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A – Preamble: damped oscillator

Let us consider a particle of mass m subject to a deterministic force f and in contact
with a thermal bath at temperature T . The dynamics of its position (here in 1d) is
described by the Langevin equation

m
d2x

dt2
= f(x)−η0

dx

dt
+ ξ(t)︸ ︷︷ ︸

fbath

, (1)

where η0 ≥ 0 is a friction coefficient and ξ(t) is a Gaussian white noise: 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = 2η0Tδ(t− t′) where 〈. . .〉 indicates the average over the noise realizations.

(1) Discuss briefly the physics behind each term of fbath. Give P [ξ], the probability
density for a given realization of ξ(t). Compute 〈ξ(t1)ξ(t2)ξ(t3)ξ(t4)〉.

(2) Let us now focus on the case of an harmonic oscillator, i.e. f(x) = −kx with k > 0.
In the absence of a surrounding bath (η0 = 0), what is the typical time scale τsyst of the
system?

(3) In the presence of a zero-temperature bath (i.e. η0 > 0 and T = 0), use dimensional
analysis to identify τrelax, the typical time scale associated with the relaxation due to
the bath’s friction.

(4) Overdamped limit: when τrelax � τsyst, argue that the dynamics may be simplified
to the so-called overdamped Langevin equation:

dx

dt
= f(x) + ξ(t) , (2)

where the time t has been rescaled such that 〈ξ(t)ξ(t′)〉 = 2Tδ(t− t′).

B – Multiplicative noise

Let us now consider

dx

dt
= f(x) + g(x)ξ(t) , (3)

where the function g(x) is a strictly positive regular function for all x. Given that it mul-
tiplies a function of the dynamical variable x(t), the noise is now called “multiplicative”
[as opposed to “additive” in Eq. (2)].

(1) As it stands, the expression in (3) is not a well-defined equation. Discuss the issue
brought by the multiplicative factor g(x).
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I. Itô Stochastic Differential Equation (Itô SDE)

The Itô prescription consists in giving a meaning to (3) with the following discretization:

dxn = f(xn)dt+ g(xn)dWn , (4)

where time was discretized in finite intervals dt, dxn ≡ xn+1−xn, and dWn ≡Wn+1−Wn

where Wn is a Wiener process with 〈dWn〉 = 0 and 〈dWmdWn〉 = 2Tδmndt.

(1) Show that 〈g(x)ξ(t)〉 = 0, and deduce the equation describing the dynamics of the
average position 〈x(t)〉.
(2) Itô formula. Using the discrete Itô SDE (4), show that for any function A(x),

dA(x)

dt
≡ lim

dt→0

A(xn+1)−A(xn)

dt
=

dx

dt
A′(x) + Tg2A′′(x) . (5)

(3) Fokker-Planck equation. The average 〈dA(x)
dt 〉 can be expressed via the above Itô

formula, and also in terms of the probability distribution P (x, t) to find the particle in x

at time t: 〈dA(x)
dt 〉 =

∫
dx A(x)∂tP (x, t). Deduce the Fokker-Planck equation associated

with the Itô SDE,

∂tP (x, t) = −∂x [f(x)P (x, t)] + T∂2x
[
g2(x)P (x, t)

]
. (6)

II. Stratonovich Stochastic Differential Equation (Strato SDE)

The Stratonovich prescription consists in giving a meaning to (3) with the following
discretization:

dxn = f(xn)dt+ g

(
xn+1 + xn

2

)
dWn . (7)

(1) Compute 〈g(x)ξ(t)〉, and deduce the equation describing the dynamics of the average
position 〈x(t)〉.
(2) Using the discrete Strato SDE (7), show that any function A(x) obeys the rules of
conventional calculus, i.e.

dA(x)

dt
≡ lim

dt→0

A(xn+1)−A(xn)

dt
=

dx

dt
A′(x) . (8)

(3) Strato to Itô. By developing g
(
xn+1+xn

2

)
around xn, bring the Strato SDE (7) to

an equivalent Itô SDE.

(4) Fokker-Planck equation. Use the above result and Eq. (6) to derive the Fokker-
Planck equation associated with the Strato SDE (7).

III. Non-linear change of variable

Let us consider the Itô SDE in (4), and its associated Fokker-Planck equation (6).
Instead of working with the variable x, we are free to perform a change of variable
x→ ỹ = y(x) where y′(x) > 0 for all x.

(1) Performing the change of variable in Eq. (6), identify the corresponding Fokker-
Planck equation on P̃ (ỹ, t).

(2) Deduce the corresponding SDE governing the dynamics of the new variable ỹ.

(3) Repeat when x obeys the Strato SDE (7).
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IV. Itô Vs Strato: which prescription to choose?

In practice, the variance of the bath-induced noise is never infinite: 〈ξ(t)ξ(t′)〉 = 2Tη(t−
t′) where η(t) ≥ 0 is a regular function that depends on the details of the bath and its
coupling to the system. Typically, η(t � τbath) → 0 where τbath is a typical time-scale
of the bath.

(1) What are the two physical limits that were performed to get to the pre-equation (3)?
Which order of limits yields the Itô prescription? The Stratonovich prescription?

C – Challenge: from multiplicative to additive noise

Find the non-linear change of variable x→ ũ = u(x) which maps the multiplicative-noise
Itô SDE

dx

dt

Itô
= f(x) + g(x)ξ(t) , (9)

to an additive-noise SDE

dũ

dt

Itô
= f̃(u) + ξ̃(t) , (10)

where the new f̃ and ξ̃ will be expressed in terms of the former f , g, and ξ.
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