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Fractional Brownian motion is a self-affine, non-Markovian and translationally invariant generalization of
Brownian motion, depending on the Hurst exponent H . Here we investigate fractional Brownian motion where
both the starting and the end point are zero, commonly referred to as bridge processes. Observables are the time
t+ the process is positive, the maximum m it achieves, and the time tmax when this maximum is taken. Using
a perturbative expansion around Brownian motion (H = 1

2
), we give the first-order result for the probability

distribution of these three variables, and the joint distribution of m and tmax. Our analytical results are tested,
and found in excellent agreement, with extensive numerical simulations, both for H > 1

2
and H < 1

2
. This

precision is achieved by sampling processes with a free endpoint, and then converting each realization to a
bridge process, in generalization to what is usually done for Brownian motion.

I. INTRODUCTION

Stochastic processes are a powerful tool to describe the evo-
lution of systems where the microscopic dynamics is not ac-
cessible. As an example, Brownian motion, aka the Wiener
process, was introduced as an effective probabilistic descrip-
tion for the dynamics of a particle subjected to collisions with
its environment [1], be it a gas or a liquid.

An important class of such processes, which contain Brow-
nian motion, are Markov chains. For these the evolution de-
pends only on the current position, but is independent of previ-
ous ones. Stated differently: In a discrete dynamics the incre-
ments between successive positions are independent random
variables. This Markov property is at the center of powerful
tools [2] for stochastic processes, as Green-function methods,
the Fokker-Plank equation, etc.

Though Markov chains successfully model many systems,
there are also relevant systems which do not evolve with inde-
pendent increments, and thus are non-Markovian, i.e. history
dependent. Such processes naturally appear for the dynamics
of a single point in a spatially extended object, as for instance
a single spin in a magnet, or a marked monomer in a polymer.
Their dynamics becomes non-Markovian due to the coupling
to the neighbors.

Dropping the Markov property, but keeping the other ingre-
dients of Brownian motion, i.e. Gaussianity, scale invariance
and stationarity of the increments defines an enlarged class
of random processes, known as fractional Brownian motion
(fBm), and parameterised by the Hurst parameter H , which
quantifies the self-affinity of the process. Its covariance func-
tion is

G−1(t1, t2) = 〈Xt1Xt2〉 = t2H1 + t2H2 − |t1 − t2|2H . (1)

Since the process is Gaussian, Eq. (1) defines it. Such pro-
cesses appear in a broad range of contexts: Anomalous dif-
fusion [3], diffusion of a marked monomer inside a polymer
[4, 5], polymer translocation through a pore [5–8], single-
file diffusion [9–11] observable experimentally in ion chan-
nels [12, 13], the dynamics of a tagged monomer [14, 15], fi-
nance (fractional Black-Scholes, fractional stochastic volatil-
ity models, and their limitations) [16–18], hydrology [19, 20],
and many more. Their extreme-value statistics has been stud-

FIG. 1. Exemples of fBm bridges for different values ofH , generated
from the same random numbers using the Davis and Harte procedure
[27]. H = 0.25 in red (outmost curves) to H = 0.875 in blue
(innermost), with increments of 1/8.

ied in many referenes [9–11, 21–26].
When studying random processes in a time interval [0, T ],

quite generally the initial valueX0 is known, and the endpoint
XT is itself a random variable determined by the random pro-
cess. On the other hand, there are also cases when one knows
the endpoint XT . These processes are referred to as bridge
processes or bridges. For a Brownian one refers to Brownian
bridges.

Using a Fourier decomposition with the same amplitude for
each mode, but different values of H , one can generate real-
izations of fBm bridges, and study their dependence on H ,
see Ref. [27] and section II below. Sample trajectories rang-
ing from H = 0.25 (red) to H = 0.875 (blue) in increments
of 0.125 are presented on Fig. 1.

Bridges are useful building blocks in constructing more
complicated observables; we will see an application of this
idea in section IV below. They are also commonly used in
constructing refinements of random walks, e.g. for financial
modeling [28]. Finally, they appear as the difference from the
asymptotic limit in the construction of the empirical distribu-
tion function [29].

We investigate three observables relevant for bridges:



2

(i) the time tmax the random process achieves its maxi-
mum,

(ii) the value m of this maximum,

(iii) the time t+ the process is positive, aka its positive time,
supposing one starts at X0 = 0.

For Brownian motion, and for a bridge terminating at its start-
ing point after time T , both tmax and t+ have a uniform dis-
tribution [30]

Pbridge
H=1/2(tmax) = Pbridge

H=1/2(t+) =
1

T
. (2)

In contrast, for Brownian motion with a free endpoint (i.e.
without constraint) the corresponding probability reads [2, 30]

P free
H=1/2(t = tmax) = P free

H=1/2(t = t+) =
1

π
√
t(T − t)

.

(3)
These two results, as well as a way to interpolate be-
tween them for the positive-time distribution can be found in
Ref. [31]. For the maximum value m, up to time T , the prob-
ability distributions are

Pbridge
H=1/2(m) =

2m

T
e−

m2

T Θ(m) , (4)

P free
H=1/2(m) =

e−
m2

4T

√
πT

Θ(m) . (5)

Properties of fractional Brownnian motion were recently in-
vestigated within a perturbative approach inH = 1/2+ε, ex-
panding around Brownian motion, corresponding toH = 1/2
[32–34]. We extend these results by considering bridge pro-
cesses. While observables related to the maximum of an un-
constrained fractional Brownian motion were already consid-
ered in Refs. [33, 34], the observable t+ is considered for the
first time here. Indeed, we will show that at leading order in
ε = H − 1

2 , the probability distributions for tmax and t+ are
different, contrary to Brwonian motion, and processes with a
free endpoint, where they agree at leading order [35].

Finally we test our analytical results against numerical sim-
ulations for H = 0.4, H = 0.6, and H = 0.66. This is
achieved by constructing a subtracted process out of each re-
alization of a fBm with free endpoints. This procedure yields
the same statistics as a fractional Brownian bridge, and is
much more efficiently simulated than an unconstrained fBm,
for which one retains only realizations which are bridges.

This article is organised as follows: Section II introduces
some general results about Gaussian bridges, as well as their
application to fractional Brownian motion.

Section III recalls the methodology developed in Ref. [34]
on the perturbative expansion around Brownian motion.

Section IV introduces t+, the time spent by the process in
the positive half space. We start with a discrete random walk
before taking the continuum limit to obtain the distribution of
t+ for Brownian motion. This is used as a starting point for
the perturbative expansion described in the previous section,

with some technical steps left to appendix B. The analytical
results obtained are then compared to numerical simulations.

Section V presents results on the extreme-value statistics
for a fBm bridge: the maximum value m as well as the time
tmax to reach it. Some of these results are derived from a gen-
eral calculation performed in Ref. [34]; we also present a new
and simpler way to obtain the maximum-value distribution.

Several appendices complete our work: Appendix B con-
tains details about the inverse of an integral transform appear-
ing in our calculation, and its relation to the Abel transform.

Appendix C summarises the necessary inverse Laplace
transforms needed in the main text.

II. PRELIMINARIES: GAUSSIAN BRIDGES

Consider a real-valued process Xt, starting at X0 = 0. We
define a bridge, denoted XB

t , to be the same process condi-
tioned to be at a at time T . Its one- and two-point correlation
functions are

〈XB
t1〉 =

〈Xt1δ(XT − a)〉
〈δ(XT − a)〉

, (6)

〈XB
t1X

B
t2〉 =

〈Xt1Xt2δ(XT − a)〉
〈δ(XT − a)〉

. (7)

We now assume that Xt is a centered Gaussian process, i.e.
〈Xt〉 = 0 for all t, and that cumulants of order higher than
2 vanish. To express the correlation function of the bridge
process in terms of the unconditioned process, we insert the
identity δ(x) =

∫∞
−∞ eikx dk

2π into the above equations. After
some lines of algebra presented in appendix A, we arrive at

〈XB
t1〉 = a

〈Xt1XT 〉
〈X2

T 〉
(8)

〈XB
t1X

B
t2〉 = 〈Xt1Xt2〉 −

[
〈X2

T 〉 − a2
] 〈Xt1XT 〉〈Xt2XT 〉

〈X2
T 〉2

.

(9)

Consider now the subtracted process XS
t defined from the

original process Xt as

XS
t := Xt − (XT − a)

〈XtXT 〉
〈X2

T 〉
. (10)

One easily checks that its one and two-point correlation func-
tions coincide with those of XB

t given in Eqs. (8)–(9). This is
sufficient to conclude thatXB

t andXS
t are the same processes,

XS
t

law
= XB

t . (11)

While this result was derived in Ref. [36] by other methods,
the prescription (10) does not seem to be generally known.

Frequently used for Brownian motion Xt := Bt the sub-
tracted process (10) reduces to

BS
t = Bt −

t

T

(
BT − a

)
. (12)

This is equivalent in law to a Brownian bridge ending at a.
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For fractional Bronwian motion with Hurst exponentH , the
subtracted term is non-linear in t, containing the expression

f

(
ϑ :=

t

T

)
:=
〈XtXT 〉
〈X2

T 〉
=

1

2

[
1 + ϑ2H − (1− ϑ)

2H
]
.

(13)
The equivalence (11) is crucial for the numerical simulations
presented in this work. Simulating bridge process using its
definition requires to discard almost all generated paths, while
the subtracted process can be constructed from every gener-
ated path without loss of statistics.

III. PERTUBATIVE APPROACH TO FBM

We recall here some useful definitions for fBm, as well as
the ideas of the perturbative expansion around Brownian mo-
tion developed in Refs. [32, 34].

First, as fractional Brownian motion is a Gaussian process,
it is characterized by its covariance function G−1 given in
Eq. (1). This covariance function allows us to write an action
for the possible realizations of Xt,

S[X] =
1

2

∫
t1,t2

Xt1G(t1, t2)Xt2 . (14)

This yields the average of any observable O[X] for the fBm
within a path-integral formulation,

〈O[X]〉 =

∫
D[X]O[X] e−S[X] . (15)

To compute observables explicitly from this expression, we
expand the action around Brownian motion, corresponding to
H = 1/2 in Eq. (1). Writing H = 1/2 + ε, we obtain at first
order in ε

S [X] =

∫ T

0

dt1
Ẋ2
t1

4Dε,τ
(16)

− ε

2

∫ T−τ

0

dt1

∫ T

t1+τ

dt2
Ẋt1Ẋt2

|t2 − t1|
+O(ε2) .

The first term is the standard action of Brownian motion, with
a rescaled diffusive constant

Dε,τ = 1 + 2ε[1 + ln(τ)] +O(ε2) . (17)

The regularisation cut-off τ (wich is an UV cut-off in time)
appears in the second term of the action, which is a non-local
(in time) interaction between derivatives of the process. For
the derivation of this expansion we refer to Ref. [32].

Note that the non-locality in time of the action is a mani-
festation of the non-Markovian nature of fractional Brownian
motion. We will use this formalism to compute observables
for bridges of fBm in an ε expansion, following the strategy
and using results of Ref. [34].

IV. POSITIVE TIME OF A FBM BRIDGE

In this section, we investigate the distribution of the time
spend up to time T by the process Xt in the positive half
space. This time, denoted t+, is defined by

t+ :=

∫ T

0

dtΘ(Xt) , (18)

where Θ is the Heavyside function, Θ(x) = 1 if x > 0, and
Θ(x) = 0 otherwise, and X0 = 0.

Below, we first consider a discrete random walk and derive
the Laplace transform (i.e. generating function) of the distri-
bution of t+. Taking the continuous-time limit allows us to
obtain the distribution of t+ for Brownian motion. We use this
result to construct our perturbative expansion for a fractional
Brownian motion bridge, and to derive an analytical predic-
tion at order ε.

A. Positive time of a discrete random walk

Consider a discrete random walk Xn with discrete steps
±1 (without bias), starting at X0 = 0. We denote Nn,x the
number of paths which goes from 0 to x in n steps. This
number is non-zero only if x and n have the same parity and
x is smaller than n. It can be obtained by retaining the term of
order qx from the generating function for all paths, (q+q−1)n,
i.e. (

q +
1

q

)n
=

n∑
i=0

qi
(

1

q

)n−i (n
i

)
. (19)

Identifying x = 2i− n yields

Nn,x =

(
n
n+x

2

)
. (20)

It can also be deduced as follows: Paths ending in x have
n+ = n+x

2 up segments, and n− = n−x
2 down segments. The

number of paths with n+ up segments is ( n
n+

), which again
yields Eq. (20).

Denote by N+
n,x the number of strictly positive paths,

i.e. Xi > 0 for all i > 0, which go from 0 to x > 0 in n
steps. By the reflexion principle, illustrated on figure 2, this is
the same as the number of paths that go from 1 to x in n − 1
steps, minus the number of paths which start at −1 and go to
x in n− 1 steps,

N+
n,x = Nn−1,x−1 −Nn−1,x+1 =

x

n
Nn,x . (21)

The ratio

N+
n,x

Nn,x
=
x

n
(22)
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FIG. 2. Illustration of the reflection principle: Every path emanating
from 1 and attaining zero again (blue) is compensated by a reflected
path emanating from −1 (green).

is the probability that a path from 0 to x in n steps is strictly
positive, also known as the Ballot theorem1.

Another quantity of interest is the number of bridges, i.e.
paths that go from X0 = 0 to X2n = 0 with all intermediate
positions positive, and which we denote N+,first

2n , because the
end point is the first zero of the path. Such a path necessarily
has X2n−1 = 1, which gives

N+,first
2n = N+

2n−1,1 =
1

2n− 1

(
2n− 1

n

)
=

(2n− 2)!

n!(n− 1)!
.

(23)
We now study the time when a random process is positive: A
segment Si from i − 1 to i is considered positive if Xi−1 +
Xi > 0, and negative otherwise. Note that contrary to the
positions Xi, a segment Si is either positive or negative. The
time t+ a random walk is positive is defined as the number of
positive segments.

DenoteNpos
2n,2k the number of bridge paths of length 2nwith

2k positive intervals; by convention we setNpos
0,0 := 1. We can

use Eq. (23) to get a recursion relation forNpos
2n,2k, with n ≥ 1,

Npos
2n,2k =

n∑
i=1

[
N+,first

2i Npos
2(n−i),2(k−i) +N+,first

2i Npos
2(n−i),2k

]
.

(24)
This is illustrated on figure 2. In this sum, 2i is the position
of the first zero (after the origin) of the path of lenght 2n.
Since the path does not change sign these 2i first segments
are either all positive (first term inside the sum) or negative
(second term).

To solve this equation, we introduce two generating func-

1 The ballot theorem states that if in an election candidate A receives p votes
and candidate B receives q votes with p > q, the probability that A stays
ahead of B throughout the count is (p− q)/(p+ q), see Refs. [2, 37].

tions:

p̃pos(ν, ρ) :=
∑
n≥0

∑
k≥0

ν2kρ2n
Npos

2n,2k

22n
, (25)

p̃+,first(ρ) :=
∑
n>0

ρ2nN
+,first
2n

22n
=

1−
√

1− ρ2

2
. (26)

Inserting these definitions into Eq. (24) transforms the recur-
sion relation into an algebraic equation

p̃pos(ν, ρ) =
[
p̃+,first(νρ) + p̃+,first(ρ)

]
p̃pos(ν, ρ) + 1 .

(27)
Eq. (27) can be solved as

p̃pos(ν, ρ) =
1

1− p̃+,first(νρ)− p̃+,first(ρ)
. (28)

This is a geometric sum of the form

p̃pos(ν, ρ) =
∑
n≥0

[
p̃+,first(νρ) + p̃+,first(ρ)

]n
. (29)

Its interpretation is simple: All bridges can be constructed as
a sequence of first-return bridges. In a first-return bridge each
factor of ρ comes with a factor of ν for the positive paths, and
alone for negative paths.

Using the explicit expression of Eq. (26), we obtain

p̃pos(ν, ρ) =
2√

1− (νρ)2 +
√

1− ρ2
. (30)

Other generating functions can be obtained as well: First, for
the probability to return to zero (including the term with zero
steps) the latter is

p̃0(ρ) :=
∑
n≥0

ρn
Nn,x
2n

=
1√

1− ρ2
. (31)

For the probability to return to 0 without having become neg-
ative, this is (including the term with zero steps)

p̃≥0
0 (ρ) =

1

1− p̃+
first(ρ)

≡ p̃pos(0, ρ)

=
2

1 +
√

1− ρ2
. (32)

The generating function for paths starting at zero and ending
in x without ever returning to zero can be obtained as well

p̃+
x (ρ) :=

∑
n≥0

ρn
N+
n,x

2n

=
ρx(

1 +
√

1− ρ2
)x =

(
1−

√
1− ρ2

)x
ρx

. (33)

This can be understood by considering the path from the end:
One can first go up and down to the starting value x for a
number n ≥ 0 steps, before going down by one step, lead-
ing to p̃≥0

0 (ρ)× ρ
2 for the generating function to (backwards!)

reach x − 1. Repeating this x times, and using Eq. (32), we
arrive at Eq. (33).
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B. Propagators in continuous time

We now wish to take the continuum limit. To this aim, we
note that in the limit of a time-discretisation step δt→ 0, the
process

Xt '
√

2δtXn , with n = floor
(
t

δt

)
(34)

converges to a Brownian. The normalisation ensure that we
recover the covariance function (1) with H = 1

2 .
Denote by P(t+, X0 = x1, XT = x2) the probability dis-

tribution of the positive time t+ within the interval [0, T ] for a
standard Brownian motion Xt, starting at X0 = x1 and end-
ing at XT = x2. For our perturbative expansion it is useful to
have this in Laplace variables, namely

W̃+(λ, s, x1, x2) (35)

=

∫ ∞
0

dT

∫ T

0

dt+e
−sT−λt+P(t+, X0 = x1, XT = x2) .

We now use the result from the previous section, starting with
the special case x1 = x2 = 0. The probability distribution for
a Brownian that its positive time, up to time T , is t+ and that
X0 = XT = 0, i.e. the process is a bridge, can be obtained
from the discrete case via

P(t+, XT )dt+dXT

∣∣∣
XT=0

'
δt→0

1

2n
Npos
n,k . (36)

Here n = floor(T/δt), k = floor(t+/δt), and δt is the
time discretisation step. This allows us to relate the generat-
ing function (30) to the Laplace transform of the continuous-
time distribution W̃+ with x1 = x2 = 0, which we denote
W̃+(λ, s), setting ν → e−δtλ, ρ → e−δts and then taking
the limit of δt → 0. The measure dt+dBT gives a factor of√

2δt3/2, c.f. Eq. (34). This yields

W̃+(λ, s)
√

2δt3/2 ' p̃pos(e−δtλ, e−δts)δt2

' 2δt2√
1− e−2δt(s+λ) +

√
1− e−2δts

'
√

2δt3/2√
λ+ s+

√
s

+O(δt2) . (37)

Thus

W̃+(λ, s) =
1√

λ+ s+
√
s
. (38)

From this result for the bridge we obtain the expression for
W̃ (λ, s, x1, x2) by distinguishing two cases, see Fig. 3: The
first case is when the process changes sign at least once. It can
be decomposed into a constant-sign part (contributing to t+ or
not, depending on the signe of x1), a bridge part, and another
constant sign part ending in x2. The other case is when the
process never changes sign, which corresponds to the survival
probability and can be expressed using the method of images.

FIG. 3. In red (bottom curve) a contribution to W̃+
1 (λ, s, x1, x2),

where the path reaches 0 at least once (here for x1 = 0.5 and
x2 = 1). In blue (top curve) the additional contribution to
W̃+

2 (λ, s, x1, x2), where the path never reaches 0, possible when
x1 and x2 have the same sign (here for x1 = 0.5 and x2 = 1).

We recall the Laplace transform of this propagator from x1

to x2, conditioned that the path has never touched zero [34],

P̃+
0 (x1, x2; s) =

e−
√
s|x1−x2| − e−

√
s|x1+x2|

2
√
s

Θ(x1x2) .

(39)
The normalized limit x1 → 0 is

P̃+
0 (x2; s) = lim

x1→0

1

x1
P̃+

0 (x1, x2; s) = e−
√
sx2 Θ(x2) .

(40)
The final result is the sum of two terms,

W̃+(λ, s, x1, x2) = W̃+
1 (λ, s, x1, x2) + W̃+

2 (λ, s, x1, x2) .
(41)

The first contribution involves a crossing, and is a product of
two factors (40) and one factor (38),

W̃+
1 (λ, s, x1, x2)

= e−
√
s+λΘ(x1)|x1| 1√

s+ λ+
√
s
e−
√
s+λΘ(x2)|x2| ,

(42)

The Θ functions in the exponential are understood as follows:
If x1 > 0, then s is changed to s + λ, since this segment
contributes both to T and t+. In the opposite case x1 < 0, this
segment contributes only to T but not to t+, thus s remains
unchanged. The same argument applies to the last factor as a
function of the sign of x2.

The contribution when the walk never changes sign is

W̃+
2 (λ, s, x1, x2) (43)

=
e−
√
s+λΘ(x1)|x1−x2| − e−

√
s+λΘ(x1)|x1+x2|

2
√
s+ λΘ(x1)

Θ(x1x2) .

This is the propagator (39), with again s shifted to s+λ if x1,
and as a consequence also x2, are positive.
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The result for W̃+(λ, s, x1, x2) can also be obtained by
solving the Fokker-Planck equation

∂2
x2
W̃+(λ, s, x1, x2)

= [s+ λΘ(x2)] W̃+(λ, s, x1, x2) + δ(x1 − x2) . (44)

One verifies that W̃+
1 + W̃+

2 is indeed a solution.
As a check, we consider Brownian motion starting at 0 and

without any constraint at the end point, by integrating W̃+

over the last variable∫ ∞
−∞

dx W̃+(λ, s, 0, x) =
1√

s(s+ λ)
. (45)

The corresponding probability distribution for t+ is known as
one of the Arcsine laws, as given in Eq. (3). Indeed, com-
puting the double Laplace transform from this known result
yields Eq. (45):

∫ ∞
0

dT

∫ T

0

dt+e
−sT−λt+ 1

π
√
t+(T − t+)

=
1√

s(s+ λ)
.

(46)
For a Brownian Bridge, i.e. x1 = x2 = 0, we have

W̃+(λ, s, 0, 0) = W̃+(λ, s) =
1√

λ+ s+
√
s
. (47)

Let us note some subtleties. Eq. (47) is the double Laplace
transform of the probability distribution that the Brownian
process spends a time t+ in the positive half space and ends
in 0 at time T . If we want to have the condtional probability
distribution for t+, knowing that the process is a bridge, we
need to divide the result by the probability density to return to
x = 0 at time T , which is (2

√
πT )−1. The double Laplace

transform to compute is then

∫ ∞
0

dT

∫ T

0

dt+e
−sT−λt+ 1

T

1

2
√
πT

=
1√

λ+ s+
√
s
. (48)

Here 1/T is the uniform probability distribution (2) of t+ for
a Brownian Bridge, and (2

√
πT )−1 is the probability density

to return to 0 at time T . This indeed reproduces Eq. (47).

C. Scale invariance and a useful transformation

The fact that fBm is a scale invariant (i.e. self affine) process
implies interesting properties for various distributions. For t+,
and similarly for other temporal observables, the distribution
PTH(t+) for a fBm process defined on [0, T ] (with either a free
end-point or a constrained one) takes the scaling form

PTH(t+) =
1

T
g

(
ϑ =

t+
T

)
. (49)

Using this, the double Laplace transform of the distribution
can be reformulated using a one-variable transformation:

P̃H(λ, s) =

∫ ∞
0

dT

∫ T

0

dt+e
−sT−λt+PTH(t+)

=

∫ ∞
0

dT

∫ 1

0

dϑ e−T (s+λϑ)g(ϑ)

=
1

s

∫ 1

0

dϑ
g(ϑ)

1 + λ
sϑ

=
1

s
ḡ

(
κ =

λ

s

)
.

(50)

The scaling function g(ϑ) encoding the distribution PTH(t+),
and the scaling function ḡ(κ) encoding its double Laplace
transform P̃ (λ, s), are related by a simple integral transform
which we denote K1,

K1[g](κ) :=

∫ 1

0

dϑ
g(ϑ)

1 + κϑ
= ḡ(κ) . (51)

For the case of interest, a fBm bridge of lenght T , this rela-
tion is more complicated since we can not compute directly
the double Laplace transform of Pbridge

H (t+), but only the
transform of an unnormalised distribution, which we write
ZN (T )Pbridge

H (t+). As we will see, the normalisation fac-
tor ZN (T ), which is the probability density to return to 0 at
time T , is a power law,

ZN (T ) = C Tα−1 , (52)

with some constant C. In this case, the double Laplace trans-
form of the unnormalised distribution is computed as∫ ∞

0

dT

∫ T

0

dt+e
−sT−λt+CTα−1Pbridge

H (t+)

=

∫ 1

0

dϑ

∫ ∞
0

dT CTα−1e−T (s+λϑ)g(ϑ)

=
C Γ(α)

sα

∫ 1

0

dϑ
g(ϑ)(

1 + λ
sϑ
)α

!
=
C Γ(α)

sα
Kα[g]

(
κ =

λ

s

)
. (53)

Here we generalised the K transform to another exponent,

Kα[g](κ) :=

∫ 1

0

dϑ
g(ϑ)

(1 + κϑ)α
. (54)

If ḡ(κ) = Kα[g](κ) is the Kα transform of a function g(ϑ)
normalised to unity, then ḡ(κ)→ 1 for κ→ 0. If further g(ϑ)
is time-reversal symmetric, g(ϑ) = g(1 − ϑ) for ϑ ∈ [0, 1],
then the function ḡ(κ) has the symmetry

ḡ(κ) =
1

(1 + κ)α
ḡ

(
− κ

1 + κ

)
. (55)

D. FBm bridge with H = 1
2
+ ε

The path-integral approach presented in Section III yields
an expression for the (unnormalised) density distribution of
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t+ for a bridge,

Zpos(t+, T ) =∫ XT=0

X0=0

D[X] δ

(∫ T

0

dtΘ(Xt)− t+

)
e−S[X] .

(56)

It is useful to consider its double Laplace transform (T → s
and t+ → λ), which we denote with a tilde

Z̃pos(λ, s) =∫ ∞
0

dT e−sT
∫ XT=0

X0=0

D[X] e−S[X]−λ
∫ T
0

dtΘ(Xt) .
(57)

Using the ε-expansion (16) for the action, we compute this
perturbatively, expanding around Brownian motion. The re-
sulting series in ε has the form

Z̃pos(λ, s) = Z̃pos
0 (λ, s) + εZ̃pos

1 (λ, s) +O(ε2) . (58)

The first term of this expansion, the result for Brownian mo-
tion, is as in Eq. (47) obtained from the propagator W̃+,

Z̃pos
0 (λ, s) = W̃+(λ, s) =

1√
s

1√
1 + κ+ 1

=
ḡ0(κ)

2
√
s
. (59)

Here we denoted

ḡ0(κ) =

∫ 1

0

dϑ
g0(ϑ)√
1 + κϑ

=
2√

1 + κ+ 1
. (60)

This can be inverted to

g0(ϑ) = 1 . (61)

This reproduces the known result that the probability distribu-
tion (2) for a Brownian bridge is uniform [30, 31].

To compute the order-ε term Z̃pos
1 (λ, s), we use the same

diagrammatic rules as in Ref. [34], Section III D. These rules
are easily expressed in Laplace variables, which is why we
compute the expansion of Z̃pos(λ, s). The first order-ε correc-
tion comes from the non-local interaction in the action, given
in the second line of Eq. (16), and can be written as

Z̃pos
1A (λ, s) = 2

∫ Λ

0

dy

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 W̃
+(λ, s, 0, x1) ∂x1

W̃+(λ, s+ y, x1, x2) ∂x2
W̃+(λ, s, x2, 0) . (62)

As explained in Ref. [34], the large-y cutoff Λ, which is necessary as the integral is logarithmically divergent, is linked to the
short-time (UV) regularisation τ introduced in Eq. (16) by Λ = e−γE/τ . Performing the integrations over space variables and
over y, and after some simplifications, we obtain

Z̃pos
1A (λ, s) =

1√
s

[(
4√
κ+ 1

+ 4

)
ln
(√
κ+ 1 + 1

)
− 2κ+ 2 +

√
κ+ 1

κ
ln(κ+ 1) +

ln(sτ) + 7− 7 ln(4) + γE√
κ+ 1 + 1

]
. (63)

We have expressed the result in terms of the dimensionless
variable κ = λ/s. The second order-ε correction comes from
the rescaling of the diffusive constant, c.f. Eq. (17). It is com-
puted by rescaling T in the result for the Brownian, setting
T → Dε,τT . In Laplace variables, this is equivalent to writ-
ing

Z̃pos
0 (λ, s)→ 1

Dε,τ
Z̃pos

0

(
λ

Dε,τ
,
s

Dε,τ

)
. (64)

Extracting the order-ε term gives

Z̃pos
1B (λ, s) = −1 + ln(τ)

2
√
s

2√
1 + κ+ 1

. (65)

Resumming all order-ε corrections,

Z̃pos
1 (λ, s) = Z̃pos

1A (λ, s) + Z̃pos
1B (λ, s) , (66)

the τ dependence vanishes. The ln(s) term in Eq. (63) is pro-
portional to ḡ0(κ), such that we can recast it as an order-ε
correction to the exponent of the prefactor: s−1/2 → sH−1 +

O(ε2). This allows us to write the path integral (57) in the
form

Z̃pos(λ, s) =
Γ(1−H)

2
√
πs1−H

[
ḡ0(κ)+εḡpos

1 (κ)
]

+O(ε2) . (67)

With this choice of prefactor, the constant C in Eq. (53) is
C = (2

√
π)−1, and ḡpos

1 (κ) is

ḡpos
1 (κ) = 8

(
1√
κ+ 1

+ 1

)
ln
(√
κ+ 1 + 1

)
(68)

− 2
2κ+ 2 +

√
κ+ 1

κ
ln(κ+ 1) + 4

3− 4 ln(4)√
κ+ 1 + 1

.

We recall that this function contains contributions from Z̃pos
1A ,

Z̃pos
1B and the expansion of 1√

π
Γ
(

1
2 − ε

)
= 1+ε

[
γE+ln(4)

]
+

O(ε2), due to the choice of normalisation in Eq. (67).
We know that the distribution of the positive time has the

form given in Eq. (49). After expanding it in ε it gives

Pbridge

H= 1
2 +ε

(t+) =
1

T

[
g0(ϑ) + εgpos

1 (ϑ)
]

+O(ε2) , (69)
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where, as before, ϑ = t+/T .
We have seen in Section IV C that the scaling functions

g(ϑ) and ḡ(κ) are related via the K1−H transform, where the
index of the transformation is fixed by the prefactor sH−1 in
Eq. (67).

Expanding w.r.t. ε in the definition of theK transform gives

ḡ(κ) =

∫ 1

0

dϑ
1

(1 + κϑ)
1
2−ε

g(ϑ)

=

∫ 1

0

dϑ
1 + ε ln(1 + κϑ)√

1 + κϑ
[g0(ϑ) + εg1(ϑ)] +O(ε2)

= ḡ0(κ) + ε

∫ 1

0

dϑ

[
g1(ϑ) + g0(ϑ) ln(1 + κϑ)

]
√

1 + κϑ

+O(ε2) (70)

The order-ε correction g1(ϑ) that we are looking for is then
given by

g1(ϑ) = K−1
1
2

[ḡ1(κ)− ḡ0,1(κ)] , (71)

where we have defined

ḡ0,1(κ) =

∫ 1

0

dϑ
ln(1 + κϑ)√

1 + κϑ
g0(ϑ)

=
2

κ

{
2 +
√

1 + κ
[

ln(κ+ 1)− 2
]}

.

(72)

This contribution is valid both for t+ and tmax, since both
observables have the same distribution at order zero, and both
have the same power law from scaling.

We now have to deal with the inverse K 1
2

transform in
Eq. (71). This is linked to the Abel transform, on which de-
tails are given in Appendix B. The final result for the order-ε
correction is

gpos
1 (ϑ) = 4

[
2− 1√

ϑ+ 1
+ ln

(√
ϑ+ 1

4
√
ϑ

)
(73)

− 1√
1− ϑ+ 1

+ ln

(√
1− ϑ+ 1

4
√

1− ϑ

)]
.

We can check that the integral of gpos
1 (ϑ) over [0, 1] vanishes,

such that Eq. (69) is correctly normalised at order ε. We also
checked that by computing numerically theK1/2 transform of
this result reproduces ḡpos

1 (κ)− ḡ0,1(κ) with excellent preci-
sion.

Close to the boundary, the asymptotics is

gpos
1 (ϑ) '

ϑ→0,1
−2 ln(ϑ)− 2 ln(1− ϑ) . (74)

This asymptotics can be recast into a power law consistent
with scaling. The distribution of t+ for a fBm bridge with
H = 1

2 + ε can then be written as

Pbridge

H= 1
2 +ε

(t+) =
exp
(
ε [Fpos(ϑ)− 4]

)
T [ϑ(1− ϑ)]2H−1

+O(ε2) . (75)

FIG. 4. Comparison of the two “Arcsine laws” for a fBm bridge with
Hurst exponent H = 0.66. Dots represent the distribution extracted
from numerical simulations, the plain lines represent the analytical
result at order ε given in Eqs. (75) and (82), and the dashed line is
the scaling form (identical for both observables).

The scaling function Fpos(ϑ) has by definition vanishing in-
tegral, and is given by

Fpos(ϑ) = 4

[
3− 1√

ϑ+ 1
+ ln

(√
ϑ+ 1

4

)

− 1√
1− ϑ+ 1

+ ln

(√
ϑ+ 1

4

)]
. (76)

E. Numerical results

To test our analytical predictions, we compare them to re-
sults from numerical simulations. As in Ref. [34], we con-
struct a large number of fBm paths using the Davis and Harte
procedure, c.f. Ref. [27] for details on the numerical method.
From these samples, we construct a numerical estimation
Pbridge
H (t+) of the distribution of t+ for various values of H ,

choosing T = 1. This is shown on Fig. 4, where results for
the distributions of both t+ and tmax are given. To compare
to the analytical result (76), we extract Fpos

num from these dis-
tributions, using

Fpos
num(ϑ) =

1

ε
ln
(
T [ϑ(1− ϑ)]2H−1Pbridge

H= 1
2 +ε

(ϑ)
)
. (77)

As is shown in Fig. 5 (left), when ε→ 0, Fpos
num(ϑ) converges

to Fpos(ϑ). The deviation being antisymmetric in ε strongly
suggests that there is an order-ε2 correction to the distribution
of t+, which we did not calculate here.

V. EXTREMUM OF FBM BRIDGES

In Ref. [34], a general formula was derived for the path in-
tegral over fBm paths Xt starting at m1, going to x0 ≈ 0 at
time t1 and ending in m2 at time t1 + t2 = T , while staying
positive, Xt > 0 for all t ∈ [0, T ]. This quantity, denoted
Z+(m1, t1;x0;m2, t2), is the first-order term in an ε expan-
sion. It was used [34] to derived results about extremal prop-
erties of fBm in the unconstrained case: Both the distribution
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2.0

1.5

1.0

0.5

0.0

0.5

Fpos (ϑ)

H=0.33

H=0.4

H=0.6

H=0.66

Prediction

0.0 0.2 0.4 0.6 0.8 1.0 t/T
5

4

3

2

1

0

1

F max (ϑ)

H=0.33

H=0.66

Prediction

FIG. 5. Left: Numerical estimation of the scaling function Fpos(ϑ), from top to bottom for H = 0.33 (red dots), H = 0.4 (orange dots),
H = 0.6 (green dots), and H = 0.66 (blue dots), compared to the analytical result given in Eq. (76) (plane line). Right: ibid for Fmax(ϑ) for
H = 0.33 (blue dots, bottom) and H = 0.66 (red dots, top), the analytical result (plane line) is given in Eq. (83). For both plots, and for each
value of H , the statistics is done with 5× 106 sampled paths, discretized with N = 212 points.

of the maximum m, and the time tmax when this maximum
is achieved, were computed, as well as their joint distribution.
Comparison to numerical simulations showed that this result
is of great precision for small ε, and of good precision for
larger vales of ε.

Here we apply these results to fBm bridges. The general re-
sult for Z+(m1, t1;x0;m2, t2), restricted to m1 = m2 = m,
and choosing t1 + t2 = T , immediately gives the joint distri-
bution of the maximum m, and the time tmax = t1 when this
maximum is attained. In a second step, we can then integrate
over t1 at T fixed, or over m at t1 and t2 fixed, to obtain the
distributions of m and tmax.

We will finally rederive these results in a simpler way, tak-
ing advantage of the scaling transformations introduced in
section IV C.

A. Distribution of the time to reach the maximum

Starting with Eq. (44) of Ref. [34] and following the proce-
dure in its section IV.C, we express the probability for tmax,
denoted Pbridge

H (tmax), as

Pbridge
H (tmax) =

1

ZN (T )

∫ ∞
0

dmZ+(m, t;x0;m,T − t) .

(78)

The integral over m accounts for all possible values of the
maximum. ZN (T ) is a normalisation factor such that the in-
tegral over tmax of Pbridge

H (tmax) is normalised to unity,

ZN (T ) =

∫ T

0

dt

∫ ∞
0

dmZ+(m, t;x0;m,T − t)

=
x2−4ε

0√
4π

(1 + εC1) +O(ε2) .

(79)

The constant C1 can be computed from Z+, but it is equiva-
lent to require that the order-ε term in Eq. (78) does not change
the normalisation, such that the distribution Pbridge

H (tmax) re-
mains normalised to one.

Expanding the distribution of tmax in the same way as
for Eq. (69), the order-ε term becomes, setting again ϑ =
tmax/T , and T = 1

gmax
1 (ϑ) = 2

√
π

∫ ∞
0

dm
[
Z+

1 (m,ϑ;x0;m, 1− ϑ)

− C1Z
+
0 (m,ϑ;x0;m, 1− ϑ)

]
= 2

[
6(
√

1− ϑ+
√
ϑ)− 3ϑ ln(1− ϑ)− 3(1− ϑ) ln(ϑ)

+ (4− 3ϑ) ln(2− ϑ) + (3ϑ+ 1) ln(ϑ+ 1)

+ (6ϑ− 4)arcth(
√

1− ϑ) + (2− 6ϑ)arcth(
√
ϑ)

− 8− 4 ln(2)
]
. (80)

This result will be checked from Eq. (107) given below. De-
manding that gmax

1 (ϑ) has integral zero fixed the constant C1

to C1 = 4 ln(2)− γE.
Close to the boundary, the correction has the same asymp-

totics as in the calculation for t+, namely

gmax
1 (ϑ) '

ϑ→0,1
−2 ln(ϑ)− 2 ln(1− ϑ) , (81)

which indicates the same change in the power-law behaviour
of Pbridge

H (tmax). Again taking an exponential resumma-
tion of the order-ε correction, we obtain a formula similar to
Eq. (75), but with a different scaling function Fmax(ϑ),

Pbridge

H= 1
2 +ε

(tmax) =
exp
(
ε
[
Fmax(ϑ)− 4

])
T [ϑ(1− ϑ)]2H−1

+O(ε2) . (82)
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Fmax(ϑ) is a bounded function of ϑ ∈ [0, 1] and can be ex-
pressed from Eq. (80) as

Fmax(ϑ) = gmax
1 (ϑ) + 2 ln

(
ϑ(1− ϑ)

)
+ 4 . (83)

The constant 4 was added in Eq. (83) and subtracted in
Eq. (82) to have

∫ 1

0
dϑ gmax

1 (ϑ) =
∫ 1

0
dϑFmax(ϑ) = 0.

The two distributions, for t+ and tmax, at order ε are plotted
in Fig. 4. While both functions have the same power-law be-
havior for ϑ close to 0 or 1, their difference is clearly visible.
The result (83) for Fmax(ϑ) is compared with great precision
to numerical simulations on figure 5 (right).

B. The maximum-value distribution

Similarly to the distribution of tmax, the distribution of the
maximum value m = maxt∈[0,T ]Xt can be expressed from

the result for Z+ given in Eq. (44) of Ref. [34]:

Pbridge
H (m) =

1

ZN (T )

∫ T

0

dt Z+(m, t;x0;m,T − t) . (84)

This calculation is rather cumbersome, but it is possible to
give a simpler derivation, where we do not constrain paths to
go close to the boundary, but construct Pbridge

H (m) by taking
a derivative of its cumulative distribution, the survival prob-
ability, conditioned such that the end point of the process is
the same as the starting point. In this framework, the order-ε
correction to Pbridge

H (m) can, due to the non-local term in the
action (16), be expressed in Laplace variables (T → s) us-
ing the diagrammatic rules of Ref. [34]. The integrals to be
computed are

Z̃max
1A (m, s) = 2∂m

∫ Λ

0

dy

∫
x1,x2>0

P̃+
0 (m,x1; s) ∂x1

P̃+
0 (x1, x2; s+ y) ∂x2

P̃+
0 (x2,m; s) (85)

= 2(a+ 1)e2a Ei(−4a)− 2 Ei(−2a) + 2e−2a

{
a

[
ln

(
m2

4τ

)
− ln(a)− 1

]
+ ln

(
2τ

m2

)
− γE

}
,

where a :=
√
sm is a dimensionless variable, Λ = e−γE/τ , and the propagator P̃+

0 (x1, x2; s) is defined in Eq. (39). To deal
with the inverse Laplace transform, we use formulas (G10) and (G11) derived in Ref. [34], plus similar formulas collected in
appendix C. The final result for the correction after the inverse Laplace transformation is

Zmax
1A (m,T ) =

ze−z
2

√
πT

{
2z
√
πez

2

erfc(z) + 4(1− z2)J
(
z2
)

+ 2z2

[
ln

(
Tz2

τ

)
+ γE − 1

]
+ ln

(
τ3

T 3z8

)
− 4γE + 1

}
. (86)

We introduced the scaling variable z := m/
√
T . The special

function J defined in Ref. [34] is

J (x) =
1

2
πerfi

(√
x
)
− x 2F2

(
1, 1;

3

2
, 2;x

)
. (87)

For a Brownian bridge we have

Zmax
0 (m,T ) =

m
√
πT

3
2

e−
m2

T , (88)

which, after normalisation, allows to recover the distribution
(4).

The second order-ε correction, which comes from the
rescaling of the diffusive constant, is obtained by replacing
T → Dε,τT in Eq. (88); for the order-ε term this gives

Zmax
1B (m,T ) =

ze−z
2

√
πT

(2z2 − 3)(1 + ln τ) . (89)

Resumming these corrections up to order ε cancels all τ de-
pendencies; recasting the relevant corrections into the power-
law prefactor and the Gaussian tail and expressing the result in

terms of the dimensionless variable y := m/TH finally yields

Pbridge
H (m) = 2

√
πTH

[
Zmax

0 + ε(Zmax
1A + Zmax

1B )
]

+O(ε2)

=
2y1−8ε

TH
e−y

2Aε+εG(y)+cst +O(ε2) . (90)

The special function G appearing here is as defined in
Refs. [32–34],

G(y) =− 4
(
y2 − 1

)
J
(
y2
)

+ 2
√
πey

2

y erfc(y)

+ 2y2
[
ln
(
4y2
)

+ γE

]
− 4γE − 2 . (91)

This result contains several non-trivial predictions: First, at
small m, the distribution Pbridge

H (m) has a power law given
by m1−8ε+O(ε2). This can be obtained by considering the
probability starting at m to remain positive (survive) up to
time T ,

S(T,m) :=

∫ m

0

dm1 PH(m1) . (92)

In this relation the dependence of PH(m) on T is implicit. It
is valid both for the case of a bridge and of a free endpoint. To
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FIG. 6. Plain red line: optimal paths for fBm conditioned to X0 = 0, X1/2 = 1 and X1 = 0, for, from left to right, H = 0.1, H = 0.25 and
H = 1. The blue dashed-line represents the optimal paths when neglecting the correlation between [0, 1/2] and [1/2, 1].

survive in a bridge in the limit of m → 0 demands to survive
both in the beginning and at the end, thus we expect that for
small m

Sbridge(T,m) ∼
[
S free(T,m)

]2
. (93)

Using the result of Ref. [34] that P free
H (m) ∼ m

1
H−2 implies

that

Pbridge
H (m) ∼ m 2

H−3 . (94)

This is in agreement with our order-ε result.
Second, at large m, Pbridge

H (m) has a Gaussian tail with
the dimensionless variable y2 = z2/T 2ε = m2/T 2H and a
non-trivial number Aε = 1 + 4ε ln(2) + O(ε2). We will see
in the next section why this number appears, and how we can
compute it exactly (i.e. for all H).

Third, there is a crossover in the power-law behavior at
large y, given by the asymptotic behaviour of the function
G(y),

G(y) '
y→∞

4 ln(y) . (95)

This yields a subleading power-law behaviour at large m

Pbridge
H (m) eAε

m2

T2H ∼ m1−4ε+O(ε2) . (96)

C. Optimal path for fBm, and the tail of the maximum
distribution

In this section, we study the tail of the maximum distribu-
tion for fBm. Contrary to a process with a free endpoint, the
maximum is not taken at the end, and as a consequence the
tail is not simply given by the known propagator evaluated at
time T at position m.

We start with some general considerations: If we choose
t1, ..., tn ∈ R, then the density distribution for a fBm path
Xt to take values Xt1 = x1, ..., Xtn = xn can be expressed,
using the Gaussian nature of the process Xt, as

Pn(x1, x2, ..., xn) = exp

−1

2

∑
ij

xiMijxj

 . (97)

The matriceMij is given by

M−1
ij = 〈XtiXtj 〉 = t2Hi + t2Hj − |ti − tj |2H . (98)

To study bridges, consider now two points, x1 = x at time
t1 = t with 0 < t < T and x2 = 0 at time t2 = T . The
probability distribution of x given xT = 0 is then given by

P(xt = x|xT = 0) = P2(x, 0) = exp

(
−M11 x

2

2

)
. (99)

The matrix element in question is (with ϑ = t/T )

M11

2
=

1

T 2H

1

4ϑ2H − [ϑ2H − (1− ϑ)2H + 1]
2 . (100)

It takes its minimum for ϑ = 1
2 . The tail for the maximum

of a bridge is thus given by Eq. (99) with the matrix element
M11 in Eq. (100) evaluated at ϑ = 1

2 :

PT (m) ≈ P(xT/2 = m|xT = 0)

= e
− m2

T2H
4H

4−4H
+O(ln(m))

. (101)

This heuristic argument is consistent with the result from our
ε expansion, and allows us to predict the exact value of the
constant Aε,

Aε =
4H

4− 4H
= 1 + 4 ln(2)ε+O(ε2) . (102)

We can go further and study the shape of the optimal path
with conditions X0 = X1 = 0 and X1/2 = 1. This is done by
considering Pn(x, 1, 0), taken at time t1 = t, t2 = 1/2 and
t3 = T = 1. We then find XSP

t = x which minimises the
“energy” − lnP3(x,m, 0). This is for 0 ≤ ϑ ≤ 1

2 achieved
for

XSP
t =

m

4−4H

[
2−2(1−2ϑ)2H+4H(1−ϑ)2H+4Hϑ2H−4H

]
.

(103)
For T2 < t ≤ T one hasXSP

t = XSP
T−t. This is represented for

m = 1 and T = 1 in red in Fig. 6 for various values of H . It
is interesting to observe that this optimal path is not a straight
line going from X0 = 0 to X1/2 = 1 and back to X1 = 1,
but at t = 1/2 peaked for H < 1/2, and smoothened for
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H > 1/2. It is equivalently interesting to compare this to the
optimal path which goes from X0 = 0 to X1/2 = 1, without
imposing any constraint at t = 1, plus a similar segment from
X1/2 = 1 to X1 = 0 without constraint on X0 (blue dashed
lines). This would indeed be the optimal path if there were no
correlations between times t < 1/2 and t > 1/2.

We finally note that the limit of H → 1 is non-trivial, and
given by (see right of Fig. 6)

XSP
t =

m

ln(4)

{
(1− 2ϑ)2 ln(1− 2ϑ)− 2(1− ϑ)2 ln(1− ϑ)

+ϑ[ln(16)− 2ϑ ln(4ϑ)]
}
, 0 ≤ t ≤ T

2
(104)

and XSP
t = XSP

T−t for T
2 < t < T . We expect this also to be

the lowest-energy fluctuation for the fBm bridge.

D. Joint Distribution of m and tmax

To obtain the joint distribution ofm and tmax, we start with
Eq. (44) of Ref. [34], and specify m1 = m2 = m. This is
equivalent, in the notations of [34], to setting

y1 =
m√
2ϑH

, y2 =
m√

2(1− ϑ)H
where ϑ =

tmax

T
. (105)

The resulting expression can more compactly be written in
terms of

υ :=
m√

2[ϑ(1− ϑ)]H
. (106)

Recasting terms proportional to ln(ϑ), ln(1 − ϑ) and ln(υ)
into the prefactor, we get

Z+(m,ϑ;x0;m, 1− ϑ)

=
x2−4ε

0 υ2−8εe−
υ2

2

2π[ϑ(1− ϑ)]3H−1

{
1 + ε

[
F(υ, ϑ) + C2

]}
+O(ε2)

(107)

with

F(υ, ϑ) =
I
(
υ(1− ϑ)

)
+ I
(
υϑ
)
− I(υ) + 2(υ2 − 1)

υ2ϑ(1− ϑ)

−
I
(
υ(1− ϑ)

)
1− ϑ

−
I
(
υϑ
)

ϑ
+ 2 I

(
υ
√

1− ϑ
)

+ 2 I
(
υ
√
ϑ
)

+ υ2
(

ln(2υ2) + γE

)
− 12− 8 ln(2) , (108)

C2 = 4
[
2− γE + ln(2)

]
(109)

First, this result allows us to recover Eqs. (80) and (83), noting
that

Fmax(ϑ) =

√
2

π

∫ ∞
0

dυ υ2e−
υ2

2 F(υ, ϑ) . (110)

As we defined
∫ 1

0
dϑFmax(ϑ) = 0, there is an additional

constant C2, related to the prefactor υ−8ε in Eq. (107).

Second, we can extract the conditional probability of υ,
given ϑ. This is interesting since for a Brownian the latter
depends only on the variable υ introduced in Eq. (106),

Pbridge

H= 1
2

(υ|ϑ) =

√
2

π
υ2e−

υ2

2 . (111)

For a generic value of H = 1
2 + ε, our ε expansion, recast in

an exponential form, gives

Pbridge
H (υ|ϑ) =

√
2

π
υ

2
H−2e−

υ2

2 +ε[F(υ,ϑ)+C2−Fmax(ϑ)]

+O(ε2) . (112)

The functions F(υ, ϑ) and Fmax(ϑ) are defined in Eqs. (108)
and (83). The exponent in Eq. (112) can be derived from scal-
ing. To this aim, note that the probability to have a maximum
of m up to time T is

PH(m) = ∂mS(T,m) . (113)

On the other hand, the probability that the maximum m is
taken at time T is

PH(m|T ) = ∂TS(T,m) . (114)

We conclude that for small m

Pbridge
H (m|T ) ∼ m

T
Pbridge
H (m) ∼ m 2

H−2 ∼ υ 2
H−2 . (115)

This exponent, written in Eq. (112), agrees with the perturba-
tive expansion

2

H
− 2 = 2− 8ε+O(ε2) . (116)

Finally, using the result (100), and expressing it in terms of υ
predicts a tail e−A

′
ευ

2

, with

A′ε =
2[ϑ(1− ϑ)]2H

4ϑ2H − [ϑ2H − (1− ϑ)2H + 1]
2 (117)

=
1

2

[
1 + ε2 [(1− ϑ) ln(1− ϑ) + ϑ ln(ϑ)]2

2(1− ϑ)ϑ
+O(ε3)

]
.

Thus our resummation (112) is correct to order ε; whether at
higher order it is preferential to use υ introduced in Eq. (106)
with A′ε given in Eq. (117), or whether one should keep
e−υ

2/2 for the tail and redefine υ can only be answered af-
ter a second-order calculation.

We verified the prediction (112) for Pbridge
H (υ|ϑ) numeri-

cally, see Fig. 7. The agreement is good forH close to 1
2 , both

for ε = − 1
10 and ε = 1

10 (left two figures). Corrections of or-
der ε2 can be anticipated, since our numerical results for both
ε = − 1

10 and ε = 1
10 show approximately the same (small)

deviation from the analytics, independent of the sign of ε.
These putative O(ε2) corrections also explain the larger

systematic deviations for H = 2
3 , i.e. ε = 1

6 (right plot).
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FIG. 7. Numerical results for PH(υ|ϑ) forH = 2
5

(left), H = 3
5

(middle) andH = 2
3

(right). The values of ϑ are chosen as ϑ = 0, ϑ = 0.05,
ϑ = 0.25 to ϑ = 0.5, the maximum useful value due to the symmetry ϑ→ 1− ϑ. We used N = 218 points, and 5× 106 samples.

VI. CONCLUSIONS

In this article we developed a systematic analytical frame-
work to treat bridge processes for fractional Brownian motion,
in an expansion around Brownian motion. We considered the
probability of the time t+ that a bridge process is positive, and
of the time tmax it achieves its maximum. For a Brownian
bridge, both t+ and tmax have the same uniform probability
distribution. For a fractional Brownian bridge, both observ-
ables have the same power-law behavior for times close to the
beginning and end, but the subleading scaling functions are
rather different. We calculate them to first order in ε, and ver-
ified them to high precision with numerical simulations. We
also obtained and checked the joint distribution of the max-
imum m, and the time tmax when this maximum is taken.
These tests were possible due to the development of an ef-
ficient algorithm to generate samples of fBm bridges.
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Appendix A: Details on correlation functions for the bridge

Starting from Eqs. (6) and (7), and inserting the identity
δ(x) =

∫∞
−∞ eikx dk

2π , we obtain

〈δ(XT − a)〉 =

∫ ∞
−∞

dk

2π

〈
eik(XT−a)

〉
=

∫ ∞
−∞

dk

2π
e−ika e−

k2

2 〈X
2
T 〉

=
e
− a2

2〈X2
T
〉

√
2π
√
〈X2

T 〉
, (A1)

〈Xt1δ(XT − a)〉 =

∫ ∞
−∞

dk

2π

〈
Xt1e

ik(XT−a)
〉

=

∫ ∞
−∞

dk

2π
e−ika ik 〈Xt1XT 〉e−

k2

2 〈X
2
T 〉

=
e
− a2

2〈X2
T
〉

√
2π
√
〈X2

T 〉
a 〈Xt1XT 〉
〈X2

T 〉
, (A2)

〈Xt1Xt2δ(XT − a)〉 =

∫ ∞
−∞

dk

2π

〈
Xt1Xt2e

ik(XT−a)
〉

=

∫ ∞
−∞

dk

2π
e−ikae−

k2

2 〈X
2
T 〉

×
[
〈Xt1Xt2〉 − k2〈Xt1XT 〉〈Xt2XT 〉

]
(A3)

=
e
− a2

2〈X2
T
〉

√
2π
√
〈X2

T 〉

×
[
〈Xt1Xt2〉+

(
a2 − 〈X2

T 〉
) 〈Xt1XT 〉〈Xt2XT 〉

〈X2
T 〉2

]
.

From the first to the second line of the last two equations
we used Wick’s theorem and the fact that Xt has mean zero.
Putting everything together, we arrive at Eqs. (8) and (9).

Appendix B: Abel transform and inversion of K 1
2

transform

For a real function g(ϑ) non-vanishing on the interval [0, 1],
we consider the transformation K 1

2
defined as

ḡ(κ) ≡ K 1
2
[g](κ) :=

∫ 1

0

g(ϑ)√
1 + κϑ

dϑ . (B1)

The question is how to reconstruct g, knowing ḡ.
The Abel transform F of a function f is defined as [38, 39]

F (y) =

∫ ∞
y

2rf(r)√
r2 − y2

dr . (B2)
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The inverse formula, allowing to recover f from F , is

f(r) = − 1

π

∫ ∞
r

F ′(y)√
y2 − r2

dy . (B3)

To make the link with K 1
2

, we change variables from ϑ to

r :=
√
ϑ in Eq. (B1), and introduce f(r) := g(ϑ = r2).

Then, for κ > 0,

ḡ(κ) =

∫ 1

0

f(r)√
1 + κr2

2r dr =
2√
κ

∫ ∞
0

f(r)r√
1
κ + r2

dr .

(B4)
In the last equality, we changed the upper integration limit,
using f(r) = 0 for r > 1. We now continue ḡ(κ)

√
κ in the

complex plane from real positive to real negative κ, by setting
κ = eiϕ/y2|ϕ=±π with y > 0. This gives

ḡ(κ)
√
κ =

∫ ∞
y

2rf(r)√
r2 − y2

dr +

∫ y

0

2rf(r)√
r2 − y2

dr

=F (y) + e−iϕ/2G(y) .

(B5)

We have split the integral over r into two parts: the first part
is a real function F (y) ∈ R, which is the Abel transform of
f(r). The second term is purely imaginary because of the
denominator; which of the two possible branches is taken de-
pends on how we continued ḡ(κ)

√
κ, choosing either of the

branches ϕ = ±π. This means that we can express the Abel
transform F (y) of f(r) from ḡ(κ) as

F (y) = R
[
ḡ(κ)
√
κ
∣∣
κ=−1/y2

]
, (B6)

where R denotes the real part. We can now use formula (B3)
to invert the Abel transform.

Since f(r) vanishes for r > 1, according to the definition
(B2) also F (y) vanishes for y > 1. One can thus reduce
the upper bound in Eq. (B3) to 1. Finally reintroducing the
function g(ϑ) instead of f(r), we get

g(ϑ) = − 1

π

∫ 1

√
ϑ

F ′(y)√
y2 − ϑ

dy , (B7)

where F (y) is defined from ḡ(κ) in Eq. (B6). We now want
to apply this to compute g1(ϑ) from Eq. (71). We need to
compute the inverse K1/2 transform of

ḡpos
1 (κ)− ḡ0,1(κ) = 8

(
1√
κ+ 1

+ 1

)
ln
(√
κ+ 1 + 1

)
− 16

ln(4)− 1√
κ+ 1 + 1

−
4
(
κ+
√
κ+ 1 + 1

)
ln(κ+ 1)

κ
.

(B8)

From scaling, we expect that close to the boundary

g1(ϑ) ' −2 ln
(
ϑ(1− ϑ)

)
. (B9)

To simplify the calculation, we subtract this divergent part.
Define

ḡln(κ) :=

∫ 1

0

dϑ
ln
(
ϑ(1− ϑ)

)
+ 2

√
1 + κϑ

=
4[ln(2)− 1]

1 +
√
κ+ 1

+
2
√
κ+ 1 ln(κ+ 1)

κ

+
4
(
1−
√
κ+ 1

)
ln
(√
κ+ 1 + 1

)
κ

. (B10)

Setting ḡ(κ) := ḡpos
1 (κ)−ḡ0,1(κ)+2ḡln(κ) in Eq. (B6) yields

F (y) =− 8y2 ln(y)√
1− y2

− 24
√

1− y2 ln(2)

−
8
(
y2 − 1

)
arcsin(y)

y
. (B11)

Computing the integral (B7) finally gives

g(ϑ) = K−1
1
2

[
ḡ1(κ)− ḡ0,1(κ) + 2ḡln(κ)

]
= 4

[
3− 1√

1− ϑ+ 1
− 1√

ϑ+ 1

+ ln

(
(
√
ϑ+ 1)(

√
1− ϑ+ 1)

16

)]
. (B12)

Adding the logarithmic terms, we recover the result (73) given
in the main text.

Appendix C: Inverse Laplace transforms necessary for the
maximum of the bridge, and other useful relations

In this appendix we give a table of useful relations for the
inverse Laplace transforms encountered in this article.

All appearing hypergeometric functions can be eliminated
by using two special functions, introduced in Refs. [32–34],
and named I(x) and J (x),

I(x) =
1

6
x4

2F2

(
1, 1;

5

2
, 3;

x2

2

)
+ π

(
1− x2

)
erfi
(
x√
2

)
+
√

2πe
x2

2 x+ 2− 3x2 , (C1)

J (x) =
1

2
π erfi

(√
x
)
− x 2F2

(
1, 1;

3

2
, 2;x

)
(C2)

These functions are related to each other by the relations

I(x) = 2 + 2(1− x2)J
(
x2

2

)
+
√

2πe
x2

2 x erfc
(
x√
2

)
,

(C3)

I(x) = −2 e
x2

2 ∂2
x

[
e−

x2

2 J
(
x2

2

)]
. (C4)

To arrive at these identities, and to express everything in
terms of one of these two functions, two non-trivial relations
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between hypergeometric functions were used (they can be
checked by Taylor-expansion to high order)

− 3 2F2

(
1, 1;

3

2
, 2;

x2

2

)
+ 2F2

(
1, 1; 2,

5

2
;
x2

2

)
+

6

x2

[√
π

2

e
x2

2

x
erf
(
x√
2

)
− 1

]
= 0 (C5)

− x3

[
3 2F2

(
1, 1;

3

2
, 2;−x

2

2

)
+ 2F2

(
1, 1; 2,

5

2
;
x2

2

)]
+ erf

(
x√
2

)[
3πxerfi

(
x√
2

)
− 3
√

2πe
x2

2

]
+ 6x = 0 .

(C6)

We now express the needed inverse Laplace transforms either
in terms of I or J , depending on which form is more com-
pact. (Note that each function appears naturally in a given
context [34]).

Transforms involving only e−
√
s, and powers of

√
s are el-

ementary,

L−1
s→t

[
e−
√
s
]

=
e−

1
4t

2
√
πt3/2

(C7)

L−1
s→t

[
e−
√
s
√
s
]

= −e
− 1

4t (2t− 1)

4
√
πt5/2

(C8)

L−1
s→t

[e−√s√
s

]
=
e−

1
4t

√
πt

. (C9)

Transforms with an additional factor of ln(s) are

L−1
s→t

[
e−
√
s
√
s ln(s)

]
= − e−

1
4t

4
√
πt5/2

{
−2t I

(
1√
2t

)
+ (2t− 1)

[
ln(4t) + γE

]}
(C10)

L−1
s→t

[e−√s ln(s)√
s

]
=
e−

1
4t

√
πt

[
2J
(

1

4t

)
− ln(4t)− γE

]
(C11)

L−1
s→t

[
e−
√
s ln(s)

]
=

e−
1
4t

4
√
πt5/2

[
2J
(

1

4t

)
− ln(4t)− γE

]
−

erfc
(

1
2
√
t

)
t

. (C12)

Transforms involving the exponential integral function are

L−1
s→t

[
Ei
(
−
√
s
) ]

= −
erfc

(
1

2
√
t

)
2t

(C13)

L−1
s→t

[
e
√
sEi
(
−2
√
s
) ]

=
e−

1
4t

4
√
πt3/2

[
2J (

1

4t
) + ln(t)− γE

]
−

erfc
(

1
2
√
t

)
2t

(C14)

L−1
s→t

[√
se
√
sEi
(
−2
√
s
) ]

=
e−

1
4t

8
√
πt5/2

{
2t I

(
1√
2t

)
+ (2t− 1)

[
ln(t)− γE

]
− 8t

}
(C15)

L−1
s→t

[e√sEi (−2
√
s)√

s

]
=

e−
1
4t

2
√
πt

[
γE − 2 J

(
1

4t

)
− ln(t)

]
. (C16)
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