ICFP M2 – Selected Topics in Statistical Field Theory TD nº 4 – Elements of stochastic calculus

Kay Wiese & Camille Aron

February 9, 2018

A – Preamble: damped oscillator

Let us consider a particle of mass m subject to a deterministic force f and in contact with a thermal bath at temperature T. The dynamics of its position (here in 1d) is described by the Langevin equation

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = f(x)\underbrace{-\eta_0 \frac{\mathrm{d}x}{\mathrm{d}t} + \xi(t)}_{f_{\mathrm{bath}}},\tag{1}$$

where $\eta_0 \ge 0$ is a friction coefficient and $\xi(t)$ is a Gaussian white noise: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2\eta_0 T \delta(t-t')$ where $\langle \ldots \rangle$ indicates the average over the noise realizations.

(1) Discuss briefly the physics behind each term of f_{bath} . Give $P[\xi]$, the probability density for a given realization of $\xi(t)$. Compute $\langle \xi(t_1)\xi(t_2)\xi(t_3)\xi(t_4)\rangle$.

(2) Let us now focus on the case of an harmonic oscillator, *i.e.* f(x) = -kx with k > 0. In the absence of a surrounding bath ($\eta_0 = 0$), what is the typical time scale τ_{syst} of the system?

(3) In the presence of a zero-temperature bath (*i.e.* $\eta_0 > 0$ and T = 0), use dimensional analysis to identify τ_{relax} , the typical time scale associated with the relaxation due to the bath's friction.

(4) Overdamped limit: when $\tau_{\text{relax}} \ll \tau_{\text{syst}}$, argue that the dynamics may be simplified to the so-called overdamped Langevin equation:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x) + \xi(t) \,, \tag{2}$$

where the time t has been rescaled such that $\langle \xi(t)\xi(t')\rangle = 2T\delta(t-t')$.

B – Multiplicative noise

Let us now consider

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x) + g(x)\xi(t)\,,\tag{3}$$

where the function g(x) is a strictly positive regular function for all x. Given that it multiplies a function of the dynamical variable x(t), the noise is now called "multiplicative" [as opposed to "additive" in Eq. (2)].

(1) As it stands, the expression in (3) is not a well-defined equation. Discuss the issue brought by the multiplicative factor g(x).

I. Itô Stochastic Differential Equation (Itô SDE)

The Itô prescription consists in giving a meaning to (3) with the following discretization:

$$dx_n = f(x_n)dt + g(x_n)dW_n, \qquad (4)$$

where time was discretized in finite intervals dt, $dx_n \equiv x_{n+1} - x_n$, and $dW_n \equiv W_{n+1} - W_n$ where W_n is a Wiener process with $\langle dW_n \rangle = 0$ and $\langle dW_m dW_n \rangle = 2T \delta_{mn} dt$.

(1) Show that $\langle g(x)\xi(t)\rangle = 0$, and deduce the equation describing the dynamics of the average position $\langle x(t)\rangle$.

(2) Itô formula. Using the discrete Itô SDE (4), show that for any function A(x),

$$\frac{\mathrm{d}A(x)}{\mathrm{d}t} \equiv \lim_{\mathrm{d}t\to0} \frac{A(x_{n+1}) - A(x_n)}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t}A'(x) + Tg^2A''(x).$$
(5)

(3) Fokker-Planck equation. The average $\langle \frac{dA(x)}{dt} \rangle$ can be expressed *via* the above Itô formula, and also in terms of the probability distribution P(x,t) to find the particle in x at time t: $\langle \frac{dA(x)}{dt} \rangle = \int dx A(x) \partial_t P(x,t)$. Deduce the Fokker-Planck equation associated with the Itô SDE,

$$\partial_t P(x,t) = -\partial_x \left[f(x) P(x,t) \right] + T \partial_x^2 \left[g^2(x) P(x,t) \right] \,. \tag{6}$$

II. Stratonovich Stochastic Differential Equation (Strato SDE)

The Stratonovich prescription consists in giving a meaning to (3) with the following discretization:

$$dx_n = f(x_n)dt + g\left(\frac{x_{n+1} + x_n}{2}\right)dW_n.$$
(7)

(1) Compute $\langle g(x)\xi(t)\rangle$, and deduce the equation describing the dynamics of the average position $\langle x(t)\rangle$.

(2) Using the discrete Strato SDE (7), show that any function A(x) obeys the rules of conventional calculus, *i.e.*

$$\frac{\mathrm{d}A(x)}{\mathrm{d}t} \equiv \lim_{\mathrm{d}t\to0} \frac{A(x_{n+1}) - A(x_n)}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t}A'(x)\,.$$
(8)

(3) Strato to Itô. By developing $g\left(\frac{x_{n+1}+x_n}{2}\right)$ around x_n , bring the Strato SDE (7) to an equivalent Itô SDE.

(4) Fokker-Planck equation. Use the above result and Eq. (6) to derive the Fokker-Planck equation associated with the Strato SDE (7).

III. Non-linear change of variable

Let us consider the Itô SDE in (4), and its associated Fokker-Planck equation (6). Instead of working with the variable x, we are free to perform a change of variable $x \to \tilde{y} = y(x)$ where y'(x) > 0 for all x.

(1) Performing the change of variable in Eq. (6), identify the corresponding Fokker-Planck equation on $\tilde{P}(\tilde{y}, t)$.

(2) Deduce the corresponding SDE governing the dynamics of the new variable \tilde{y} .

(3) Repeat when x obeys the Strato SDE (7).

IV. Itô Vs Strato: which prescription to choose?

In practice, the variance of the bath-induced noise is never infinite: $\langle \xi(t)\xi(t')\rangle = 2T\eta(t-t')$ where $\eta(t) \geq 0$ is a regular function that depends on the details of the bath and its coupling to the system. Typically, $\eta(t \gg \tau_{\text{bath}}) \to 0$ where τ_{bath} is a typical time-scale of the bath.

(1) What are the two physical limits that were performed to get to the pre-equation (3)? Which order of limits yields the Itô prescription? The Stratonovich prescription?

C – Challenge: from multiplicative to additive noise

Find the non-linear change of variable $x \to \tilde{u} = u(x)$ which maps the multiplicative-noise Itô SDE

$$\frac{\mathrm{d}x}{\mathrm{d}t} \stackrel{\mathrm{It\hat{o}}}{=} f(x) + g(x)\xi(t) , \qquad (9)$$

to an additive-noise SDE

$$\frac{\mathrm{d}\tilde{u}}{\mathrm{d}t} \stackrel{\mathrm{It\hat{o}}}{=} \tilde{f}(u) + \tilde{\xi}(t) , \qquad (10)$$

where the new \tilde{f} and $\tilde{\xi}$ will be expressed in terms of the former f, g, and ξ .