of the
free energy at this minimum is nonzero.

v) The dominance of states near the minimum of the free
energy enforces the notion of “typicality” (6), so that at
large N most of the states we actually see have essentially
the same value of log probability.

vi) If the curvature at the minimum of the free energy vanishes,
then the usual ideas of typicality break down, and we will
see large fluctuations in the log probability of states, even if
we normalize this log probability by N.

vii) The large variance in log probability is mathematically
equivalent to a diverging specific heat in the thermodynamic
case. This is a signature of a critical point.

More About Criticality. Before leaving this discussion, we note that
there are other signatures of criticality, and even different notions
of criticality. In equilibrium systems with interactions that extend
only over short distances, correlations typically extend over some
longer but finite distance ξ; at the critical point, this correlation
length diverges, so that there is no characteristic length scale—
all scales between the size of the constituent particles and the
size of the system as a whole are relevant (7). Not only does the
specific heat diverge at the critical point, but so does the sus-
ceptibility to external fields. All of these diverging quantities

have a power law dependence on the difference between the
actual temperature and the critical temperature, and the exponents
of these power laws are quantitatively universal: Many different
systems, with different microscopic constituents, exhibit precisely
the same exponents, and, in a certain precise sense, these exponents
give a complete description of the system in the neighborhood of
the critical point (8, 9). In the study of complex, nonequilibrium
systems, scale invariance and power law behaviors often are taken
as signs of criticality, but seldom is it possible to exhibit these be-
haviors over the wide range of scales that are the standard in studies
of equilibrium critical phenomena, so one must be cautious.
In almost all equilibrium systems, the approach to criticality

also is associated with the emergence of long time scales in the
dynamics; as with the divergence of the correlation length ξ, the
divergence of the correlation time in the dynamics means that
there is a form of temporal scale invariance at criticality. De-
terministic dynamical systems also exhibit critical phenomena, often
called bifurcations, where the system’s behavior changes qualita-
tively in response to an infinitesimal change in parameters (10).
These phenomena are easiest to understand when the number of
degrees of freedom N is small, but then the sharp bifurcations are
rounded if there is noise in the system; the example of equilibrium
statistical mechanics shows how noisy dynamical systems can re-
cover sharp transitions in the limit of large N. In general, it is not
clear how dynamical and statistical notions of criticality are related
to one another in systems with many degrees of freedom.

Experimental Methods
Much of the analysis in this paper is based on the same data set as
in ref. 11. For completeness, we review our experimental methods
here. Retinae were isolated from the eye in darkness, and the
retina was pressed against a custom-fabricated array of 252
electrodes. The retina was superfused with oxygenated Ringer’s
medium at room temperature. Electrode voltage signals were
acquired and digitized at 10 kHz by a 252-channel preamplifier
(MultiChannel Systems). The sorting of these signals into action
potentials from individual neurons was done offline using the
methods of ref. 12.
The repeated natural movie was a movie of a fish tank captured

at 30 Hz with a standard camera; it lasted 20 s and was repeated
297 times. As noted in the main text, this experiment allowed us
to resolve 160 neurons across the recording array. The random
checkerboard consisted of square pixels, 69  μm on a side, each
chosen independently black or white 30 times per second, cre-
ating a 30-s random movie that was repeated 69 times; this ex-
periment yielded 120 stable, resolved cells. For the spatially
uniform flicker, the luminance of the entire screen was chosen
randomly from a Gaussian distribution 60 times per second,
creating a 10-s-long random sequence that was repeated 98 times;
we separated the signals from 111 neurons.

Effects of Bin Size
We follow earlier work and define the states of the neural network in
discrete timebins (13).That is,weslice the timeaxis inbinsofduration
Δτ, and define σi = 1 at time t if neuron i spikes in the window
½t, t+ΔτÞ, and σi = 0 otherwise. We choose Δτ= 20 ms because this
captures the structure of the correlation functions, but it should be
admitted that there is some arbitrariness here. If we make bins too
large, surely we are grouping together distinct responses of the net-
work, whereas, if we make the bins too small, then meaningful cor-
relations are spread over multiple bins, and we need to analyze the
distribution of state sequences rather than instantaneous states (14).
One might hope, however, that there is a range of bin sizes over

which the basic structure of the distribution PðfσigÞ is constant.We
test this in Fig. S1, which should be compared with Fig. 3. Fig. S1
shows the entropy vs. energy, computed directly from the data,
with bin widths of Δτ= 10 ms and 40 ms, whereas we use
Δτ= 20 ms in the main text. Although details vary a bit, in all
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cases, we see the approach to sðeÞ= e as N becomes large. Al-
though much remains to be understood about the dynamics of
the states in this network, Fig. S1 demonstrates that our main
results do not depend sensitively on the choice of Δτ.

Analysis of Maximum Entropy Models
We can take our maximum entropy model seriously as a statistical
mechanics problem and use Monte Carlo simulation to generate
samples of the states fσig drawn from our model distribution. Heat
capacity curves were estimated by running a Metropolis Monte
Carlo sampler independently at every T. Because the model assigns
an energy E=EðfσigÞ to each state, we can compute the mean and
variance of E from a single long Monte Carlo run, and thus esti-
mate the heat capacity through the thermodynamic identity in Eq.
S21. Samples of the energy were collected at every sweep (roughly
N spin flips); 2× 106 sweeps were performed for every T.
To estimate the function nðEÞ in the maximum entropy models,

including the α-ensembles in Fig. 5, we usedWang–Landau sampling
(15). In detail, the complete energy range was divided into 2× 104
equidistant energy bins (6× 103 for the α-ensembles), the histogram
flatness criterion was 0.9, and the final multiplicative update was
1+ 10−5. These measurements, as well as the specific heat curves,
can both be used to give an estimate of the entropy of the distribu-
tion, and these agree to within better than 1% (11), providing a check
on our sampling procedures. For more on these matters, see the
methods section, “Computing the entropy . . .,” of ref. 11.
In addition to the models described in the main text, we have

also considered models that do not include the term V ðKÞ in
Eq. 4; these are maximum entropy models that match exactly the
mean spike probabilities of individual neurons, and the pairwise
correlations, but not the probability of K neurons spiking simul-
taneously. As explained in ref. 11, these simpler, purely pairwise
models provide noticeably less accurate descriptions of the net-
work activity. [Note that the parameters fhi; Jijg in the two models
are not the same, but must be found, independently, to match the
relevant expectation values (11).] Importantly, although both
models capture all of the pairwise correlations among neurons,
the peak of the specific heat is much stronger and more clearly
N-dependent in the more accurate model, as shown in Fig. S2.

More About Alternatives
In this section, we expand on alternative interpretations of the data,
arguing that the signatures of criticality are unlikely to be explained
away as spurious consequences of less interesting models.

Impact of Limited Data.We have tested in detail the reliability with
which maximum entropy models can be inferred from the available
data. As explained in ref. 11, we can learn these models from 90%
of the data and then compare the quality of the model against
both the training set and the held-out test set. Even with N = 120
neurons, the model predicts that the log likelihood of the test data
is the same as that of the training data, within error bars, and these
errors are less than 1% (figure 4 of ref. 11). Still, one might worry
that small errors associated with the finiteness of the data set
could have a disproportionate impact on the putative signatures of
criticality. To test for this, we have learned models for N = 100
neurons from fractions of the data ranging down to just 10%;
results for the heat capacity vs. temperature (as in Fig. 4) are
shown in Fig. S3. We see that the sharp peak in CðTÞ is essentially
independent of the sample size across this wide range, and that the
variations in CðTÞ across different small fractions of the data are
only a few percent. Thus, this behavior is not a result of overfitting,
nor is it linked in any way to the size of our data set.
It is important that, in Fig. S3, we are always looking at the same

100 neurons; otherwise, variability across subsets could be con-
fused with sampling errors. When we change the size of the data,
we are choosing, at random, some fraction of the experiment, and,
for each fraction, we examine 10 such random choices. For each

choice, we make a completely independent reconstruction of the
maximum entropy model, which means that variability includes
not just the effects of finite data but also any errors in parameter
estimation or in the Monte Carlo estimate of the specific heat.
Evidently, all of these errors are quite small.

Are Correlations Inherited from the Visual Stimulus? As discussed in
the main text, one possible interpretation of our observations is
that correlations among neurons simply reflect correlations in the
visual stimulus. In this case, any interesting features in the joint
distribution of activity among many neurons would be entirely
traceable to the structure of the sensory inputs.
The idea that correlations among neurons should be decom-

posed into contributions from their inputs and contributions
intrinsic to the circuit is very old (16), dating back to a time when it
was hoped that measurement of correlations would allow a direct
inference of connectivity in the circuit. Before discussing the
origin of correlations, it is important to emphasize that the dis-
tinction between “stimulus-induced” and “intrinsic” correlations
is not a distinction that the brain can make. Experimentally, we
make this distinction by providing exact repetitions of the stimu-
lus, but this never happens in the natural world. The only knowl-
edge that the brain has of its visual inputs is the set of signals
provided by the population of ganglion cells itself, so there is no
way to search for correlations with some other reference signal.
We also note that, following decades of experiments on correla-
tions among RGCs (17, 18), there is now direct evidence that
triggering spikes in one ganglion cell changes the response of
other ganglion cells to sensory signals,* so that these cells cer-
tainly are not responding independently to their visual inputs.
Although the dissection of the correlations is irrelevant for brain

function, it is interesting to ask, mechanistically, how these cor-
relations arise. If they arise solely from the visual inputs, then
changing the statistical structure of these inputs should produce a
dramatic effect. We have replaced the natural movies with ran-
domly flickering checkerboards (an approximation to spatiotem-
poral white noise) and spatially uniform but temporally random
flicker. In each case, we have constructed maximum entropy
models (Eqs. 3 and 4) and searched for a peak in the specific heat
vs. temperature, as in Fig. 4; results are shown in Fig. S4.
Although there are quantitative differences among the re-

sponses to the different stimulus ensembles, we see that there are
signatures of criticality in each case. As with the natural movies,
there is a peak in the specific heat, the height of the peak grows
with the number of neurons, and the location of the peak moves
toward T = 1 at larger N. It thus seems unlikely that these sig-
natures of criticality in the specific heat are merely a reflection
of input statistics. Indeed, we should remember that the de-
composition of correlations into intrinsic and stimulus-induced is
incomplete, because the retina adapts to the distribution of its
inputs, on many time scales. It would appear that some combi-
nation of anatomical connectivity and adaptation poises the
population of RGCs near a peak in the specific heat. This points
toward future experiments that should probe more directly the
invariance of thermodynamic behavior across adaptation states.†

It seems worth emphasizing that, even if correlations are largely
inherited from the visual stimulus, this transformation from input
to output correlations is nontrivial. The conventional model for the
input–output relations of the neurons is the “linear–nonlinear”
model, in which the probability of spiking is determined by an
instantaneous nonlinear function of a linearly filtered version of
the stimulus. In the retina, with the stimulus given by the light

*Asari H, Meister M, Computational and Systems Neuroscience, February 23−26, 2012,
Salta Lake City, UT.

†Ioffe M, Tkačik G, Bialek W, Berry MJ, II, Computational and Systems Neuroscience,
February 27 to March 2, 2014, Salt Lake City, UT.
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intensity as a function of space and time, Ið~x, tÞ, the probability of
spiking for one cell in one time bin is then

pðtÞ= p0 g
� Z

d2x
Z

dτ F
�
~x, τ
�
I
�
~x, t− τ

��
, [S32]

where p0 sets the maximum response, g½ · � is a nonlinear function
that we can normalize to range between 0 and 1, and Fð~x, τÞ is
the linear spatiotemporal receptive field of the cell. It is a the-
orem that, if this model is an accurate description of the neural
response, then the receptive field can be determined by corre-
lating the spiking output with the spatiotemporal variations in
the input, provided that the inputs are chosen from a Gaussian
ensemble. In particular, if the inputs are white noise (down to
the spatial and temporal resolution used), as in the random
checkerboard experiments, then

F
�
~x, τ
�
∝
D
I
�
~x, t− τ

�
δ
�
t− tspike

�E
, [S33]

where tspike is the time of a spike and the average h⋯i is com-
puted across a long sample of the random checkerboard movie.
As described in the supporting information of ref. 19, we have
constructed these receptive fields for every cell in the popula-
tion, and then mapped the nonlinearities g½ · � independently for
each cell. If we then generate spikes at the output of this pop-
ulation, and compute their pairwise correlation coefficients, we
obtain the results shown in Fig. S5.
There is a widely held intuition that correlations among neural

responses in the retina should be understood as being shaped
largely by the overlap of receptive fields, but Fig. S5 suggests that
the situation is more complex. The linear–nonlinear model
predicts correlations based on receptive field structure, but these
predictions are strongly at variance with what we see in the data.
The distribution of correlations in the model is narrower than in
the data, failing to access the tail of strong positive correlations
and cutting off at only modest negative correlations. Taking each
pair of neurons individually, we see that the predicted and ob-
served correlations are almost unrelated to one another.

Zipf’s Law, Superposition, and Related Matters.Rather than counting
states that have a particular value of the (log) probability, we can
simply put the states in order of their probability, highest proba-
bility states first. The resulting plot of probability vs. rank is
sometimes called the “Zipf plot,” with reference to the corre-
sponding analysis of words in written language (20). As we have
emphasized elsewhere (4, 5, 21), the Zipf plot is essentially the
plot of entropy vs. energy, turned on its side. Concretely, if the
state with rank r has probability pr, then we have r states with
probability p≥ pr, or an effective energy E≤ − ln  pr. However, the
number of states with energy less that E is what we have called the
cumulative density of states, NðEÞ. Thus, we have

NðEÞjE=−ln  pr = r, [S34]

or, for the entropy,

SðEÞjE=−ln  pr = ln  r. [S35]

What Zipf observed about words is that pr ≈A=r, up to some
maximum r. If we take this as an exact statement (“Zipf’s
law”), then r=A=pr, and hence Eq. S35 becomes

SðEÞ=E+ lnA. [S36]

Thus, Zipf’s law is equivalent to a linear relation between entropy
and energy, with slope one. Because this means that the second

derivative of the entropy with respect to the energy vanishes, Zipf’s
law seems to imply criticality, in precisely the sense that we are
discussing for neurons.
Zipf’s law is a power law, pr ∝ r−γ, in this case with γ = 1, al-

though this is quite different from the usual power law scaling
relations among thermodynamic variables near an equilibrium
critical point (7−9). The ubiquity of Zipf’s law has led many
people to wonder if there is some universal underlying mecha-
nism. In several ways, this discussion parallels the discussion of
1=f noise: In many systems, fluctuations over time have a spec-
trum without any obvious scale, and when we plot the spectrum vs.
frequency, especially on logarithmic axes, the behavior approxi-
mates a power law with exponent close to one.
In the discussion of 1=f noise, it was realized, early on, that a

system might appear to be scale-invariant if it has a discrete set of
scales spread over a sufficiently broad range. Thus, if we look at
fluctuations over time, and what we see is the sum or superposi-
tion of many processes with correlation times τ1,   τ2,   τ3,   · · · ,
then, if these correlation times come from a broad distribution,
the net spectrum will be nearly featureless; even a handful of
correlation times, with the right spread, can give a good approx-
imation to 1=f noise. It seems that this is the correct description of
1=f noise in metals (22). Importantly, if the apparent 1=f noise
really is a superposition of many noise sources with a range of
correlation times, then, if we can perturb these time scales, we
should see measurable departures from 1=f behavior, and this was
the experimental strategy used in sorting out the behavior of
current noise in metals. What this means, of course, is that this is
an example of almost 1=f noise, and that the small deviations from
truly scale-invariant behavior are crucial.
An extreme version of the mixture model for scale-invariant

behavior is discussed by van Opheusden (23), who considered
populations of neurons firing independently but with a distri-
bution of mean spike probabilities. With a proper choice of this
distribution, completely independent neurons can generate a
good approximation to Zipf’s law at fixed N. As noted in the
main text, however, the actual distribution of spike probabilities
that we see in the data does not have this special property.
Further, unless the distribution of spike probabilities is singular,
the variance of log probability across all of the states of the
network will be exactly proportional to the number of neurons
that we consider, and hence such models cannot explain the
supralinear growth of the heat capacity in Fig. 4, which is one of
the key signatures of criticality.
Aitchison et al. (24) have suggested that the original example of

Zipf’s law for words in English should be explained by adapting
the multiple time scale idea in 1=f noise. The distribution of
words can be thought of as a sum over contributions from several
parts of speech (nouns, verbs, adjectives, etc.), and, for each part
of speech, we do not see Zipf’s law but rather a distribution that
has a characteristic scale; the scales for different parts of speech
are different, and, when we sum over all parts of speech, we see
the emergence of Zipf’s law. If this is correct, then, as in the case
of 1=f noise in metals, we must conclude that Zipf’s law is not
exact. Further, it should be possible to modulate the character-
istic scales, or the weights given to each component of the dis-
tribution, and thereby make the deviations from Zipf’s law more
apparent. In metals, one can do this simply by modulating the
temperature (22). In language, the scales and weights for dif-
ferent parts of speech vary across languages, topics, and authors,
so one might expect the equivalent of the temperature modu-
lation experiment has been done, implicitly, many times, al-
though this is not discussed in ref. 24. With modern corpora,
searching more carefully for departures from Zipf’s law should
be straightforward. At best, however, explaining Zipf’s law as a
superposition over multiple parts of speech would be a demon-
stration that deviations from Zipf’s law are important.
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In connecting Zipf’s law to criticality, one must keep in mind
that critical phenomena exist only in the thermodynamic limit. As
we have defined it, the entropy vs. energy SðEÞ is not a smooth
function in a system of finite size, because there are discrete states
with particular probabilities and hence particular energies. A dif-
ferentiable function sðeÞ emerges, as in Eq. S29, only in the limit
that we consider a system with many degrees of freedom. In the
example of language, to make a connection to criticality thus re-
quires more than counting words. Instead, we should imagine text
segments with a length of N letters or words, and ask how the Zipf
plot evolves as a function of N. The emergence of a function sðeÞ
would correspond to the plot of ðln prÞ=N vs. ðln rÞ=N converging
to a limit as N grows, and evidence for criticality depends on the
properties of this limiting function. Thus, criticality is much more
than Zipf’s law at fixed N.

More General Hidden Variable Models. The idea that correlations
among neurons might be inherited from the visual stimulus is one
possibility amongmany.More generally, wemight ask if the pattern
of correlations could be understood as the independent response of
neurons to some signal that is effectively external to the network, or
at least hidden from an observer who sees only the patterns of
spikes and silence. To assess this possibility, it is useful to step back
and think about simpler models in statistical mechanics. Almost
everything that we will say in this section is well-known in the
physics literature, but it seems useful to be explicit.
Consider the mean field Ising ferromagnet, in which spins

σi =±1 experience an effective magnetic field that is proportional
to the average over all of the other spins in the system, so that

EðfσigÞ=−
J
2N

X
i≠j

σiσj. [S37]

Note that the sum is over all pairs, and the factor of N ensures
that the energy of the system is proportional to N. The sum
over all distinct pairs is missing the term i= j, but, because
σ2i = 1, we have

EðfσigÞ=−
J
2N

X
i, j

σiσj +
J
2

[S38]

=−
J
2N

�X
i

σi

�2

+
J
2
. [S39]

The probability of finding the system in any particular state fσig is
given by (choosing units where kBT = 1)

PðfσigÞ≡ 1
Z
e−EðfσigÞ [S40]

=
1
Z
exp

"
J
2N

�X
i

σi

�2

−
J
2

#
. [S41]

However, we can always write

exp
�
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2
x2
�
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Z

dhffiffiffiffiffiffiffiffiffi
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p exp
�
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h2 + hx
�
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Applying this identity to Eq. S41, we have

PðfσigÞ= e−J=2
1
Z

Z
dhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πN=J

p X
fσig

exp
�
−
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i
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�
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We can think of this, more suggestively, as

PðfσigÞ∝
Z

dh  PðhÞ
YN
i=1

PðσijhÞ, [S44]

where PðσijhÞ describes the response of a single spin to an ex-
ternal field,

PðσijhÞ= 1
2 coshðhÞ e

hσi , [S45]

and PðhÞ is a distribution of fields,

PðhÞ= 1
Zh

exp
�
−
N
2J

h2 +N   ln coshðhÞ
�
. [S46]

Thus, a model in which all spins interact with one another,
equally, is mathematically identical to a model in which each spin
responds independently to a magnetic field chosen at random.
Once we transform from interacting spins to a distribution

of fields, all of the thermodynamic behavior of the system is
determined by PðhÞ (Eq. S46). We notice that if J is small
(equivalently, if T is large), the distribution of fields is close to
being Gaussian with standard deviation δh=

ffiffiffiffiffiffiffiffiffi
J=N

p
. If J is large,

the distribution PðhÞ becomes bimodal, with peaks at ±h0ðJÞ
whose locations do not depend on N; this corresponds to the
spontaneous magnetization of the system. Finally, at the critical
value of J = 1, the distribution of fields is unimodal, centered at
h= 0, but broad,

PcritðhÞ≈ exp
�
−
N
12

h4 +⋯

�
, [S47]

so that typical fields are δh≈ 1=N1=4, much larger than δh≈ 1=N1=2

in the high-temperature phase. In this sense, criticality is the state-
ment that the equivalent fields have anomalously large fluctua-
tions (25).
We can find essentially the same equivalence in a much broader

class of models. Consider a collection of spins that interact
through some matrix Jij, so that the energy

EðfσigÞ=−
1
2

X
i, j

Jijσiσj. [S48]

The Hopfield model corresponds to the choice

Jij =
J
N

XK
μ=1

ξμi ξ
μ
j , [S49]

where there are K stored memories,

ξμ ≡


ξμ1, ξ

μ
2,  ⋯, ξμN

�
. [S50]

In this case, the same arguments that lead to Eqs. S44 and S46
now give

PðfσigÞ∝
Z

dkϕ  PðϕÞ
YN
i=1

PðσijhiÞ, [S51]
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where the local fields

hi =
XK
μ=1

ξμi ϕμ, [S52]

and

PðϕÞ= 1
Zϕ

exp

"
−
N
2J

XK
μ=1

ϕ2
μ +

XN
i=1

ln cosh

 XK
μ=1

ξμi ϕμ

!#
. [S53]

As in the mean field model, if J is small, then the effective
fields have a standard deviation δh≈ 1=

ffiffiffiffi
N

p
, and, as the system

approaches the critical point, this scale becomes larger by a
(fractional) power of N. This shouldn’t be surprising because,
with K fixed as N becomes large, the Hopfield model is a mean
field model (26, 27).
If we can have K independent fields, could we have as many as

there are neurons in the network? This is more subtle. If we imagine
that the field acting on each neuron, as defined in Eq. S52, is built
out of N independent components, so that

hi =
XN
μ=1

ξμi ϕμ, [S54]

then we have to be careful to be sure that the typical field is
bounded. Specifically, if all of the ϕμ have the same variance,
hϕ2i, then the variance of the field is

D
ðδhiÞ2

E
=
�
ϕ2XN

μ=1

�
ξμi
�2. [S55]

Clearly, we need to have ξμ ≈ 1=
ffiffiffiffi
N

p
to be sure that the variance

of the fields is not proportional to the size of the system. There-
fore, we should write ξμ = αμi =

ffiffiffiffi
N

p
, where αμi is a number of order

1. Then the correlation between the fields acting on different
neurons becomes

�
δhiδhj


=
1
N

�
ϕ2XN

μ=1

αμi α
μ
j . [S56]

Now, if the influences of the different field components on the dif-
ferent neurons (the coefficients αμi ) are essentially random—e.g.,
some neurons are “off cells” with respect to one field and “on
cells” with respect to another, with no pattern in this assignment—
then the sum in Eq. S56 is of N random numbers with zero mean,
and hence the typical scale for the sum is hδhiδhji≈ 1=

ffiffiffiffi
N

p
. This is

not at all what one expects in a critical system. The only way to
escape from this conclusion is for the terms αμi to have some
structure, which is equivalent to fixing some correlations among
the fields acting on different spins. Put another way, if the system
we are studying is equivalent to one in which N spins (or neurons)
are reacting independently to N distinct fields, then criticality re-
quires some form of correlation among these fields.
The role of correlations in critical behavior is even clearer in

the general case where we have an arbitrary matrix of interactions
Jij. Then we can write

PðfσigÞ≡ 1
Z
exp

"
1
2

X
i, j

Jijσiσj

#
[S57]
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where the distribution of fields is given by

PðfhigÞ= 1
Z′
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#
, [S59]

where

Z′=Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNdet J

q
, [S60]

and Kij is the matrix inverse of Jij, Kij = ðJ−1Þij. This implies that the
partition function can be written as an integral over the fluctuating
fields,

Z∝
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dNh  exp
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X
i, j

Kijhihj +
X
i

ln cosh hi

�
. [S61]

If we think about a family of models in which the interactions Jij
are scaled up and down in strength, e.g., with an effective temper-
ature Jij→ Jij=T, then there is (often) a critical point at some value
of the temperature T. What happens to the probability distribu-
tion of the equivalent fields, PðfhigÞ, at this critical point? It is
hard to answer this question in general, but, in the well-studied
examples from statistical mechanics—where the elements of the
network live on a regular lattice, and the matrix Kij has a structure
that depends only the distance between lattice points i and j,
decaying rapidly so that the dominant terms connect near neigh-
bors—the structure of PðfhigÞ near criticality approaches the
structure of ϕ4 field theory (9). Crucially, the variance of the field
at a single point, hðδhiÞ2i, does not acquire any anomalous N de-
pendence at the critical point. Instead, criticality is marked by the
appearance of long-range correlations among the fields at differ-
ent points, so that the sum of the fields over the entire sample (the
k= 0 Fourier component) does have a diverging variance.
To summarize, almost anymodel of interacting spins (or neurons)

can be rewritten as a model of spins that respond independently to
external signals; the thermodynamic behavior is then controlled by
the distribution of these signals. If the number of signals is small
compared with the number of elements in the network, which
corresponds to a mean field model, then, away from criticality, the
typical scale of these signals is small (e.g., ∼ 1=

ffiffiffiffi
N

p
), and the ap-

proach to the critical point involves this scale becoming anoma-
lously large. In the more general case where the number of signals
is comparable to the number of neurons, criticality is associated not
with an anomalous scale for the fluctuations of any single signal but
rather with large-scale correlations among these signals.
The correlations among neurons are described by a matrix

χij = hσiσji− hσiihσji, and it is useful to think about the eigenvalues
of this matrix. In a mean field model at criticality, or in the scenario
described in ref. 25, there will be one eigenvalue separated from all
of the others, which carries most of the variance of the entire sys-
tem. In a system with homogeneous local interactions, the eigen-
modes of χij are Fourier modes, and, at criticality, the spectrum ~χðkÞ
diverges as k→ 0, but continuously, so that no single mode sepa-
rates cleanly from all of the others. Similarly, a mean field model is
equivalent to an interacting model in which the matrix Jij is of low
rank (in the simplest case, rank one). Analyzing the raw data from
our population of N = 160 neurons, we find that the largest eigen-
value of χij captures less than 10% of the total variance, and is
separated from the second largest eigenvalue by a factor of less than
2. Analyzing the models we have constructed, the spectrum of Jij is
nearly continuous, with no sign of a single dominant mode. These
observations indicate that the network we are studying is not in the
mean field regime and, more generally, that its collective behavior
cannot be captured by linear dimensionality reduction strategies.
The idea that we can explain what we observe in the population

of RGCs as being the result of neurons responding to other signals
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evidently has clear limits. Except in special cases, assigning ap-
parent critical behavior to such a model effectively transfers the
problem to explaining the strong correlations among the signals
that are driving the neurons. In this regard, it is interesting that,
although details vary, we see signs of near-critical behavior in
response to naturalistic movies, random checkerboards, and full-
field flicker (Fig. S4). Across these different stimulus ensembles,
the correlation structure of signals at the input to the retina is
changing dramatically, and so, even if we think that the behavior of
the ganglion cell population should be ascribed to the statistics of
input signals, one has to explain how the correlations needed to
mimic criticality are maintained by the retinal circuitry.

Latent Variables Redux. Aitchison et al. claim that critical phe-
nomenology is a generic consequence of large fluctuations in latent
variables (24), arguing that the behavior of mean field systems
discussed by Schwab et al. (25) is typical of what we should see in
complex, biological contexts. They also propose explicit candidates
for the latent variables in the case of RGCs. We have argued in the
preceding paragraphs that the mean field case is not the typical
one in statistical physics, and is unlikely to describe the data we are
discussing here. Nonetheless, one might worry that the “large var-
iance” scenario does succeed in producing something like the crit-
ical behavior we have identified, without any of the fine tuning that
one might have expected by analogy with known equilibrium critical
phenomena. Here we test the suggestions of ref. 24 in more detail.
Concretely, Aitchison et al. (24) propose that all of the phe-

nomenology of criticality should be understood in terms of models
where different neurons spike or remain silent independently
given the value of a latent variable that is broadcast to the entire
network. Their first suggestion is that this variable is the visual
stimulus itself, parameterized by time during the stimulus movie
(figure 3 B and C of ref. 24). If this model is correct, then, in
experiments with repeated presentations of the same stimulus, we
should find zero correlations among neurons when we average
over repetitions at the same moment in time. This test is not as
simple as it sounds, however, because natural movies have many
epochs in which the probability of one cell spiking is essentially
zero. In our data, we record from N = 160 neurons and we have
T=Δτ= 953 distinct time bins in the natural movie, so there are ∼ 105
entries in the matrix of spike probability vs. time; of these, a
fraction 0.68 are consistent with zero, in that we see no spikes
across 297 repetitions of the movie. Evidently, in such silent bins,
one cannot estimate correlations. Conversely, a significant com-
ponent of the overall correlations between two neurons may be
contributed by the temporal coincidence of these silent epochs.
As an aside about silent epochs, we note that the maximum

entropy model (Eqs. 3 and 4) predicts that individual neurons
should have near-zero probability of spiking when the effective
field contributed by the other neurons in the network is sufficiently
negative. This prediction is quantitatively correct, down to proba-
bilities of ∼ 0.001, as shown in figure 9 of ref. 11. By tracking the
effective field vs. time during the stimulus movie, we can correctly
predict continuous epochs of silence, characteristic of the neural
response to natural stimuli, as shown in figure 15A of ref. 11.
To test the hypothesis of independence given the latent time

variable, we compute the correlation coefficient between the binary
variables σi and σj for every pair of cells ði,   jÞ at a fixed time t, but
only at times in the movie where each cell in the pair generates at
least five spikes across the 297 repetitions of the stimulus; results
are shown in Fig. S6. Although we can find moments in time
where neurons that are strongly correlated across the whole ex-
periment have near-zero correlation, we can also find the oppo-
site. In fact, the range of correlation coefficients that we observe
while conditioning on a particular time in the stimulus movie is
broader than the distribution that we see in the overall correla-
tions. It is perhaps most striking that neurons with near-zero
pairwise correlation across the whole experiment can have large

positive or negative correlations when conditioned on the stimulus
movie, exactly the opposite of what Aitchison et al. (24) predict.
A further difficulty in testing the hypothesis of conditional in-

dependence arises from the limited size of our data set, or any
reasonable data set. As we have discussed in ref. 11, the long duration
of the experiments we are analyzing means that overall correlations
can be estimated with high precision, and the threshold for reliable
detection of a correlation is correspondingly small. However, if we
are trying to estimate the correlations at a single moment in time,
even uncorrelated neurons will exhibit spurious correlations with
typical scale 1=

ffiffiffiffiffiffiffiffiffiffi
Nreps

p
, where Nreps is the number of repetitions of

the stimulus movie; even with the relatively large Nreps = 297 in this
experiment, we expect spurious correlations of ∼ 0.05, as indicated
in Fig. S6. The fact that many of the correlations we observe are
smaller than this, of course, does not mean that neurons are con-
ditionally independent but rather that we can’t tell. This is a serious
problem in drawing conclusions about the collective behavior of the
network, because we know that widespread correlations on the
order of 1=N can be signatures of nontrivial collective behavior (13,
28). To reliably exclude correlations on this scale at one moment in
time, with no further assumptions, would require Nreps ≈N2, which
rapidly becomes impossible in larger networks; even if we are more
optimistic and assume that the relevant scale of correlations is
∼ 1=

ffiffiffiffi
N

p
, we still need Nreps ≈N. This means that, with reasonable

data sets on large networks, one could easily conclude that the data
are statistically consistent with the hypothesis of conditional in-
dependence when, in fact, the correlations are sufficiently strong to
provide the signature of dramatic collective behavior. For a differ-
ent approach to this problem, which reaches similar conclusions to
our Fig. S6, see ref. 29.
The second suggestion of Aitchison et al. (24) is that the rel-

evant latent variable is the total number of spikes generated by the
network, K =

PN
i=1σi (figure 3 D and E of ref. 24). This is difficult

to understand because K is a collective variable, not a latent
variable. For a network with a finite number of neurons, for
example, it is not possible for the activity of each cell to be in-
dependent given K; at a minimum, there must be anticorrelations
that hold the number of spikes fixed. In trying to make sense out
of these ideas, we have examined the correlations between pairs
of cells at fixed K, and find almost all possible behaviors, in-
cluding strong positive correlations (the opposite of what is re-
quired to hold K fixed) with K-dependent strengths.
Our earlier work emphasized that the distribution of K itself is

anomalous, and that maximum entropy models that capture this
distribution already exhibit signatures of criticality (30). Focusing
on the summed activity of a network of neurons is analogous to
focusing on the total magnetization of a magnet. Indeed, criti-
cality in ferromagnets is associated with an anomalously broad
distribution of magnetizations, just as the signatures that we see
of critical behavior in a neural network are associated with an
anomalously broad distribution of K. However, in no sense does
this explain the critical phenomena. In particular, the qualitative
observation of large fluctuations in magnetization is consistent
with many different quantitative critical behaviors, including the
mean field case where there is no divergence of the specific heat.
To summarize, the suggestion by Aitchison et al. (24) that time in

the stimulus movie provides a latent variable whose variation ex-
plains the behavior that we see fails because the correlations
conditioned on this latent variable are as large and structured as
observed without conditioning. Their suggestion that the total
number of spikes is the relevant variable confuses latent with
collective variables, and we find that conditioning on this collective
variable also does not simplify the correlation structure of the
network. We also have examples in equilibrium statistical me-
chanics where (qualitatively) large fluctuations in a collective
variable are associated with critical phenomena of different uni-
versality classes, so that such fluctuations alone cannot single out
behaviors such as those we observe in Figs. 3 and 4.

Tkačik et al. www.pnas.org/cgi/content/short/1514188112 8 of 13

www.pnas.org/cgi/content/short/1514188112


We can also assess the claim that large fluctuations in a latent
variable lead generically to critical behavior by exploring a
biologically plausible model. Imagine that the sensory stimulus can
be parameterized by a variable ~x. This could represent, in the
retina, the position of a single object. More abstractly, we can
think about the parameters in a space of possible stimuli, so that~x
represents position in a “feature space.” We could also imagine
that we are recording from a part of the brain that represents the
organism’s own position in space, as with place cells in the hip-
pocampus, in which case~x is again a literal position variable. As a
model, we will consider neurons such that each cell n generates
spikes when ~x is in the neighborhood of that cell’s preferred
stimulus~xn. More quantitatively, we give each cell a receptive field
such that the probability of spiking in a small window of time is

pn
�
~x
�
=P0 exp

"
−
j~x−~xnj2
2σ2

#
, [S62]

and each cell is independent of the rest given the value of the
stimulus ~x. Notice that because we will be analyzing only the

distribution of responses in a single small window of time Δτ,
as with our analysis of the real data, we don’t need to make any
assumptions about the temporal statistics of the spikes.
We focus on the simplest case, where~x is one-dimensional, and

take the distribution of this variable to be uniform across some
interval; without loss of generality, we can take 0< x< 1. We
assume that the N neurons have preferred stimuli xn that are
random but uniformly distributed throughout this interval. Then
the only parameters to be adjusted are the width σ of the re-
ceptive fields and the peak spike probability P0. Fig. S7 shows an
example with N = 100 neurons, P0 = 0.3, and σ = 0.1; reasonable
variations in these parameters do not change the qualitative
picture. We can generate long samples of data from this model,
and then perform exactly the same analysis that we have done for
the real neurons. We see that, although spike probabilities are
being modulated in a correlated fashion across the entire pop-
ulation, there is no hint of Zipf’s law (Fig. S7B), and the plot of
entropy vs. energy is far from linear (Fig. S7D). This thermo-
dynamic signature of criticality thus is not a generic consequence
of strong driving by some latent variable.
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Fig. S1. Entropy vs. energy, directly from data, at different bin widths. Analysis as in Fig. 3. (A) Δτ= 10 ms. (B) Δτ= 40 ms.
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Fig. S2. Signatures of criticality are stronger in more precise models. (Left) Specific heat vs. T and N for the full model, redrawn from Fig. 4B. (Right) Specific
heat in a maximum entropy model that matches mean spike probabilities and pairwise correlations but not the global activity distribution.
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Fig. S4. Specific heat in different stimulus ensembles. (A) Random checkerboard stimuli, averaged over five subnetworks at each N. (B) Full field flicker stimuli,
averaged over 30 subnetworks at each N. In A and B, arrows indicate the peak of heat capacity for a matched network of independent neurons; for clarity,
error bars are shown only at the peak. (C) The approach of the peak of specific heat, T*, to T = 1 (model reconstructions), for fish movie (black, from Fig. 4), full
field flicker (brown), and checkerboard (violet). (D) The growth of specific heat with N for the same stimulus ensembles. Error bars in C and D are jackknife error
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Fig. S7. Responses and thermodynamics for a population of model neurons. (A) Spike raster from a population of neurons with responses determined by
Eq. S62, as the stimulus variable x moves along the trajectory shown in C. (B) Zipf plot—log(probability) vs. log(rank)—for the “words” describing the patterns
of response in the model population of 100 cells; dashed line is Zipf’s law, for comparison. (D) Entropy vs. energy per neuron in the model population of
100 cells, computed as for the real data in Fig. 3A; dashed line is of unit slope, for comparison.
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