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We consider the random phase sine-Gordon model in two dimensions. It describes two-dimensional
elastic systems with random periodic disorder, such as pinned flux-line arrays, random-field XY
models, and surfaces of disordered crystals. The model exhibits a super-rough glass phase for
temperature T < Tc with relative displacements growing with distance r as 〈[θ(r)− θ(0)]2〉 '
A(τ) ln2(r/a), where A(τ) = 2τ2 − 2τ3 +O(τ4) near the transition and τ = 1− T/Tc. We calculate

all higher cumulants and show that they grow as 〈[θ(r)− θ(0)]2n〉c ' [2(−1)n+1(2n)!ζ(2n− 1)τ2 +
O(τ3)] ln(r/a), n ≥ 2, where ζ is the Riemann zeta function. By summation we obtain the decay

of the exponential correlation function as 〈eiq[θ(r)−θ(0)]〉 ' (a/r)η(q) exp ( − 1
2
A(q) ln2(r/a)) where

η(q) and A(q) are given for arbitrary q ≤ 1 to leading order in τ . The anomalous exponent is
η(q) = cq2− τ2q2[2γE +ψ(q) +ψ(−q)] in terms of the digamma function ψ, where c is non-universal
and γE is the Euler constant. The correlation function strongly decays at q = 1, corresponding to
fermion operators in the dual picture; this should be visible in Bragg scattering experiments.

PACS numbers: 64.70.Q-,64.60.ae

I. INTRODUCTION AND MAIN RESULTS

The random-phase sine-Gordon model is the simplest
model to describe the effect of quenched disorder on a
periodic elastic system, the so-called random periodic
class.1–6 It models a host of experimental systems in
presence of substrate impurities, such as charge-density
waves, vortex lattices,7,8 random-field XY models,1,9–11

smectic liquid crystals12 in situations where topological
defects are absent, or can be ignored, allowing for an
elastic description. In the simplest situation, the dis-
placement from the perfect periodic position is encoded
by a 2π periodic one-component phase field θ(x). In
a one-dimensional crystal of spacing a with elastic dis-
placements u(x), the phase field is θ(x) = G0u(x) where
G0 = 2π/a is the smallest reciprocal lattice vector. In
three dimensions, the random-phase sine-Gordon model
was used to predict the existence of a Bragg-glass phase
which is a glass pinned by (weak) quenched disorder,
but which also retains topological order (no dislocations)
and nearly perfect translational order8,13–15 called quasi-
order. Diffraction experiments16 measure the spatial cor-
relations of the field eiqθ(x), for q = 1. In that case the
elastic description predicts a power-law decay of these
correlations due to quenched disorder,8,13,17 character-
istic of a quasi-ordered phase and leading to divergent
Bragg peaks in the experiments. At stronger disorder,
free topological defects are expected to lead to an ex-
ponential decay of these correlations with distance, as
quasi-order is destroyed.

Quasi-order usually arises when the phase-field defor-
mations θ(x) − θ(0) grow logarithmically with scale x,
leading to power-law scaling for the exponential field
eiqθ(x). To probe deeper the properties of the phase field
θ(x) in a quasi-ordered phase, it would be useful to pre-
dict, and to measure, these correlations for q not neces-
sarily an integer. One example with q = 1/2 would be a

spin density wave, e.g., of XY symmetry S = Aeiφ, sub-
mitted to time-reversal invariant disorder, such as ran-
dom anisotropy9, i.e., which couples to 2φ ≡ θ. Arbi-
trary values of q would allow to probe the probability
distribution of the phase deformations θ(x)−θ(0) and to
characterize the multi-fractal properties of the exponen-
tial field. Here we restrict to a 2-dimensional periodic
system, leaving the study of larger dimensions for an up-
coming work.18

In two-dimensional periodic systems with quenched
disorder thermal fluctuations play a more important role
than in three-dimensional ones. As was discovered in
the pioneering work of Cardy and Ostlund 1 they induce
a phase transition at some critical temperature Tc to a
high temperature phase where disorder is irrelevant. For
T < Tc a glass phase exists in this model which has been
investigated in a number of works.1–4,19,20 A very nice
realization of this model in terms of crystal surfaces was
described by Toner and DiVincenzo 2 . Since it allows in
principle to measure the exponential correlation for any
q, we now recall the basic phenomenology of surfaces.
Note that another interesting realization of the Cardy-
Ostlund model was obtained recently in the context of a
smectic with surface disorder.21,22

Perfect crystals are characterized by an ideal lattice.
At high temperatures, the thermal motion of the atoms
overwhelms the lattice potential, and the crystal melts.
In the present article we consider physical effects that oc-
cur at significantly lower temperatures. Consider atoms
at the surfaces of a crystal. They can more easily be dis-
placed from their equilibrium positions by thermal fluc-
tuations, since they reside at the boundary between the
crystal and, usually, a fluid. They feel the periodic poten-
tial created by the bulk of the crystal, as well as a more
uniform potential from the fluid. At low temperatures,
surface atoms are not displaced significantly from their
equilibrium positions determined by the bulk potential,
the surface is flat and the atoms are ideally arranged.
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FIG. 1. The function η(q) given in Eq. (3) for b = 3, c = 3.2 is
represented by the solid line. The functions ηm(q) of Eq. (2)
for m = 0, 1, . . . , 4 are given by the dashed lines.

At higher temperatures, the thermal motion of surface
atoms becomes significant, and they are randomly dis-
placed, forming a rough fluctuating surface. The periodic
potential is destroyed by thermal effects, a phenomenon
known as the roughening transition.23,24

On the other hand, real crystals always experience
some kind of disorder that tends to diminish the infinite
correlation length of the translational order of a perfect
crystal. In such situations, atoms at the surface do not
longer experience a perfect periodic potential, but rather
a disordered one created by the bulk. At high temper-
atures the disordered potential is washed out by ther-
mal fluctuations and thus unimportant for the shape of
the surface: The surface is rough. On the contrary, at
temperatures T below a critical temperature Tc, surface
atoms follow the disorder potential, thereby forming a
surface that is even rougher. This phase transition is
known as the super-roughening transition.2

Using surface-sensitive scattering experiments one can
probe the crystal surface. One directly measures the dis-
order and thermally averaged correlation function

C(q, r) := 〈eiq[θ(r)−θ(0)]〉 , (1)

where θ denotes the two-dimensional height field of the
surface, in units of G0 = 2π/a. The quantity q denotes
the component of the wave vector perpendicular to the
surface.

In the high-temperature rough phase, at T > Tc, the
correlation function C(q, r) decays at large distances as a
power law C(q, r) ∼ (a/r)η(q), where a is the lattice con-
stant. The naive argument is that at high temperatures
the fluctuations of the surface are effectively Gaussian,
which in two dimensions always produce quasi-long-range
order characterized by a power-law decay of C(q, r) and
η(q) ∼ q2. However, despite being an irrelevant operator
at high temperatures, the lattice potential still plays an
important role and produces in fact a nontrivial result
for η(q). In their seminal paper, Toner and DiVincenzo 2

calculated C(q, r) in the high-temperature rough phase,

for T > Tc. They obtained the decay as a superposi-
tion of power laws C(q, r) '

∑∞
m=1A2m(a/r)ηm(q) with

exponents

ηm(q) = (c− b)q2 + b
[
(q −m)2 +m

]
. (2)

At sufficiently large r the smallest power dominates,
hence they concluded that the asymptotic exponent η(q),
for q > 0, takes the form

η(q) = min
m∈N0

ηm(q) (3)

≡ cq2 + b
(

[q]2 + [q](1− 2q)
)
,

where [q] is the integer part of q. The coefficients of
Eq. (3) are

c =
2T

Tc

(
1 +

2Tσ′

Tc

)
, b =

2T

Tc
. (4)

They are given in terms of the critical temperature Tc
and a non-universal off-diagonal disorder σ′ ≥ 0 defined
in Sec. II. While the coefficient b is a universal func-
tion of the temperature, the coefficient c depends on σ′

hence is non-universal. (It depends on the details of the
model at short scales, which renormalize σ′). The form
of Eqs. (2),(3) has a simple interpretation in the picture
of the Coulomb gas put forward by Cardy and Ostlund 1

(see also below). In that picture, perturbation theory to
order 2p in the disorder is equivalent to inserting p pairs
of replica ±1 charges. The vertex operator eiq[θ(r)−θ(0)]

can itself be seen as inserting a charge +q at r, and a
charge −q at 0, in the same replica. For q > 1, it is
then energetically advantageous to screen the vertex op-
erator eiq[θ(r)−θ(0)] with 2m replica charges from the dis-
order leading to Eqs. (2),(3)25. As a consequence, η(q)
always grows with q, is quadratic for non-integer q, and
continuous but with a cusp at integer values of q. An
interesting possibility, suggested by the form of the per-
turbation theory of Toner and DiVincenzo 2 (i.e., the A2m

appear to have alternating signs) is that C(q, r) is an os-
cillating function, changing sign at integer q. A simple
toy model with such an oscillating behavior is given in
Appendix G. Finally, it is important to note that for
a perfect crystal (i.e., in absence of disorder), one has
η(q) = b(q− [1/2+ q])2, i.e., a periodic function of q with
cusps at half integers and minima at all integers.2

Let us now consider low temperatures, T < Tc. In this
super-rough phase, the surface becomes even rougher2

producing a faster decay for C(q, r) as a function of the
distance r. Although the general form for the decay of
C(q, r) was correctly anticipated in Ref. 26 in the context
of an N -component extension of the random-phase sine-
Gordon model, its precise expression, including the value
of the exponents, has not yet been obtained. The aim of
the present article is to fill this gap and determine the
exact form for C(q, r) in the super-rough phase, close to
the super-roughening transition. We will show that it
takes the form

C(q, r) '
(a
r

)η(q)

exp

(
−1

2
A(q) ln2(r/a)

)
, (5)
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FIG. 2. Plot of the universal part of the anomalous exponent,
η̃(q), for 0 < q < 1.

characterized by the anomalous exponent η(q) and an
amplitude A(q). We obtained the exact dependence on
q of both quantities, to leading order in τ , the distance
from the transition, defined as

τ = 1− T/Tc. (6)

For 0 < q < 1, we find, up to terms of order O(τ3),

η(q) = cq2 + η̃(q), (7)

η̃(q) = −τ2q2 [2γE + ψ(q) + ψ(−q)] , (8)

A(q) = 2q2τ2. (9)

Here ψ(q) is the digamma function. By η̃(q) we denote
the universal part of the exponent plotted in Fig. 2; it
starts at O(q4) at small q; together with A(q) they are
universal. The coefficient c in η(q) is non-universal, and
within our cutoff scheme given by

c = 2(1− τ)[1 + 2(1− τ)σ′] +
τ

2
+ τ2 +O(τ3), (10)

where σ′ denotes a non-universal off-diagonal disorder
defined below.

Both the amplitude and the exponent are functions of
the temperature T , with A ≡ 0 for T ≥ Tc; η(q) matches
smoothly at Tc to the expression (3), i.e., η̃(q) vanishes
for T ≥ Tc. An initial guess for the amplitude may be
obtained from the variance of the height fluctuations at
two points, which we have recently calculated in Ref. 19
to two loop accuracy,

〈[θ(r)− θ(0)]2〉 ' A(τ) ln2(r/a) +O( ln(r/a)), (11)

A(τ) = 2τ2 − 2τ3 +O(τ4). (12)

This result was tested in a numerical simulation in
Ref. 20, using a dimer-model representation of the sine-
Gordon Hamiltonian. If the displacement fluctuations
were exactly Gaussian one would have

A(q)
∣∣∣
Gaussian

= A(τ)q2 (13)

for all q. Interestingly, the present more detailed cal-
culation confirms that property for q < 1. For q = 1,
the amplitude A(q) of the correlation function C(q, r)
changes abruptly to

A(q = 1) = 6τ2 , (14)

instead of A(q = 1−) = 2τ2. Hence our results both for
η(q), and for A(q = 1), show deviations of the probabil-
ity distribution of θ from a Gaussian. Since the functions
η(q) and A(q) are both increasing functions of q, the cor-
relation function C(q, r) is a decreasing function of q for
0 ≤ q ≤ 1. The amplitude A(q) jumps from 2τ2 at
q = 1− to 6τ2 at q = 1 resulting in a much faster decay.
As a precursor of this effect, η(q) diverges as q approaches
unity. Such a resonance should be visible in Bragg scat-
tering experiments, once the scattering wavevector or-
thogonal to the surface matches G0 = 2π/a.

For q > 1 and T < Tc, one naively expects, both for
η(q) and A(q), additional resonances at wave vectors that
are integer multiples of G0, and that the screening mech-
anism which operates for T > Tc in Eq. (3) is also im-
portant there. While a preliminary study indicates that
this is the case, the detailed study of q > 1 is more com-
plicated and deferred to a future publication.27

It is interesting to note that the case of integer q is
relevant for the system of two-dimensional free fermions
in a disordered potential.28,29 This model and the present
random-phase sine-Gordon model are in correspondence
via bosonization. More precisely, C(q = 1, r) can be
obtained as a four-fermion correlation function. We have
performed that calculation, and found the result to agree
with our expression (14) for q = 1. An evaluation of 4q
fermion correlators is in progress to study higher integer
values of q. The calculation and results will be presented
elsewhere.27

This article is organized as follows. In Sec. II we de-
fine the model. In Sec. III we introduce a formalism that
enables us to produce a controlled expansion for the cor-
relation function of interest. In Sec. IV we evaluate this
correlation function. This is followed, in Sec. V, by a
discussion of the consequences, and conclusions. The de-
tailed calculation of several involved integrals and some
other technical details are presented in several appen-
dices.

II. MODEL AND THE PHASE DIAGRAM

We consider the two-dimensional XY model for a real
displacement field θ(x) ∈ (−∞,∞), without vortices, and
in the presence of a random symmetry-breaking field. In
the realization of the model as a fluctuating surface of
the crystal, θ describes the two-dimensional height of the
surface. We have already considered the same model in
an earlier publication19; here we repeat the necessary def-
initions for the present study. The model is defined via
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its Hamiltonian

H =

∫
d2x

[
κ

2
(∇xθ)2 − h · ∇xθ −

1

a

(
ξeiθ + h.c.

)]
,

(15)

where κ is the elastic constant, a the lattice constant
which provides a short-length-scale cutoff, and h(x) and
ξ(x) are quenched Gaussian random fields, the first one
real and the other complex. Their nonzero correlations
are given by

hi(x)hj(y) = T 2 σ

2π
δijδ(x− y), (16)

ξ(x)ξ∗(y) = T 2 g

2π
δ(x− y), (17)

where i, j ∈ {1, 2} denote the components of h and T is
the temperature.30 Note that the disorder h(x) must be
introduced as it is generated by the symmetry-breaking
field under coarse graining. We denote disorder averages
by an overline. Depending on the context, x and y will be
used either to denote two-dimensional coordinates (as in
the previous equations) or as their norms, i.e., x stands
either for x or |x|. We emphasize here that the argument
of the exponent in (15) should in principle be eiG0θ with
G0 being the smallest nonzero reciprocal lattice vector
of the crystal normal to its surface under consideration.
For simplicity we have set it to unity, thus measuring the
displacement field in units of 1/G0.

We use the replica method to treat the disorder.31 In-
troducing the replicated fields θα, α = 1 . . . n, where by
Greek indices α, β, . . . we denote replica indices, the repli-
cated Hamiltonian reads

Hrep = Hrep
0 +Hrep

1 , (18)

with the harmonic part

Hrep
0

T
=
∑
αβ

∫
d2x
{ κ

2T
δαβ

[
(∇xθα)2 +m2(θα)2

]
− σ

4π
∇xθα · ∇xθβ

}
. (19)

The mass m is introduced as an infrared cutoff. We
perform calculations with finite m and study the limit
m→ 0 at the end. The system size is infinite throughout
the paper. The anharmonic part reads

Hrep
1

T
= − g

2πa2

∑
αβ

∫
d2x cos(θα − θβ). (20)

We start by computing the correlation function for the
harmonic part (19), i.e., for g = 0. One obtains19

Gαβ(x) = 〈θα(x)θβ(0)〉 = δαβG(x) +G0(x), (21)

where 〈. . .〉 denotes an average over thermal fluctuations,
while at small distances |x| � m−1 we obtain:

G(x) = −(1− τ) ln
[
c2m2(x2 + a2)

]
, (22)

G0(x) = −2σ(1− τ)2 ln
[
ec2m2(x2 + a2)

]
. (23)

Here we have introduced the ultraviolet regularization by
the parameter a and c = eγE/2 with γE being the Euler
constant. The dimensionless parameter

τ = 1− T/Tc (24)

measures the distance from the critical super-roughening
temperature

Tc = 4πκ. (25)

The model studied here possesses an important sym-
metry, the statistical tilt symmetry (STS), i.e., the non-
linear part Hrep

1 is invariant under the change θα(x) →
θα(x)+φ(x) for an arbitrary function φ(x). As discussed
in many works,3,4,32,33 this implies that G0(x) does not
appear to any order in perturbation theory in g in the
calculation of, e.g., the effective action.19

Let us summarize the one-loop renormalization group
equations for the model (15).1,3,4,19 In terms of the scale
` := − lnm they read

dτ

d`
= 0, (26)

dgR
d`

= 2τgR − 2g2
R, (27)

dσR
d`

=
1

2
g2
R, (28)

where the subscript R denotes the renormalized parame-
ters that flow with the scale. Equation (26) is an exact
result at all orders due to the above mentioned STS. We
also see that the parameter σR does not enter any equa-
tion (again due to STS), apart from being created by gR
as one goes to larger scales. From Eq. (27) one reads off
that the critical temperature is at τ = 0. For T > Tc we
have scaling of gR to zero at large scales which denotes
the rough phase. At low temperatures T < Tc one finds
a line of nonzero fixed points for gR that determines the
super-rough phase. We see from the above scaling equa-
tions that σR grows unboundedly at all scales due to the
non-zero fixed-point value for gR; hence σR increases the
two-point correlation function from a rough logarithmic
behavior in the high-temperature phase to a super-rough
square-logarithmic form for low temperatures.2 In Fig. 3
we show the phase diagram for the model (15). The
equations at two-loop order have been derived and stud-
ied in Ref. 19. They do not quantitatively change the
conclusions from the one-loop analysis, but give further
insight into the two-point correlation function in the low-
temperature phase.

III. GENERATOR OF CONNECTED
CORRELATIONS

The main goal of the present study is to compute the
following correlation function

C(q, r) =〈eiq[θ(r)−θ(0)]〉H
=
〈
eiq[θγ(r)−θγ(0)]

〉
Hrep

(29)
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FIG. 3. Phase diagram for the model (15). The high-
temperature rough phase is characterized by zero fixed point
values of the anharmonic gR term, while the low-temperature
super-rough phase has a line of fixed points for gR having fi-
nite values. We are primarily interested to evaluate C(q, r) in
the low temperature phase, for T < Tc.

for the model (15) in the low-temperature phase. For
actual calculations we use the second line of Eq. (29) that
is obtained using replicas. By γ we denote a particular
replica field.

In order to calculate the correlation function (29) it is
useful to calculate the generator of connected correlations
W (J). It is defined as34

eW (J) =

∫
D[ϕ] e−H(ϕ)/T+Jϕ, (30)

where H(ϕ)/T = H0(ϕ)/T+gV (ϕ) is the reduced Hamil-
tonian. Here H0 is the quadratic part and V some per-
turbation. After translating the field ϕ = χ + GJ , one
obtains H0(ϕ)− ϕJ = H0(χ)−H0(GJ), where G is the
propagator defined by H0/T = 1

2 〈ϕ|G
−1|ϕ〉 where we use

the compact notation. Then Eq. (30) becomes

eW (J) =

∫
Dχ exp

[
−H0(χ)

T
+
H0(GJ)

T
− gV (GJ + χ)

]
=Z0 exp

[
H0(GJ)

T

]
〈exp [−gV (GJ + χ)]〉χ . (31)

Using the cumulant expansion we obtain a perturbative
expansion for W (J) that reads

W (J) = lnZ0 +
H0(GJ)

T
− g 〈V (GJ + χ)〉χ

+
g2

2

〈
V 2(GJ + χ)

〉χ
c

+O(g3). (32)

In the following we calculate a perturbative expansion
for the functional W (J) using the previous expression
(32). Having evaluated W (J), one can immediately ob-
tain all connected correlation functions by differentiat-
ing the left- and right-hand side of its defining equation
[equivalent to Eq. (30)]

W (J) = lnZ + ln 〈exp(Jϕ)〉H (33)

an arbitrary number of times with respect to the source
field J and setting J to zero at the end. For potentials
that are even, i.e., when V (ϕ) = V (−ϕ), only terms with
an even number of ϕ fields have non-zero correlations.

A. Expressions for W (J)

Using the derived formula (32) and applying it to our
replicated Hamiltonian (18) we obtain

W (J) = lnZ0 +
Hrep

0 (GJ)

T
+W1 +W2 +O(g3), (34)

where the term Wj comes from the corresponding term
of Eq. (32) proportional to gj . Either directly calculat-
ing or using the obtained results for the effective action
from Ref. 19 and the correspondence from Appendix B
we obtain the final results for W1 and W2. We note that
in models that have STS it was shown that two-replica
part of the functional W and of Γ are identical up to the
replacements given in Eqs. (B1) and (B2).33,35

The lowest order term reads

W1 =
g

2πa2
e−G(0)

×
∑
αβ

∫
d2x cos

{∫
d2yG(x− y) [Jα(y)− Jβ(y)]

}
=0. (35)

The last line is obtained in the limit we need, that is
m→ 0, when the power law e−G(0) = (c2m2a2)1−τ com-
pensates the logarithmic divergence of G(x) under the
cosine. The second order term contains several different
contributions. In Appendix A we give a complete expres-
sion. Here we use only the final result taken in the limit
m→ 0. It reads

W2 =
g2

8π2a4

∑
αβ

∫
d2xd2y

[
a2

(x− y)2 + a2

]2(1−τ)

cos

{∫
d2z

[
(1− τ) ln

(y − z)2 + a2

(x− z)2 + a2

]
[Jα(z)− Jβ(z)]

}
. (36)

B. Special source field

Using a source field of the form

Jα(x) = iq [δ(x− r)− δ(x)] δαγ , (37)

in Eq. (33), we obtain a relation between the correlation
function (29) and the functional W (Jα). It reads〈

eiq[θγ(r)−θγ(0)]
〉
Hrep

=
1

Z
eW (Jα). (38)
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FIG. 4. A graphical representation of the non-vanishing
contributions to the perturbative expansion. The white
and black squares stand for the observable eiqθγ(r) (with

charge +q) and e−iqθγ(0) (with charge −q) respectively. The
replica indices are indicated by a solid line. The interaction∑
α 6=β e

i[θα(x)−θβ(x)] is coded with a white and black circle,
joined by a dashed line. There has to be as many black as
white points and circles in each given replica (charge neu-
trality). Charges q1 at x1 and q2 at x2 interact with a mul-

tiplicative factor (Boltzmann weight) of |x1 − x2|2q1q2T/Tc ;
they “attract” for opposite signs, leading to a divergent con-
tribution as their distance goes to zero. This allows for an
intuitive visualization of the corresponding divergences in the
perturbation expansion.

The left-hand side of Eq. (38) is the correlation function
C(q, r), while the right-hand side of it should be evalu-
ated. Here we perform a perturbative calculation in the
anharmonic coupling [defined in Eq. (20)] of W (Jα), us-
ing the expansion (34).

For the source field (37), the lowest order term in the
expansion of W (Jα) becomes

W0 =
Hrep

0 (GJ)

T
=
∑
αβ

∫
d2xd2yJα(x)

Gαβ(x− y)

2
Jβ(y)

= −q2(1− τ) [1 + 2(1− τ)σ] ln

(
r2 + a2

a2

)
. (39)

A graphical interpretation is given in Fig. 4.
The second nonzero term of W (Jα) is obtained by em-

ploying the source field (37) in Eq. (36), and by mak-
ing use of the summation formula over replica indices∑n
α,β=1 cos[A(δαγ − δβγ)] = n2 + 2(1− n)(1− cosA). In

the limit n→ 0, we obtain

W2 = −g2
( r
a

)4τ

I(r, a, q, τ), (40)

where we have defined the following integral:

I(r, a, q, τ) :=
r−4τ

4π2

∫
d2xd2y

1

[a2 + (x− y)2]
2(1−τ)

×

{[
(x− r)2 + a2

(y − r)2 + a2

y2 + a2

x2 + a2

]q(1−τ)

− 1

}
.

(41)

It is an even function of q, and as a function of r and a
depends only on r/a, provided it is convergent.

Finally, using Eqs. (34), (39), (40), and (38), as well
as the result Z0/Z = 1 valid in the replica limit n →

0, we obtain the final (yet unevaluated) result for the
correlation function (29),

C(q, r) = exp

(
−q2(1− τ)[1 + 2(1− τ)σ] ln

(
r2 + a2

a2

))
× exp

(
−g2

( r
a

)4τ

I(r, a, q, τ)

)
exp

(
O(g3)

)
.

(42)

Equations (41)-(42) are the starting point of the eval-
uation of the correlation function (29). One should read
them as the result of perturbation theory to leading or-
der in the bare coupling g. However, if we re-express g in
terms of the renormalized one gR, we obtain the result to
leading order in τ , the distance from the transition. They
are connected by the relation19 g = gR[1 +O(τ)]. In the
massless limit, equivalently, at large distances, r � a,
from the RG equations (27) the renormalized coupling
reaches its fixed point value τ + O(τ2), hence we can
replace

g → τ +O(τ2) (43)

in the evaluation of the large distance behavior. The be-
havior of gR at intermediate scales before reaching the
fixed point causes some non-universal behavior. It is
easy to see, however, that it is confined to subdominant
terms, such as the part of ln(r/a) that is proportional to
q2. As a consequence of flowing of gR toward the fixed
point, the off-diagonal disorder becomes changed at large
scales. Therefore by σ′ we denote the non-universal pa-
rameter that characterizes the off-diagonal disorder. We
note that, to lowest order in g, we have σ′ = σ. In order
to emphasize the difference between the bare parameter
σ, defined in Eq. (16), and the effective one at large scales
σ′, we keep σ′ in final formulas, e.g., in Eq. (10).

Thus, to leading order, we only need the integral
I(r, a, q, τ = 0), which is a function of the ratio r/a and
q only. It is clear from the definition (41) that for τ = 0
this integral is convergent for any q: It is ultraviolet con-
vergent thanks to the cutoff a and infrared convergent
thanks to the substraction of 1. There are however ul-
traviolet divergences when a/r → 0, which lead to a loga-
rithmic behavior, and which will be analyzed in the next
section. Here we want to point out that while for |q| < 1
they come from the first power law factor, there is an
additional ultraviolet divergence arising from the second
factor (containing r) when q = 1. Hence we will mainly
restrict to q ≤ 1, and discuss separately below the cases
|q| < 1 and q = 1. It makes physical sense that at q = 1
(and in general any integer q) the physics is different,
and changes non-smoothly, as was already the case in
the high temperature phase [see the above results (3) of
Toner and DiVincenzo 2 ].
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IV. EVALUATION OF THE CORRELATION
FUNCTION

In this section we evaluate the correlation function
C(q, r) defined by Eq. (29), using its form (42), for gen-
eral values of the parameter q in the region 0 < q ≤ 1.
To achieve this, our task is to calculate the integral of
Eq. (41). Exact evaluation of that integral is rather diffi-
cult. However, we only need the most dominant term for
large r/a, when the expression of Eq. (41) is expected to
take a universal form.

We calculate the integral using two different methods.
The first one, which we term the finite-a method, works
directly at τ = 0, but with a non-zero ultraviolet cut-
off a > 0. However we are not able to obtain all the
results using this finite-a method. Hence we also use di-
mensional regularization, which we term the dimensional
method; it is quite powerful, although a little delicate in
its interpretation. In that method one works directly at
a = 0, but keeps τ > 0, which renders the integral con-
vergent. From the poles in 1/τ one extracts the desired
information. A careful comparison between the obtained
results is performed at the end.

A. Finite-a method

We start the evaluation by setting τ = 0 and keep-
ing a finite in Eq. (41). This is justified as we have
I(r, a, q, τ) = I(r, a, q, 0)+O(τ), so to lowest order in the
distance from the transition we only need I(r, a, q, 0), as
discussed above.

For small q, we expand it into a Taylor series as

I(r, a, q, 0) =

∞∑
j=1

q2jIj(r/a), (44)

where we have defined the family of integrals

Ij(r) =
1

4π2(2j)!

∫
d2xd2y

1

[1 + (x− y)2]
2

× ln2j

[
(x− r)2 + 1

(y − r)2 + 1

y2 + 1

x2 + 1

]
. (45)

The expansion (44) contains only even powers of q, a con-
sequence of the parity I(r, a, q, 0) = I(r, a,−q, 0). Rather
involved evaluation of the lowest order term I1(r) of
Eq. (44) is presented in Appendix D. At small q, the
result reads

I(r, a, q, 0) = q2 ln2
( r
a

)
+ q2 ln

( r
a

)
+ r(q), (46)

where the even function r(q) at small q starts with a term
proportional to q4 and contains all the desired higher-
order terms proportional to q2j , j ≥ 2.

To determinate r(q) defined in Eq. (46) we begin by
a numerical evaluation. In Fig. 5 we show the results
for Ij(r) for j = 2, 3 that determine the two lowest-order

j=2 2ΖH3LlnHrL+const

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

àj=3 2ΖH5LlnHrL+const
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FIG. 5. Numerical evaluation of Eq. (45) for j = 2, 3. At
large r, we observe that the data belong to a straight line on
a log-linear plot. The numerical coefficients [2ζ(3) and 2ζ(5)
for j = 2 and j = 3, respectively] in front of the logarithms
in the fitted straight lines are analytically obtained by the
dimensional method, see the main text.

terms of r(q) at small q, see Eqs. (44) and (46). We
notice that the data points for I2(r) and I3(r) appear
to be on a straight line on a log-linear plot, which shows
that these two functions are well described by a logarithm
ln(r) with j-dependent prefactors (2ζ(3) and 2ζ(5) in the
present case). This leaves us with a hint that all Ij(r) for
j > 1 might asymptotically have a logarithmic behavior
in the limit r � 1. That would determine the anomalous
exponent for the C(q, r) correlation function.

We gain further knowledge about I(r, a, q, 0) by con-
sidering the special case q = 1. The calculation presented
in Appendix D reveals the result

I(r, a, 1, 0) = 3 ln2
( r
a

)
− 2 ln

( r
a

)
+O

(
a2

r2

)
, (47)

showing that the coefficient q2 of the leading squared
logarithmic term from the small-q expansion of Eq. (46)
changes at q = 1. As discussed above this is expected
from physical considerations. To confirm this result for
q = 1 we have performed a calculation in the fermionic
version of the model that allows us to treat integer q
only. It confirms our result for q = 1. The calculation
and results will be presented elsewhere.27 Note that at
q = 1 the prefactor in front of ln(r/a) term in Eq. (47)
takes this value for the particular cutoff procedure we
use, but is not expected to be universal in general.

Motivated by the above analysis, we introduce the
anomalous exponent η(q) and the amplitude A(q) and as-
sume a general form for the correlation function at r � a
given by Eq. (5), where

η(q) = 2q2(1− τ)[1 + 2(1− τ)σ] + g2ηg(q) +O(g3),
(48)

A(q) = α(q)g2 +O(g3). (49)

For the unknown coefficients in the previous two expres-
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sions, so far we have established the following results:

ηg(1) = −2, (50)

α(q) =

{
2q2, q � 1

6, q = 1
. (51)

B. Dimensional method

To evaluate Eq. (41) using the dimensional method, we
take the limit a→ 0 of the integrand, i.e., we consider

I(r, a, q, τ) =I(r, 0, q, τ) +O(a2)

=I(1, 0, q, τ) +O(a2), (52)

where the second line is a trivial consequence of rescaling
the coordinates by r, provided the integral is convergent.
For τ > 0 the integral I(1, 0, q, τ) is ultraviolet conver-
gent as long as |q|(1− τ) < 1; it remains infrared conver-
gent if τ is not too large (τ < 1/2). We thus first discuss
|q| < 1. From the poles of the evaluated expression in
the limit τ → 0 we will infer the behavior of the integral
at nonzero a, as is shown below. We rewrite

I(1, 0, q, τ) =
1

4π2
J(q(1− τ), τ), (53)

where we defined

J(p, τ) := FP

∫
d2x d2y |x− y|4(τ−1)

[
|x− e||y|
|y − e||x|

]2p

.

(54)
Here e is an arbitrary unit-vector, and FP means “finite
part” in the sense of dimensional regularization (in some
domain of q this finite part is achieved by the subtrac-
tion 1 in Eq. (41), however it can be given a more gen-
eral meaning in terms of analytical continuation in the
parameters q, τ). The evaluation of the ensuing 2 × 2-
dimensional integral is complicated and the details are
presented in Appendix C. Let us recall here the main
idea, which goes back to Dotsenko and Fateev36,37: The
integral (54) can be thought of as an integral over the
complex plane, both for x and y. The integral over, say
x over the complex plane can be decomposed into two
real contour-integrals, over x and its complex-conjugate
x̄. Noting that (54) can be written in the form∫

d2x d2y (1− x)pypx2τ−1(1− y)2(τ−1)(1− xy)−p

× (1− x̄)pȳpx̄2τ−1(1− y)2(τ−1)(1− x̄ȳ)−p ,
(55)

it is suggestive that deforming the contour integrals over
x and x̄ to lie on the real axis, the resulting integral will
take the form

J(p, τ) =
∑
i

BiJiJ
′
i .

The Bi’s are phase-factors – typically deforming a con-
tour around a branch cut gives a sine-function of 2π
times the power at the branch cut. The Ji are second-
generation hypergeometric functions 3F2, e.g., the first
line of Eq. (55) will naturally lead to

Ji =

∫ 1

0

dx

∫ 1

0

dy (1−x)pypx2τ−1(1−y)2(τ−1)(1−xy)−p .

Note that the integral above is restricted, both for x
and y, to the interval [0, 1]; but the domains [−∞, 0]
and [1,∞] also contribute; the latter can then be trans-
formed back to the interval [0, 1], leading to integrals of
the same form, but with different coefficients. This form
can be recognized in the exact result given in Appendix
C, formula (C3).

The final result for 0 < q < 1 and small τ reads

I(1, 0, q, τ) =
q2

8τ2
+
q2 [1− 2γE − ψ(q)− ψ(−q)]

4τ

+O(τ0), (56)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. The
coefficients of the poles in Eq. (56) contain all informa-
tion needed for the determination of the anomalous ex-
ponent (48) and the amplitude (49). The precise method
to extract the information from these poles is given in the
Appendix E 1. Here we give a more intuitive derivation.

Starting from Eq. (40), which is contained in the cor-
relation function (42), we expand (r/a)4τI(r, a, q, τ) at
small τ . Using Eqs. (52) and (56), for 0 < q < 1 we find
the result( r
a

)4τ

I(r, a, q, τ) = q2 ln2
( r
a

)
+ ηg(q) ln

( r
a

)
+O(τ),

(57)

where the prefactor of the logarithmic term, i.e., the non-
trivial part of the anomalous exponent, reads

ηg(q) =q2[1− 2γE − ψ(q)− ψ(−q)]. (58)

Equation (57) could also be understood as the final ex-
pression for I(r, a, q, τ = 0) obtained via the dimensional
method. At small q, one can notice the agreement be-
tween the two results (46) and (57) that are obtained
using quite different methods.

The expression (57) should be taken with special atten-
tion. The translation of the dimensional-method result
(56) by performing a naive expansion at small τ of the
left hand side of Eq. (57) would contain extra terms

q2

8τ2
+

1

4τ

[
2q2 ln

( r
a

)
+ ηg(q)

]
, (59)

on the right hand side. These two terms are divergent
for τ → 0. The terms (59) formally appear only because
we performed a small a expansion in Eq. (52), i.e., we set
a = 0 in the integrand. The left-hand side of Eq. (57)
should be finite at τ = 0, and thus the right-hand one as
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well. Therefore, the extra terms (59) should be omitted
when one relates the dimensional result (56) to the ex-
pression for I(r, a, q, τ = 0). We again emphasize that a
more rigorous derivation is given in Appendix E 1, while
Appendix E 2 we give an illustrative example.

V. FINAL RESULT AND CONCLUSION

Using Eqs. (42) and (57) we obtain the final result for
the correlation function

C(q, r) =〈eiq[θ(r)−θ(0)]〉H , (60)

at q ≤ 1, for the model (15). It takes the form

C(q, r) '
(a
r

)η(q)

exp

[
−1

2
A(q) ln2(r/a)

]
, (61)

where the amplitude is given by

A(q) =

{
2q2τ2 +O(τ3), q < 1

6τ2 +O(τ3), q = 1
. (62)

Here and below we use the replacement g → τ as dis-
cussed in Eq. (43), i.e., the fixed point of the RG.

The anomalous exponent of Eq. (61) reads

η(q) = 2q2(1− τ)[1 + 2(1− τ)σ′] + τ2ηg(q) +O(τ3),
(63)

where its nontrivial part determined by the anharmonic
coupling reads

ηg(q) =

{
q2[1− 2γE − ψ(q)− ψ(−q)], q < 1

−2, q = 1
(64)

Here γE is the Euler constant. This produces the result
(7) displayed in the Introduction where we have sepa-
rated the universal part, η̃(q), of η(q) which starts at
order q4, from the part proportional to q2, which is non-
universal.

The anomalous exponent η(q) rapidly increases as q
increases from zero to one. Thus, C(q1, r) > C(q2, r)
for 0 < q1 < q2 < 1, meaning the correlation func-
tion decreases as q increases. When q approaches unity,
η(q) ' 1/(1− q) becomes very large and makes the cor-
relation function C(q, r) decay much faster, see Eq. (61).
This is a precursor of the more drastic effect which hap-
pens at q = 1 where the amplitude A(q) jumps (from
2q2τ2 at q → 1− to 6τ2 at q = 1). These dips in the
correlation function C(q, r) are a remarkable and unique
feature of the super-rough phase. Note that near q = 1
there is a growing length scale

ξq ≈ a exp

(
1

1− q

)
, (65)

below which the η(q) ln(r/a) term in the exponential in
(61) is larger than the asymptotic ln2(r/a) term.

Our result (64) can also be expanded at small q as

ηg(q) = q2 + 2ζ(3)q4 + 2ζ(5)q6 +O(q8). (66)

This expansion precisely determines the prefactors for
the family of integrals of Eq. (45). For j ≥ 2 we find
Ij(r) = 2ζ(2j− 1) ln(r) +O(r0), which explains the data
of Fig. 5. This provides a confirmation that we have
correctly extracted the amplitudes from the dimensional
method (at least for small q).

Our result for the correlation function (60) enables
us to calculate the leading large-distance behavior of
all higher powers of the connected correlation func-
tions in the super-rough phase, i.e., for T < Tc
(see Fig. 3). Using the cumulant expansion formula
ln〈exp[A]〉 =

∑∞
j=1〈Aj〉c/j!, after expanding (the loga-

rithm of) Eqs. (60) and (61) at small q, one obtains〈
[θ(r)− θ(0)]

2j−1
〉
c

= 0, (67)

(−1)j

(2j)!

〈
[θ(r)− θ(0)]

2j
〉
c

= −2τ2ζ(2j − 1) ln
( r
a

)
+O

(
τ2 r

0

a0
, τ3

)
(68)

for j > 1. On the contrary, for j = 1 one finds

〈[θ(r)− θ(0)]
2〉 = 2τ2 ln2

( r
a

)
+O

(
ln
( r
a

))
. (69)

Expression (69) is the well-known result4,19,20 for the
model (15). This is yet another way of obtaining the
result that produced some controversies in the past, as
discussed in Ref. 4. Confirming a recently obtained
correction19 to the prefactor of the squared logarithm
in Eq. (69) using the present method would require ex-
plicit evaluation of the O(g3) term in Eq. (42); that is a
formidable task beyond the scope of the present study.

Our main results directly apply to some physical sys-
tems, in particular to surfaces of crystals with quenched
bulk disorder2 or to a vortex lattice confined to a
plane.3 In particular, the structure factor S(q,k) =∫
d2r C(q, r) exp(ik r) in the super-rough phase at k = 0

is analytic and finite.2 However, we predict that it has
sudden dips once the wave-vector q becomes an integer
multiple of the reciprocal lattice vector normal to the sur-
face G0 (set to unity here) of the bulk crystal; we expect
it to have characteristic jumps in the amplitude and the
anomalous exponent not only at q = 1 but rather at any
integer q.

To summarize, the main results of the present study
are given by Eqs. (60)-(64), or equivalently (7). They
describe the behavior of the exponential correlation func-
tion in the super-rough phase, defined by Eq. (60). We
found a characteristic universal jump of the amplitude
of the squared logarithmic term, at q = 1, which occurs
in conjunction with the drop of the anomalous exponent.
The value of the amplitude at q = 1 is in agreement with
the result in the equivalent fermionic disordered model
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and will be published elsewhere.27 It would be very in-
teresting to perform a numerical simulation, along the
lines of Ref. 20, to test the results of the present work.
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Appendix A: W2 term

In this Appendix we provide the complete expression
for the second-order term W2 of the generator of con-
nected correlations, see Eq. (34). It reads

W2 =
1

2

( g

2πa2

)2

e−2G(0)
∑
s=±

∑
αβγ

∫
d2xd2y

×
{

1

2
A1(x− y)δαγ cos [(GJαβ)(x)]

+ [As2(x− y)δαγ +As4(x− y)]

× cos [(GJαβ)(x)− s(GJγβ)(y)]

}
, (A1)

where

A1(x) = 4(2− e−G(x) − eG(x)), (A2)

As2(x) = 1 + e2sG(x) − 2esG(x), (A3)

As4(x) = 2(esG(x) − 1). (A4)

Here we introduced the abbreviation

(GJαβ)(x) ≡
∫
d2yG(x− y) [Jα(y)− Jβ(y)] . (A5)

In the limit of zero mass, m → 0, the only term that
survives in Eq. (A1) comes from the A+

2 term and reads

W2 =
g2

8π2a4

∑
αβ

∫
d2xd2ye2G(x−y)−2G(0)

× cos

{∫
d2z [G(x− z)−G(y − z)] [Jα(z)− Jβ(z)]

}
.

(A6)

The difference of propagators in the previous equation is
well behaved in the limit m → 0. Using the propagator
(22), we eventually obtain the expression (36) of the main
text.

Appendix B: Connection between the effective
action and W

Our formula (32) resembles the one for the effective
action from Ref. 19, if in the latter one performs the
following replacements: (i) omission of the one-particle
irreducible parts (in particular the linear term −pG(x)→
0 in A(x, p) for Γ2 and B1 → 0 for Γ3), (ii) gi → −gi and
(iii) θ → GJ , or written more explicitly:

θα(x)→
∑
γ

∫
d2yGαγ(x− y)Jγ(y), (B1)

θα(x)− θβ(x)→
∫
d2yG(x− y) [Jα(y)− Jβ(y)]

≡ (GJαβ)(x). (B2)

In the last expression we explicitly used the fact that
Gαβ(x) = δαβG(x) +G0(x), so that only the diagonal σ-
independent part survives. This is one of the manifesta-
tions of STS where we explicitly see through (32) that all
corrections to the correlation functions that come due to
the anharmonic term (proportional to g) are σ indepen-
dent. We note that in models that have STS, two-replica
part of the functional W and Γ are identical up to the
replacements given in Eqs. (B1) and (B2).33,35

Appendix C: Integral I(r, a = 0, q, τ)

In this Appendix we analyze and for τ > 0 calculate
the integral I(1, 0, q, τ) defined in Eqs. (41) and (52); it
can be written as

I(1, 0, q, τ) =
1

4π2
J(q(1− τ), τ), (C1)

where the integral J(p, τ) was defined in Eq. (54) in the
main text.

The integral of the type (54) was studied in Refs. 38
and 39 in the context of correlation functions in a two-
dimensional Ising model. It can be expressed in terms of
the hypergeometric functions, defined as

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
,

(C2)

where (a)k = Γ(a+k)/Γ(a), while p and q are positive in-
tegers. In the following we use results from Ref. 39 (which
are equivalent to those of Ref. 38 once one employs some
identities between the hypergeometric functions). It is
important to note that the integral J(p, τ) diverges for
p = 1 (or more generally integer p) but that the formula
below provides an analytic continuation in p away from
the poles at integer p. In turns, it gives an analytical
continuation for the original integral, which we will call
Icont(1, 0, q, τ). We now need to discuss how this contin-
uation is relevant for the physical problem studied here,
and online the content of the next two subsections.
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Our main objective, as discussed in the main text, is
to extract from the poles in 1/τ2 and 1/τ of this inte-
gral the logarithmic behaviors at large distance r. How
to do that is explained in Appendix E 1. In addition we
will restrict our study to |q| ≤ 1. As was discussed in
the Introduction, the divergences that appears at q = 1
have important physical consequences and are related to
the screening mechanism unveiled by Toner and DiVin-
cenzo 2 . To make progress for q > 1 one needs to reex-
amine the entire perturbation expansion, which we defer
to a future work. The considerations directly useful for
the present work are presented in the first part of this
Appendix.

Still, it is not devoid of interest to also study (i) the
analytical continuation Icont(1, 0, q, τ) for arbitrary q (ii)
the finite parts of the integral, even if it will not contain
the universal information sought here. These considera-
tions are reported in the second part of this Appendix.

1. Study useful for |q| ≤ 1 and the divergent parts

Using the results from Ref. 39, for the integral (54) one
obtains

J(p, τ) =− sin2(πp)

2 sin2(πp+ 2πτ)

{
[cos(2πp) + cos(2πp+ 4πτ)− 2]B(1− p, 1 + p)2B(1− p, 1− 2τ)2

× 3F2(1− p, 1− 2τ, 2− 2τ ; 2, 2− p− 2τ ; 1)2

+ [cos(4πτ)− 1]B(1 + p, 2τ − 1)2B(1 + p, 2τ)2
3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1)2

− 4 sin(πp) sin(2πτ)B(1− p, 1 + p)B(1− p, 1− 2τ)B(1 + p, 2τ − 1)B(1 + p, 2τ)

× 3F2(1− p, 1− 2τ, 2− 2τ ; 2, 2− p− 2τ ; 1)3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1)
}
, (C3)

where B(x, y) is the beta function. We need a simplified form of Eq. (C3) valid at small values of τ .
The excess of the hypergeometric function 3F2(a, b, c; d, e; z) is defined as d+ e− a− b− c and for z = 1 the excess

has to be positive in order for 3F2(a, b, c; d, e; z = 1) to be defined by its series (C2). A naive expansion

3F2(1− p, 1− 2τ, 2− 2τ ; 2, 2− p− 2τ ; 1) = 3F2(1− p, 1, 2; 2, 2− p; 1) +O(τ) (C4)

of one of the hypergeometric functions of Eq. (C3) is not possible. Therefore, although the hypergeometric functions
of Eq. (C3) are well defined, since they have positive excess 2τ , we cannot perform a Taylor expansion around τ = 0.

In the following we use particular relations between the hypergeometric functions in order to transform Eq. (C3)
into a suitable form that can be Taylor expanded at small τ . After transforming 3F2(1−p, 1−2τ, 2−2τ ; 2, 2−p−2τ ; 1)
of Eq. (C3) using the one-term transformation rule40 valid for a, s > 0

3F2(a, b, c; d, e; 1) =
Γ(d)Γ(e)Γ(s)

Γ(a)Γ(b+ s)Γ(c+ s)
3F2(d− a, e− a, s; b+ s, c+ s; 1), s = d+ e− a− b− c, (C5)

one obtains the following result valid at p < 1,

J(p, τ)

4π2
=− π2p2[cos(2πp+ 4πτ) + cos(2πp)− 2]

8 sin2(2πτ) sin2(πp+ 2πτ))
3F2(1 + p, 1− 2τ, 2τ ; 1, 2; 1)2

+
π2p3(2τ − 1)(p+ 2τ)Γ(2τ − 1)2

2 sin2(πp+ 2πτ))Γ(1− p)2Γ(p+ 2τ + 1)2 3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1)3F2(1 + p, 1− 2τ, 2τ ; 1, 2; 1)

+
p2(1− 2τ)2 sin2(2πτ)Γ(1 + p)2Γ(2τ − 1)4Γ(1− p− 2τ)2

4π2Γ(1− p)2Γ(1 + p+ 2τ)2 3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1)2. (C6)

The expression (C6) has a positive excess in the hypergeometric functions under the two conditions τ > 0 and p < 1.
The main advantage however of Eq. (C6) is that it is more convenient for Taylor expansion around τ = 0. We need
to expand the two hypergeometric functions of Eq. (C6). The first one, 3F2(1 + p, 1− 2τ, 2τ ; 1, 2; 1), can be expanded
safely, since it is well-defined in the expansion limit τ → 0 for p < 1. One obtains

3F2(1 + p, 1− 2τ, 2τ ; 1, 2; 1) = 1 + 2

[
1− γE − ψ(−p) +

1

p

]
τ +O(τ2). (C7)

We employed the Gauss relation 2F1(a, b; c; 1) = Γ(c)Γ(c−a− b)/[Γ(c−a)Γ(c− b)] and used the fact that 3F2 reduces
to 2F1 for τ = 0, see the definition (C2). However, the expansion of the second hypergeometric function of Eq. (C6),



12

3F2(p, 1 + p, 2τ ; p + 2τ, 1 + p + 2τ ; 1), can not be done directly, since for τ = 0 it has zero excess. To overcome this
problem, we use the following relation41

3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1) =
(1 + p)(1 + 2τ)

1 + p+ 2τ
3F2(p, 1 + p, 2τ ; p+ 2τ, 2 + p+ 2τ ; 1)

+
p(1− 2τ)

p+ 2τ
3F2(p, 1 + p, 2τ ; 1 + p+ 2τ, 1 + p+ 2τ ; 1), (C8)

which connects 3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1) with two other hypergeometric functions that have an excess of
1 + τ and hence are well defined for τ = 0. One then obtains for the expansion

3F2(p, 1 + p, 2τ ; p+ 2τ, 1 + p+ 2τ ; 1) = 2 + 2

[
2γE + 2ψ(p) +

1

p

]
τ +O(τ2). (C9)

Combining Eqs. (C7), (C9), and (C6), one obtains the expanded form of Eq. (C3),

J(p, τ)

4π2
=
p2

8τ2
+
p2

4τ
[2− 2γE − ψ(p)− ψ(−p)] +O(τ0). (C10)

Finally, using Eqs. (C1) and (C10), we obtain the result reported in the text (56).
It is interesting to notice that Eq. (C3) satisfies the relation J(p, τ) = J(p, 1/2 − τ) when τ > 0 and 1/2 − τ > 0,

i.e. for 0 < τ < 1/2. This significantly simplifies the Taylor expansion, since Eq. (C3) could easily and directly be
expanded around τ = 1/2, because the excess 2τ of the hypergeometric functions is then always positive and hence
they are well behaved. Performing the calculation in this way one obtains

J(p, τ)

4π2
=

p2

8(1/2− τ)2
+

p2

4(1/2− τ)
[2− 2γE − ψ(p)− ψ(−p)] +O((1/2− τ)0), (C11)

which is in agreement with the result (C10). This observation suggests that a more symmetric form of the expansion
reads

J(p, τ)

4π2
=

p2

32τ2(1/2− τ)2
+

p2

8τ(1/2− τ)
[−2γE − ψ(p)− ψ(−p)] +O(τ0(1/2− τ)0). (C12)

2. Further study of the analytical continuation

We should notice that although Eq. (C10) is formally obtained from Eq. (C6) that is valid for p < 1, Eq. (C10) is
an even function of p [as well as the starting ones of Eqs. (54) and (C3)] and therefore Eq. (C10) holds at any p by
the parity transformation. Hence we can define the integral analytically continued to the whole complex plane:

Icont(1, 0, q, τ) =
q2

8τ2
+
q2 [1− 2γE − ψ(q)− ψ(−q)]

4τ
+O(τ0) for q /∈ integers. (C13)

For positive integer q = N , one can not expand the function ψ( − q(1 − τ)) from Eq. (C10) at small τ due to the
divergence of ψ(−N). In Fig. 6 we show a comparison between the exact result and its small τ expanded form for
the 1/τ divergent part of I(1, 0, q, τ).

We finally notice that Eq. (C10) diverges, once p approaches an integer. Due to the parity of Eq. (C10) with respect
to p, we can restrict to the region p > 0. It is then convenient to rewrite ψ(p) +ψ(−p) = 2ψ(p) + π cot(πp) + 1/p. As
a result, the divergence arises due to the cotangent term. Therefore, the most divergent part of Eq. (C10) at τ → 0
and p→ N with N being a positive integer, is

J(p, τ)

4π2
=

p2

8τ2
− p2

4τ
π cot(πp) +R(p), (C14)

where R(p) is the τ -independent part in Eq. (C10), contained in O(τ0). Direct expansion of Eq. (C3) shows that it has

a divergence of the type N2/[4(p−N)2] for any integer N , so R(p) can be rewritten as R(p) =
∑∞
N=1

p2

4(p−N)2 + . . . =
p2

4 ψ
(1)(1− p) + . . ., taking into account only the most divergent terms O[(q −N)−2], but not the terms that diverge
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FIG. 6. Numerical evaluation of 1/τ divergent part of Icont(1, 0, q, τ) for τ = 10−5. Solid line represents the data obtained
using Eq. (C13), while the dots are obtained using the exact expression (C3) plugged in into Eq. (C1). The plotted function is
even in q and we only show the region q > 0.

as O[(q −N)−1]. Here . . . denotes other subleading divergent terms when q → N . Therefore,

J(N + h, τ)

4π2
=

(N + h)2

8τ2
− (N + h)2

4τ

[
1

h
+O(h)

]
+
N2

4h2
[1 +O(h/N)]

=
N2

8τ2
[1 +O(h/N)]− N2

4τh
[1 +O(h/N)] +

N2

4h2
[1 +O(h/N)] . (C15)

Using Eqs. (C1) and (C15) we recognize h = −Nτ , and therefore

Icont(1, 0, N, τ) =
N2 + 2N + 2

8τ2
+O(τ−1). (C16)

In Fig. 7 we show a numerical comparison between the obtained results.
In order to get the O(τ−1) term in the previous formula one should evaluate the O(τ2) terms in (C7) and (C9)

that we have not succeeded. However, we have verified the following two results

Icont(1, 0, 1, τ) =
5

8τ2
− 1

2τ
+O(τ0), (C17)

Icont(1, 0, 2, τ) =
5

4τ2
− 4

τ
+O(τ0). (C18)

Appendix D: Integral I(r, a, q, τ = 0)

In this Appendix we consider the integral (41) from the main text at τ = 0, i.e.,

I(r, a, q, τ = 0) =
1

4π2

∫
d2xd2y

1

[a2 + (x− y)2]
2

{[
(x− r)2 + a2

(y − r)2 + a2

y2 + a2

x2 + a2

]q
− 1

}
, (D1)

and evaluate it for q = 1 and in the limit q → 0. We notice the invariance I(r, a, q, 0) = I(r/a, 1, q, 0) and therefore
we set a = 1, recovering a in the final result.

1. The case I(r, a, q = 1, τ = 0)

We start with the integral (D1) in the case q = 1. We represent the two-dimensional vectors x and y in polar
coordinates. After performing the two angular integrations, and then the integration over x, the result can be expressed
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FIG. 7. Numerical evaluation of 1/τ2 divergent part of Icont(1, 0, q, τ) for τ = 10−3. For non-integer q values, 8τ2Icont(1, 0, q, τ)
equals q2, while for integer q it is q2 + 2q + 2, as indicated by the dashed lines. The dots represent values obtained using the
exact expression (C3) plugged in into Eq. (C1) at particular values q = 0.5, 1, 1.5, 2, 2.5, 3. By solid line we show the result
(C14) plugged in into Eq. (C1). The inset shows zoomed result around q = 1, and we notice a very good agreement between
the results (C3) and (C14). For special q values such that p = q(1 − τ) approaches unity or any other integer, we notice the
divergence of τ2Icont(1, 0, q, τ).

in the following form

I(r, 1, 1, 0) =

∫ ∞
0

dy[j1(r, y) + j2(y) + j3(r, y)], (D2)

where

j1(r, y) =
1

2y(y2 + 4)

[
2− y2 +

(y2 + 1)(y2 − 2r2 − 2)√
r4 − 2r2(y2 − 1) + (y2 + 1)2

]
, (D3)

j2(y) = − 2

(y2 + 4)3/2
arctanh

(
y
√
y2 + 4

y2 + 2

)
, (D4)

j3(r, y) =
1

y2(y2 + 4)3/2

[
(y2 + 1)(r2y2 + 2y2 + 2r2 + 2)√
r4 − 2r2(y2 − 1) + (y2 + 1)2

− 2

]
arctanh

(
y
√
y2 + 4

y2 + 2

)
. (D5)

After introducing a new variable t = y2 + 2, one easily performs the integration of j1(r, y) and obtains∫ ∞
0

dyj1(r, y) =− 1

4
ln

(
r2 + 1

8

)
− 3r2 + 9

8
√

(r2 + 1)(r2 + 9)
ln

[
(r2 + 5)

√
(r2 + 1)(r2 + 9) + r4 + 10r2 + 17

8

]

=− 2 ln(r) +
3

2
ln 2 +O

(
1

r2

)
. (D6)

The function j2(y) is r-independent and gives a constant contribution∫ ∞
0

dyj2(y) = − ln 2. (D7)

The remaining yet unevaluated integral is
∫∞

0
dy j3(r, y). We notice that it contains a r-independent part [the term

−2 from the square brackets in Eq. (D5)], which is necessary to make j3(r, y) nonsingular at y → 0. From the square
root of the denominator of Eq. (D5), we conclude that j3(r, y) is sharply peaked when y takes values around r, with
the height of the peak equal to ln(r) in the limit of large r. Therefore, we split j3(r, y) in the following form

j3(r, y) = j31(r, y) + j32(r, y), (D8)
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where

j31(r, y) =

r2arctanh

(
y
√
y2+4

y2+2

)
y
√
r4 − 2r2(y2 − 1) + (y2 + 1)2

. (D9)

In the last equation we keep y in the denominator in order make j32(r, y) decaying faster than 1/y at large y. We
emphasize here that the special choice (D9) for the first term of Eq. (D8) is not unique. For example, another

possibility would be 2r2 ln(y+1)

y
√
r4−2r2(y2−1)+(y2+1)2

, which is equally good, as it is integrable and describes well the function

j3(r, y) around its maximum. For simplicity, in the following we use the choice given by Eq. (D9).
The subleading part of j3(r, y) contained in j32(r, y) = j3(r, y)− j31(r, y) can be safely expanded at large r, as its

main contribution in the integral comes from small values of y, i.e., from the region y � r. Using Eqs. (D5), (D8),
and (D9) one obtains

j32(r, y) =

[
y2 + 3

(y2 + 4)3/2
− 1

y

]
arctanh

(
y
√
y2 + 4

y2 + 2

)
+O

(
1

r2

)
; (D10)

therefore ∫ ∞
0

dyj32(r, y) = −π
2

6
− ln 2

2
+O

(
1

r2

)
. (D11)

We perform the remaining integration
∫∞

0
dy j31(r, y) in the following way: We first calculate

J31(r, y) =

∫
dr
j31(r, y)

r
=

arctanh

(
y
√
y2+4

y2+2

)
2y

ln
(

1 + r2 − y2 +
√
r4 − 2r2(y2 − 1) + (y2 + 1)2

)
. (D12)

Then, we expand J31(r, y) at large r at lowest order in r and get

Ja
31(r, y) =

arctanh

(
y
√
y2+4

y2+2

)
y

ln r + . . . , (D13)

where by . . . we denote the subleading terms at large r. The expansion of Eq. (D13) is a good approximation of
J31(r, y) of Eq. (D12) only for y <∼ r. For y > r, the function J31(r, y) sharply drops to zero, contrary to its
expanded form (D13), as one can see from the expansion of J31(r, y). In the vicinity of r, at leading order one obtains
J31(r, y = r + δ) = (ln2 r/r)[1− δ/ ln r] for δ � 1. Such an expansion determines a very large slope O(1/ ln r) for the
deviation of the function J31(r, y) around the point y = r. Therefore, we integrate the expanded result (D13) over y
in the interval [0, r] and get∫ r

0

dyJa
31(r, y) =− Li2

[
−1

2
r
(
r +

√
r2 + 4

)]
ln(r)− 1

4
ln(r) ln2

(
2

r2 + r
√
r2 + 4 + 2

)
+ . . .

= ln3 r +
π2

6
ln r +O

(
1

r2

)
+ . . . (D14)

The subleading terms of Eq. (D14), denoted by . . ., originate from the subleading terms of Eq. (D13) which do not
change the stated result in Eq. (D14), as one can check, e.g., numerically. Finally, assuming the following form∫∞

0
dy j31(r, y) = A ln2 r +B ln r + C + . . ., one obtains∫

dr

∫ ∞
0

dy
j31(r, y)

r
=
A

3
ln3 r +

B

2
ln2 r + C ln r + . . . . (D15)

After comparing the last expression with Eq. (D14) one gets A = 3, B = 0, and C = π2/6. Combining this result
with Eqs. (D8) and (D11) one obtains∫ ∞

0

dyj3(r, y) = 3 ln2 r − ln 2

2
+O

(
1

r2

)
. (D16)

Collecting the obtained results (D6), (D7), and (D16) and using (D2), one obtains

I(r, a, 1, 0) = 3 ln2
( r
a

)
− 2 ln

( r
a

)
+O

(
a2

r2

)
, (D17)

where we have recovered the parameter a.
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2. The case I(r, a, q → 0, τ = 0)

The leading order term at q → 0 of Eq. (44) is given by I1(r) of Eq. (45). We could evaluate it using a procedure
similar to the one employed during the evaluation of I(r, a, 1, 0), see Appendix D 1. First, one performs the two
angular integrations, where one employs the following non-elementary integral∫ 2π

0

dθ ln(c− cos θ) = −2π ln
(

2c− 2
√
c2 − 1

)
, (D18)

which can, e.g., be obtained by making use of the Jensen formula.42 After performing one spatial integration, one
obtains the result of the form

I1(r) =

∫ ∞
0

dy

[
y2 + 2√
y2 + 4

arctanh

(
y
√
y2 + 4

y2 + 2

)
− y ln(y2 + 1)

]
ln

(
r2 + y2 + 1 +

√
r4 − 2r2(y2 − 1) + (y2 + 1)2

2(y2 + 1)

)
.

(D19)

For the last integral one could use a procedure similar to the one employed above for the integral (D2). The final
result reads

I1(r) = ln2(r) + ln(r) +O
(
r0
)
, (D20)

and therefore

I(r, a, q, 0) = q2

[
ln2
( r
a

)
+ ln

( r
a

)
+O

(
r0

a0

)]
+O(q4). (D21)

Appendix E: Connection between the finite-a and
the dimensional method

1. From poles to logarithms

Let us define Ĩ(r̃, τ) := r̃4τI(r, a, q, τ) and r̃ = r/a
[compare with the expression for W2 of Eq. (40)]. Hence
the limit a→ 0 is the same as r̃ →∞. The dimensional
method gives, at fixed τ > 0:

Ĩ(r̃, τ) 'r̃→∞ r̃4τ

[
b2(q)

τ2
+
b1(q)

τ
+O(1)

]
, (E1)

where b2(q) and b1(q) are even functions of q with a reg-
ular Taylor expansion in q at q = 0. On the other hand,
from the finite-a method, we know that

Ĩ(r̃, τ = 0) 'r̃→∞ B2(q) ln2 r̃ +B1(q) ln r̃ +O(1).(E2)

To match the two, we first observe that the integral

(r̃∂r̃)
2Ĩ(r̃, τ) (E3)

is not divergent and can be calculated at τ = 0, giv-
ing 2B2(q) from Eq. (E2), or directly calculated from
Eq. (E1) in the limit τ → 0 is gives 16b2(q). Identifying
the two coefficients, one gets

B2(q) = 8b2(q), (E4)

which was used in the main text.
When b2(q), B2(q) are non zero one cannot get in full

generality a universal result for B1(q), b1(q). It is easy to

see since by simply changing the cutoff a by a finite scale
B1(q) changes. However in the present case we can use
the extra parameter, q, and we note that b2(q) = q2/8.
Hence the integral

Î(r̃, τ) =

(
1− 1

2
q2∂2

q

)
|q=0Ĩ(r̃, τ) = r̃4τ b̃1(q)

τ
+O(1),

(E5)

where b̃1(q) =
(
1− 1

2q
2∂2
q

)
|q=0b1(q) has a Taylor expan-

sion starting at O(q4). In the finite-a method this new
integral can have only a logarithmic divergence at large
r̃, namely:

Î(r̃, τ) = B̃1(q) ln r̃ +O(1), (E6)

and applying the same reasoning as above to the finite
integral r̃∂r̃ Î(r̃, τ) we obtain

B̃1(q) = 4b̃1(q). (E7)

Hence in conclusion if b2(q) = q2/8 we conclude that:

Ĩ(r̃, τ = 0) 'r̃→∞ q2[ln2 r̃ + γ(ln r̃)] (E8)

+ 4b̃1(q) ln r̃ +O(1), (E9)

where γ is non-universal, as used in the text.

2. An illustrative example

In this Appendix we study an example the connection
between the two approaches used, the first one which
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keeps a finite ultraviolet cutoff a but uses τ = 0, and the
second dimensional method where a = 0 but τ > 0. In
order to understand the connection, let us consider the
following example,

K(r, a, τ) =
( r
a

)2τ

r−2τ

∫
|x|<L

d2x
1

(x2 + a2)
1−τ , (E10)

which, although being simple, resembles the structure
of the terms we encountered in Eqs. (40) and (41) and
gives the essence of the difference of the two methods.
The exact evaluation of Eq. (E10) is elementary and one
obtains

K(r, a, τ) = 2π
( r
a

)2τ

r−2τ (L2 + a2)τ − a2τ

2τ
. (E11)

Now we evaluate Eq. (E10) using the finite-a method.
There, one first expands the integrand at small τ , fol-
lowed by the integration. Doing these two steps, one
obtains

Ka(r, a, τ) =

∫
|x|<L

d2x
1

x2 + a2
+O(τ)

=2π ln

(
1 +

L2

a2

)
+O(τ). (E12)

In the dimensional method, one first expands the inte-
grand at small a, and then performs the integration. For
τ > 0, this procedure leads to a convergent integral, since
the short-distance divergence is avoided by keeping τ fi-
nite. In such a way one obtains

Kdim(r, a, τ) =
( r
a

)2τ

r−2τ

[∫
|x|<L

d2x
1

(x2)
1−τ +O(a2)

]

=2π
( r
a

)2τ

r−2τ

[
L2τ

2τ
+O(a2)

]
. (E13)

In the final step of the dimensional method one expands
at small τ the result (E13), finding

Kdim(r, a, τ) = 2π

[
ln
L

a
+

1

2τ
+O(τ)

]
+O(a2−2τ ).

(E14)

The obvious discrepancy, at small a, between the two re-
sults of Eqs. (E12) and (E14), is contained in the term
π/τ in the latter; it arises due to setting a = 0 in the
integrand of Eq. (E13), which is reminiscent of setting a
to zero in the last term of the exact result (E11). As a
consequence, the divergence at τ → 0 in Eq. (E14) re-
mains, which would have been canceled had we kept a
finite a in the dimensional method. Therefore, in order
to compare the two results of the finite-a and the dimen-
sional method, one must neglect all the terms that are
divergent in the limit τ → 0 in the final result of the
dimensional method.

We note finally that expressions of the form aτ , that
appear in the integral (E10) and in similar ones, are

treated differently in the finite-a method and in the di-
mensional one. In the former one encounters the limit
τ = 0 and therefore aτ = 1. In the latter one considers
the limit a → 0, and therefore aτ = 0. This difference
must taken into account if one want to compare the re-
sults obtained by the two methods.

Appendix F: From moments to distribution

In principle the knowledge of the cumulants (67) of the
relative phase displacements Θ = θ(r) − θ(0) allows to
learn about the probability distribution function (PDF)
of Θ, which could be measured directly, e.g., in numerical
simulations.

The presence of poles in η(q) at q = 1, and presumably
integers, as well as the (related) mechanism of screening
discussed in the introduction precluded us for now to
have a complete knowledge of A(q) and η(q) for all q,
hence we are not able to fully characterize the PDF.

In a more modest attempt, hopefully avoiding some of
these problems, let us focus on the correlation at imagi-
nary q = −ip, for which our result reads:

〈epΘ〉 ' exp
(
p2τ2`2 + [cp2 − g(p)τ2]`

)
, (F1)

g(p) = p2(2γE + ψ(ip) + ψ(−ip)), (F2)

where ` = ln(r/a) and g(p) is a positive even function,
increasing for p > 0, which behaves as O(p4) at small p
and as 2p2 ln p at large p. Note that there are no poles
on the real p axis. At this stage (F1) is just the gen-
erating function of all cumulants of Θ and the explicit
form (F1) provides a resummation of the Taylor series
in some vicinity of p = 0. It is not obvious whether
this equality holds more globally, i.e., whether additional
non-perturbative terms are also present, as is the case
along real q. However it is maybe less likely for real p.

To test that we must verify that (F1) is first of all an
increasing function of p. Clearly, since g(p) ' 2p2 ln p
this fails at fixed ` for some large enough p. So that for-
mula cannot extend to τ2 ln p > c`+ τ2`2. It is probable
that for such large p one leaves the domain of validity of
the (renormalized) perturbative expansion and a differ-
ent calculation must be performed (such as an instanton
calculation for real p).

Let us point out an interesting interpretation. Let us
rewrite, to the same accuracy at large `:

〈epΘ〉 ' exp
(
cp2`+ p2τ2`2e−h(p)/`

)
(F3)

where h(p) = g(p)/p2 ∼ O(p2) at small p and h(p) ∼
2 ln p at large p. From the large p � 1 behavior we can
rewrite:

〈epΘ〉 'p�1 exp
(
cp2`+ τ2`2p2− 2

`

)
, (F4)

i.e., indicating some deviations from the Gaussian behav-
ior.
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FIG. 8. The correlation function C(q) for T = 1/5 (thick,
green, dotted), T = 1/20 (red, thick, solid), and in the limit of
T → 0 (black, thin, dashed). In the latter case it approaches
C(q)|T=0 = 2 sin(q/2)/q.
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FIG. 9. The probability distribution (G6), for T = 1/100
(blue, dashed), T = 1/20 (red, solid), and T = 1/5 (green,
dotted).

Appendix G: A toy model

Here we give results for a toy model which shows oscil-
latory behavior in C(q) as a function of q. We write the

energy for a particle in a parabola plus a cosine, which
has a random shift ξ ∈ [−1/2, 1/2],

H[θ] =
1

2
θ2 − g0 cos(2π[θ + ξ]) . (G1)

For simplicity we consider the limit of g0 → ∞. This
restricts θ to −ξ plus an integer m. The expectation of
eiqθ, given ξ can then be written as

〈
eiqθ

〉 ∣∣∣
ξ

=

∑∞
m=−∞ eiq(m−ξ)−

(m−ξ)2
2T∑∞

m=−∞ e−
(m−ξ)2

2T

=
e−

q2T
2 ϑ3

(
π(ζ − iqT ), e−2π2T

)
ϑ3

(
πζ, e−2π2T

) . (G2)

where ϑ3 is the elliptic θ function and ζ = −ξ. Then

C(q) = 〈eiqθ〉 =

∫ 1/2

−1/2

dξ
〈
eiqθ

〉 ∣∣∣
ξ
. (G3)

We have plotted the result in Fig. 8. For T → 0, we can
restrict the sum in Eq. (G2) to m = 0. This yields

C(q)
∣∣∣
T=0

=

∫ 1/2

−1/2

dξ eiqξ =
2

q
sin
(q

2

)
(G4)

The corresponding probability distribution is

P (θ)
∣∣∣
T=0

= Θ

(
−1

2
< θ <

1

2

)
. (G5)

This means that θ is uniformly distributed between −1/2
and 1/2. For higher temperatures, the distribution will
be smeared out. It then reads

P (θ) =
e−

θ2

2T

√
2π
√
Tϑ3

(
πθ, e−2π2T

) (G6)

This is plotted in Fig. 9.
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