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We study the two-terminal transport properties of a metallic single-walled carbon nanotube with
good contacts to electrodes, which have recently been shown [W. Liang et al, Nature 441, 665-
669 (2001)] to conduct ballistically with weak backscattering occurring mainly at the two contacts.
The measured conductance, as a function of bias and gate voltages, shows an oscillating pattern of
quantum interference. We show how such patterns can be understood and calculated, taking into
account Luttinger liquid effects resulting from strong Coulomb interactions in the nanotube. We
treat back-scattering in the contacts perturbatively and use the Keldysh formalism to treat non-
equilibrium effects due to the non-zero bias voltage. Going beyond current experiments, we include
the effects of possible ferromagnetic polarization of the leads to describe spin transport in carbon
nanotubes. We thereby describe both incoherent spin injection and coherent resonant spin transport
between the two leads. Spin currents can be produced in both ways, but only the latter allow this
spin current to be controlled using an external gate. In all cases, the spin currents, charge currents,
and magnetization of the nanotube exhibit components varying quasiperiodically with bias voltage,
approximately as a superposition of periodic interference oscillations of spin- and charge-carrying
“quasiparticles” in the nanotube, each with its own period. The amplitude of the higher-period
signal is largest in single-mode quantum wires, and is somewhat suppressed in metallic nanotubes
due to their sub-band degeneracy.

PACS numbers: 73.63.-b,71.10.Pm,72.25.-b

I. INTRODUCTION

Spin transport represents a new branch in mesoscopic
physics with several technological applications1,2,3,4,5,6,
e.g. information storage, magnetic sensors and poten-
tially quantum computation7. While most theoretical
models are based on Fermi liquid theory, some work has
been done on strongly correlated 1D systems using Lut-
tinger liquid theory8,9,10,11,12. This work has focused in
the weak tunneling regime between the ferromagnet and
the 1D system and found that spin transport may pro-
vide experimental evidence of spin charge separation, one
of the main predictions of Luttinger liquid theory that
remains to be observed experimentally in an unambigu-
ously accepted way. Despite the possible technological
applications and contributions to the study of spin charge
separation in strongly correlated systems, very little ex-
perimental work has been carried out on spin transport
in 1D systems.13 This work is complicated by the use of
multi-walled carbon nanotubes, and explored only situ-
ations with ferromagnetic contacts with parallel or an-
tiparallel magnetizations.

Early experimental work with nanotube devices was
limited by poor contacts between the electrodes and the
nanotube, and accordingly theoretical models focused in
the weak tunneling regime. Recently, Liang et al.

14 have
succeeded in fabricating single-walled carbon nanotube
devices with near-perfect ohmic contacts to the elec-
trodes. A schematic representation of their experiment
is presented in Fig. 1. These devices are characterized by
values of the conductance as high as G = 3.7e2/h, close

to the theoretically predicted higher limit15 of 4e2/h. At
temperatures below 10K, the measured conductance ex-
hibits approximately periodic oscillations as a function
of the gate voltage. These oscillations are due to Fabry-
Perot interference – i.e. quantum interference between
propagating electron waves inside the resonant cavity de-
fined by the two nanotube-electrode interfaces. In or-
der to explain their result, Ref. 14 considered a model
of non-interacting electrons and used the multi-channel
Landauer-Büttiker formalism to calculate the differen-
tial conductance as a function of the bias and gate volt-
ages. They have found qualitative agreement between
the calculated conductance and their experimental data,
especially with regard to the variation of the low-bias
conductance with gate voltage.

On the other hand, transport experiments on carbon
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FIG. 1: Experimental geometry (from Ref. 14). A single-
walled carbon nanotube is located on a silicon gate and ox-
ide layer. The electrodes, which may be ferromagnetic, are
grown on top of the nanotube. The doped silicon is used as a
gate electrode to modulate the charge density. The electronic
transport properties of the nanotube devices were character-
ized as a function of bias (V ) and gate (Vg) voltages.
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nanotubes16,17,18,19 have shown that electrons in nan-
otubes are strongly correlated and are better described
by a Luttinger liquid model20,21,22,23,24,25. This implies
the electrons in these systems do not exhibit Fermi liq-
uid properties but instead form collective excitations bet-
ter described by charge and spin like density waves that
propagate with different velocities. This Luttinger liquid
behavior drastically changes the charge conductance for
these systems and it is interesting to know how this af-
fects the results obtained for the particular setup used
in Ref. 14. Furthermore, this setup can be generalized
to the use of ferromagnetic electrodes, in order to study
both charge and spin transport in 1D electron systems.

In this paper we investigate the spin and charge trans-
port properties in 1D electron systems with near-perfect
contacts to ferromagnetic electrodes (the normal metal
electrodes correspond to the particular case of zero mag-
netization). We consider both the case of quantum wires,
i.e. single-channel electron systems, and single-walled
carbon nanotubes, but mainly focus on the latter one.
We use a non-interacting Stoner model to treat the fer-
romagnetic leads and a Luttinger liquid model for the
nanotube and consider the case of near-perfect contacts
to the leads, therefore treating backscattering at the con-
tacts perturbatively. In order to introduce the effect of
a finite bias voltage, we use the non-equilibrium Keldysh
formalism. Following this procedure, we obtain the con-
ductance, spin and spin current as functions of the gate
and bias voltages, the external magnetic field and the
orientation of the magnetization in each lead. We study
how the strong Coulomb interactions affect these trans-
port properties and find some features in the Fabry-Perot
interference patterns that are related to spin charge sep-
aration.

II. THE MODEL

A single-walled carbon nanotube with long-range Cou-
lomb interactions is well described by a forward-scatter-
ing model24,25. In this model the Hamiltonian density is
given by

HLL = −ivF

2
∑

a=1

∑

α=↑,↓

(

ψ†
Raα ∂xψRaα − ψ†

Laα ∂xψLaα

)

+ λ





2
∑

a=1

∑

α=↑,↓

(

ψ†
Raα ψRaα + ψ†

Laα ψLaα

)
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, (1)

where the right/left moving electron operators ψR/L aα

have the labels a = 1, 2 for the band and α =↑, ↓ for the
spin projection of the electrons in the nanotube and λ is
the interaction strength. The term in the square brack-
ets corresponds to the electron density. We also consider
the same problem for a single-channel quantum wire, for
which there is no sub-band degeneracy and the band in-
dex can be dropped. Due to the similarities between the

g=1 g<1 g=1

FIG. 2: Schematic representation of the model.
The leads are modeled as 1D non-interacting electron sys-
tems, the Luttinger liquid parameter is therefore g = 1. The
nanotube (bold line), on the other hand, is described by a 1D
interacting system, in this case g < 1, which corresponds to
repulsive interactions. The contacts to the leads are modeled
as two weak backscattering barriers. The two backscatterers
generate Fabry-Perot interference.

two cases, we give explicit analytical formulas throughout
the paper only for the nanotube, but will present results
for the quantum wire where appropriate.

The metallic leads are modeled as two semi-infinite 1d-
non-interacting systems26,27,28, which is obtained with a
position dependent λ, constant in the wire and zero in
the leads.

We allow for ferromagnetism in the leads using a non-
interacting Stoner model8,9 (mean-field treatment of the
magnetization). The Hamiltonian density is HFM = H0+
HM with H0 = HLL(λ = 0) and

HM = − ~M ·
∑

aαβ

(

ψ†
Raα ~σαβ ψRaβ + ψ†

Laα ~σαβ ψLaβ

)

,

(2)

where ~σαβ are the Pauli matrices and ~M is the “exchange
field”, which is proportional to the magnetization. This

is constant in each ferromagnetic lead, i.e. ~M ‖ m̂1 for

x < −L/2 and ~M ‖ m̂2 for x > L/2 and in ordinary

paramagnetic leads ~M = 0. In this case, the total system
corresponding to a nanotube between two ferromagnetic
leads is described by the Hamiltonian

H =

∫

|x|>L/2

dx HFM +

∫

|x|<L/2

dx HLL . (3)

The total Hamiltonian H can take a form identical to
the Hamiltonian in the case of normal metal leads by ap-
plying the following transformation to the electron field
operators separately in the left and right leads respec-
tively

ψR/L(x) → e±i/vF·
∫

x
−L/2

dx′ ~M(x′)·~σψR/L(x), x < −L
2

ψR/L(x) → e±i/vF·
∫ x

L/2
dx′ ~M(x′)·~σψR/L(x), x > L

2 (4)

This transformation leaves HLL invariant and HFM trans-
forms into H0.

We apply the usual bosonization procedure to study
this model22,23. The four electron modes are associated
to four bosonic modes described by the fields θaα and
their duals ϕaα via the bosonization transformation

ψR/Laα =
1√
2πΛ

ei(ϕaα±θaα) , (5)
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where Λ is a short-distance cutoff. It is convenient to
consider the following linear combinations of the fields25:
θi,c/s = 1√

2
(θi,↑ ± θi,↓) and θ±,µ = 1√

2
(θ1,µ ± θ2,µ), with

i = 1, 2 and µ = c, s. This allows us to define the new
fields θ1 = θ+c, which corresponds to the total charge
mode and is the only interacting mode, and θ2 = θ+s,
θ3 = θ−c and θ4 = θ−s; with similar transformations for
the ϕ fields. In terms of these new fields the Luttinger
liquid Hamiltonian density (1) is diagonalized

HLL =
v

2π

[

g (∂xϕ1)
2

+
1

g
(∂xθ1)

2

]

+

4
∑

i=2

vF

2π

[

(∂xϕi)
2

+ (∂xθi)
2
]

, (6)

where vF is the Fermi velocity, v is the renormalized ve-
locity due to the interactions and g is the Luttinger liq-
uid parameter. In the inhomogeneous model g and v are
functions of the position: g = 1 and v = vF in the leads

and g =
√

vF

vF+8λ/π < 1 and v = vF/g in the nanotube.

The contacts between the leads and the nanotube are
modeled by weak backscattering at the contact points,
the corresponding Hamiltonian density has the form

Hbs =

2
∑

m=1

2
∑

a,b=1

∑

α,β=↑,↓
δ(x− xm)

[

ũab
m ψ†

Laα ψRbα + ṽab
m ψ†

Laα
~Mm · ~σαβ ψRbβ + h.c.

]

(7)

=

2
∑

m,a,b=1

∑

α=±1

δ(x − xm)
{

(

uab
m + αvab

mMz
m

)

ei[θ1+αθ2+(−1)a+1δab(θ3+αθ4)+(−1)a+1(1−δab)(ϕ3+αϕ4)]

+ vab
m (Mx

m + iαMy
m) ei[θ1+(−1)a+1δabθ3+(−1)a+1(1−δab)αθ4+αϕ2+(−1)a+1(1−δab)ϕ3+(−1)a+1δabαϕ4] + h.c.

}

,

wherem labels the position of the contacts: x1/2 = ∓L/2
(L is the nanotube length) and uab

m and vab
m are con-

stants proportional to the strength of the backscattering,
uab

m = ũab
m/(2πΛ) and the same for vab

m . The backscatter-
ing terms are restricted by symmetry according to charge
conservation and spin rotational symmetry around the
axis of magnetization of the ferromagnetic contact. We

consider only terms of the form ψ†
RψL because these are

the most relevant in the renormalization group sense
(the scaling dimension in real space of these terms is
∆ = (g+3)/4, while the scaling dimension of terms of the

form ψ†
R/LψR/L is ∆ = 1). Hence if all scattering terms

are weak, these terms will dominate. It is straightforward
to extend the present treatment to include the neglected
interactions, though we do not attempt this here.

The effect of the magnetization appears only on the
backscattering term. In the case of near-perfect con-
tacts to the electrodes, we can treat the backscattering
Hamiltonian Hbs as a perturbation to the Hamiltonian
H = HLL. This procedure is described in section III in
the context of the Keldysh formalism that we use in order
to account for the effects of the finite bias voltage.

The gate voltage introduces a term in the Hamilto-
nian density proportional to ρ Vg = 2/π Vg ∂xθ1, where ρ
is the electron density. The constant of proportionality
relates the voltage applied at the gate with the voltage
felt by the nanotube and therefore depends on the sam-
ple. The Hamiltonian density H = HLL + HVg becomes

H = HLL, after applying the following transformation
to the θ1 field: θ1 −→ θ1 − Vg x , where we absorbed a
constant of proportionality into the definition of Vg for
simplicity. This transformation needs to be applied to
the total Hamiltonian, including the backscattering term
Hbs, which means that the gate voltage after this trans-
formation will only contribute to the perturbation Hamil-
tonian.

The effect of the external magnetic field is introduced
via a Zeeman coupling term in the Hamiltonian

Hh = −~h ·
∫

dx
(

ψ†
Raα~σαβψRaβ + ψ†

Laα~σαβψLaβ

)

. (8)

The contribution of the magnetic field can be transfered
to the perturbation Hamiltonian Hbs using a similar pro-
cedure to the one described above for the gate voltage.
Taking the z-direction as the direction of the magnetic

field, i.e. ~h = hẑ, the Zeeman Hamiltonian density be-
comes Hh = −(h/π)∂xθ2 and applying θ2 → θ2 + Bx
(with B = 2h/vF), to the Hamiltonian H = HLL +Hh,
it transforms as H → HLL. The results for non-zero
magnetic field are presented in appendix B.
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III. THE NON-EQUILIBRIUM TRANSPORT
PROBLEM

Due to the finite bias voltage the distribution in
this system is not in thermal equilibrium. This non-
equilibrium situation is studied using the Keldysh for-
malism (for a review, see Ref. 29). To define a non-
equilibrium initial state, we assume that until some ini-
tial time t0, the system has reached quasi-equilibrium in

the absence of impurity scattering uab
m = vab

m = 0. With-
out impurity scattering, the total number of right- and
left-moving carriers, NR, NL, are separately conserved,
so that a partial equilibrium can be established with well-
defined separate chemical potentials for the right and left
movers. Hence, the system can be described, up to this
time, by a thermal distribution governed by the grand
canonical Hamiltonian

HV = HLL − µ1NR − µ2NL , (9)

where the chemical potentials in each lead are taken to be
µ1/2 = ∓V/2 and NR/L =

∫

dxnR/L. The right and left
moving particle densities are given in the bosonization
procedure by nR/L = 1

2π

∑

aα ∂x (±ϕaα + θaα). Then

HV = HLL −
∫

dx
2V

π
∂xϕ1 . (10)

We emphasize that the appearance of the voltage V in
HV does not represent a physical force on the electrons,
but rather parameterizes their non-equilibrium distribu-
tion.

After the initial time t0 the evolution of the system
is governed by a different Hamiltonian H , which as de-
duced in section II is H = HLL +Hbs, with HLL given in
(6) and Hbs in (7). We expect on physical grounds that
introducing localized scattering at the ends of the wire or
nanotube reduces the current, but cannot affect the non-
equilibrium distribution in the reservoirs. Hence, we be-
lieve that the prescription of defining the voltage V from
the initial distribution as is done using (9) gives a faithful
description of ideal leads. According to this prescription,
a physical observable, represented by an operator Ô, is
then calculated from

〈O〉 =
1

Z
Tr

(

e−βHV eiHtÔe−iHt
)

, (11)

where

Z = Tr
(

e−βHV
)

. (12)

The difficulty in evaluating such an expectation value is
that, unlike in a conventional equilibrium calculation, the
Hamiltonian HV governing the initial distribution is dif-
ferent from H , which governs the time evolution. Thus
such an expectation value cannot be evaluated by equi-
librium Green’s function techniques.

Instead, we take advantage of the special property of
HV that the voltage couples only to NR/L, which are de-
coupled “zero mode” degrees of freedom. This technique

has been applied a number of times before to related
problems30,31,32, but to our knowledge the details of its
derivation have never been published. For completeness,
pedagogical value, and to highlight the physical assump-
tions of the method, we include a thorough derivation in
appendix A. The correction to 〈O〉 due to the backscat-
tering is given by

〈δO〉 =
1

ZLL
Tr

(

e−βHLLS†(t)ÔS(t)
)

, (13)

where

S(t) = T exp

[

−i
∫ t

0

dt′HI(t
′)

]

(14)

is the evolution operator for a system with the time-
dependent Hamiltonian HI(t

′). Here HI(t) is the Hamil-
tonian in the frame co-moving with the ideal current,
defined by

HI(t) = eitV̂He−itV̂ = HLL + [Hbs]θ1→θ1+V t , (15)

with V̂ = V
2 (NR−NL). Note that (because [V̂ , HLL] = 0)

all the time dependence in HI(t) is in the backscattering
term, and is hence easy to handle when working pertur-
batively in Hbs.

Eqs. (13-15) provide a reformulation of the transport
problem which is particularly convenient for a perturba-
tive treatment of the backscattering. Note that – because
the voltage V appears only within Hbs – a direct expan-
sion of Eq. (13) in Hbs will involve equilibrium real-time
propagators calculated with respect to HLL. We develop
this perturbation theory using the Keldysh path integral
formulation. This involves the usual Trotterization of the
two evolution operators S†, S in Eq. (13) using coherent-
state fields denoted θ+, ϕ+ for S (“forward branch”) and
θ−, ϕ− (“backward branch”) for S†. Further noting that
HLL is quadratic and Hbs acts only at the ends of the
nanotube/wire, the fields away from x = ±L/2 can be
integrated out to obtain the Keldysh integral

〈δO〉 =

∫

D[θ±(t)ϕ±(t)]OKe
iS0−i

∫

dtHpert(t) , (16)

with

Hpert = Hbs[ϕ
+
i , θ

+
i +δi1V t]−Hbs[ϕ

−
i , θ

−
i +δi1V t] . (17)

Here OK is an appropriate Keldysh representation of the
operator O, which can be chosen as usual from fields ly-
ing on either the forward or backward moving branch,
or any linear combination thereof – see below for con-
venient choices. The quadratic action S0 is a functional
of θ±(t), ϕ±(t), which can be determined from the fact
that it must reproduce the equilibrium correlation and
response functions for these fields. Indeed, we do not re-
quire an explicit expression for S0, but instead give the
response and correlation functions, defined by

Cθ(x, t;x′, t′) = 〈θ(x, t)θ(x′, t′)〉 = 1
2 〈{θ̂(x, t), θ̂(x

′, t′)}〉 ,
Rθ(x, t;x′, t′) = 〈θ(x, t)θ̃(x′, t′)〉 =

= −iΘ(t− t′)〈[θ̂(x, t), θ̂(x′, t′)]〉 , (18)
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where we have applied the standard Keldysh rota-
tion to the fields θ± = θ ± i

2 θ̃. By construction

〈θ̃(x, t)θ̃(x′, t′)〉 = 0. The Green’s functions involving
the ϕ fields are defined in a similar way, replacing θ by ϕ
in the above equations. There are also Green’s functions
that involve both θ and ϕ, these are defined by

Cθϕ(x, t;x′, t′) = 〈θ(x, t)ϕ(x′, t′)〉 = 1
2 〈{θ̂(x, t), ϕ̂(x′, t′)}〉

Rθϕ(x, t;x′, t′) = 〈θ(x, t)ϕ̃(x′, t′)〉 =

= −iΘ(t− t′)〈[θ̂(x, t), ϕ̂(x′, t′)]〉 , (19)

and similar definitions for Cϕθ and Rϕθ. Again, by con-
struction 〈θ̃(x, t)ϕ̃(x′, t′)〉 = 〈ϕ̃(x, t)θ̃(x′, t′)〉 = 0.

Using the above procedure we obtain (up to additive
constants that will not contribute to the final result) the
Green’s functions for the θ1 fields:

RθI
11(t) = −π

2
(1 − α)



Θ(t) +
1 + α

α

∑

k≥1

α2k Θ(t− 2ktv)





RθI
12(t) = −π

2
(1 − α2)

∑

k≥0

α2k Θ(t− (2k + 1)tv) ,

CθI
11 (t) = −1 − α

4



log t2 +

+
1 + α

α

∑

k≥1

α2k log
∣

∣t2 − (2ktv)
2
∣

∣



 ,

CθI
12 (t) = −1 − α2

4

∑

k≥0

α2k log
∣

∣t2 − [(2k + 1)tv]
2
∣

∣ ,

(20)

where the subscripts label the position of the contacts
x1,2 (e.g. Cab(t) = C(xa, t;xb, 0)) and

α =
1 − g

1 + g
and tv =

L

v
. (21)

We also need the Green’s functions for the non-
interacting modes θ2,3,4, R

F and CF . These are obtained
from (20) by taking α = 0 and replacing tv by tF = L/vF,

RF
11(t) = −π

2
Θ(t) ,

RF
12(t) = −π

2
Θ(t− tF ) ,

CF
11(t) = −1

4
log t2 ,

CF
12(t) = −1

4
log

∣

∣t2 − t2F
∣

∣ . (22)

The Green’s functions for the ϕ fields can be obtained
from those for the θ fields given in (20), by replacing g
by 1/g, i.e. by replacing α by −α. On the other hand,
the only ϕ Green’s functions that contribute to the trans-
port properties studied in the following sessions are those

that correspond to the non-interacting modes ϕ2,3,4, and
therefore they are identical to the functions given in (22).

In order to compute the spin transport properties in
section V, we also need the following functions for the θ2
and ϕ2 fields

Rθ2ϕ2(x, t) = sign(x)
π

2
Θ(t) Θ(|x| − vFt) ,

Cθ2ϕ2(x, t) = −1

4
log

∣

∣

∣

∣

vFt− x

vFt+ x

∣

∣

∣

∣

, (23)

Cϕ2θ2(x, t) = Cθ2ϕ2(x, t) and Rϕ2θ2(x, t) = Rθ2ϕ2(x, t).

IV. THE DIFFERENTIAL CONDUCTANCE

In this section we study the charge transport properties
of 1D electron systems and how these are affected by the
magnetization of the leads and, more importantly, the
presence of the strong Coulomb interactions.

We use the procedure described in sections II and III to
calculate the differential conductance for these systems.
This is obtained from the expectation value of the current
in a nanotube, i.e. a four mode 1D electron system with
the Hamiltonian given in (6), as

I =
∑

aα

〈ψ†
RaαψRaα − ψ†

LaαψLaα〉 =
2

π
〈∂tθ1〉 . (24)

After a lengthy but straightforward calculation we ob-
tain that the differential conductance G = ∂I/∂V to sec-
ond order in perturbation theory is given by

G =
2

π

{

1 +
∑

m

Um

∫

dt t eC1m(t) sin

[

1

2
R1m(t)

]

cos(V t)

}

(25)
with

U1 =
∑

mab

[

(

uab
m

)2
+

(

vab
m

)2 ~M2
m

]

, (26)

U2 =2 cos(VgL)
∑

ab

[

uab
1 uab

2 + vab
1 vab

2
~M1 · ~M2

]

,

and

Cab(t) = CθI
ab (t) + 3CF

ab(t) , (27)

and similarly for Rab(t). For a quantum wire (i.e. a
single-channel electron system) these are replaced by
Cab(t) = 2

(

CθI
ab (t) + CF

ab(t)
)

and the global normaliza-
tion is divided by a factor of two (since the quantum
wire has two modes instead of four).

Eqs. (25) and (26) are valid for zero external magnetic
field, which is the case considered in this section, the
equations for non-zero magnetic field are presented in
appendix B.

Equation (25) can be easily generalized to arbitrary
order in perturbation theory, but the time integrals need
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to be computed numerically. We present the calculated
conductance to second order for three different physical
models in Fig. 3. This models correspond to (a) a nano-
tube with non-interacting electrons, i.e. taking g = 1,
(b) a quantum wire with g = 0.5 and (c) a nanotube
with g = 0.25, which is a physically relevant value for
single-walled carbon nanotubes16,17,18,19,25. The effect
of the interactions is visible in the dependence of the
conductance with bias voltage, at constant gate voltage.

The conductance is a quasi-periodic function of the
bias voltage. At Vg = 0, for the non-interacting case,
see Fig. 3.(a), this dependence is a cosine function with
period 2π/tF . For a quantum wire, Fig. 3.(b), there
are clearly two different “periods” in the oscillations,
these are related to the two time scales tF = L/vF and
tv = gtF = L/v. The existence of these two different
time scales is due to the two bosonic excitations in this
system: The spin excitation with velocity vF and the
charge excitation with velocity v, and is therefore an ef-
fect of spin charge separation. The same effect appears in
Fig. 3.(c), but since for the nanotube there are three non-
interacting modes with velocity vF and only one mode,
the total charge, with velocity v, it is less visible than
in the previous example. The most visible effect of the
interactions in the nanotube, is the enhancement of the
amplitude in the conductance around V = 0. This ef-
fect is observable in the experimental data presented in
Ref. 14.

The calculated conductance at VgL = π/2 as a function
of the bias voltage for a nanotube with different interac-
tion strengths corresponding to g = 0.25, 0.5 and 1, is
presented in Fig. 4. It can be seen using Eqs. (25) and
(26) that the conductance for this value of the gate volt-
age only depends on the Green’s functions C11 and R11,
which depends only on tv. As a result, we can clearly see
in Fig. 4 that the period of the oscillations is π/tv, and
therefore depends strongly on the interaction strength.
The amplitude of this oscillations is very small except
for the first oscillation, which is enough to identify this
effect.

As for the dependence with the gate voltage, the con-
ductance is a periodic function, which is modulated by
~M1 · ~M2, and this is the main effect of the magnetiza-
tion in the leads on the conductance. In particular if
∑

uab
1 u

ab
2 ≤

∑

vab
1 v

ab
2 , there is an angle between the two

magnetizations for which U2 vanishes for any value of the
gate voltage, in this case the conductance is given also in
Fig. 4.

V. SPIN TRANSPORT

In this section we study spin transport properties, i.e.
the spin density in the nanotube and the spin current
generated by the magnetization in the leads.

The spin density expectation value in the nanotube,
calculated using bosonization and the Keldysh perturba-
tion formalism as described in sections II and III, is given

by

~S =
1

2

∑

aαβ

〈ψ†
Raα ~σαβ ψRaβ + ψ†

Laα ~σαβ ψLaβ〉 . (28)

For zero magnetic field, it is technically simplest to cal-
culate Sz from the bosonized form

Sz =
1

π
〈∂xθ2〉 (29)

and then obtain the other two components by rotational
invariance. For non-zero magnetic field the calculation as
well as the final results are much more involved, therefore
and for the sake of clarity we only present the results in
appendix B.

The result is

~S = − 1

vF

(

~u1

∫

dt eC11(t) sin

[

1

2
R11(t)

]

sin(V t)

+ sin(VgL)

{

~u2

∫

dt eC12(t) sin

[

1

2
R12(t)

]

sin(V t)

+~u3

∫

dt eC12(t) sin

[

1

2
R12(t)

]

cos(V t)

})

, (30)

with

~u1 =
∑

ab

(

uab
1 v

ab
1
~M1 − uab

2 v
ab
2
~M2

)

,

~u2 =
∑

ab

vab
1 v

ab
2
~M1 × ~M2 ,

~u3 =
∑

ab

(

uab
1 v

ab
2
~M2 + uab

2 v
ab
1

~M1

)

. (31)

Notice that the spin density does not depend on the

position in the nanotube, hence the total spin is L~S.
The first term, proportional to ~u1, is the known non-

equilibrium spin accumulation effect1,2,3,4,5,6. It is maxi-

mum for ~M1 = − ~M2, when, in the case of identical con-
tacts, the other terms vanish. This term does not couple
two backscatterers, is independent of the gate voltage,
and is an increasing function of the bias voltage. It is
depicted in Fig. 5(a), since it is the only term term that
corresponds to the component of the spin in the direc-

tion of ~M1 at Vg = 0. The second term corresponds to
the component of the spin perpendicular to the plane of
the magnetizations and is depicted in Fig. 5(c), as func-
tion of the bias and gate voltages. The third term is the
only one that survives in equilibrium, i.e. at zero bias, it
is due to the fact that the backscattering strengths de-
pend on the spins of the incoming and outgoing electron
relative to the direction of the magnetizations. It is max-

imum for ~M1 = ~M2, when again for identical contacts
the other terms vanish. This is depicted in Fig. 5(b), at
θ = 0, 2π. These terms that couple the two backscat-
terers, and hence depend on the gate voltage, vary with
bias voltage in a manner approximately described by a
sum of two periodic functions, with “periods” given by
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FIG. 3: Calculated conductance for identical contacts and ~M1 = ~M2 for (a) a free electron model, i.e. a nanotube with g = 1;
(b) a quantum wire, i.e. a LL with two modes: spin and charge, with g = 0.5; and (c) a nanotube with g = 0.25, as a function
of bias V and gate Vg voltages (top) and as a function of the bias voltage V at constant gate voltage Vg = 0 (bottom). As can
be seen, the effect of the interactions is quite appreciable, in particular with the dependence in bias voltage at Vg = 0. The
“period” of these oscillations is given by 2π/tF (tF = 2π in these figures), in agreement with Ref. 14, but in (b) and (c) there
is another quasi-periodic component in these oscillations, with period given by 2π/tv, the presence of these two time scales, tF

and tv, is a direct result of spin charge separation.

2π/tF and 2π/tv, as discussed in the previous section for
the conductance.

The spin current

~Js =
vF

2

∑

aαβ

〈ψ†
Raα ~σαβ ψRaβ − ψ†

Laα ~σαβ ψLaβ〉 (32)

is as the spin density calculated from the Jz
s component

in its bosonized form (again see result for non-zero mag-

� ��� � ����� ���

��
��
��
��
 !
��
"#

$%&'()
$%&')
$%*

& * ( + , )

FIG. 4: At constant gate voltage: VgL = π/2, the period of
oscillations is π/gtL, i.e. depends strongly on the interaction
strength. In order for this effect to be clearly visible, we scaled
and shifted the functions differently, therefore the values of
the G axes are not meaningful.

netic field in appendix B)

Jz
s =

1

π
〈∂tθ2〉 . (33)

It is not well-defined at the contact points because the
backscattering term in the Hamiltonian (7) does not con-
serve spin, and therefore it has different expressions in the
nanotube and the leads.

The spin current in the left (+) and right (−) leads is
given by

~Js =~u4

∫

dt eC11(t) sin

[

1

2
R11(t)

]

sin(V t)

+ [± sin(VgL) ~u2 + cos(VgL) ~u3]

×
∫

dt eC12(t) sin

[

1

2
R12(t)

]

sin(V t) (34)

and in the nanotube by:

~Js =~u4

∫

dt eC11(t) sin

[

1

2
R11(t)

]

sin(V t) (35)

+ cos(VgL)

{

~u2

∫

dt eC12(t) sin

[

1

2
R12(t)

]

cos(V t)

+ ~u3

∫

dt eC12(t) sin

[

1

2
R12(t)

]

sin(V t)

}

.
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FIG. 5: Calculated spin for a nanotube with g = 0.25, the component of the spin in the direction of the magnetization ~M1 as
function of the angle between the two magnetizations θ and the bias voltage V , at constant gate voltage (a) Vg = 0 and (b)
Vg = π/2; and (c) the component of the spin perpendicular to the plane formed by the two magnetizations as a function of the
gate and bias voltages.

with ~u2 and ~u3 defined in (31) and

~u4 =
∑

mab

uab
mv

ab
m

~Mm . (36)

Similarly to the results for the spin discussed above,
the first term, which only involves one backscatterer and
is independent of the gate voltage, corresponds to the
usual spin injection effect. It is an increasing function of

the gate voltage and is maximum for ~M1 = ~M2. This
can be seen in Fig. 6(b), since it is the only term that

does not vanish in the direction of ~M1 at VgL = π/2. At
Vg = 0, the terms proportional to ~u1 and ~u3 contribute
equally to the component of the current in the direction

of ~M1, the result for this case is presented in Fig. 6(a).

The second term, proportional to ~M1 × ~M2 corresponds
to an exchange interaction between the magnetizations
of the leads, mediated by the nanotube. It has opposite
signs in the two leads and it is shown in Fig. 6(c).

VI. CONCLUSIONS

We studied the charge and spin transport properties of
1D systems, e.g. quantum wires and carbon nanotubes,
focusing on the latter. We considered the case of nearly
perfect ohmic contact between the 1D system and the
electrodes and included the strong Coulomb interaction
via a Luttinger liquid model. We found important ef-
fects on the transport properties of these systems that
are due to the Coulomb interactions. These appear in
the dependence with bias voltage. In particular, the con-
ductance is enhanced at low bias voltage, furthermore it
is an oscillatory function where we can distinguish two
quasi-periodic components, with periods that are related
to the two velocities of the excitations of a Luttinger liq-
uid, v and vF. This effect is therefore a direct consequence
of spin and charge separation. It is clearly visible in sin-
gle band quantum wires. In nanotubes, the amplitude of

the higher period component is reduced by the presence
of three (as opposed to one) neutral modes. Still, we can
find evidence of the two velocities v and vF by compar-
ing the dependence of the conductance with bias voltage
for two different gate voltages (VgL = 0 and π/2). It is
perhaps worth noting that, for the case of non-magnetic
leads with symmetric contacts, the conductance formula
involves only two unknown parameters: the overall am-
plitude of the backscattered current, and the Luttinger
parameter g, both of which can be simply estimated.
Nevertheless, a non-trivial functional dependence upon
bias voltage is predicted.

The spin and spin current have one component in the
plane of the magnetization that does not couple the two
leads and is therefore independent of the gate voltage.
This term should be understood as arising from incoher-
ent spin injection at each contact. It is a monotonic func-
tion of the bias voltage, and corresponds to the known
spin accumulation (for the spin) and spin injection (for
the spin current) effects. The other components that
couple the two leads, and therefore depend on the gate
voltage, are backscattering processes occurring with co-
herence between the two contacts. These oscillate with
the bias voltage, in a manner approximately described as
a sum of two periodic components, with periods related
to the two velocities of the excitation of the Luttinger
liquid. The amplitude of the higher-period component is
largest in a single-channel quantum wire, and somewhat
suppressed in nanotubes by the sub-band degeneracy.
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APPENDIX A: DERIVATION OF EQ. (13)

In this appendix, we derive Eq. (13). In particular,
we consider a large periodic system of size L, where ulti-
mately L → ∞. We define the right/left-moving combi-
nations

φiR/L = ϕi ± θi . (A1)

In the system of size L we can decompose into finite
wavevector and “zero mode” components. In particular,
for the total charge fields, we define

φ1R(x) = φ̃1R(x) +
2πNRx

L
+ ΦR , (A2)

φ1L(x) = φ̃1L(x) − 2πNLx

L
+ ΦL , (A3)

where φ̃1R/L(x) contains the non-zero momentum modes
of the φ1R/L fields. With these definitions, the zero-mode
variables form two canonically conjugate pairs:

[NR,ΦR] = [NL,ΦL] = i , (A4)

[NR,ΦL] = [NL,ΦR] = [NR, NL] = [ΦR,ΦL] = 0 .

Moreover, NR/L,ΦR/L commute with φ̃1R/L(x) and all
fields associated with channels 2, 3, 4.

Since the interactions which transform the system from
a Fermi liquid into a Luttinger liquid (Eq. (1)) exist only
for |x| < L/2, they do not affect the zero-mode terms in
the Hamiltonian. Hence one may separate

HV = H̃LL +
πvF

L

(

N2
R +N2

L

)

− V

2
(NR −NL) , (A5)

where H̃LL is the Luttinger liquid Hamiltonian, Eq. (6),
with the zero-mode terms subtracted, i.e. with ϕ1 → ϕ̃1

and θ1 → θ̃1. We then see, using the independence of the
zero mode variables, that the unitary operator

UV = e
i V L

4πvF
(ΦR−ΦL)

, (A6)

generates the following transformation NR/L → NR/L ±
V L/(4πvF), hence

e−βHV = e−CUV e
−βHLLU †

V , (A7)

where C = βL/(8πvF) is an unimportant constant. In-
serting this into Eqs. (11-12), one obtains

〈O〉 =
1

ZLL
Tr

(

e−βHLLei(H+V̂ )t
(

U †
V ÔUV

)

e−i(H+V̂ )t
)

,

(A8)
with

ZLL = Tr
(

e−βHLL
)

(A9)

and

V̂ =
V

2
(NR −NL) . (A10)

For the operators of interest,

U †
V ÎUV = I0 + Î , (A11)

U †
V
~SUV = ~S , (A12)

U †
V
~JsUV = ~Js , (A13)

where I0 = 4(e2/h)V = (2/π)V is the current which
would flow in an ideal nanotube in the absence of
backscattering. Defining δO = O − O0, with O0 = I0
for O = Î and O0 = 0 for O = ~S, ~Js, one has then

〈δO〉 =
1

ZLL
Tr

(

e−βHLLei(H+V̂ )tÔe−i(H+V̂ )t
)

. (A14)

We then apply the formula

e−it(H+V̂ ) = e−itV̂ T exp

[

−i
∫ t

0

dt′HI(t
′)

]

, (A15)

to arrive at Eqs. (13) ff. given in the main text.
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APPENDIX B: DIFFERENTIAL
CONDUCTANCE, SPIN AND SPIN CURRENT

AT NON-ZERO MAGNETIC FIELD

The differential conductance including the magnetic field is still given by Eqs. (25) and (26) with only the following
change in U2

U2 =2 cos(VgL)
∑

ab

{

uab
1 u

ab
2 + vab

1 v
ab
2

[

~M1 · ~M2 + ( ~M1 · ĥ)( ~M2 · ĥ) (cosBL− 1)
]}

+ sin(BL) sin(VgL)
∑

ab

[

uab
1 v

ab
2 ( ~M2 · ĥ) + uab

2 v
ab
1 (M1 · ĥ)

]

, (B1)

where ĥ = ~h/h.

The total spin of the nanotube is

~S =
1

π
ĥBL− 1

vF

∑

ab

({

(

uab
1 v

ab
1
~M1 − uab

2 v
ab
2
~M2

)

1
B sinBL+

(

uab
1 v

ab
1 ( ~M1 · ĥ)ĥ− uab

2 v
ab
2 ( ~M2 · ĥ)ĥ

)

(

L− 1
B sinBL

)

+
(

uab
1 v

ab
1 ( ~M1 × ĥ) − uab

2 v
ab
2 ( ~M2 × ĥ)

)

1
B (1 − cosBL)

}
∫

t

eC11 sin
(

1
2R11

)

sin(V t)

+

{

[(

uab
1 v

ab
2
~M2 + uab

2 v
ab
1
~M1

)

1
B sinBL+

(

uab
1 v

ab
2 ( ~M2 · ĥ)ĥ+ uab

2 v
ab
1 ( ~M1 · ĥ)ĥ

)

(

L cosBL− 1
B sinBL

)

]

sinVgL

− uab
1 u

ab
2 ĥL sinBL cosVgL− vab

1 v
ab
2

[(

( ~M1 · ĥ) ~M2 + ( ~M2 · ĥ) ~M1

)

1
B (1 − cosBL)

+( ~M1 · ĥ)( ~M2 · ĥ)ĥ
(

L sinBL− 2
B (1 − cosBL)

)

]

cosVgL

}
∫

t

eC12 sin
(

1
2R12

)

cos(V t)

+

{

(

uab
1 v

ab
2 ( ~M2 × ĥ) − uab

2 v
ab
1 ( ~M1 × ĥ)

)

1
B (1 − cosBL) cosVgL+ vab

1 v
ab
2

[(

( ~M1 · ĥ)( ~M2 × ĥ) − ( ~M2 · ĥ)( ~M1 × ĥ)
)

×
(

L− 1
B sinBL

)

+ ~M1 × ~M2L
]

sinVgL

}
∫

t

eC12 sin
(

1
2R12

)

sin(V t)

)

. (B2)
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The spin current in the nanotube (Eq. B3) and the leads (Eq. B4) is

~Js =
∑

ab

{

uab
1 v

ab
1
~M1 cosB(x − x1) + uab

2 v
ab
2
~M2 cosB(x − x2)

+ uab
1 v

ab
1 ( ~M1 · ĥ)ĥ [1 − cosB(x− x1)] + uab

2 v
ab
2 ( ~M2 · ĥ)ĥ [1 − cosB(x− x2)]

+ uab
1 v

ab
1 ( ~M1 × ĥ) sinB(x − x1) − uab

2 v
ab
2 ( ~M2 × ĥ) sinB(x− x2)

}
∫

t

eC11 sin
(

1
2R11

)

sin(V t)

+
∑

ab

{

[

uab
1 v

ab
2 ( ~M2 · ĥ)ĥ [cosBL− cosB(x− x1)] + uab

2 v
ab
1 ( ~M1 · ĥ)ĥ [cosBL− cosB(x − x2)]

+ uab
1 v

ab
2
~M2 cosB(x− x1) + uab

2 v
ab
1
~M1 cosB(x− x2)

]

cosVgL

+ vab
1 v

ab
2

[

( ~M1 · ĥ)( ~M2 · ĥ)ĥ [sinBL− sinB(x− x1) + sinB(x − x2)]

+ ( ~M1 · ĥ) ~M2 sinB(x − x1) − ( ~M2 · ĥ) ~M1 sinB(x− x2)

+ uab
1 u

ab
2 ĥ sinBL

]

sinVgL

}
∫

t

eC12 sin
(

1
2R12

)

sin(V t)

+
∑

ab

{

[

uab
1 v

ab
2 ( ~M2 × ĥ) sinB(x − x1) − uab

2 v
ab
1 ( ~M1 × ĥ) sinB(x− x2)

]

sinVgL

− vab
1 v

ab
2

[

( ~M1 · ĥ)( ~M2 × ĥ) [1 − cosB(x − x1)] − ( ~M2 · ĥ)( ~M1 × ĥ) [1 − cosB(x− x2)]

+ ~M1 × ~M2

]

cosVgL

}
∫

t

eC12 sin
(

1
2R12

)

cos(V t) , (B3)

~Js =
∑

ab

{

uab
1 v

ab
1
~M1 cosB(x − x1) + uab

2 v
ab
2
~M2 cosB(x− x2)

+ uab
1 v

ab
1 ( ~M1 · ĥ)ĥ [1 − cosB(x− x1)] + uab

2 v
ab
2 ( ~M2 · ĥ)ĥ [1 − cosB(x− x2)]

∓
[

uab
1 v

ab
1 ( ~M1 × ĥ) sinB(x − x1) + uab

2 v
ab
2 ( ~M2 × ĥ) sinB(x− x2)

]

}
∫

t

eC11 sin
(

1
2R11

)

sin(V t)

+
∑

ab

{

[

uab
1 v

ab
2 ( ~M2 · ĥ)ĥ [cosBL− cosB(x− x1)] + uab

2 v
ab
1 ( ~M1 · ĥ)ĥ [cosBL− cosB(x− x2)]

+ uab
1 v

ab
2
~M2 cosB(x− x1) + uab

2 v
ab
1
~M1 cosB(x − x2)

]

cosVgL

+ vab
1 v

ab
2

[

( ~M1 · ĥ)( ~M2 · ĥ)ĥ [sinBL− sinB(x − x1) + sinB(x− x2)]

+ ( ~M1 · ĥ) ~M2 sinB(x− x1) − ( ~M2 · ĥ) ~M1 sinB(x − x2)
]

sinVgL

∓
[

uab
1 v

ab
2 ( ~M2 × ĥ) sinB(x − x1) + uab

2 v
ab
1 ( ~M1 × ĥ) sinB(x− x2)

]

cosVgL

∓ vab
1 v

ab
2

[

( ~M1 · ĥ)( ~M2 × ĥ) [1 − cosB(x − x1)] − ( ~M2 · ĥ)( ~M1 × ĥ) [1 − cosB(x− x2)]

+ ~M1 × ~M2

]

sinVgL+ uab
1 u

ab
2 ĥ sinBL sinVgL

}
∫

t

eC12 sin
(

1
2R12

)

sin(V t) , (B4)

where the ∓ sign correspond to lead 1,2 respectively.
One can verify that the spin current and spin density are not independent and are in fact related by the precessional

equation of motion,

∂t
~S + ∂x

~Js = −2~h× ~S. (B5)

In the steady state, 〈∂t
~S〉 = 0, so one has

∂x〈 ~Js(x)〉 = −2~h× 〈~S(x)〉. (B6)
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