Roughness and critical force for depinning at 3-loop order
Mikhail N. Semeikin, Kay Jörg Wiese1
1CNRS-Laboratoire de Physique de
l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Universités, Université Paris-Diderot, Sorbonne Paris Cité
24 rue Lhomond, 75005 Paris, France
Abstract
A $d$-dimensional elastic manifold at depinning is described by a
renormalized field theory, based on the Functional Renormalization Group (FRG).
Here we analyze this theory to 3-loop order, equivalent to third order in
$\epsilon=4-d$, where $d$ is the internal dimension. The critical exponent
reads $\zeta = \frac \epsilon3 + 0.04777 \epsilon^2 -0.068354 \epsilon^3 +
{\cal O}(\epsilon^4)$. Using that $\zeta(d=0)=2^-$, we estimate
$\zeta(d=1)=1.266(20)$, $\zeta(d=2)=0.752(1)$ and $\zeta(d=3)=0.357(1)$. For
Gaussian disorder, the pinning force per site is estimated as $f_{\rm c}= {\cal
B} m^{2}\rho_m + f_{\rm c}^0$, where $m^2$ is the strength of the confining
potential, $\cal B$ a universal amplitude, $\rho_m$ the correlation length of
the disorder, and $f_{\rm c}^0$ a non-universal lattice dependent term. For
charge-density waves, we find a mapping to the standard $\phi^4$-theory with
$O(n)$ symmetry in the limit of $n\to -2$. This gives $f_{\rm c} = \tilde {\cal
A}(d) m^2 \ln (m) + f_{\rm c}^0 $, with $\tilde {\cal A}(d) = -\partial_n
\big[\nu(d,n)^{-1}+\eta(d,n)\big]_{n=-2}$, reminiscent of log-CFTs.
arXiv:2310.12801 [pdf]
Phys. Rev. B 109 (2024) 104203134203 [pdf]
Copyright (C)
by Kay Wiese. Last edited May 10, 2024.