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1 Introduction

Inspiraling binary systems containing very compact objects, like black holes or neutron
stars, are considered to be among the most promising sources of gravitational waves for
laser interferometric detectors such as LIGO (Caltech-MIT) or VIRGO (France-Italy).
Because of gravitational-radiation reaction (relativistic equivalent to electromagnetic Lar-
mor effect), the orbit of compact binaries is expected to shrink progressively before the
bodies eventually merge together. Naturally, the amplitude of the gravitational-wave
emissions will increase as the separation between the two bodies decreases (and as their
velocity increases). For that reason the late stage of inspiral prior to coalescence, for
which the gravitational emissions are supposed to be the strongest, has become a focus
of high interest in the past few years. The main challenge lies in the characterization
of the gravitational waves we expect to detect, and in the search for methods allowing
to extract information from the waveform, such as the masses involved in the system, or
the nature of the body resulting from the merger (probably a black hole). In order to
meet this challenge, one needs to characterize the motion of the binary on the one hand,
and the gravitational flux generated by this motion on the other hand. Both phenom-
ena are coupled, since the motion is affected by the gravitational field it generates by
back-reaction.

Two different approaches have been proposed to handle the problem:

• The post-Newtonian treatment, relying on the expansion of solutions of Einstein’s
equations in powers of v2/c2 (v being the typical velocity of the system) applied to
the two-body problem.

• The numerical treatment, which consists in solving the full Einstein equations on
computers.

1.1 Post-Newtonian methods

Post-Newtonian techniques have proved particularly accurate for describing the early stage
of inspiral. One can show, either from the post-Newtonian equations of motion or from
the gravitationial waveform, that the relative motion tends to evolve towards a circular
orbit when submitted to gravitational-radiation reaction. By the time the gravitational
flux is strong enough to be detectable by laser interferometric antennas (10−22 relative
perturbation to the background metric out to 100 Mpc), the orbit will have become “quasi-
circular”. It will actually be slightly spiral (hence the prefix “quasi”) because of the decay,
but we will assume the evolution to be adiabatic, and we will consider that the orbit evolves
smoothly from one circular orbit to the other.

Recent estimates suggest that reasonably common events will generate a very weak
signal to noise ratio in current detectors. Methods of matched filtering, which consist
in using known templates to extract the signal from the noise, have been developped to
overcome this difficulty. However, one has to predict the phase of the signal with very
high accuracy to implement this method.

In order to compute the phase we can use the energy balance equation:

dE

dt
= −L, (1)
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where E is the total center-of-mass energy of the binary, and L the gravitational “lumi-
nosity” of the source—i.e. the gravitational energy flux as seen from infinity—and express
these two quantities in terms of the characteristics of the motion. At leading order, the
center-of-mass energy reads:

E = −Gµm
2a

, (2)

where a is the semimajor axis, µ the reduced mass and m the total mass. The total
luminosity is given at leading order by the Einstein quadrupole formula:

L =
G

5c5
d3Qab

dt3
d3Qab

dt3
=

8G3

5c5
η2
(m

r

)4
(

12v2 − 11ṙ2
)

, (3)

where Qab is the trace-free quadrupole moment tensor of the source, r the separation
between the two bodies, v the relative velocity, η = µ/m, and where we use the Einstein
summation convention.

This quadrupole formula, directly derived from the equations of general relativity, has
been proved to agree with the observation of the dynamics of the binary pulsar 1913+16
[1]. Indeed, using (1), (2) and (3), one can characterize the decay of the orbit by:

Ṫ = −192πG5/3ηm−2/3

5c5

(

T

2π

)−5/3
(

1− e2
)−7/2

(

1 +
73

24
e2 +

73

96
e4
)

, (4)

where T is the orbital period. This formula perfectly agrees with the observations, which
gives an indirect evidence of the existence of gravitational waves and a strong support to
general relativity.

Nevertheless, direct detection of gravitational waves necessitates very accurate expres-
sions of the phase. For that purpose post-Newtonian (PN) extensions of (2) and (3) have
been computed through 3.5 PN order (O(v/c)7) beyond the leading order). The expression
of the energy largely depends on the expression of the equations of motion, which have
been computed by several groups [12]-[24] (see section 2.5 for more details). As for the
waveform, and hence the luminosity, they have been computed by two different groups
through the second post-Newtonian order in 1995 [2, 3, 4], and more recently up to 3.5
order by Blanchet et al. [5].

We can now make use of the fact that the orbit is quasi-circular. In that particular
case, we have formulae of the type [6]:

E = −µc
2x

2

(

1 + λ1x+ λ2x
2 + · · ·

)

, (5)

L =
32η2c5

5G
x5
(

1 + µ1x+ µ2x
2 + · · ·

)

, (6)

with x =
(Gmω)2/3

c2
, (7)

where ω is the angular velocity of the relative motion. Combining these two equations
with (1), one can find a 3.5 post-Newtonian accurate expression of the phase (see [6] for
a complete computation). It was actually shown that a 3PN order accuracy was required
to use effectively the filtering techniques mentioned before.
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We claimed that the post-Newtonian equations were effective for the early stage of
inspiral, i.e. for large separations. For short separations however, where high velocities
and strong gravitational fields are implied, the post-Newtonian approximation is no longer
valid. Moreover, finite-size effects (formally of the fifth post-Newtonian order) will have
to be taken into account in the case of neutron stars, where they have a considerable
influence.

1.2 Numerical solutions

At regimes where the confidence in post-Newtonian formulae ends, the problem has to be
handled numerically. Numerical simlulations are usually implemented within the frame-
work of the so-called “3+1” formulation of general relativity, which relies on the separation
between space and time in Einstein’s equations. The first stage is to solve the initial value
problem consisting of two constraint equations (the Hamiltonian and the momentum con-
straints) which account for four of the ten Einstein equations. Then, starting off with
this initial value data set, one can evolve the system using the six remaining Einstein
equations.

A couple of additionnal assumptions are made to make the initial value problem more
tractable numerically. First it is imposed that the initial state is a perfect circular orbit,
consistently with the post-Newtonian prediction. This is supposedly satisfied by the ex-
istence of an initial “helical Killing vector” of the type ∂

∂t + Ω ∂
∂φ , which ensures that the

state of the system is invariant along this space-time direction. This condition actually
corresponds to a local condition of circularity whose basic translation into post-Newtonian
language is ṙ = 0, and accounts for one additionnal Einstein equation. Besides, this as-
sumption amounts to ignoring radiation reaction in the initial state, which should give
birth to anti-damping effects in the evolution. Secondly, convenient but arbitrary assump-
tions are made, such as the conformal flatness of the spatial metric, that may introduce
errors in the generated solutions. This latter approximation is usually justified by the
neglect of radiation reaction in the initial data.

Along with the relativistic equations, one has to impose horizon boundary conditions
for black hole binaries, and to provide a realistic (usually polytropic) equation of state for
neutron star binaries.

In order to fully understand the inspiral of compact binaries, one would like to know
how to connect the post-Newtonian regime to the numerical regime. This is not as easy
as one might think because numerical simulations, which are limited by computational
resources, cannot always be started with large separations where the post-Newtonian
approximation is believed to be valid. For neutron stars however, separations are perforce
larger because of the size of the bodies themselves, but in that case finite-size effects cannot
be neglected.

Two important covariant quantities generated by both post-Newtonian and numerical
approaches are the total energy and secondarily the total angular momentum of the system.
They can both be expressed as functions of the orbital frequency Ω, which is a covariant
quantity in the case of circular orbits, and are therefore good candidates for making
comparisons between post-Newtonian and numerical results.

We have developed post-Newtonian formulae for E(Ω) and J(Ω) at the apastron or
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periastron (where ṙ = 0) for arbitrary eccentric orbits in three different cases corresponding
to three different initial-data numerical simulations:

• Corotational black hole simulation [7]. Since the stars are corotating (spinning
with the same angular velocity as the orbital frequency), we will have to add spin
contributions. The black holes will be considered to be point-masses.

• Irrotational neutron star simulation [8]. In that case we will have to include Newto-
nian tidal interaction terms.

• Corotational neutron star simulation (Mark Miller et al.). This simulation has been
adapted for our purpose: we have been provided with the total energy of the binary
from which the energy of each star taken in an isolated state and spinning with the
same angular velocity has been substracted off, so that the resulting energy is purely
orbital. In that case we will have to add spin-orbit and tidal contributions.

It has been estimated that by the time a compact binary reaches coalescence it will not
have been synchronized by tidal viscosity. This means that the corotational assumption is
not expected to be fulfilled, even though it makes the numerical problem easier to handle
(in that case the velocity field for the matter is proportional to the helical Killing vector).

The remainder of this report gives the details of the computations leading to the com-
parison between post-Newtonian formulae and numerical data. First, we will describe the
methods used to solve the post-Newtonian equations of motion, and check their consis-
tency with previous results. Then a hydrodynamic model will be presented, and applied
to the case of two identical neutron stars. Finally, we will attempt to fit the numerical
data with our theoretical curves. The results will be discussed for each case.



2 Solution to the post-Newtonian equations of motion

2.1 Equations of motion

The two-body problem has been solved for long in the Newtonian case. However, for very
massive bodies, as the Newtonian approximation becomes inappropriate, new equations
including corrections due to general relativity are required. These corrections are expressed
as an expansion in powers of ε ≈ v2/c2 ≈ Gm/rc2. The leading term of this expansion will
be the Newtonian term. Then will follow the so-called post-Newtonian (PN) contributions.

We use the standard form of the equations of motion, written in a “Newtonian-like”
manner:

a1 =
d2x1

dt2
=
m2

r2

{

n[−1 + (PN) + (P 2N) + (P 5/2N) + (P 3N) + (P 7/2N) + · · · ]

+v[(PN) + (P 2N) + (P 5/2N) + (P 3N) + (P 7/2N) + · · · ]
}

, (8)

where xa and ma denote the position and the mass of the body a, n is the unit vector from
1 to 2, v the relative velocity, and r the separation between the two bodies. Henceforth we
use units in which G = c = 1. The notation P nN represents the nth post-Newtonian cor-
rection to Newtonian gravity. These equations are valid only for point-like, non-spinning
bodies. As such, according to the “effacement” principle, which is a extention of the strong
equivalence principle, they should not depend on the internal structure of the bodies, but
only on their masses. This expansion has two limitations: (i) for short separations (and
big velocities), the approximation ε¿ 1 is expected to break down. In that case the PN
expansion—which is known to a finite order—is no longer valid; (ii) in real systems, the
bodies will not be exact point-masses, and finite-size effects will have to be included.

Post-Newtonian terms P nN include even (2n even) and odd (2n odd) orders. Even
terms are conservative, in the sense that we can associate a conserved energy to them.
Odd terms correspond to the radiation reaction energy loss, and therefore are not conser-
vative. In particular, as we shall see in detail, they will cause the orbit to shrink, and the
eccentricity to decrease.

For more convenience, we convert the two-body problem to an effective one-body
problem. For this purpose we choose the origin to be at the center of mass of the system,
which is defined by an integral of the motion. Then we change the variables to the relative
coordinates x = x1 − x1 and, using relations of the type:

x1 = [m2/m+ (PN) + · · · ]x,
x2 = [−m1/m+ (PN) + · · · ]x, (9)

where m = m1 +m2 is the total mass of the system, we obtain the equations of motion in
terms of relative coordinates:

a =
d2x

dt2
=
m

r2
[(−1 +A)n+Bv] , (10)

where A and B include post-Newtonian terms. So far, equations of motion have been
computed up to 3.5th order. In an appropriate harmonic gauge, writing A = A1+A2+ · · ·
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and B = B1 +B2 + · · · , the expressions for A and B read:

A1 = 2(2 + η)
m

r
− (1 + 3η)v2 +

3

2
ηṙ2, (11)

A2 = −3

4
(12 + 29η)

(m

r

)2
− η(3− 4η)v4 − 15

8
η(1− 3η)ṙ4

+
3

2
η(3− 4η)v2ṙ2 +

1

2
η(13− 4η)

m

r
v2 + (2 + 25η + 2η2)

m

r
ṙ2, (12)

A5/2 =
8

5
η
m

r
ṙ

(

3v2 +
17

3

m

r

)

, (13)

A3 =

[

16 +

(

14997

140
− 41

16
π2 − 44

3
λ

)

η +
71

2
η2

]

(m

r

)3
− 1

4
η(11− 49η + 52η2)v6

+
35

16
η(1− 7η + 7η2)ṙ6 + η

(

20827

840
+

123

64
π2 − η2

)

(m

r

)2
v2

−
[

1 +

(

22717

168
+

615

64
π2

)

η +
11

8
η2 − 7η3

]

(m

r

)2
ṙ2

−η
(

75

4
+ 8η − 10η2

)

m

r
v4 + η

(

15

2
− 237

8
η +

45

2
η2

)

v4ṙ2

−η
(

79− 69

2
η − 30η2

)

m

r
ṙ4 − 15

8
η
(

4− 18η + 17η2
)

v2ṙ4

+η
(

121− 16η − 20η2
) m

r
v2ṙ2, (14)

A7/2 = −8

5
η
m

r
ṙ

[

3

28
(61 + 70η)v4 +

1

42
(519− 1267η)

m

r
v2 − 15

4
(19 + 2η)v2ṙ2

+
1

4
(147 + 188η)

m

r
ṙ2 + 70ṙ3 +

23

14
(43 + 14η)

(m

r

)2
]

, (15)

B1 = 2(2− η)ṙ (16)

B2 =
1

2
ṙ
[

η(15− 4η)v2 − (4 + 41η + 8η2)
m

r
− 3η(3 + 2η)ṙ2

]

, (17)

B5/2 = −8

5
η
m

r

(

v2 + 3
m

r

)

, (18)

B3 =

[

4 +

(

5849

840
+

123

32
π2

)

η − 25η2 − 8η3

]

(m

r

)2
+ η

(

65

8
− 19η − 6η2

)

v4

+η

(

45

8
− 15η − 15

4
η2

)

ṙ4 + η
(

15 + 27η + 10η2
) m

r
v2

−η
(

329

6
+

59

2
η + 18η2

)

m

r
ṙ2 − η

(

12− 111

4
η − 12η2

)

v2ṙ2, (19)

B7/2 =
8

5
η
m

r

[

1

28
(313 + 42η)v4 − 1

42
(205 + 777η)

m

r
v2 − 3

4
(113 + 2η)v2ṙ2

+
1

12
(205 + 424η)

m

r
ṙ2 + 75ṙ4 +

1

42
(1325 + 546η)

(m

r

)2
]

. (20)

Using the general relation for circular Keplerian orbits v2 = m/r, we have m/r ≈ ε. ṙ is
the radial velocity v · n, and is of order ε1/2. η is the mass ratio m1m2/m

2.
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We can associate two useful quantities with the conservative part of these orbital
equations, namely the total energy E and the total angular momentum J. Writing E =
E0 + E1 + E2 + E3 and J = J0 + J1 + J2 + J3, we have:

E0/µ =
1

2
v2 − m

r
(21)

E1/µ =
3

8
(1− 3η)v4 +

1

2
(3 + η)v2m

r
+

1

2
η
m

r
ṙ2 +

1

2

(m

r

)2
(22)

E2/µ =
5

16
(1− 7η + 13η2)v6 +

1

8
(21− 23η − 27η2)

m

r
v4 +

1

4
η(1− 15η)

m

r
v2ṙ2

−3

8
η(1− 3η)

m

r
ṙ4 +

1

8
(14− 55η + 4η2)

(m

r

)2
v2

+
1

8
(4 + 69η + 12η2)

(m

r

)2
ṙ2 − 1

4
(2 + 15η)

(m

r

)3
, (23)

E3/µ =

[

3

8
+

(

2747

140
− 11

3
λ

)

η

]

(m

r

)4
+

1

128

(

35− 413η + 1666η2 − 2261η3
)

v8

+

[

5

4
−
(

6747

280
− 41

64
π2

)

η − 21

4
η2 +

1

2
η3

]

(m

r

)3
v2

+

[

3

2
+

(

2321

280
− 123

64
π2

)

η +
51

4
η2 +

7

2
η3

]

(m

r

)3
ṙ2 +

1

16
(55− 215η + 116η2 + 325η3)

m

r
v6 +

1

16
η(5− 25η + 25η2)

m

r
ṙ6

+
1

16
(135− 194η + 406η2 − 108η3)

(m

r

)2
v4

− 1

48
η(731− 492η − 288η2)

(m

r

)2
ṙ4

+
1

16
(12 + 248η − 815η2 − 324η3)

(m

r

)2
v2ṙ2

− 1

16
η(21 + 75η − 375η2)

m

r
v4ṙ2 − 1

16
η(9− 84η + 165η2)

m

r
v2ṙ4, (24)

J0 = µ(r× v) (25)

J1 = µ(r× v)
[

(3 + η)
m

r
+

1

2
(1− 3η)v2

]

(26)

J2 = µ(r× v)
[

1

4
(14− 41η + 4η2)

(m

r

)2
+

3

8
(1− 7η + 13η2)v4

+
1

2
(7− 10η − 9η2)

m

r
v2 − 1

2
η(2 + 5η)

m

r
ṙ2
]

, (27)

J3 = µ(r× v)
{[

5

2
−
(

5199

280
− 41

32
π2

)

η − 7η2 + η3

]

(m

r

)3

+
1

16
(5− 59η + 238η2 − 323η3)v6

+
1

12
(135− 322η + 315η2 − 108η3)

(m

r

)2
v2
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+
1

24
(12− 287η − 951η2 − 324η3)

(m

r

)2
ṙ2

+
1

8
(33− 142η + 106η2 + 195η3)

m

r
v4 +

3

8
η(2− 2η − 11η2)

m

r
ṙ4
}

, (28)

where µ is the reduced mass m1m2/m. These are constants of the motion provided that
the radiation damping caused by P 5/2N and P 7/2N terms is ignored.

2.2 Osculating orbits elements and planetary equations

In order to solve these equations, we shall adopt a formalism involving orbital osculating
elements. Such an approach is expected to be fruitful, since we are dealing with a perturbed
two-body problem. The osculating elements basically describe the Keplerian orbit that
would be tangent to the actual trajectory at a particular moment. In the Newtonian case,
the osculating elements are constant; in a perturbed Newtonian problem, they change
smoothly with time (see [9] for more details about the method of osculating elements
applied to the post-Newtonian problem).

From the equations of motion we can easily deduce that the trajectory is planar, which
allows us to reduce the number of variables from six to four. If we assume that the plane
of the motion is perpendicular to z (x, y, z being a standard cartesian coordinate system),
our new set of variables (α, β, p, φ) is related to the old one (x, y, vx, vy) by the definitions:

x = r cosφ, (29)

y = r sinφ, (30)

vx = −(m/p)1/2(β + sinφ), (31)

vy = (m/p)1/2(α+ cosφ), (32)

with p/r = 1 + α cosφ+ β sinφ. (33)

Reciprocally, we can deduce the osculating elements from the orbital variables by using
the following relations:

φ = 2arctan

(

y

x+ r

)

, (34)

α =
σ

m
vy − cosφ, (35)

β = − σ
m
vx − sinφ, (36)

p = r(1 + α cosφ+ β sinφ), (37)

with σ = (r× v) · z. (38)

These additional expressions will also be useful:

ṙ = (m/p)1/2(α sinφ− β cosφ) r2φ̇ = (mp)1/2. (39)

The quantity p is called the semi-latus rectum. We note that the vector (α, β) has the norm
of the ordinary Keplerian eccentricity e and the direction ω of the Keplerian periastron,
so that we have: α = e sinω and β = e cosω.
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In what follows, we will use the parameter u = m/p rather than p. Note that u
is of order ε. In the Newtonian case, u, α and β are constants of the motion; in the
post-Newtonian problem, these parameters vary according to the following Lincoln-Will
planetary equations:

du

dφ
= −2u3/2B, (40)

dα

dφ
= A sinφ+ 2u1/2B(α+ cosφ), (41)

dβ

dφ
= −A cosφ+ 2u1/2B(β + sinφ), (42)

where we have used (29)-(39) and (10).
When the definition of x and v [(29)-(32)] are replaced into the expressions of A and

B [(11)-(20)], we get coupled first-order differential equations of the variables α(φ), β(φ)
and u(φ).

2.3 Iterative resolution of the planetary equations

The Lincoln-Will planetary equations derived from (40)-(42) are too long to be reproduced
here (they can be found through 2.5PN order in [9]). However we can schematically write
them in the general form:

du

dφ
= εDu1(α, β, u, φ̃) + ε2Du2(α, β, u, φ̃) + ε5/2Du5/2(α, β, u, φ̃) + · · · (43)

dα

dφ
= εDα1(α, β, u, φ̃) + ε2Dα2(α, β, u, φ̃) + ε5/2Dα5/2(α, β, u, φ̃) + · · · (44)

dβ

dφ
= εDβ1(α, β, u, φ̃) + ε2Dβ2(α, β, u, φ̃) + ε5/2Dβ5/2(α, β, u, φ̃) + · · · (45)

Dui, Dαi and Dβi (i ∈ {1, 2, 5/2, 3, 7/2}) are polynomials of α and β, and simple trigono-
metric functions of φ. When the dependence in φ is 2π periodic, we shall use the notation
φ̃ = φ [2π] instead of φ. The parameter ε has been introduced solely to indicate the
post-Newtonian order, and it shall be set to 1 in the final results.

We want to solve these equations iteratively. For that purpose we expand the variables
in powers of ε:

α = α̃+ εα1(α̃, β̃, ũ, φ̃) + ε2α2(α̃, β̃, ũ, φ̃) + · · · , (46)

β = β̃ + εβ1(α̃, β̃, ũ, φ̃) + ε2β2(α̃, β̃, ũ, φ̃) + · · · , (47)

u = ũ+ εu1(α̃, β̃, ũ, φ̃) + ε2u2(α̃, β̃, ũ, φ̃) + · · · . (48)

In the iterative procedure, α̃, β̃ and ũ result from the 0 order analysis, and are arbitrary.
We we push to higher orders, we will see that these parameters evolve with φ. However,
we will distinguish between the function α̃(φ) and the explicit parameter α̃ involved in αi,
βi and ui. Then the total derivative with respect to φ reads:

d

dφ
=

∂

∂φ̃
+

dα̃

dφ

∂

∂α̃
+

dβ̃

dφ

∂

∂β̃
+

dũ

dφ

∂

∂ũ
. (49)
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We also expand dα̃/ dφ in powers of ε:

dα̃

dφ
= εdα̃1(α̃0, β̃0, ũ0) + ε2dα̃2(α̃0, β̃0, ũ0) + · · · (50)

dβ̃

dφ
= εdβ̃1(α̃0, β̃0, ũ0) + ε2dβ̃2(α̃0, β̃0, ũ0) + · · · (51)

dũ

dφ
= εdũ1(α̃0, β̃0, ũ0) + ε2dũ2(α̃0, β̃0, ũ0) + · · · (52)

Now we have reduced our study to the search for αi, βi, ui on the one hand, and dα̃i,
dβ̃i, dũi on the other hand. Note that this way of decomposing the problem is somehow
arbitrary. However, it turns out to be the most natural one as we solve the equations.

We define the average and the average-free part of a function f(φ̃) by:

〈f〉 =
1

2π

∫ 2π

0
f(φ̃) dφ̃, (53)

AF(f)(φ̃) = f(φ̃)− 〈f〉. (54)

We now rewrite (40)-(42) with our new variables, and we collect terms of common
powers of ε. At first order we get for α:

dα̃1 +
∂α1

∂φ̃
= Dα1(α̃, β̃, ũ, φ̃). (55)

Since α̃ does not depend on φ̃, we deduce:

dα̃1 = 〈Dα1〉, (56)

α1 = AF
(
∫

AF(Dα1)(φ̃) dφ̃

)

. (57)

The role of the second AF is to get rid of the constant of integration. The same method
yields similar results for β and u. Then we get, at second order:

dα̃2 +
∂α2

∂φ̃
= Dα2 +

∂Dα1

∂α
α1 +

∂Dα1

∂β
β1 +

∂Dα1

∂u
u1 −

∂α1

∂α̃
dα̃1 −

∂α1

∂β̃
dβ̃1 −

∂α1

∂ũ
dũ1

≡ f2(α̃, β̃, ũ, φ̃), (58)

where α1, β1, u1, dα̃1, dβ̃1 and dũ1 are known from the resolution at first order. For the
same reasons as previously we have:

dα̃2 = 〈f2〉, (59)

α2 = AF
(
∫

AF(f2)(φ̃) dφ̃

)

. (60)

Using this procedure systematically up to 3.5th order, we completely determine α(α̃, β̃, ũ, φ̃),

β(α̃, β̃, ũ, φ̃) and u(α̃, β̃, ũ, φ̃), as well as dα̃
dφ (α̃, β̃, ũ),

dβ̃
dφ(α̃, β̃, ũ) and

dũ
dφ(α̃, β̃, ũ). From this

and (29)-(33) we can deduce the expressions of x, v, r, etc.
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In order to discuss the results, we define ẽ and ω̃ by α̃ + iβ̃ = ẽ exp(iω̃). ẽ can be
viewed as a post-Newtonian eccentricity and ω̃ as a post-Newtonian periastron angle. We
note that ũ and ẽ are constant in a conservative motion, i.e. when 2.5PN and 3.5PN
orders are ignored. Their evolution is given by the coupled equations:

dũ

dφ
=

8

5
η
(

8 + 7ẽ2
)

ũ7/2

− 1

210

[

22071 + 2016η − (6064 + 7112η)ẽ2 − (1483 + 4424η)ẽ4
]

ũ9/2 (61)

dẽ

dφ
= − 1

15
ηẽ
(

304 + 121ẽ2
)

ũ5/2 +
1

840
ηẽ [144392 + 45696η

−(34768 + 10892η)ẽ2 − (2251− 5096η)ẽ4
]

ũ7/2 (62)

We note that the eccentricity decreases as the orbit shrinks, so that the orbit gets closer
and closer to a perfect spiral. Along with this, we observe a phenomenon of periastron
advance, which is driven by the conservative part of the equations:

dω̃

dφ
= 3ũ− 3

4

[

10 + 4η − (1 + 10η)ẽ2
]

ũ2 +

{

87

2
−
(

877

35
− 123

32
π2 − 22λ

)

− 3η2

−
[

45−
(

14867

560
+

123

128
π2 +

11

2
λ

)

η +
93

2
η2

]

ẽ2 +
3

8
η(12− 25η)ẽ4

}

ũ3 (63)

2.4 New orbit elements and conserved quantities

Even though ũ, ẽ and ω̃ have proved useful for the integration of the motion, they are not
very satisfactory from a physical point of view, since they cannot be defined directly using
observational quantities. To remedy this, we would like to define new orbital elements from
the characteristics of the orbit. But, as we have seen, the nature of the orbit changes with
time because of radiation damping. For example, convenient quantities like the angular
velocity at the periastron and at the apastron are not well defined as functions of time:
if we define them for the next periastron or apastron, we get discontinuous functions.
In order to work with smooth parameters, we define Ωa(t) (resp. Ωp(t)) as the angular
velocity of the effective body at the next apastron (resp. periastron), supposing that the

radiation reaction has been “turned off” from this moment t. Similarly, we define ω̂ as the
direction of the next periastron with the same condition. It turns out that this ω̂ coincides
with the former ω̃. Then we define:

ê =

√

Ωp −
√
Ωa

√

Ωp +
√
Ωa

, û =

(

√

Ωp +
√
Ωa

2

)4/3

. (64)

In the Newtonian limit, these definitions naturally reduce themselves to the classical New-
tonian eccentricity and mass/semi-latus rectum ratio. We also note that:

û =

[

mΩp

(1 + ê)2

]2/3

=

[

mΩa

(1− ê)2
]2/3

(65)

We can easily express Ωa and Ωp, and therefore û and ê, as functions of ẽ and ũ. We
invert these relations and substitute the expressions of ẽ(û, ê) and ũ(û, ê) into the solution
of the equations of motion.
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The expressions of m/r and r2φ̇ to 3.5 post-Newtonian order are too long to be repro-
duced here. However, in order to give an idea of what they look like, we give them to the
first order:

m

r
= [1 + e cos(φ− ω)]u

+

{

1− 1

3
η +

(

7

3
− 7

4
η

)

e2 +

[

3− 4

3
η +

(

1

3
− η
)

e2
]

e cos(φ− ω)

−η
4
e2 cos(2φ− 2ω)

}

u2, (66)

r2φ̇ =
m√
u

{

1 +

[

(−4 + 2η) e cos(φ− ω)− 2 +
2

3
η +

(

−2

3
+ 2η

)

e2
]

u

}

, (67)

where we have omitted the hats for more readibility. We can check that the leading
term corresponds to the Newtonian solution. Note that u ≡ û, e ≡ ê and ω ≡ ω̂ are
now post-Newtonian orbital elements, and should not be mistaken for the Newtonian u,
e and ω introduced before. We found that these results are equivalent to those yielded
independently through 2PN order using the Wagoner-Will method developed in [11].

Equations (61), (62) and (63) then become:

du

dφ
=

8

5
η
(

8 + 7e2
)

u7/2 − 1

630
[17832 + 22176η

−(18976− 115080η)e2 − (18001− 27384η)e4
]

u9/2, (68)

de

dφ
= − 1

15
ηe
(

304 + 121e2
)

u5/2 + ηe

[

367

7
+

4336

45
η

−
(

12499

315
− 22061

90
η

)

e2 −
(

46289

2520
− 797

15
η

)

e4
]

ũ7/2, (69)

dω

dφ
= 3u+

[

9

2
− 7η +

(

19

4
− 9

2
η

)]

u2 +

{

27

2
−
(

3712

35
− 123

32
π2 − 22λ

)

η + 7η2

+

[

137

4
−
(

45193

560
− 123

128
π2 − 11

2
λ

)

η +
53

2
η2

]

e2 +

(

5

2
+ η +

45

8
η2

)

e4
}

u3.

(70)

Now the problem is entirely solved. On the one hand, equations of the type (66) and
(67), pushed to 3.5 order, characterize the motion. On the other hand, (68), (69) and (70)
give the effect of the radiation reaction on the orbital elements, as well as the periastron
advance.

As we claimed before, E and J are expected to be conserved in a system exempt from
radiation reaction. Ignoring the radiation terms, we substitute the expressions of x and
v into the definitions of the total energy and the total angular momentum (21)-(28), and
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obtain:

E/µ = −1

2
(1− e2)u+

[

3

8
+

1

24
η −

(

5

12
− 1

12
η

)

e2 +

(

1

24
− 1

8
η

)

e4
]

u2

+

[

27

16
− 19

16
η +

1

48
η2 −

(

115

48
+

13

16
η +

7

48
η2

)

e2

+

(

35

48
+

125

48
η +

1

16
η2

)

e4 −
(

1

48
+

29

48
η − 1

16
η2

)

e6
]

u3

+

{

675

128
−
(

209323

8064
− 205

192
π2 − 55

9
λ

)

η +
155

192
η2 +

35

10368
η3

−
[

167

32
−
(

77659

3360
− 41

32
π2 − 22

3
λ

)

η − 2639

432
η2 +

65

2592
η3

]

e2

−
[

439

576
−
(

305393

60480
+

41

192
π2 +

11

9
λ

)

η +
3727

864
η2 − 125

576
η3

]

e4

+

(

1825

2592
− 1583

864
η − 503

144
η2 − 5

32
η3

)

e6

+

(

35

10368
− 143

384
η +

57

64
η2 − 5

128
η3

)

e8
}

u4, (71)

J =
µm√
u

{

1 +

[

3

2
+

1

6
η −

(

1

6
− 1

2
η

)

e2
]

u

+

[

27

8
− 19

8
η +

1

24
η2 +

(

23

12
− 31

6
η − 1

4
η2

)

e2 +

(

1

24
− 35

24
η − 1

8
η2

)

e4
]

u2

+

[

135

16
−
(

209393

5040
− 41

24
π2 − 88

9
λ

)

η +
31

24
η2

(

199

16
−
(

318313

5040
− 41

24
π2 − 88

9
λ

)

η +
3013

216
η2 − 5

144
η3

)

e2

(

77

144
− 6497

432
η +

853

72
η2 +

5

16
η3

)

e4 −
(

7

1296
+

1

16
η +

1

8
η2 − 1

16
η3

)

e6
]

u3

}

z.

(72)

Again, we can check that the Newtonian limit is correct.

E and J are perfectly well-defined physical observable quantities. So it can be con-
venient to express u and e as functions of Ẽ = E/µ and J̃ = |J|/mµ. Here we give the
results to 1PN order, but the calculation can be done up to 3PN order:

u =
1

J2

[

1 +
2

3J2

(

4 + 2η − (1− 3η)EJ2
)

]

, (73)

e =
√

1 + 2EJ2

[

1− 1

2

E

1 + 2EJ2

(

4 + 2η − (1− 3η)EJ2
)

]

. (74)

We have thus established a bijection between (E, J) and (e, u), which will prove par-
ticularly useful later.
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2.5 Harmonic and ADM gauges

We have to be aware that all these results are valid only in a particular gauge. In the last
sections, we have chosen a harmonic gauge in which the equations of motion are simple.
Let us recall the definition of a harmonic gauge. In a post-Newtonian expansion, we
expect the metric to be close to the flat metric ηµν . So we define the gravitational-field
amplitude:

hµν =
√−ggµν − ηµν , (75)

where g is the determinant of gµν . The harmonic-coordinate condition reads:

∂νh
µν = 0. (76)

This condition is very similar to the Lorentz-gauge condition ∂µA
µ = 0 in electro-magnetism.

Einstein’s field equations are a system of ten independent second order partial differ-
ential equations on the space-time metric gµν :

Gµν = 8πT µν , (77)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor. The contracted Bianchi identity gives

the equations governing the motion of the matter:

∇νG
µν = 0 =⇒ ∇νT

µν = 0 (78)

These equations basically correspond to the conservation of momentum and energy in a
curved space.

With the harmonic-coordinate condition, Einstein’s equations (77) read:

¤hµν = 16πτµν , (79)

where ¤ = ηµν∂µ∂ν is the flat d’Alembertian operator. The source term τµν can be
interpreted as an effective stress-energy pseudo-tensor, and depends on both the matter
field and the gravitational field as well as its first derivatives. The Bianchi identity is
accounted for by the harmonic condition (76).

There actually is an infinity of distinct harmonic gauges, and the equations of motion
will generaly depend on the choice of a particular gauge. The 1PN coefficients are standard.
The 2PN coefficients have been computed by several groups: Damour and Deruelle [12, 13],
Kopeiken and Grishchuck [14],[15], Blanchet et al. [16], Itoh et al. [17] and Pati and Will
[18, 19]. Iyer and Will [20, 21] showed that there is a two-parameter gauge freedom for
the 2.5PN coefficients, and a six-parameter freedom for the 3.5PN coefficients. Equations
(13), (15), (18) and (20) correspond to an arbitrary choice within these freedoms.

As for the 3PN coefficients, the computation implemented by Blanchet et al. [22, 23]
produced logarithmic terms, proportional to ln(r/r′1) and ln(r/r′2), where r

′
1 and r′2 are

constants. In order to remove these logarithms and to make the problem tractable, we
used the 3PN contact coordinate transformation xµ → xµ + δxµ, with [23]:

δxµ = −22

3
m1m2∂µ

[

m1

r2
ln

(

r

r′1

)

+
m2

r1
ln

(

r

r′2

)]

, (80)
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where r1 (resp. r2) denotes the coordinate separation between the considered point and
the body 1 (resp. body 2). We note that we have ¤δxµ = 0, except at the location of the
two bodies. This ensures that the harmonic condition is still respected in the new gauge.
The main effect of this coordinate transformation on the equations of motion is to remove
the logarithms, as one can see in (14), (19), (24) and (28), where they are absent.

A totally different approach to the n-body problem, implemented through 3PN order
by Damour, Jaranowski and Schäfer [24], and which was proved to be equivalent with the
harmonic formulation [25], is to compute the Hamiltonian of the system rather than the
equations of motion. Unlike other methods, this one does not use a harmonic coordinate
system, but some so-called ADM (Arnowitt-Deser-Misner), or “Hamiltonian” coordinate
system.

The Hamiltonian has been computed up to 3PN order. We give it here to 1PN order,
the entire formula being too long to fit into this page (see [24] for a complete expression):

HADM = −m1m2

2r
+

p2
1

2m1
+

[

− p4
1

8m3
1

+
m2

1m2

2r2

+
m1m2

r

(

(n · p1)(n · p2)

4m1m2
− 3

2

p2
1

m2
1

+
7

4

p1 · p2

m1m2

)]

+ 1↔ 2. (81)

Again, we change this two-body problem into an effective one-body problem, by using the
simple relation p = p1 = −p2, valid in the center-of-mass frame. Thus we get a new
expression for HADM(x,p).

From Hamilton’s equations:

dx

dt
= ∇pHADM,

dp

dt
= −∇xHADM, (82)

we iteratively extract the equations of motion and write them in the same form as equation
(10), with different A and B. Substituting the expression of p as a function of v and x
into the Hamiltonian, we obtain the total conserved energy EADM. Similarly, we get JADM

by calculating x×p. Harmonic and ADM-Hamiltonian coefficients coincide at 1PN order,
but they differ at 2PN and 3PN orders. This is true for both the equations of motion and
the expressions of the energy and the angular momentum.

We apply the method described in sections 2.2 and 2.3 on the ADM equations of
motion, and find similar expressions as (71) and (72) for the energy and the angular
momentum (see Appendix, equ. (177), (178)). We observe two common features in the
harmonic and the ADM versions of these expressions: (i) the “circular” parts (e = 0) of
the formulae coincide. In that case the angular velocity Ω = Ωa = Ωp is the same as
the one observed from infinity for both harmonic and ADM coordinates; (ii) expressions
also coincide for η → 0, i.e. in the test-mass limit. As mentioned before, the differences
between the formulae only occur at 2PN and 3PN. It is actually possible to relate the
coordinate positions and velocities in the two gauges. In particular, the relation between
φ̇ADM and φ̇harm, rharm, etc. would allow us to find a relation between (eADM, uADM) and
(eharm, uharm), and thus account for the differences in the coefficients of E and J. We
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found that a transformation of the type:

φ̇ADM = φ̇

{

1 + η
m

r

[

9

4

(

v2 − m

r

)

−
(

16

3
+
η

2

)

(m

r

)2

+

(

17

8
− 21

4
η

)

v4 +

(

239

24
+

7

2
η

)

m

r
v2 + ṙ2f

(

ṙ2,
m

r
, v2
)

]}

, (83)

where we have dropped the subscript “harm” under φ, r and v in the second member, and
where f is a function, was compatible with the differences observed in the expressions of
both the energy and the angular momentum. Since ṙ = 0 at the apastron and periastron,
f does not need to be determined.

2.6 Equivalence with the quasi-Keplerian parametrization

We now want to check the validity of our formulae by comparing them to previous re-
sults. An elegant method for describing the second post-Newtonian relative motion, called
the generalized quasi-Keplerian parametrization, has been developped by Damour, Shäfer
and Wex in ADM coordinates [26, 27, 28]. In that formalism, the polar motion (r,φ) is
described by the set of equations:

n(t− t0) = w − et sinw +
ft
c4

sin v +
gt
c4
(v − w) (84)

r = a(1− er cosw) (85)

φ− φ0 =

(

1 +
k

c2

)

+
fφ
c4

sin 2v +
gφ
c4

sin 3v (86)

v = 2arctan

[

(

1 + eφ
1− eφ

)1/2

tan
(w

2

)

]

, (87)

where n, et, ft, gt, a, er, k, fφ, gφ and eφ are functions of E and J . The dependence in c
has been kept so that one can see the post-Newtonian order explicitly.

In order to connect this description to ours, we write the expression of Ωa and Ωp in
terms of the quasi-Keplerian parameters:

Ωa/p = n
1 + k

c2
+ 2

fφ
c4
± 3

gφ
c4

√

1∓eφ
1±eφ

(

1∓ et − gt
c4

)

+ gt
c4

+ ft
c4

. (88)

Then, using the definitions (64) as well as the definitions for the quasi-Keplerian parame-
ters in terms of E and J (see [28], p. 991), and expanding the results in powers of 1/c, we
find 2PN expressions for eADM(E, J) and uADM(E, J). In the end of section 2.4 we have
found similar expressions [(73),(74)] in a harmonic coordinate system. Using the same
method in the ADM gauge, we can derive from our results the expressions of eADM(E, J)
and uADM(E, J) through 3PN order (see Appendix, equ. (179)-(186)). We checked that
both methods give the same results with 2PN accuracy.

We now want to prove the exact equivalence between our results in the ADM gauge,
written in the same form as (66), (67) and (70), and the quasi-Keplerian parametrization.
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Our method will consist in finding the parameters n, et, etc. as functions of uADM and
eADM (noted u and e for the ease of presentation) through 3PN order and ignoring 2.5PN
contributions. Then, replacing eADM(E, J) and uADM(E, J) into these expressions, we
will check their consistency with the results given in [28] through 2PN order.

We will begin with the more convenient quantities that we can compare, namely the
maximum and the minimum coordinate separations r along the orbit. For this we will
have to use:

r = a (1 + er cosw) . (89)

Then, writing the ADM 3PN version of (66) with φ = ω and φ = ω + π, we obtain the
equations:

m

a

1

1− er
= (1 + e)u+ PN |φ=ω,

m

a

1

1 + er
= (1− e)u+ PN |φ=ω+π, (90)

where the abreviation “PN” represents the post-Newtonian corrections. From this system
of two equations we deduce a and r as functions of u and e:

a = − 1

u(1− e2)
(

1 + a1/c
2 + a2/c

4 + a3/c
6
)

(91)

er = e
(

1 + er,1/c
2 + er,2/c

4 + er,3/c
6
)

(92)

The exact expressions of a1, a2, a3, er,1, er,2 and er,3 are given in the appendix.
In order to relate the so-called eccentric anomaly w to our familiar φ, we write the

heuristic relations:

φ− φ0 =

(

1 +
k

c2

)

+
fφ
c4

sin 2v +
gφ
c4

sin 3v +
hφ
c6

sin 4v +
iφ
c6

sin 5v, (93)

v = 2arctan

[

(

1 + eφ
1− eφ

)1/2

tan
(w

2

)

]

, (94)

and expand the parameters in powers of 1/c: k = k1 + k2/c
2 + k3/c

4, fφ = fφ,2 + fφ,3/c
2

and gφ = gφ,2 + gφ,3/c
2. As for eφ, we expand its relation to e in the following manner:

e = eφ
(

1 + e1/c
2 + e2/c

4 + e3/c
6
)

. (95)

Then, writing

m

a

1

1− er cosw
=

{

1 + e cos

[

(φ− φ0)

(

1− dω

dφ

)]}

u+ PN |ω=φ dω
dφ
, (96)

where dω
dφ is given by the ADM version of (70) (see Appendix, equ.(187)), and using

cosw = 1−tan2(w/2)
1+tan2(w/2)

, we find a 3PN expression for tan2
(

w
2

)

as a function of φ. We substitute

the expressions of φ(v) (93) and e(eφ) (95) into this last result, and expand it in powers
of 1/c through 3PN order. As expected, the final expression has the form:

tan2
(w

2

)

=
1− eφ
1 + eφ

tan2
(v

2

)

+ PN. (97)
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Of course, we want this result to agree with (94), and thus impose that the post-Newtonian
contributions “PN” cancel out. We obtain three different equations (one for each order).
1PN cancelation yields k1 and e1; 2PN cancelation yields k2, e2, fφ,2 and gφ,2; 3PN
cancelation yields k3, e3, fφ,3, gφ,3, hφ and iφ. The expression of

eφ = e
(

1 + eφ,1/c
2 + eφ,2/c

4 + eφ,3/c
6
)

(98)

is obtained by the iterative inversion of (95). The complete 3PN expressions of k, fφ, gφ,
hφ, iφ and eφ are given in the appendix.

Our last set of parameters involves the evolution of the system with respect to time:

n(t− t0) = w − et sinw +
ft
c4

sin v +
gt
c4
(v − w) + ht

c6
sin(2v) +

it
c6

sin(3v). (99)

In the formalism developped in section 2.4, the angular velocity φ̇ can be derived from the
combination of the ADM 3PN versions of (66) and (67):

φ̇ = u3/2[1 + e cos(φ− ω)]2 + PN. (100)

In the quasi-Keplerian parametrization, the same quantity reads:

φ̇ =
n
[

1 + k
c2

+
2fφ
c4

cos(2v) +
3gφ
c4

cos(3v) +
4hφ
c6

cos(4v) +
5iφ
c6

cos(5v)
]

√

1−e2φ
1+eφ cos v

[

1− gt
c4
− et(cos v+eφ)

1+eφ cos v

]

+ ft
c4
cos v + gt

c4
+ 2ht

c6
cos(2v) + 3it

c6
cos(3v)

. (101)

We expand the unkwown variables in powers of 1/c:

n =
[

u(1− e2)
]3/2 (

1 + n1/c
2 + n2/c

4 + n3/c
6
)

, (102)

et = e
(

1 + et,1/c
2 + et,2/c

4 + et,3/c
6
)

, (103)

ft = ft,2/c
4 + ft,3/c

6 gt = gt,2/c
4 + gt,3/c

6, (104)

and we equate the two expressions of φ̇ (100) and (101). We collect the terms of common
powers of 1/c and obtain three independent equations, from which we derive the values of
n1, n2, . . ., iφ. The results are given in the appendix.

For each coefficient, one can check the equivalence between the formulae given in the
appendix [(147)-(176)] and the ones given in [28] by using the bijection (E, J) ↔ (u, e)
[(177)-(186)].
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In this section we want to determine the characteristics of a system of binary spherical
stars in the Newtonian approximation. We can separate the problem in two distinct
parts: (i) the “internal” problem, which consists in solving the equations of the internal
structure of each star in a given gravitational field and using a given equation of state; (ii)
the “external” problem, or the orbital problem, which governs the motion of the center
of mass of each star. In a first stage, we will determine the shape taken by each star
submitted to the gravitational field generated by the other star (which is at this level
considered to be point-like). In a second stage, we will study the effect of this deformation
on the gravitational field thus generated. In the case of solid spheres, the shape will remain
spherical. Then, according to the Gauss theorem, the force between the two bodies will
be the same as for point-masses, namely Gm1m2/r

2. But in the case of bodies made of
fluid, the tidal forces slightly distort the stars. Then quadrupole moments appear, which
give birh to tidal interaction terms.

We will only consider the case of incompressible stars, for which the analytic treatment
is the simplest. Other models exist however: Lai and Shapiro [30] developped a method
modelling the stars as compressible ellipsoids; more recently, Taniguchi and Nakamura
[31] found almost analytic solutions to equilibrium sequences of binary polytropic stars.
Nevertheless, we will assume that the incompressible approximation will suffice for our
purpose.

3.1 Free oscillations of an isolated star

When unperturbed, the state of an isolated incompressible star is characterized by the
gravitational potential U0, the pressure P0 and the density ρ0, defined by:

ρ0(x̃, t) = cste, U0(x̃, t) =
2π

3
ρ0

(

3R2 − r2
)

and P0(x̃, t) =
2π

3
ρ2

0

(

R2 − r2
)

, (105)

where the origin of the spherical coordinates x̃ = (r̃, θ, φ) is taken at the center of the star,
and where R is the radius of the star. One then defines the “Eulerian” perturbations:

δρ(x̃, t) = ρ(x̃, t)− ρ0, δU(x̃, t) = U(x̃, t)− U0(x̃), δP (x̃, t) = P (x̃, t)− P0(x̃), (106)

and ξ(x̃, t), the displacement of fluid element. In this study, we are only interested in
incompressible “Kelvin” modes, for which ∇ · ξ = 0. For these perturbations, Euler’s
equation reads:

ξ̈ +∇χ = 0, with χ =
δP

ρ0
− δU. (107)

Since the fluid is incompressible, the only parameter we are concerned with is the
radial displacement ξr(R, θ, φ, t), which characterizes the shape of the star. We express
this quantity in terms of spherical harmonics:

ξr(R, θ, φ, t) =
∑

lm

εlm(t)Ylm(θ, φ). (108)
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Using the conditions of continuity [33] for δU , ∇δU and δP at the surface of the star,
along with ∆δU = 0 and ∆δP = 0 (obtained from ∇ · (107)), we get [33]:

χ =
2M

R2

l − 1

2l + 1

(

r̃

R

)l

εlmYlm, (109)

where we consider only one mode, and where M is the total mass of the star. Euler’s
equation (107) then reads:

ξ̈lm +
2M(l − 1)

2l + 1

εlm
Rl+2

∇
(

rlYlm

)

= 0, (110)

from which we deduce [32]:

ε̈lm + ω2
l εlm = 0, (111)

ξlm =
εlm
lRl−1

∇
(

rlYlm

)

, (112)

with ω2
l =

2Ml(l − 1)

R3(2l + 1)
. (113)

The star has got as many independent oscillation modes as there are (l, p) couples. Each
one will oscillate with the eigenfrequency ωl. The l = 1 modes will produce “dipole”
moments; the l = 2 modes “quadrupole” moments; and the l = 3 “octupole” moments.
In our case the quadrupole modes will be the most important, because they are the first
modes to be excited by the tidal potential.

The total kinetic energy of the system is given by:

T =

∫

ρ0

∥

∥

∥

∥

∥

∑

lm

ξ̇lm(x̃, t)

∥

∥

∥

∥

∥

2

d3x̃ =
∑

lm

1

2

ρ0R
3

l
|ε̇lm|2, (114)

where we have used (112) and the relation:

r2
∫

∇Y ∗lm · ∇Yl′m′ dΩ = l(l + 1)δll′δmm′ . (115)

For more convenience, we introduce the “density perturbation”:

ρ̃lm(x̃, t) = ρ0εlmδ(r̃ −R)Ylm, ρ = ρ0 +
∑

lm

ρ̃lm. (116)

The fluid being incompressible, this perturbation is but a calculus trick which will be used
to compute integrals over a sphere rather than over the complicated volume described by
ξr(R, θ, φ). We define the internal energy of the system as:

Ui =
1

2

∫

ρχ d3x̃ =
∑

lm

ρ0M
l − 1

2l + 1
|εlm|2. (117)

Using (111), the conservation of the total energy T + Ui is straightforward.
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3.2 Tidal interactions for irrotational stars

We now consider two identical incompressible stars, denoted by 1 and 2, whose relative
position is given by x = (r,Θ,Φ) = x1 − x2, xa (a = 1, 2) being the location of the center
of mass of the star a in an inertial frame. In the frame associated with the center of mass
of 1, using the same notations for 1 as in the previous section, and expressing the tidal
contribution from 2 in terms of spherical harmonics, the equations of motion have the
following form:

ξ̈ +∇χ = ∇UT (t), (118)

with ∇UT =
4πM

r(t)l+1

∑

l≥2,m

1

2l + 1
Y ∗lm(Θ(t),Φ(t))∇

[

r̃lY ∗lm(θ, φ)
]

. (119)

One can show that ξ has the same expression as in (112). Then εlm satisfies [32]:

ε̈lm + ω2
l εlm =

4πMlRl−1

2l + 1

Y ∗lm(Θ(t),Φ(t))

r(t)l+1
. (120)

Since ω2
l ≈ M/R3 ¿ M/r3, where

√

M/r3 ∼ Φ̇/Φ ∼ ṙ/r corresponds to the charac-
teristic frequency of the orbit, we can specialize to an adiabatic treatement of the problem.
Equation (120) has the immediate quasi-static solution:

εlm =
2πR

l − 1

(

R

r

)l+1

Y ∗lm(Θ,Φ). (121)

Note that the corresponding equations for the star 2 can be obtained by making the
replacements Θ → π − Θ and Φ → π + Φ. We can now compute the gravitational
interaction energy between the two stars. The gravitational potential caused by tidal
interactions is given by:

V12 =

∫

1

∫

2

ρ1(x̃1, t)ρ2(x̃2, t)

|x̃1 − x̃2 − x|
d3x1 d

3x2, (122)

where ρ1 and ρ2 are defined in the same manner as in (116). Using the relations
∫

Y ∗lmYl′m′ dΩ = δll′δmm′ , (123)

4π

2l + 1

∑

m

Y ∗lmYlm = 1, (124)

and expressing (|x̃1 − x̃2 − x|)−1 in terms of spherical harmonics, we obtain:

V12 = 3
∑

l≥2

M2

l − 1

R2l+1

r′l+1rl+1
+
M

r′2
, (125)

where r′ represents the explicit dependence with respect to the separation between the
two stars, r being only involved in the shape of the stars. Restricting our study to the
leading contribution l = 2, the relative acceleration is:

a = −2Mx

r3

[

1 + 9

(

R

r

)5
]

. (126)
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From (117) and (121) we deduce, for l = 2, the internal energy of both stars:

2Ui =
3

2

M2

r

(

R

r

)5

. (127)

Defining the orbital kinetic energy as To = (M/4)v2, where v = dx
dt , and the binding

energy as Eb = 2Ui − V12, we can easily check that the total energy To + Eb is conserved
at leading order.

3.3 Tidal interactions for rotational stars

The two stars are now rotating with the same angular velocity Ω, |Ω| ∼
√

M/r3, directed
perpendicularly to the plane of the orbit. We redefine (Θ,Φ) as the direction of x in the
corresponding corotating frame. In the corotating frame associated with 1, the equations
of motion for the fluid elements of 1 take the form:

ξ̈ − Ω2x̃⊥ + 2Ω× ξ̇ + Ω̇× x̃+∇χ = ∇UT (t), (128)

where x̃⊥ is the projection of x̃ onto the plane of the orbit. The second term of the first
member is the inertial centrifuge force; the third term of the first member is the inertial
Coriolis force. For the same reasons as in the previous section, we are only interested in
quasi-static solutions:

εlm =
2πR

l − 1

(

R

r

)l+1

Y ∗lm(Θ,Φ)−
1

3

√
5π

Ω2R4

Mr3
δl2δm0, (129)

Note that we have only kept the divergence-free part of the centrifuge force∇
(

Ω2r2sin θ2
)

=
4
√
π

3 Ω2∇
(

r2
(

Y00 − 1√
5
Y20

))

. Thus we obtain:

V12 = 3
M2R5

r′3r3
+

1

2

MΩ2R5

r′3
, (130)

a = −2Mx

r3

[

1 + 9

(

R

r

)5

+
3

2

Ω2R5

r2M

]

, (131)

2Ui =
3

2

M2

r

(

R

r

)5

+
1

2

MΩ2R5

r3
+

1

6
Ω4R5. (132)

Another energy contribution that we have to take into account is the correction to the
rotation kinetic energy due to the distorsion:

2Tr = Ω2
∑

lm

∫

ρ̃lmr̃
2sin2θ dr dΩ =

1

2

MΩ2R5

r3
+

1

3
Ω4R5. (133)

The total energy conservation is not obvious at the first glance. This comes from the
fact that the angular velocity Ω is not conserved along the orbit. More precisely, since
we have assumed that the displacement ξ is small, we need to make sure that the global
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displacement does not shift with time. In order to determine δΩ =
∫

dt Ω̇, we impose:
∫

d3x̃
[

∫

dt
(

2Ω× ξ̇ + Ω̇× x̃
)]

= 0, and obtain:

δΩ = Ω−Ω0 = −5

4
Ω

(

R

r

)3

, (134)

where the angular velocity of referenceΩ0 is taken for an infinite separation. This variation
in the angular velocity results in a variation in the rotation kinetic energy:

2T ′r =
4MΩδΩR2

5
= −MΩ2R5

r3
. (135)

Then, with Eb = 2Ui − V12 + 2Tr + 2T ′r, the total energy To + Eb is conserved.

3.4 Solution to the “external” problem

Now that we have the expression of the tidal force for both rotational and irrotational
cases, we want to solve the orbital equations of motion to the leading order, taking R/r as a
small parameter. For this purpose we use the exact same technique as the one developped
in sections 2.2, 2.3 and 2.4. Adding the tidal contributions to the Newtonian force, and
using the method of osculating orbit elements, we find the following set of equations:

p/r = 1 + e cos(φ− ω)

+9

(

R

p

)5 [

1 + 5e2 +
15

8
e4 +

(

1 +
175

48
e2 +

25

24
e4
)

e cos(φ− ω)

−5

3

(

1 +
1

2
e2
)

e2 cos(2φ− 2ω)− 5

16

(

1 +
1

8
e2
)

e3 cos(3φ− 3ω)

− 1

24
e4 cos(4φ− 4ω)− 1

384
e5 cos(5φ− 5ω)

]

+3
Ω2R5

mp2

[

1 +
1

2
e2 +

(

1 +
1

3
e2
)

e cos(φ− ω)− 1

6
e2 cos(2φ− 2ω)

]

(136)

r2φ̇ =
√
mp

[

1− 6

(

R

p

)5(

1 +
10

3
e2 + e4

)

− 2
Ω2R5

mp2

(

1 +
1

3
e2
)

]

, (137)

E/µ = −1

2

m

p
(1− e2) + 9

2

m

p

(

R

p

)5(

1 +
1

18
e2 − 13

18
e4 +

1

6
e6
)

+
Ω2R5

p3

(

1− 4

3
e2 +

1

3
e4
)

, (138)

dω

dφ
=

45

2

(

R

p

)5(

1 +
3

2
e2 +

1

8
e4
)

+ 3
Ω2R5

mp2
. (139)

The semi-latus rectum p = m/u and the eccentricity e are defined by (64).
It is important to note that E is the conserved energy defined in the last section

(adjusted by an offset such that it goes to 0 for infinite separations), and thus includes
corrections to the rotational kinetic energy. In that formulation, Ω is not constant (see
equation (134)), but its variations will induce corrections whose order will be higher than
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required for the expression of this energy. However, the rotational energy, of the type IΩ2,
will have to be computed with the appropriate Ω taken for an infinite separation.



4 Comparison with numerical data

Now that we have PN and tidal formulae at our disposal, we want to compare them with
the numerical data given in the litterature. We make the hypothesis that the “helical”
condition used in numerical simulations is equivalent to imposing ṙ = 0. Numerically gen-
erated configurations are thus assumed to correspond either to apastrons or to periastrons
of slightly eccentric orbits. In those cases, one can use the relations given by (65), and
deduce expressions of the energy and the angular momentum as functions of e and Ω only.
These expressions will have to be matched with the numerical values of E, J and Ω for
each configuration.

Note that the definition of Ω itself is not covariant (gauge independent). However,
we know that it becomes covariant for circular orbits. Since we are solely interested
in slight eccentricities, we shall assume that gauge-dependences are negligible (actually
of order e2, as one can see from the differences between harmonic (71), (72) and ADM
(177), (178) results). We choose to use ADM post-Newtonian formulae, because the
numerical simulations use a machinery that bears the same name (even though we do not
know exactly whether they use the same coordinate system). We verified that using the
harmonic formulae did not sensibly affect our results.

4.1 Irrotational neutron star binary

Formulae given in section 2 are only valid for point-masses. We need to add finite-size
corrections in order to fit the numerical data properly. Formally, tidal terms correspond
to the 5PN order. But whereas a normal 5PN term is of order v10 ≈ (m/r)5, tidal terms
is of order (R/r)5. In the case of black holes, for which R ≈ m/2 (m is the total mass),
these terms are negligible. But in the case of neutron stars, for which R ≈ 3m, i.e.
(R/r)5 ≈ 250(m/r)5, they can become considerable, especially for short separations. We
shall only consider Newtonian tidal terms, which means that we shall ignore coupled terms
of the kind (m/r)(R/r)5.

The final expression of the energy is obtained by adding up: (i) the Newtonian point-
mass term−(1/2)(1−e2)u; (ii) the PN corrections read off from (177); (iii) the rotation-free
(Ω = 0) part of the tidal correction read off from (138). u and e are defined using (64), and
u is replaced by its expression (65). In order to determine the radius R in our coordinate
system, we need to know the covariant, well-defined, circumferencial radius Rc of each
star. Then, using the PN relation:

Rc =

√

1 + 2
M

R
+

5

3

(

M

R

)2

R, (140)

whereM is the irreductible mass of each star, we deduce the value of R. ForM/Rc = 0.14,
we find M/R = 0.164. Note that this value coincides within a 10−4 error with the radius
expressed in the coordinate system used by the numerical code.

As we mentionned before, our hydrodynamic model is based on the assumption that
the two stars are made of homogeneous fluid. In the numerical simulation, a polytropic
equation of state of the type P = kρ2 is used. In that configuration, the density distri-
bution is very different from the one we used in our incompressible model. To remedy
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this problem, we want to correct our tidal term by introducing a prefactor k that would
account for the difference between the two density distributions. An appropriate quantity
for that purpose, which is involved in the quadrupole formula used in our tidal model, is
the moment of inertia of each star. We found k = I/Ih = 0.6, where I is the moment of
inertia of one isolated star in the numerical simulation, and where Ih = (2/5)MR2 is the
moment of inertia of the corresponding homogeneous star.

The final formulae of the binding energy E/m then takes the form:

Eb = −
η

2

(

1− e2
)

[

mΩp

(1− e)2
]2/3

+PN+k
9η

2

(

R

m

)5(

1 +
1

9
e2 − 13

9
e4 +

1

3
e6
)[

mΩp

(1− e)2
]4

.

(141)
As for the reduced angular momentum:

J/m2 = η

[

mΩa

(1− e)2
]−1/3

+ PN − 6ηk

(

1 +
10

3
e2 + e4

)[

mΩa

(1− e)2
]11/3

. (142)

Of course, since the two stars are identical, we have η = 1/4.
The numerical data can be found in [8]. The binding energy is obtained by substracting

off the irreductible mass m from the total relativistic energy given in table III of [8], and
by scaling the result by m. The value of this irreductible mass is m = 2 × 1.5148 solar
masses. We get the reduced angular momentum by scaling the angular momentum given
in table III of [8] by m2.

Results are given in figures 1 and 2. Oddly enough, we observe two very different
behaviors depending on the quantity we consider: the numerical values of the energy are
best fitted with large eccentricities (∼ 0.13) at the apastron, whereas circular orbits fit
the numerical values of the angular momentum perfectly.

This suggests that there may be a problem in the respective definitions of the total
energy in the numerical and post-Newtionian approaches. Indeed the discrepancy between
numerical and analytical results behaves as if there was an “offset” between the two
energies. At any rate the question of whether these particular numerical simlulations
contain spurious eccentricities remains open.

4.2 Corotational black hole binary

In this case the black holes are spinning with the same angular velocity as the orbital
frequency. This means that the two bodies are locked in a configuration where they
always present the same side to each other. This particular set of numerical data has
already been compared with analytical results in two recent papers [34, 35]. The first
one relies on the same method as ours, except that only circular orbits are considered.
The second one is based on results from the ADM-hamiltonian approach, and uses Padé
resummation methods.

Since we have R ∼ m for black holes, tidal terms can be neglected. However, contri-
butions due to the spin of each star will have to be added to the post-Newtonian results.
Three distinct sorts of correction will have to be taken into account:

• Rotation contributions. They read δE = (1/2)IΩ2 and δJ = IΩ for each star. For
black holes, we have Ia = 4m3

a. Thus we obtain: δE/m = 2(1 − 3η)(mΩ)2 and
δJ/m2 = 4(1− 3η)mΩ. Those are 2PN contributions.
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Figure 1: Binding energy vs. angular velocity in the case of irrotational neutron stars. Two
theoretical curves are plotted: one corresponding to a circular orbit and one corresponding
to an eccentric orbit taken at its apastron (e = 0.13) for which the numerical values are
best fitted.
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Figure 2: Angular momentum vs. angular velocity in the case of irrotational neutron
stars. For this quantity the best fit is obtained for a circular orbit.
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• Spin-orbit contributions. For that we need the formulae given in [36, 37]. Using
Sa = IΩ, we compute the corrections to the energy and the angular momentum in
the case of circular orbits. This is justified by the assumption that the eccentricity is
small, and by the fact that the spin-orbit contributions are 3PN. We find: δE/m =
η(−16/3 + 12η)(mΩ)8/3 and δJ/m2 = 10(−4/3 + 3η)(mΩ)2/3.

• The replacement of the new total energy (which is also the new attractive mass,
modified by the rotation energy) into the Newtonian orbital term. This gives:
δE/m = η(−2/3 + η)(mΩ)8/3 and δJ/m2 = η(4/3 − 2η)(mΩ)5/3. Again we only
consider the circular part of these 3PN corrections.

We eventually obtain:

δE/m = 2(1− 3η)(mΩ)2 + η (−6 + 13η) (mΩ)8/3 (143)

δJ/m2 = 4(1− 3η)mΩ+ 4η(−3 + 7η)(mΩ)5/3. (144)

Note that the correction (143) to the energy is consistent with the one found in [34].

Figures 3 and 4 give various analytical fits. If we restrict our study to large separations
(mΩ < 0.06), for which PN results are believed to be reliable, we observe discrepancies
between analytical and numerical results for both the energy and the angular momentum
that cannot be explained by invoking resummation techniques.

Again, the eccentricity required to fit the numerical data depends on the quantity
we consider (see fig. 5). This phenomenon resembles the one observed in the case of
irrotational neutron stars. In this case however, the qualitative claim that the numerical
data sets correspond to apastrons of eccentric orbits is supported by the analysis of both
quantities.

4.3 Corotational neutron star binary

This case combines the difficulties of the first two cases. We will have to include: (i) Post-
Newtonian terms; (ii) Tidal terms, as well as interaction terms coming from the flattening
of each star under the effect of its own rotation [equ. (138)]; (iii) Spin-orbit terms and
contributions coming from the replacement of the new attractive mass into the Newto-
nian part of the binding energy, condensed into the expression: −(11/10)(R/m)2(mΩ)8/3.
The numerical values we are provided with correspond to the energy of the system from
which the energy of each star, isolated but spinning with the same frequency Ω, has been
substracted off. This means for example that the rotation kinetic energy of each star will
not have to be included.

One problem remains however: the energy derived in (138) corresponds to the differ-
ence between the energy of the binary system and the energy of the same system when the
bodies are infinitely separated. But as we mentioned before, the value of Ω, and therefore
of the rotation kinetic energy, varies with the separation. Schematically, numerical values
correspond to: E − E∞(Ω), whereas our PN-tidal formula corresponds to E − E∞(Ω∞).
So we have to add the following correction to our analytical formula, according to (134):

E∞(Ω∞)− E∞(Ω) =
MΩ2R5

r3
≈ m

2

(mΩ)4

1− e

(

R

m

)5

(145)
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Figure 3: Binding energy vs. angular velocity in the case of corotational black holes. Along
with the numerical values, we plotted various 3PN analytical curves: simple circular orbits
[34]; simple circular orbits with Padé resummation [35]; eccentric orbits corresponding to
the best fit of the first ten numerical values.
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Figure 4: Angular momentum vs. angular velocity for corotational black holes. The cases
are the same as in figure 3.
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Figure 5: Matching eccentricity vs. angular velocity for corotational black holes. For each
numerical point we find the eccentricity for which the analytical expression of the energy
(resp. angular momentum) coincides with its numerical value.

The remarks about the choice of R and k (see section 4.1) also apply in this case.
We found M/R = 0.1474 (M is the mass of one star) and k = 0.62. The final analytical
expression of the energy reads:

Eb = −η
2

(

1− e2
)

[

mΩa

(1− e)2
]2/3

+ PN + k
9η

2

(

R

m

)5(

1 +
1

9
e2 − 13

9
e4

+
1

3
e6
)[

mΩa

(1− e)2
]4

+ kη

(
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m

)5(
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3
e2 +

1

3
e4
)(
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)4

−11

10

(

R

m

)2

(mΩa)
8/3 +

1

2

(mΩa)
4

1− e

(

R

m

)5

(146)

Energy plots are given in figure 6, and matching eccentricities are given (with error
bars) in figure 7. As one can see, the assumption that the numerically generated orbits
are circular still holds for these data sets. Besides, the existence of error bars allows us to
put boundaries on possible spurious eccentricities.
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Figure 6: Orbital energy vs. angular velocity for corotational neutron stars. The analytical
curve corresponding to a circular orbit fits the numerical values correctly.
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Figure 7: Matching eccentricity vs. angular velocity for corotational neutron stars.



5 Conclusion

When I first began this internship, the main objective I was given was to use post-
Newtonian methods to account for the observation of spurious eccentricities in dynamical

numerical simulations made by Mark Miller et al. The error leading to this eccentricity
could come from three different sources: (i) errors priorly contained in the initial value
data set used as initial conditions for the numerical simlulations; (ii) errors coming from
the importation of this data set onto a smaller grid for the purpose of the dynamical
evolution; (iii) errors coming from the implementation of the numerical evolution itself.

It was clear—and proven—that the value of this spurious eccentricity (of order ∼ 0.03)
depended on the last two factors (that is, the conditions in which the dynamical evolution
was implemented). Yet it was not plain whether the initial data themselves were not
fraught with errors. This is what we wanted to check by analysing the energy curves of
the initial value data sets. Subsequently we extented our approach to other numerical
works [7, 8].

We did not come up with the “nice” definitions of the eccentricity ê and the semi-latus
rectum p̂ = m/û straightaway. So our first comparisons were based on the only post-
Newtonian eccentricity at our disposal back then: ẽ. Using this eccentricity, we found
very spectacular results for the black hole simulations, in the sense that we could find
an almost perfect analytical fit to the energy with a constant eccentricity. It turned out
later that this was only a coincidence, since ê = ẽ(1+PNcorrections), for example, is not
expected to be constant as ẽ is held constant. In other words, this miraculous fit came
from a miraculous choice in the definition of the eccentricity. Nevertheless, the qualitative
claim still held as we changed to the new definition.

The conclusions that can be drawn from this study depend on each particular case.

• Corotational neutron stars (figure 7). The presence of error bars allows us to validate
the condition of circularity within the range of acknowledged errors. However the
question of whether these acknowledged errors can generate spurious eccentricities
remains open. But even if they do, we are now able to put boundaries on these
eccentricities.

• Corotational black holes (figure 5). We do not dispose of the error bars, which
makes the discussion difficult. There no indication whatsoever that the error bars
do not overlap the “eccentricity-free” energy and angular momentum curves for large
separations (where the PN formulae are reliable). On the other hand, these miss-
ing error bars could also account for the difference observed between the matching
eccentricities for each quantity.
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Appendix: some formulae

Quasi-Keplerian parameters (ADM gauge)
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Expressions of Ẽ and J̃ as functions of e and u (ADM gauge)
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Expressions of e and u as functions of Ẽ and J̃ (ADM gauge)

(we dropped the tildes for the ease of presentation)

e =
√

1 + EJ2 (1 + e1 + e2 + e3) (179)

u =
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√
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]
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{
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u1 =
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Periastron advance (ADM gauge)
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Abstract

We make comparisons between fully relativistic numerical computations of quasi-
equilibrium configurations of compact binaries (containing either black holes or neu-
tron stars), and post-Newtonian results derived from the perturbative approach to
general relativity. To proceed, we develop a method allowing to solve iteratively the
post-Newtonian two-body problem using the technique of osculating elements, and
we show that our results are consistent with previous works. Then we present a
simple hydrodynamic model accounting for tidal interactions between two neutron
stars. Post-Newtonian expressions of the energy and the angular momentum — in-
cluding tidal corrections in the case of neutron stars — are thus derived through
third order beyond Newtonian gravity (O(v/c)6) in both rotational and irrotational
configurations, and compared to numerically generated values. We showed that the
discrepancy sometimes observed for large separations can be accounted for by consid-
ering a slightly eccentric orbit taken at its apastron (maximum separation between the
two bodies) instead of a circular orbit. This suggests that the errors generated by the
approximations made in solving the initial value problem numerically may actually
result in the introduction of a spurious eccentricity.

Résumé

Nous comparons des calculs numériques entièrement relativistes de configurations
en quasi-équilibre de couples de corps compacts (trous noirs ou étoiles à neutron)
avec les résultats post-newtoniens déduits de l’approche perturbative de la relativité
générale. Pour ce faire, nous développons une méthode permettant de résoudre le
problème post-newtonien des deux corps de manière itérative en utilisant la technique
des éléments osculateurs, et nous montrons l’équivalence de nos résultats avec des
travaux précédents. Puis nous présentons un modèle hydrodynamique simple rendant
compte des interactions de marées subies par deux étoiles à neutron. Nous obtenons
ainsi les expressions post-newtoniennes — contenant les termes de marées dans le cas
des étoiles à neutron — de l’énergie et du moment cinétique jusqu’au troisième ordre
au delà de la limite newtonienne (O(v/c)6) pour des configurations co-rotationelles et
irrotationelles, et nous les comparons avec les valeurs obtenues numériquement. Nous
avons montré que la différence parfois observée pour les grandes séparations pouvait
s’expliquer en considérant, à la place d’une orbite circulaire, une orbite légèrement
excentrique prise à son apogée. Cela suggère que les erreurs engendrées par les approx-
imations concédées lors de la résolution numérique du problème de la valeur initiale
pourraient bien se manifester par l’introduction d’une excentricité factice.


