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Abstract 

The scaling properties of self-avoiding tethered membranes at the tricritical point (O-point) are 
studied by perturbative renormalization group methods. To treat the 3-body repulsive interaction 
(known to be relevant for polymers), new analytical and numerical tools are developed and 
applied to l-loop calculations. These techniques are a prerequisite to higher-order calculations for 
self-avoiding membranes. The crossover between the 3-body interaction and the modified 2-body 
interaction, attractive at long range, is studied through a new double ~-expansion. It is shown that 
the latter interaction is relevant for 2-dimensional membranes at the O-point. 

1. Introduction 

Two-dimensional tethered surfaces, which model polymerized flexible membranes, of- 
fer interesting problems of  statistical mechanics (for a general introduction see Ref. [ 1 ] ). 

One problem, which is now reasonably well understood, is the influence of  bending rigid- 
ity: for high bending rigidity (or  low temperature), such a membrane is flat, with fractal 

dimension df = 2, while for low bending rigidity (or high temperature) it is crumpled, 
with infinite de. The existence of  a crumpling transition, separating these two phases, has 
been established by numerical simulations and by renormalization group calculations for 

"phantom surfaces", where self-avoidance is ignored. 
The effect of  self-avoidance and its interplay with bending rigidity is more difficult to 

study and it is not so well understood. Numerical simulations of  self-avoiding flexible 
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polymerized surfaces in three-dimensional space favour the idea that self-avoidance 
has drastic consequences and flattens the surfaces at any temperature [2--4]. There is 
however no fully convincing analytical argument for such a behaviour. Another question 
is how the behaviour of self-avoiding surfaces depends on the dimension of bulk space 
or on the details of the contact interaction. 

The standard model for theoretical studies of self-avoiding surfaces has been first 
discussed in Refs. [5,6] and is inspired by the Edwards model [7] for polymers (for 
a general presentation see e.g. Ref. [8]) :  it consists in an extension of this model 
from a line (the polymer) to D-dimensional manifolds. The case D = 2 corresponds 

to surfaces. 
dimensional 
these points 

x --* r ( x )  6 

The internal points of the manifold, which belong to the nodes of a D- 
network, are labelled by continuous coordinates x 6 R °. The position of 
in the external d-dimensional bulk space is described by the vector field 
IR d. The continuum hamiltonian is 

1 7~[r] =/~(Vr(x))2q-t//Sd(r(x)--r(y)) • 
x x y 

(1.1) 

The first term is the gaussian elastic term, which describes the crumpled phase of 
"phantom" surfaces. The second term is a "weak" self-avoidance 2-body 8-potential, 
which models the contact interaction in bulk space, t > 0 is the coupling constant. 

Dimensional analysis shows that the contact interaction is relevant at large distances 
if d < d*, where d* = 4 D / ( 2  - D) is the upper-critical dimension. As in the case of 
polymers, it is natural to perform an e-expansion about d* to evaluate scaling properties 
such as the fractal dimension df. Since for D = 2, the upper-critical dimension d* = c~, 
it is in fact better to perform both an expansion in d and D, starting from (d*, D*) with 

D* < 2, aiming e.g. at d = 3, D = 2. 
The first calculations for the model (1.1) [5,6] used the direct renormalization 

method, adopted from polymer theory [9,10]. It has been developed by several au- 
thors to perform calculations at l-loop order [11-13]. In this method the theory is 
reexpressed in terms of dimensionless physical quantities, determined for finite surfaces 
with internal extent L. This length L provides a renormalization scale and allows one to 
calculate the renormalization group flow for the model at l-loop order. The method has 

been checked to be valid at l-loop order [ 14]. 
Recently a different and more general formalism has been introduced by B. Duplantier, 

E. Guitter and one of the authors in Ref. [ 15]. (It partly relies on previous studies of 
membranes interacting with a fixed element [ 17-19].) Although the interaction term 
in the hamiltonian (1.1) is a non-local and singular function of the field r ( x ) ,  it is 
shown that the short-distance behaviour of the model can be encoded in a multilocal 
operator product expansion (hereafter abbreviated as MOPE), which generalizes the 
Wilson operator product expansion valid for local field theories. This allows a systematic 
analysis of the short-distance ultra-violet (UV) singularities of the model and shows 
that the theory (1.1) is renormalizable at the critical dimension d*. This means that 
the model is rendered UV finite in perturbation theory at d* by a renormalization 
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of the coupling t and the field r ("wave-function" renormalization). In parallel with 
the derivation of the renormalization group equations for the ¢~4-theory in dimension 
d = 4 - e < 4, which gives the scaling laws for a large class of critical phenomena, 
renormalization group equations for the model of self-avoiding tethered surfaces are 
derived in a similar expansion for d < d*. The l-loop results obtained through this 
method confirm the previous calculations of Refs. [5,6]. The consistency of the direct 
renormalization method follows from the validity of finite-size scaling laws for finite 
manifolds, also established in Ref. [ 15]. 

In this paper we apply the renormalization group approach of Ref. [ 15] to a different 
problem: that of tethered surfaces at the tricritical point, the so-called O-point. Our 
motivation is twofold: 

(i) Physical: The study of the O-point for membranes is physically interesting in 
its own: For polymers it exists due to a competition between 2-body attractive 
interactions (like long-range Van der Waals forces) and hard-core repulsive inter- 
actions. At high temperature the repulsive interactions dominate and the polymer 
is swollen. At low temperature attractive interactions dominate and the polymer 
is in a collapsed compact state. For a single long polymer, the transition between 
these two states occurs at the O-point. This point represents a different multicriti- 
cal state for the polymer [20] (we refer to Ref. [8] for a general presentation). 
One expects a similar transition to occur for membranes and an interesting fact 
was first pointed out in Ref. [ 15] : for polymers and for membranes with internal 
dimension D sufficiently small, one expects an effective 3-body repulsive interac- 
tion to be relevant to describe the O-point close to the upper-critical dimension 
de = 3D/ ( 2  - D).  For higher D, it is a modified 2-body interaction, repulsive at 
short range, but attractive at larger range, which is relevant to describe the O-point 
close to the upper-critical dimension, now given by d~ = 2(3D - 2 ) / ( 2  - D).  
The crossover between the two interactions occurs at D = ], d = 6. While the 
modified 2-body interaction leads, at l-loop order, to calculations for the critical 
exponents which are analytically computable and quite similar to those for self- 
avoiding membranes, the 3-body interaction has not been considered up to now 
-except of course for polymers (D = 1 ) which have been extensively studied- and 
it is not known which theory should describe "physical membranes" with D = 2 
and d = 3. As we shall show here, the interplay between the 2-body and the 

3-body interaction can be studied via a "double e-expansion" around the critical 
point D = 4, d = 6. 

(ii) Mathematical: l-loop calculations for the model of membranes with the repulsive 
3-body interaction are already non-trivial and the first-order term of the e-expansion 
appears not to be computable analytically, i.e. cannot be expressed in terms of 
standard special functions except for D = 1. In fact, at l-loop order, one encounters 
problems similar to those occurring in the evaluation of 2-loop corrections for self- 
avoiding surfaces but without the additional difficulty of double poles. Thus, this 
model can be considered as a (not so enjoyable) toy-model to develop analytical 
as well as numerical techniques which should apply to higher-order calculations 
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for self-avoiding surfaces. 

This paper is organized as follows: In Section 2 we define the model with the 3-body 

interaction, recall how its perturbative expansion is obtained and how the short-distance 
UV-divergences are organized according to the MOPE. We then show explicitly how 
these divergences can be subtracted in order to construct a renormalized theory and how 
the scaling laws are obtained. 

Sections 3-6 are devoted to the explicit calculation of the l-loop counterterms for the 
3-body interaction, valid a priori for D < 4 5" 

The counterterm associated to the "wave-function" renormalization, i.e. to the renor- 
malization of the elastic energy term in the hamiltonian, is treated in full details in 
Section 3. The integral representation of the counterterm in terms of the MOPE coeffi- 
cient is derived. Various technical problems are discussed: extraction of the singular part 
(residue of the pole in e), subtraction of divergences associated to the fine-tuning of 
the 2-body interaction needed to reach the O-point and the definition of the measure in 
non-integer dimension D. Using these methods, the counterterm is evaluated numerically 
in the range 1 < D < 4. Finally, the result for D --, 1 is compared with the value for 
D = 1, already known analytically [21]. 

In Section 4 we introduce a useful change of variables for the integral representation 
of the counterterms, based on conformal transformations. 

In Section 5 the first two diagrams for the coupling constant counterterm are discussed. 
The first one is calculated analytically. The second is evaluated by methods similar to 
those used in Section 3 for the wave-function counterterm. 

Section 6 is devoted to the evaluation of the last diagram needed for the coupling 
constant counterterm. It can only be evaluated numerically. A full use of the technical 
tricks developed previously (analytic continuation of the integration measure, conformal 
mappings) is required as well as the implementation of an original adaptive Monte Carlo 
integration method. 

After this rather technical part we gather in Section 7 the various counterterms for the 
model with 3-body interaction. We further give the results for the anomalous correction 
at l-loop order to the exponent v in the range 1 ~< D < 4. This exponent is related to 

the fractal dimension of the membrane at the O-point. 
In Section 8 we study the crossover between the 3-body interaction and the modified 

2-body interaction. First we show that the l-loop corrections obtained previously from 
the 3-body interaction have a smooth limit for D ---, ~. Then we recall the l-loop 
corrections obtained from the modified 2-body interaction (valid for D > 4) and show 

4 exists and is close to but different from the previous one. Finally, that the limit D ~ 5 
we show that the interplay between the two interactions can be studied for D and d 

4 close to the critical values D = g, d = 6, by a new "double e-expansion". At l-loop 
order this expansion is analytically computable and the renormalization group flow can 
be studied explicitly. As a result we show that depending on D and d, the O-point is 
described either by: (a) a gaussian fixed point, (b) the 3-body repulsive interaction, (c) 
the modified 2-body interaction. The three corresponding domains in the 2-dimensional 
(d, D) plane are depicted in Fig. 1. The fat lines are the separatrices between these 
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Fig.  1. Cr i t i ca l  d i m e n s i o n s  f o r  v a r i o u s  o p e r a t o r s  ( s o l i d  l ines )  a n d  p h a s e  d i a g r a m .  T h e  p h a s e  s e p a r a t r i c e s  a r e  

the  fa t  l ines .  

domains. The fat dashed line is a linear extrapolation of the l-loop result. This line 

separates the domains (b) and (c).  As discussed in Section 8, this result indicates that 
the modified 2-body interaction should be relevant to describe 2-dimensional membranes 
at the O-point, independently of the dimension d. 

The results are summarized in the conclusions. More technical points are discussed 
in the appendices. 

Appendix A treats problems associated with the finite-part prescription which we use 
to subtract the relevant UV-divergences. It is shown that different prescriptions may be 
adopted but lead to the same I-loop results. 

In Appendix B diagrams not calculated in the main text are given. 
Appendix C briefly discusses the anomalous dimension of the 2-body self-avoiding 

interaction. This allows one to describe the model in the neighborhood of the tricritical 
point. 

2. The model 

2.1. The 3-body hamiltonian 

The field r (x ) ,  r C R d, x E ~D describes the configuration of the D-dimensional 
polymerized flexible membrane in d-dimensional space. The hamiltonian for this mem- 
brane with 3-body repulsive interaction is 



5 0 0  K.J. Wiese, E David~Nuclear Physics B 450 [FS] (1995) 495-557 

1 
) 2 + g / / / S a ( r ( x )  r (y ) )o~l (r (x )  r ( z ) )  (2.1) 7-/°[r] = / ~ ( V r ( x )  ~ - - 

x x y z 

and fx = f dOx" The calculations of  physical observables are performed as an expan- 

sion in g and an analytical continuation in the internal dimension D and the external 

dimension d (dimensional regularization), along the line of  Ref. [ 15]. Dimensional reg- 

ularization allows one to deal with the short-distance (ultraviolet) divergences, which 

appear as poles in the complex D or d planes. Large-distance (infrared) divergences 

also occur. They can be cured by using an IR-regulator, for instance by considering a 

finite membrane. However, the calculations become technically more difficult and one 

has to keep track of  curvature, boundary and finite-size effects. Alternatively observables 

invariant under global translations ( r (x )  ---* r(x)  +ro) in bulk space may be considered, 

since these observables are expected to be IR finite even for an infinite membrane. For 

more details cf. Ref. [16] .  
Dimensional analysis shows that the dimension of  r and of  the coupling constant g 

are (in internal momentum units such that [x] = - 1 )  

2 - D  
[r]  = - 9  = - - - ,  [g] = e = 3 D -  2pd.  (2.2) 

2 

The interaction is relevant in the sense of  Wilson if e > 0 and the perturbation theory is 

expected to be UV finite up to subtractions associated with relevant perturbation terms, 

which we shall discuss later. The interaction is irrelevant if e < 0. The short-distance 

divergences will occur as poles in e at e = 0. As for standard Landau-Ginzburg-Wilson 

~b 4 models, which describe critical phenomena in the e = 4 - D expansion, these poles 

have to be subtracted in order to define a renormalized field theory UV finite at e = 0. 

This theory will give the scaling behaviour of  the model for e > 0. 
For clarity we shall graphically represent the different interaction terms which have 

to be considered. The local operators are 

1 = e ,  (2 .3 )  

1 )2 (~7r(x) = -~- .  (2.4) 

The bi-local operators are 

o ~t ( r (x )  - r ( y ) )  = = = , (2.5) 

( - A r ) 6  d ( r (x )  - r ( y ) )  = = :: = . (2.6) 

The tri-local operator in the hamiltonian (2.1) is 

( r (x )  - r ( y ) )  b "d ( r (x )  - r (y ) )  = ~ . (2.7) 

The first terms of  the perturbative expansion in g of  the expectation value of  an 

observable O are 
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(2.8) 

where (O)0 will denote from now on the expectation value of an operator O for the 
free theory with g = 0 

<0)0 = y Vtrl exp (-  L + )  0 
fZ trl exp(_ f x _+_) (2.9) 

The perturbation expansion (2.8) will suffer from short-distance singularities, which 
occur when subsets of points coalesce. This gives rise to the renormalization discussed 
in the following. Examples of IR finite observables are provided by "neutral" products 
of vertex operators 

N N 

O = H :  exp (ikar(Xa)): y~  ka 
a=l a=l 

= O. (2.10) 

To compute the (.. -)0 in Eq. (2.8), one writes the 8-functions of the interaction operator 
as the Fourier transform of vertex operators, performs the free average, then inverses the 
Fourier transformation and ends up with an integral over the positions of the internal 
points belonging to the interaction operators. The integrand is a function of all the 
distances between the internal points and the external points (the Xa'S). We will show 
in Subsection 3.1 how this works. 

2.2. The MOPE: mixing of 3-, 2- and 1-body operators 

Short-distance singularities may arise when the distances between internal points 
vanish. In fact, for observables of the form (2.10), no additional singularity occurs 
when distances between internal and external points vanish as long as the distances 
between external points stay non-zero. As shown in Ref. [ 15,16], the short-distance 
behaviour of expectation values of operators in the free theory is given by a multilocal 
operator product expansion. This implies that the short-distance divergences can be 
absorbed by adding to the hamiltonian (2.1) counterterms proportional to multi-local 
operators. 

At first order in g, these operators are generated by contracting points in the single 3- 
body operator. If the three points (Xl, x2, x3 ) are contracted towards their center-of-mass 
o, 1-body operators are obtained: 

~ = A({Xl,X2,X3}) • q-B({Xl,X2,X3}) + a t- . . . .  (2.11) 



502 K.J. Wiese, E David~Nuclear Physics B 450 [FS] (1995) 495-557 

where {xl, x2, x3} means the relative distances between the three points xi. By power 
counting the coefficients A and B are homogeneous functions of the difference between 
the positions (xl,  x2, x3) of the points, with degree given respectively by 

deg(A) = - 2 u d ,  deg(B) = D - 2ud. (2.12) 

In Eq. (2.11) we made use of the equation of motion of the theory and neglected 
total derivatives such as V(rXTr), since they do not give UV-divergences. The dots . . .  
represent operators of higher dimension. 

If only two points are contracted (e.g. xl, x2), 2-body operators are generated: 

( . =C({Xl,X2)).~ ~. +O((Xl ,X2)  ) . . . .  q l . . . .  ( 2 . 1 3 )  

with 

deg(C) = - v d ,  deg(D) = (2 - d)v. (2.14) 

At order g2, one can contract subsets of points of a pair of 3-body operators. Since 
we are interested in evaluating anomalous dimensions at l-loop order, we only need 
to know the divergences which arise when two 3-body operators coalesce into a single 
3-body operator. Three contractions are possible: 

~ =E({Xl,yl},{x2,yz},{x3,Y3}) ~ + . . . .  (2.15) 

=F({Xl,Yl,Y2},{x2,Y3}) -t- . . . .  (2.16) 

"- ~ "~---- = =G({x2,x3,Y2,Y3}) 

with 

deg(E) = deg(F)  = deg(G) = - 2 y d .  

~ , ~  + . . .  (2.17) 

The coefficients A in Eq. (2.11) and C in Eq. (2.13) give strong short-distance 
divergences. We call a divergence strong or relevant if it is not integrable and thus 
has to be treated by a finite-part prescription. The relevant divergence here is expected, 
since the corresponding operators 1 and 6d(r(x) -- r(y)) are relevant for e = 0. The 
divergence proportional to the unity operator 1 is just a "vacuum energy" term. It 
does not occur for expectation values of physical observables, but will be present in 
the partition function of finite membranes. The divergence proportional to the 2-body 
operator -- ; has to be cancelled by adding a 2-body counterterm 

aT~Otrl = 4t f f ~(r(x) --r(y)) (2.19) 

X y 

(2.18) 
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and by fine tuning At so that the renormalized 2-body interaction vanishes. This situation 

is known from the O-point of polymers: the fine tuning of the 2-body interaction 
is required in order to reach the O-point which separates the swollen phase, where 
self-avoidance is relevant, from the collapsed phase, where attraction and short-distance 
repulsion dominate. It also arises in standard scalar field theories: Quadratic divergences, 
associated to a mass renormalization, have to be subtracted in order to stay at the critical 
point. 

When using dimensional regularization to define the theory, these operators do not 
give rise to logarithmic divergences at e = 0 and thus can be subtracted unambiguously 
by a finite-part prescription. This amounts to analytically continue beyond the poles 
caused by these operators. With this prescription, the renormalized coupling of the 2- 
body interaction is automatically zero if the bare coupling t is set to zero, i.e. if one 
starts with the 3-body hamiltonian (2.1). 

The subleading term D({xl, x2}) in Eq. (2.13), proportional to the modified 2-body 
interaction (2.6), gives a divergence for e = 0 if the internal dimension D of the 
membrane is larger than or equal to 4. This reflects the fact, first outlined in Ref. [ 15], 
that at the O-point, the modified 2-body interaction is more relevant than the 3-body 
interaction if D > 4, while for D < 4, including the case of polymers, the 3-body 
interaction is the most relevant one. The hamiltonian (2.1) thus describes the O-point 
for D < 4 and e small. For D > 4 it describes a multicritical point reached by fine 
tuning both the 2-body and the modified 2-body couplings. A more serious investigation 
of the relative relevance of these two operators for finite e requires a study of the model 

with both couplings, 

x x y z 
.L. 

x y 

4 and d = 6. This topic is discussed in Section 8. around the point D = 

(2.20) 

2.3. UV-divergences and l-loop renormalization 

Let us now concentrate on the hamiltonian (2.1) and on the divergences at e = 0. 
The MOPE structure of the UV-singularities implies that the theory can be made UV 
finite for e --* 0 by considering the hamiltonian 

~[r]=z f ½(Vr(x)) 2 
x 

x y Z 

where /.t is a renormalization momentum scale, r and g are the renormalized field and 
the renormalized coupling constant. As in Refs. [ 15,16], the counterterms Z (wave- 
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function renormalization) and Zg (coupling constant renormalization) subtract the poles 
at e=0 .  

The counterterms are evaluated as follows. The divergence proportional to the operator 
-~- occurs because of the integration over a global length scale in the MOPE (2.11). 
For instance, if we integrate over the three points (Xl,X2,X3) in a domain DL(O) of 
size L around their center-of-mass o 

~DL(O) -- (XI  "]- X2 " t -X 3 --- 3oand Ix~ --Xbl < L, a,b = 1,2,3}, (2.22) 

using Eq. (2.11) gives a pole of the form 

L(x) = ~- -4?- -~- + O(e °) (2.23) 

with the residue determined by the coefficient B of the MOPE and abbreviated graphi- 
cally as 

( ~  "~- /  =jJx,+~2+~3~ B({x"x2'x3})= o" (2.24) 
"" . . . . . . .  " e sup( IXa - - x  b [ )=L 

We will explain that in more detail in Subsection 3.3. 
The other residues come from a similar integration at a "typical" distance L between 

the points in the clusters of the coefficients E, F and G in Eqs. (2.15), (2.16) and 
(2.17). They are abbreviated similarly as 

t "" " ) " ' "  

= fff*,.  E( {Xl, yl }, {x2, y2}, {x3, y3}) (2.25) 

= / / / ~ , , ~  F({xl,yl,y2}, {x2, y3}) , (2.26) 
in  c l u s t ~ L  £ : = 0  

= j f f ~  ~-~,~ G({x2,x3,y2,y3}) . (2.27) 
in  c | ~ L  e z z O  

With these notations and using Eq. (2.8), the counterterms which make the theory 
finite at l-loop order are 
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Z = 1 +ga-  + OCg2) ' 
8 

Zg -- 1 + g~ + O(g 2) , 

b = 3  + 18 

9( 
- ( 2 . 2 9 )  

The coefficients of the counterterms, a and b, depend of course on the point (De, de) 
on the curve e = 3D - 2vd = 0, where the renormalization is performed. 

The picture associated with this renormalization prescription at l-loop order is to cut 
out domains of size L = 1//z around collapsing points in the perturbation expansion 
(2.8). The freedom in the choice of a renormalization scale /z is represented as the 
freedom to choose the size L = 1//x of these domains. 

2.4. RG equations and scaling relations 

From the existence of counterterms and of a UV finite perturbation theory for e ~> 0 
one deduces renormalization group (CaUan-Symanzik) equations for the renormalized 
theory and scaling laws for the model for e > 0 in the standard way. The renormalized 
hamiltonian (2.21) can be rewritten as a bare hamiltonian (2.1) through the change of 
variables to bare field ro(x)  and bare coupling constant go 

ro(x)  = Z 1/2 r ( x )  , go = gZdZglz ~. (2.30) 

The Callan-Symanzik equations, which give the scale dependence of the renormalized 
theory, are obtained via the /z dependence of the renormalized couplings keeping the 
bare couplings fixed. One thus obtains the renormalization group fi-function for the 
coupling constant 

0 
f ig(g) = tz-~-~ gog = - e g  + (ad  + b)g 2 + O(g  3) (2.31) 

and the scaling dimension l, of the field r 

1 a go ,,(g) = ~ -  ~ lnZ 

2 - D  1 
- 2 + ~ag  + O(g2) .  (2.32) 
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As we shall see, both a and b are positive and the renormalization group flow has an 

IR-stable fixed point for positive g = g*. u* = t,(g*) is related to the fractal dimension 
d~ of the membrane at the O-point via 

D 
* - - - .  (2.33) d F - p .  

2.5. A change in normalizations 

Before describing the details of the calculations for the counterterms, let us change 

the normalizations used in the definition of the theory. This is done for technical purpose 

only, but appears convenient to avoid a lot of factors 7r and F functions in intermediate 

expressions. We rewrite the bare hamiltonian as 

7~°[r]=(2-D)-If + +g f f /  ~ (2.34) 
x x y z 

with as before 

1 
+ = ~ ( V r ( x ) )  2 (2.35) 

but with a modified integration measure 

= I dOx, So - r(D/2  (2.36) 

X 

being the volume of the (D - 1 )-dimensional unit sphere. With this normalization the 

free propagator becomes simply 

(r(x)r(y))o = - Ix  - yl 2~ . (2.37) 

Similarly, we normalize the measure in Fourier space •d as 

f f dap (2.38) 
p 

and the 6d-distribution in I1~ a is modified to 

~ l ( r -  r') = (47r)d/26d(r -- r') = I e ip(r-r') , (2.39) 

p 

so that the 2- and 3-body operators, which have to be considered, are 

e -- = ~ ( r ( x )  - r(y)) , (2.40) 

a :: ¢. = ( - -Ar)6a(r(x)- -r(y)) ,  (2.41) 

~. = 6d(r(x) r(y))~l(r(x)  -- r ( z ) ) .  (2.42) 
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The only change in the expressions for the l- loop counterterms (2.28) and (2.29) is 

3. Elastic term renormalization 

3.1. Explicit evaluation of the 3-point MOPE coefficient 

Let us first derive explicitly the MOPE (2.11) for the 3-body operator (2.42).  The 

3-body operator has as Fourier integral 

L = I f  : e x p ( i p r ( x ) )  : : e x p ( i q r ( y ) ) : : e x p ( - i ( p + q ) r ( z ) ) :  (3.1) 

P q 

: : denotes the usual normal product for free fields. We use the OPE for products of  

vertex operators 

: exp ( i p r ( x ) )  :: exp ( iq r (y ) )  :: exp ( - i ( p  + q ) r ( z ) )  : 

= : exp ( i p r ( x ) )  exp ( i q r ( y ) )  exp ( - i ( p  + q) r ( z  ) ) : 

x (exp ( ipr (x )  + iqr(y)  - i (p + q ) r ( z )  ))0 (3.2) 

and since r is a free field we have explicitly, using (2.37) 

(exp ( ipr( x ) + iqr( y ) - i (p  + q) r( z ) ))o 

= exp ( - ½ ( ( P ( r ( x )  - r ( z ) )  + q ( r ( y )  - r(z)))2)0) 
= exp (_p2  ix _ z 12~ + (pq) (i x _ z 12~ + lY - z I z~ - Ix - yl  z~) - q2ly - z 12~). 

(3.3) 

Let o be the center-of-mass of  the three points x, y and z and let us denote 

x = o + 2 ,  y = o + y ,  z = o + f ,  . ~ + y + ~  = 0 .  (3.4) 

The MOPE is obtained by performing a Taylor expansion around the center-of-mass o 

: exp ( i p r ( x ) )  exp ( i q r ( y ) )  exp ( - i ( p  + q ) r ( z ) )  : 

= exp (YCOx) exp (y0y) exp (fOz) 

x : exp ( i p r ( x ) )  exp ( i q r ( y ) )  exp ( - - i (p  + q ) r ( z ) )  : x=y=z=o (3.5) 

Expanding in powers of  0, we find up to order 2 in 0 
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Z 

/ 2  
x y 

a 

Fig. 2. The triangle A(a, b, c) 

exp ( YCOx) exp (yOy ) exp ( f Oz ) : exp ( ipr( x ) + iqr(y ) - i(p + q) r( z ))  : x=y=z=o 

- I x -  zl2p 2 + 2 ( y -  z ) ( z  - x ) (pq )  - l Y -  z[2q 2 
= 1 ( o )  + 

dD 
1 

x ~  : ( V r ) 2 ( o )  : +  . . . .  (3.6) 

The factor 1/dD comes from the contractions between internal space indices (in the 

partial derivatives Ox and ~) and between external space indices (in r and the external 

momenta  p ) .  

Using (3.3) and (3.6) and performing the explicit integration over p and q, the term 

of  order 0 will give the coefficient A in (2.11),  whereas the term of  order 2 yields B. 

Denoting by a, b, c the respective distances between the three points x, y and z (see 

Fig. 2) 

a = lY - x l ,  b = [z - Y l ,  c = Ix - z l ,  ( 3 . 7 )  

we find 

and 

A ( { x , y , z } )  = f f lexp(ipr(x) + i q r ( y ) -  i(p + q ) r ( z ) ) ) o  

P q 

[ 4 ]d/2 

(a  ~ + b y + c ~ ) ( a  ~ + b y _ c ~ ) (b  y + c ~ _ a ~) (c  ~ + a ~ _ b y) 

( 3 . 8 )  

B ( { x , y , z } )  

= f f - I x -  zl2p2 + 2(y- z)(z - x)(pq) - I y -  

P q 

x{exp ( ipr(x)  + iqr(y) -- i(p + q ) r ( z )  )}o 
2 a (c 2 + a  2 - b 2)b 2~ + (a 2 + b 2 - c  2)c 2~ + (l¢ + c  2 -  a 2)a 2" 

- - D [ ( a ~ + b ~ + c ~ ) ( a ~ + b y - c v ) ( b y + c ~ - a u ) ( c v + a u - b y ) ] l + a / 2  " 

(3.9) 
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3.2. M O P E  and  relevant subdivergences  

If two out of the three points in . ~ .  are contracted, a dominant subdivergence 
~ i i i ,  ll,;, 

occurs. For instance, if x --+ y, the coefficient B given by Eq. (3.9) behaves as 

n C { x , y , z } )  ~- -~----~lx - yl-~dlx - zl  ° -~d  . (3.10) 

As explained in Subsection 2.2, this follows from the MOPE (2.13). Using similar 
techniques as for calculating the coefficients of the MOPE (2.11), the leading coefficient 
C in Eq. (2.13) is found to be 

C({x,  y}) = Ix - YI-~d. (3.11) 

To subtract this divergence with a finite-part prescription, we must add a 2-body coun- 
terterm (2.19) which is at first order in g 

f / f ( r ( y ) )  permutationS x, y, z (3.12) AT-/0 = - - 2 g  Ix -- z l - P a ~ d ( r ( x )  - + 

x y z 

or equivalently we can redefine the 3-body operator (2.42) as 

~ , , %  = - r (y )  - r ( z ) )  (r(x) ) ~ a ( r C x )  

1{ permutations ~ 
-2 Ix-zl-~dSaCr(x)-r(y))l(z)+ o f x ,  y , z  j "  (3.13) 

With this subtraction prescription the coefficient B in the MOPE (2.11 ), given originally 
by Eq. (3.9), becomes 

B ( { x , y , z } )  

2 a ( c  2 + a  E -  b 2 )b  2~ + (a  2 + b 2 _ c 2 )c  2~ + ( b  2 + c  2 - a  E)a 2~ 

D [ ( a  ~ + b ~ + c ~) ( a ~ + l :  - c ~) ( b ~ + c ~ - a ~) ( c  ~ + a ~ - b ~ ) ] l +d/2 

1 f b D-vd -I- ¢D-vd 

+4-o/ a-;d + 
C D-ud + a D-vd aD-vd + b D-ud 

bp d + c~ a ~ . (3 .14)  

This can be checked by an explicit calculation along the lines of Subsection 3.1. 

3.3. IR-regularizat ion and  extraction o f  the residue 

As discussed in Ref. [ 18], integrals over points x, y . . . .  on the membrane are defined 
in non-integer dimension D by switching to distance variables, that is, by integrating 
over the relative euclidean distances Ix - Yl . . . .  between these points. Through this 
change of variables the usual measure dDx A d ° y  A . . .  becomes a distribution over the 
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. " ~ - / ~ i ' :  !,~' ~ #.-~/,,,'o ~i'., ,'iD',, 

Fig. 3. A contraction of points into four subsets and the corresponding MOPE coefficient for 4-body operators. 

distance space, which depends analytically on the dimension D. This distribution will 
be shown more explicitly in Subsection 3.4. 

We already discussed that UV-divergences have to be treated by dimensional regu- 
larization. The problem arising in this context is that our hamiltonian has no intrinsic 
length scale. Choosing the dimensions D and d so that e > 0 in order to make Feynman 
diagrams UV finite thus necessarily involves IR-divergences. To extract the counterterms 
an IR-regulator has to be introduced. This regulator will set the renormalization scale. 
We want to extract the UV-divergence associated to the global contraction of subsets of 
points. An example of such a contraction, involving four subsets indicated by dotted lines 
(one subset is reduced to one point), is depicted in Fig. 3. According to Ref. [ 15] this 
divergence is proportional to the marginal multilocal operators appearing in the MOPE 
for this contraction. The divergence is obtained by integrating the corresponding MOPE 
coefficients for small distances inside each subset and by keeping the logarithmically 
divergent part. By construction, the MOPE coefficient C depends only on the relative 
distance between points inside each subset and not on the relative distance between the 
different subsets. (This is why in Fig. 3 the coefficient C is noted as an independent 
function of each subset; in fact the last subset, reduced to one point, does not play any 
role in C.) 

As schematically discussed in Subsection 2.3, we choose the following IR-regulariza- 
tion prescription: The distances in any contracted subset have to be smaller than L, the 
IR-cutoff. Compared to other prescriptions like considering closed membranes with the 
topology of a hypercube or a hypersphere of diameter L, this prescription has a great 
calculational advantage. The integrands and the MOPE coefficients are not modified and 
the interesting pole term can be extracted simply by using homogeneity. 

Let us apply this regularization prescription to the graph ~._1..), that we consider 

here. The MOPE (2.11) gives with the conventions of Fig. 3: 

= ) + .  ) 3. 1 5 

When integrating B over the three points x, y, z with fixed barycenter o and with the 
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IR-regulator L, i.e. in the domain 

D~.(o)= {x + y + z = 3 o a n d l x -  yl, l y -  zl, Iz - xl <~ L} ,  (3.16) 

we obtain the UV-divergent term, which is denoted 

........ L /DL(O ) 

Since the integrand (3.14) is homogeneous, we deduce that 

-- c ( 6 ) - - .  (3.18) 
6 

....... " Z 

For 6 = 3D - 2ud > 0 the integral (3.17) is UV- and IR-convergent and the residue 
c(6) is analytic in 6. We are interested in the residue c(0) .  Applying LO/OL on both 
sides yields: 

OL + = c(6)L ~ . (3.19) 
....... " L 

Acting on the r.h.s, of Eq. (3.17) the operation LO/aL extracts the boundary ODL(o) 
of DL(O). There the largest distance between the three points equals exactly L. 

I ~ -~?-) f o  B(:,:~.i~)) =o . (3.20) c(O) = =ovL( ) 

The normalization introduced in Eq. (2.36) was chosen in order to eliminate the addi- 
tional factor SD one might expect here. 

We can consider separately the contribution of each so-called sector, where a = Ix -y l ,  
b = tY-z[  or c = ]z - x ]  respectively is the largest distance (the set where two distances 
have exactly the same length is a set of measure zero and thus can be neglected). By 
symmetry each sector gives the same contribution. For c(6) the prescription yields: 

f 2 d ( C  2 q-  a 2 - -  b2)b 2u --}- ( a  2 -t- b 2 - c 2 ) c  2p -1- ( b  2 q- c 2 - a2)a  2u 
¢ ( 6 )  3 J D [ (a  u + b ~ + c~)(a ~ + b ~ - cU)(b ~ + c ~ - aU)(c ~ + a ~ _ bu) ]l+d/2 

L=a>b,c 

q--7"~4131{ bD-ud "~- d + cD--ud + d -4- aD--ud q- bD-Ud d . (3.21) 

The final expression for the residue c(0) is obtained by replacing d by de = 3 D / ( 2 - D )  
in Eq. (3.21). That this replacement is justified will be discussed in Appendix A. 
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3.4. Analytic continuation of the measure 

We now define the explicit form for the integration measure in non-integer dimension 
D, that will be used in the calculations. For other but equivalent formulations we refer 
to Ref. [ 18 ]. 

The general problem is to integrate some function f invariant under translations 

and euclidean rotations over all configurations of N points Xl . . . . .  x~v imbedded in D 
dimensions. This implies that f depends only on the N ( N -  1)/2 relative distances 

[xi - xj[ between these points. In the following the integral over the center-of-mass 
is therefore always excluded. In order to be able to define the integration, let us take 

D ~> N - 1 and integer. For i < N denote by yi = X i  - -  XN the ith distance vector and by 
y~ its ath component (a  = 1 . . . . .  D) .  

The integral over Yl is simple: Using rotation invariance, we fix Yl to have only the 
a = 1 component non-zero. The measure becomes 

O O  
# / ,  

/ d D y l = S D / d y ~ ( y ~ )  D-l, yl=(y~,O . . . . .  0 ) ,  (3.22) 
, I , ]  

0 

where So is the volume of the unit sphere in R °,  defined in (2.36). 

We now fix y2 to have only a = 1 and a = 2 as non-zero components. The integral 

over Y2 consists of the integration along the direction fixed by yl and the integration in 
the orthogonal space R ° - l :  

f dOy2 = SO-I dy Y2 = . . . . .  0 ) .  (3.23) dy~ (yl, y~,O 

-- oo 0 

For the j th point, one proceeds recursively to integrate first over the hyperplane defined 

by yl . . . . .  Yj-1 and then the orthogonal complement: 

jy j f dDyj=SD-j+I H d dy~ (~)D--j, 
a<j --oo 0 

yj = (yJ . . . . .  ~ , 0  . . . . .  0 ) .  (3.24) 

The final result for an integral over all configurations of N points is 

S~.= N--I J--' °~(H[ f ) 

J 1 j=l  0 

This provides a well-defined analytic continuation of the measure to dimensions D 
non-integer, even for D ~< N -  1. It is equivalent to the measures defined in Ref. [18]. 

As we first want to contract three points with coordinates (xb  x2, x3), let us look 
what the general expression results in: By translation invariance we fix one point, x3 
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a 

Fig.  4. The half-sector  used for  the numerica l  integration. 

and integrate only over y = Xl - x3 and z = x2 - x3 as discussed above. We thus have 
to evaluate an integral of  the form 

f d°y dDz f(y,z):SDSo-I f yl 0-1 dz, dz2z°-2f(yl,Zl,Z2). 
, I  

0 - c o  0 

(3.26) 

This expression is well defined and integrable for D > 1. For D ~ 1 it should reduce 
to the integral over a line. Let us take D = 1 + e then we get 

2e/dyl / dZl dz2z~-lf(yl,Zl,Z2), (3.27) 

0 - c o  0 

where subleading terms in e from the expansion of  SoSo-1 are neglected. As ez~ -I is 
a representation of  the &distribution for e ~ 0, (3.27) reduces in this limit to 

2/dyl  / dZlf(y,,z,,O)= / dy, / dz, f(yl,Zl,O) (3.28) 

0 - o o  - c o  - c o  

as expected. 

3.5. Explicit integration 

From (3.21) the explicit expression for the pole term proportional to L*/e of  the 
diagram contributing to the wave-function renormalization is: 

= __..6_64D / [(a2u + c2u - b2~)b2 + (c2u + b2~ - a2V)a2 + (b2~ + a2u - c2~)c2] 

l = a > c > b  

( 4 ) dc/2+l 
× (a~+c~+b~)(a~+c ~ -b~)(a~-cv+l~')(c~+b ~ -a  ~) 
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_a-vdc ( bD-ud¢ q_ cD-vdc ) _ b-~dc ( aO-~dc q_ cO-vat) 

_c-~dc ( aO-~dc + bD-~d~ ) , (3.29) 

The factor 6 is due to the explicit ordering of the distances a, b and c. This expression 
has to be integrated numerically. From (3.23) and with the change of normalization in 
(2.36) we know that the measure is 

f f ( a , b , c )  = SD------L] 
SD 

b 

a = l ~  

f dbl j db2 bf -2 f (a ,  b, c) , 
--oo 0 

(3.30) 

restricted to the domain, where b < c < a (Fig. 4). For 1 < D < 4, the expression 
(3.29) is integrable everywhere. For D ~< 1, the measure has a non-integrable singularity. 
For D ~> 4, an additional non-integrable singularity appears for small b. 

Various numerical problems exist: The first is due to the integrable singularity for 
b2 --+ 0 from the analytical continuation of the measure to D < 2. The second is 
also an integrable singularity for b ~ 0. They are handled by the following variable 
transformations: 

1 

/ 1 1 7rSD_l f deeet(2_D)/(D_l)sin(/3)D_ 2 
f ( l , b , C ) - D _ ~ D _ l  2 SD 

b 0 
1 

x / dub~'f(1,b,c)O?(l -b)O?(c - b) , 

o 

(3.31) 

where 

/3 = l~-c~l/(o-1), (3.32) 

b=u 1/(°-r) , (3.33) 

~, = v(dc - 2) = 5D - 2 ,  (3.34) 
2 

c = ~/b 2 + 1 - 2bcos(/3).  (3.35) 

The transformations are constructed in order to generate factors which compensate the 
singularities of the integrand. The factor b r in (3.31) e.g. exactly cancels the singularity 
b - r  in (3.29) as can be seen from the small b-expansion (a = 1) of the integrand: 

de + 2b_~(dc_2) (1 + O(b  1-2") + O(b2~)) . (3.36) 
16D 

The parametrization with the angle /3 is convenient to disentangle the divergence for 
b2 --~ 0 from the divergence for b ~ 0. 
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Fig. 5. Numerical results for the diagram (3.29). 

Table 1 
Numerical results for the diagram (3.29) 

~L 
1 . 3 5  

D residue 

1.00 0 
1.05 -0.6993 
1.10 -1.5336 
1.15 -2.6599 
1.20 -4.4451 
1.25 -8.0963 
1.275 -12.111 
1.30 -21.9321 
1.31 -31.6537 
1.32 -55.845 

An additional difficulty arises as for small b (3.29) is the difference of  two diverging 

terms. One can use the small b-expansion, Eq. (3.36), in a domain determined by the 

program of  approximately b < 10 -7. 

This integral is now performed by a simple numerical integration routine using Simp- 

son's rule. On a workstation, this integration takes some minutes for a precision of  
10 -4. 

The result o f  the calculation can be found in Table 1 and Fig. 5. For D ---* 0, the 
diagram vanishes, whereas for D ---* ~ it diverges. This is due to the fact that for D t> 4 

a new subdivergence for b ~ 0 occurs. 
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3.6. The limit D 4 1 

The case D = 1 can be treated analytically. For D = 1 and omitting the countertetms, 
(3.29) reduces to 

=o ford,=3. (3.37) 

The factor 3 in (3.37) is due to symmetry. The integral runs over one of three possible 
and equivalent sectors only. For simplicity the counterterms for the relevant subdiver- 
gences were omitted, as the integrand can by calculated analytically without counter- 
terms and since they were constructed from a finite part prescription and thus give no 
contribution. This is indeed the case, as the integral of the counterterms is: 

; ] db (b-&/2 + (1 _ b)‘-h/2 + b-d&( 1 _ b)‘-d’12) -- 

0 

2 

+4-d,+ 

r( 1 - d,/2)r(2 - dC/2) 

U3 - dC) > 
=0 ford,=3. (3.38) 

These calculations show that the limit D -+ 1 is correctly reproduced [21]. 

4. Conformal mapping of the sectors 

In the previous section, we had to calculate some integrals over distances, restricted 
to various sectors, such that one of the distances is larger than all the others and is set 
to L. In that case, the integrand was symmetric with respect to the three distances a, 
b and c and each of the three sectors gave the same contribution. In the following we 
shall deal with non-symmetric integrands and with integrals over more distances. We 
now introduce an extremely useful tool, the mapping of sectors, which will reveal its 
full power in the analysis of the 4-point divergences. Besides calculational convenience 
it also shows that the simple pole at l-loop order is an universal quantity. We shall 
discuss this later. First we show how different sectors, arising in the analysis of the 3- 
point divergences, can be mapped onto each other. Let us remind that, with the measure 
(3.23) and the normalization (2.36), we had to compute an integral over some domain 
in the upper half plane, with the measure 
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13 C 

G 

E E t a F 

Fig. 6. The sectors .4, B and C. 

/ SD-1 / dyl So , (4.1) 

3' -oo 0 

of a function f of the three distances a, b and c between the points F = (0 ,0) ,  

E = (-L,O) and G = (Yl,Y2), given explicitly by (cf. Fig. 6) 

a= L fixed, b= ,v/(yl)2 + (y2) 2, c= ~ / ( L -  yl)2 + (y2) 2. (4.2) 

Let us consider that f is homogeneous, with degree A, but not necessarily symmetric 

f(Ka, xb, Kc) = x -a f (a ,  b, c) . (4.3) 

The exponent ~ is called the conforrnal weight of the integrand f .  

The upper half-plane in y can be divided into three sectors ,,4, B and C. The sector .4 

consists of all triangles A(a,b,c) with a = L and b,c < a as indicated in Fig. 6. This 
is the sector over which the integration was performed in Subsection 3.3. The sectors B 
and C are the domains, where b and c respectively are the largest distances. 

We can map B onto A. This mapping consists of two steps: 

(i) The rescaling with respect to F by a factor L/Ib I which maps G onto G'  and E 

onto E'. (4.3) implies that I is changed by a factor (L/Ibl) -A. 
(ii) A mirror operation, which maps G'  onto E and E ~ onto E ' ,  leaving invariant E 

This operation is a permutation of the first two arguments of f .  

The mapping G---~E" is a special conformal transformation, the inversion with respect 

to the circle SL(F). In complex coordinates it is 

g2 
Y = Yl + iy2 - - ~  y = Yl -t- i~2 = -=- • (4.4) 

Y 

One easily checks that this mapping B --* ..4 is one to one. The measure in (4.1) 

transforms as 

(4.5) 
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The final result is: 

f f (a=L,b,c)= / 
yEl3 yE,A 
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(b )a-2° f (b ,a= L,c). 

For the 

and the degree ~ in (4.3) is ,~ = 2D so that we have 

/ f ( a = L , b , c ) =  f f ( b , a = L , c ) .  
yE B yE.A 

An analogous transformation 

f f(a=L,b,c)= f 
yEC yE.A 

(4.6) 

We call K = ,~ -2D the conformal dimension of the integral. For integrals with conformal 
dimension zero, a conformal change of coordinates to map the various sectors simply 

permutes the vertices of the triangle. 

One word should be said about the conformal mapping for integrals which have not 

conformal dimension 0. As a is fixed to equal L one can always multiply the integrand 

by a power of alL, by this way adjusting the conformal dimension to 0. Then the 
conformal mapping again consists in a pure permutation of the arguments. 

A more general method to look at the mapping of sectors consists in using the 

measure (3.7) of Ref. [ 18] over the distances, considered as independent variables (we 

set L = 1). The integral of f over (4.1) is 

/ f(a,b,c)= / dtzo(a,b,c)x.a(a,b,c)6(a-1)f(a,b,c) (4.9) 

yE.A 

with the measure d/zo defined as 

1 So-i da 2 db 2 dc 2 (2A(a,b,c))O_3 . (4.10) dlxo(a,b,c) - 8 So 

A(a, b, c) is the area of  the triangle with edge lengths a, b and c and X.a the charac- 

teristic function of the sector .A: 

X.a (a, b, c) = O(a - b)O(a - c) (4.11) 

Substituting a = ~b, c = ~b and using the homogeneity of f and of the measure, the 
r.h.s, of (4.9) becomes 

I SO-1 f d~ 2 db 2 d~ 2 6(?tb - 1)b 2D-2-A 
8 So 

x (2a (a, 1,e))D-3 f (a, 1,0) XA(a, 1,•). (4.12) 

Substituting further b = b/fi and using the fact that the 6-distribution restricts/~ to equal 

1 yields: 

f(c,b,a= L) (4.8) 

is valid for the mapping of C onto .4: 

(4.7) 

integrals which give the residue at the critical dimension, (4.2) is dimensionless 
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1 So-I i d~2 d/72 d~'2 8 ( b -  1)a-2D+a 
8 s o  

x (2d(fi,  b, ~) )D-3f(fi,/7, e)XA(?t , b, ~). (4.13) 

In order to get the same formula as (4.7), one considers functions f with conformal 
weight A = 2D and renames b = ~, a = b and c = ~, to obtain: 

f dl~o(a,b,c) 8 (a-  1) f(a,b,c)xA(a,b,c) 

= j d/ZD(a,b,c) 8(a - 1) f(b,a,c)xs(a,b,c). (4.14) 

The result is equivalent to (4.8). 
The method extends to the contraction of four or more points. We give the general 

result for N points connected by the distances x = zi, y = z2, z3 . . . . .  ZN(N-i)I2 in a 
slightly different formulation: 

S d/zD(x,y, Z3 . . . . .  zN(Jv-l)/2) Z3 . . . . .  ZlV(lV-l)12)~(x f(x,y, 1) l 

. / d # D  (x, y, Z3 . . . . .  ZN(/v-I)/2) f(x, y, Z3 .. . . .  ZN(N-I)/2) 

× ~ ( y -  1)X -(N-1)o+a. (4.15) 

The ordering of the distances on both sides of (4.15) has to coincide. 
In the case of two or more contraction domains the same rules apply: one adjusts the 

conformal dimension of the integral to equal 0 and then can freely choose the length 
which has to be fixed. The ordering of the distances of course has to be respected. 

The mapping of sectors immediately proves the universality of the pole term in e 
at l-loop order, i.e. as long as no double pole appears, once the general normalization 
has been fixed: Demanding the longest, the shortest or any intermediate distance to 
equal L results in the same pole term. From these regularization prescription every other 
prescription can be constructed. This observation completes the proof. (The question 
whether different prescriptions to subtract the relevant divergences change the pole term 
is discussed in Appendix A). 

5. 3-body interaction renormalization: easy graphs 

5.1. Graph reducible to 2-point integrals 

The first contribution to the renormalization of the 3-point interaction comes from the 
MOPE (2.1 5). The divergent integral is: 

i i i  ( 1 ~d12 (5.1) = aZ~c2V+c2vb2v+b2~a2VJ • 
: --. L a<L b<Lc<L 
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Fig. 7. Distances in Eq. (5.1). 
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Fig. 8. Numerical results for the diagram (5.3). 

By the same procedure as in Subsection 3.5, the pole term is extracted by fixing one 

by one the distances a, b and c to equal L and to be the largest. Using the mapping of  
Section 4 this integral is converted to an integral, where a = L = 1 fixed, b and c now 

running from 0 to c~. The pole term is obtained by setting d = de: 

: i f  c. .+c. . . .+. . .  • <..., 
" e b c 

The integration can easily be done as the integrals over both b and c simply yield 

Beta-functions: 
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Table 2 
Numerical results for the diagram (5.3) 
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D residue 

1.00 2~ 
1.05 5.118675 
1.10 4.120247 
1.15 3.265599 
1.20 2.537700 
1.25 1.923434 
1.30 1.412483 
1.35 0.996341 
1.40 0.667377 
1.45 0.417915 
1.50 0.239359 
1.55 0.121477 
1.60 0.052083 
1.65 0.017497 
1.70 0.004061 
1.75 0.000518 
1.80 0.000023 
1.85 0.000000 
1.90 0.000000 
2.00 0 

c "  ',,b ,,e 

Fig. 9. The distances in Eq. (5.4). 
. ' - - 4  

(5.3) 
, ~ f j .  , ~ . .  ( 2 -  D)  2 F ( 3 D / 2 ( 2 -  D ) )  " 

For D = 1 the integral is 2~r and decays rapidly for D --~ 2, where it vanishes. A plot 

and some numerical values can be found in Fig. 8 and Table 2. 

5.2. Graph reducible to a 3-point integral 

The next diagram, which has to be calculated, comes from the MOPE (2.16) .  The 

divergent integral is: 
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L 

( 4 )d/2 

4b2~e 2~ + ( a  ~ + c ~" + b~ ' ) (a  ~ + c ~ _ b ~ ) ( a  ~, - c ~, + b ~ ) ( c  ~" + b ~ _ a ~) 

(5.4) 

The pole term is again derived by applying the operator L(OlaL)la=a~ to the diagram 

and leads to look at the sectors where a, b, c or e equals L and all other distances are 

smaller. By mapping the sectors, it can be transformed to an integral over the sectors, 
where the largest of  the distances a, b or c equals L, e now running from 0 to o¢. 

For the relevant divergence for b ~ 0, the counterterms are found by applying a 
finite-part prescription. This gives: 

i l l S +  + 
e "=a>b,c L=b>a,c L=c>a,b e 

( _4 )dc/2 

4bEv e2v + ( aP + cV + bV ) ( aV + c p bV ) ( aP - cV + bV ) ( cV + bV - a ~ ) 

_ ~ b - ~ d ~ [ ( a 2 ~ + e 2 ~ ) - d c J 2 + ( C 2 V + e Z ~ ) - d c / 2 ]  . 

The integral over e can still be performed analytically: 

(5.5) 

1F(D/(2-D))F(D/2(2-D)) LJ  b "  - -  -, + f + f 
2 - D r ( 3 D / 2 ( 2  - D ) )  

= ,c L=b>a,c L=c>a,b 

b _  D ( 4 ~ D/2(2--D) 

( a  ~ + c ~ + b ~ ) ( a  ~ + c ~ _ b ~ ) ( a  ~ -  c ~ + b ~ ) ( c  ~ + b ~ _ a ~ ) /  

- - l b - 3 D / 2 ( a - ° / 2 + c - ° / 2 )  . (5.6) 
2 

This integral is numerically integrated in its symmetrized version: 

1 r(D/(2-D))F(D/2(2-D)) f b_ o 
2 - D F ( 3 D / 2 ( 2  - D ) )  2 (a  -D  + + c - D )  

-L=a>c>b 
4 ) D/2(2-D) 

( a ~ + c ~ + b ~ ) ( a ~ + c ~ _ b ~ ) ( a ~ - c ~ + b ~" ) ( c ~ + b ~ _ a ~ ) 

_ a - 3 O / 2 ( c - O / Z + b - O / 2 )  _ b - 3 O / Z ( a - O / 2 + c - O / 2 )  

_c-3O,2(b-o,2+a-OJ2) (5.7) 



K.J. Wiese, E David~Nuclear Physics B 450 [IS] (1995) 495-557 

Table 3 
Numerical results for the diagram (5.7) 
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D residue 

1.00 ~r 
1.01 3.07 
1.02 3.0027 
1.05 2.8210 
1.10 2.5903 
1.15 2.4618 
1.20 2.4854 
1.25 2.8518 
1.275 3.4084 
1.30 4.9365 
1.31 6.5140 
1.32 10.5032 
1.325 16.09 

The numerical problems and their solution are similar to those discussed in Subsec- 

tion 3.5. The singularity for a = 1 and b ~ 0 is: 

D F ( D / ( 2  - D) )  F (D/2(2  - D) )  b2_5D/2 (1 + O ( b  l-2u) + O(b2U)) . 
4(2 - D)  2 F (3D/2(2  - D) )  

(5.8) 

This equation determines the exponent T for the transformation of the measure (3.31 ) 

5 
T = ~D - 2 (5.9) 

as before. It also serves to eliminate the small b difficulties as discussed at the end of 

Subsection 3.5. 
The explicit numerical results are given in Fig. 10 and Table 3. For D ~ 1 the 

numerical value approaches 7r, which is the result obtained by analytical calculation. 
For D ~ 4 it diverges, again reflecting the fact that for D / >  4 a new non-integrable 

divergence appears for small b. 

6. 3-body interaction renormalization: hard graph 

6.1. The 4-point diagram 

The last diagram, which contributes to the renormalization of the 3-point interaction, 
is depicted in Fig. 11. The associated divergent integral is: 
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1.25 1.30 1.35 

Fig. 10. Numerical results for the diagram (5.7). 

i // " " ,  • f 

a / //e "'". " 

c 

Fig. I1. The distances in Eq. (6.1). 

-d/2 
_ 1 (c2~, _ e2~, _ b2~, + d2~,)2] =/ff//fa,b,c,d,e,y<L [ a2~ f2~ 4 (6.1) 

Applying the operator LO/OL from Subsection 3.3 to extract the pole term gives six 
different sectors: Each of the distances a, b, c, d, e or f might be the largest. In order 
to simplify the calculations, the mapping of Section 4 shall be used. We want to end up 
with an integral, where c = L = 1 is fixed, whereas the other distances may vary freely: 
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=JJJJJ.i,a,b,a,e,iflfff - + . (6.2) 

For c = I the measure, given by (3.25) and (2.36), simplifies to an integral over the 

vectors a and f: 

" 7 7 7  s°_.°_, i i $2 ° dal da2a~ -2 dfi d f2 df3f~-aF(a,b ,c ,a ,e , f ) .  
- o o  0 - o o  - o o  0 

(6.3) 

We herein abbreviated the integrand by F ( a, b, c, d, e, f ). 
For small a or f ,  F possesses relevant subdivergences. They are eliminated via a 

finite-part prescription, if one uses the modified 3-body interaction (3.13): 

iiifS l,., .a,e.i[a2"f2"-¼(c2"-e '-b2"+a2")2]-a<12-(af) -"a< 
(6.4) 

The integrand now is integrable. 

6.2. Improvement of the measure 

For D < 2 the measure defined in (6.3) is a distribution and suffers from a relevant 
divergence for f3 ---+ 0. Geometrically these are configurations, where the tetrahedron 
spanned by a, b . . . . .  f has volume 0, i.e. is restricted to a plane. A finite-part prescription 
has to be applied in order to make the measure finite. 

One may think of implementing this prescription by subtracting the singularity. This 
method however imposes at least numerical difficulties. It is better to eliminate the 
singularity by a partial integration with respect to f3, which is mathematically equivalent. 
As only d, e and f depend on f3, the integral 

f df3 f~-3F(a,b ,c ,d ,e , f )  (6.5) 

0 

can be converted to 
o o  

2 D 
0 

oo 

- 2 1 D i d f3 f ° - lRF(a 'b ' c ' d ' e ' f )  , (6.6) 

0 
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d 

526 

where R is defined via 

l a  l a  

c=l 

Fig. 12. Parametrization of the tetrahedron. 

1 a 
R =  ~ + e~ee + f a---f (6.7) 

The strength of  the divergences for a ~ 0 or f ~ 0 is unchanged. It is important to 

remark that this trick cannot be used to eliminate the relevant divergences when a ~ 0 

or f ~ 0. It works for the divergence in f3, because the integrand does not directly 

depend on f3 but on d, e and f ,  which themselves depend on f3. So the derivation 
of F with respect to f3 does not produce a factor 1/f3 but factors 1/d, l / e  and 1 / f ,  
which are not singular for f3 ~ 0. Explicitly: 

R F ( a , b , c , d , e , f )  

~'d _ (c2~ _ e2 ~ _ b2J, d2~, ) _ a2~,f2~, ) = ~ - [ ( l f 2 ( d - D  e -O)  + 

- -~ - + + a -~d f  -~d . (6.8) 

6.3. Parametrization of  the measure 

The main singularities for small distances appear for a or f small. As in Subsection 3.5 
we therefore want to parametrize the measure with the help of  these distances. The 
divergences for a small volume of the tetrahedron spanned by a . . . . .  f ,  a2 ~ 0 or 
f3 --" 0 shall be treated by a parametrization in angles as by this way small distance and 
small volume singularities are best disentangled. We have chosen the parametrization 
indicated in Fig. 12. One triangle is spanned by c and a with an angle fl between, 
another by c and f ,  where the corresponding angle is or. The angle between the planes 
spanned by these two triangles is r. The distances as functions of  a, f and fl, o-, ~" are: 

b = v / a  2 + 1 - 2a cos f l ,  



K.J. Wiese, E David/Nuclear Physics B 450 [FS] (1995) 495-557 527 

e = v / f  2 + 1 - 2 f  cos ~r, 

d= v / ( a c o s f l  - 1 + f c o s ~ )  2 + (as inf l  - f sin cr cos r)  2 + ( f s i n r s i n ~ )  2 . 

(6.9) 

The integrals over a and f run from 0 to c~, the integrals over r ,  tr and r over the 
interval [0, ~r]. As we do not want to map all the points which are far away, we have to 
find a reparametrization of the measure which behaves for a -+ 0 like a ~ and for a --~ c~ 
like a% by this way eliminating the principle divergences. If u is equally distributed we 
can use 

a = ul / (  D--~') (1 -- U) l/( O-t°) (6.10) 

The integral over/3 will be parametrized as 

17r(2te)  / ( D - l )  a ~< 0.5 
r =  7 r -  ½¢r (2 -2a )  1/¢°-l) a > 0 . 5 ,  (6.11) 

which differs from (3.31) and following by the different range of integration: [0,¢r] 
instead of [0, ½7r]. 

The integral over f (remind the factor f2 came from the partial integration with 
respect to f3) 

f ~-3( 2 / dfl  d f2 d f3 f~ f~ (6.12) 

can be written as 

f d f f ° - ' f  d~r(sin~r)nf dr(sinr)°-l(f2). (6.13) 

Again it will be transformed 

f = r U i n - r ) (  1 - v )U(D-o , ) .  (6.14) 

Furthermore we choose in the same spirit as for fl 

{ ½~r(2~) l/<°+l) ~ ~< 0.5 
o-= ~ r -  ½~r(2- 2r/) l/{°+l) 7 />0.5  (6.15) 

and 

f ½7r(2() l /°  s r ~< 0.5 
7--- (6.16) / 7 r -  ½7r(2 - 2()  1/° ( > 0 . 5 .  

So the complete integral over four points is: 

So-1So-2 7r 3 
$2o ( 2 - D ) ( D - 1 ) D ( D + I )  

1 
/ ( l 1 1 1 ) 

× d u a °  D - y u  to D 1  u 
o 



K.J. Wiese, E David/Nuclear Physics B 450 [FS] (1995) 495-557 

d' 

528 

c=l 

Fig. 13. Alternative parametrization of the tetrahedron. 

1 

x / da  min(2a ,2  - 2a)(2-D~/(D-1)(sinfl)O-2 

0 

1 

x f d v f D ( l l  1 1 )  
D - y v  + - _ ~o D1 v 

0 

1 

x f d r / m i n ( 2 r / , 2 -  2r / ) -° / ( °+l ) (s in`7)°  

0 

1 

× f d (  min(2(,  2 - 2 ( ) ( l - ° ) / ° ( s i n r ) ° - I  

0 

x f2RF(a ,b ,  1,d,e,  f )  . (6.17) 

Another way of parametrizing consists in replacing the integral over the vectors a and 
f by the integral over the vectors a and d. This parametrization is especially useful to 
eliminate divergences, when a and f simultaneously go to infinity. It will be used for 
the integration of one of the sectors in the next subsection. The new formulas are given 
here, a prime indicating new angles and distances as can be deduced from Fig 13. 

7̀~ and C obey the same relations as `7 and r. As before f ,  now 

d' = vl /C°-~(1 - v) U(D-°') . (6.18) 

The other new distances are: 

e' = x/a 2 + d t2 -- 2ad' cos ,7' (6.19) 

f '  = ~ / ( d '  s in  `7' s in  z ' )  2 + ( d ,  c o s  `7' - a + cos fl) 2 + ( s i n  f l  - d '  s in  `7' c o s  r ' )  2 . 
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For the integrand (6.4), the exponents are: 

1 
T=~D,  

3 w=~D. 

(6.20) 

(6.21) 

(6.22) 

6.4. Decomposition into sectors 

Although the measure absorbs the principal singularities it cannot handle all of  them. 
There remains e.g. a singularity for b ~ 0 and e ~ 0. Two methods may be applied 
to handle the remaining integrable singularities. The first consists in using the second 
measure of Subsection 6.3. The second is to map again some parts of the domain of 
integration. Thereby, we face the problem that the measure is no longer symmetric in 
the distances, as we have changed it in order to eliminate the relevant singularity for 
f3 ~ 0. We will therefore modify the measure (6.17) to 

SD_I SD_ 2 71-3 

$2o ( 2 - D ) ( D - 1 ) D ( D +  I) 
1 (11 11) 

dua  D+2 D -  y u  + - -  
t o - D 1  u 

x/ 
0 

1 x/ 
0 

1 x/ 
0 

1 x/ 
0 

dot min(2a,  2 - 2a)  (2-°) / (°- l ) (s in /3)  ° 

d v f D + 2 ( l l  + . . . .  1 1 ) 
D - y v  o~ D1 v 

dr/min(2r/,  2 - 2r/) -D/fD+O(sintr) D 

f ds r min(2( ,  - 2 ( )  7") , (6.23) 2 (i ~O)/O(sin D--I  

0 

which is, except for the geometric prefaetor, the invariant measure in D + 2 dimensions. 
The integrand accordingly has to be modified to 

1 
T = RF, (6.24) (2a(a,b,c)) 2 

where 

zl(a,b,c)=~acsin(/~)= v / ( a + b + c ) ( a + b - c ) ( b + c - a ) ( c + a - b )  
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is the area of the triangle spanned by a, b and c. In our case 

T= 
4vdc 

( a + b + c ) ( a + b - c ) ( b + c - a ) ( c  + a - b ) f  2 

x [ ( l  f 2 ( d - D - e - D ) ( c 2 V - e 2 V - b 2 V + d 2 V ) - a 2 ~ ' f  2v) 

X a2Vf 2v -- ~ -- + + a-V&f -v& . (6.25) 

The integrand now is conformal invariant, as follows directly from Eq. (4.15). 
The sectors are decomposed as follows: 

(i) ( a < 2 o r f < 2 )  and ( b > ½ o r e >  1): 
This sector is convergent: F(a, b, c, d, e, f )  is integrated directly, using the simple 
measure (6.17). 

(ii) a > 2 a n d f > 2 :  
The measure (6.17) does not eliminate the singularity, when both a and f simul- 
taneously go to e~. The easiest way to integrate this sector is to use the second 
measure (6.18) ft. of Subsection 6.3. 

The divergences of the integrand could also be eliminated by a mapping. This 
however induces new singularities due to the measure (the term 1 / (2a (a ,  b, c))2 
in T, Eq. (6.24)).  This would not be the case, if we had not been forced to use 
the trick of integrating by parts the measure. 

(iii) b < ½  a n d e < ½ :  
In this sector the mapping can be used successfully: a has to be exchanged with 
b and e with f .  We get T(b ,a , c , d , f , e ) ,  a < ½ and f < l,  using the measure 

(6.23). 

6.5. Numerical integration 

6.5.1. General remarks 
In this section we want to discuss the algorithm used to perform the numerical 

integration. Let us recall that we have to treat integrals like (6.4) with the measure 
(6.17) and some modifications due to mappings of the sectors. These integrals run over 
the unit volume [0, 1] n with n = 5. Such high-dimensional integrals cannot be done 
directly by means of Simpson's rule or derived methods as the integration time diverges 
like (l/precision) n', a ~< 1 and ce = 1 if no special analytical behaviour is given. 
Normally Monte Carlo (MC) integration is a good choice, as the integration time grows 
like (I/precision) 2 independent of the dimension n. However, in its original form it 
is not applicable to our integral since in large domains of integration the integrand is 
nearly 0 and in small domains much larger than 100, always assuming that the integral 
is normalized to 1. Therefore, we implemented an adaptive Monte Carlo integration 
(AMC) procedure suggested to us by J.M. Drouffe [22]. 
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Fig. 14. Schematical description of the AMC algorithm. 

The algorithm will be described schematically for n = 2 in Fig. 14. We have an 

integrand f(x) where the main contribution to the integral 

1 

I = / dnx f(x) 
0 

(6.26) 

comes from a small domain, in which the integrand is large. In Fig. 14 this is indicated 
through a high density of  points. We now try to integrate the square [0, 1 ] n whose area 
is A = 1 with, say, 100 MC sample points. The routine returns us the first moment 
f, Af being an estimate of  the integral and the connected second moment ~ -  f2, 

A V / ~  - 3 r~ being an estimate of the deviation of Af from the integral I ,  henceforth 
called error estimate. A large error estimate indicates that the integral has not been 
found with a sufficient precision due to the fact that the integral is located in a small 
domain. Therefore, we divide the domain of integration in 2 n subdomains (subboxes) 
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as indicated in the figure and perform again a MC integration with the same number of 
sample points in every subbox. The estimate of the integral now is 

I ~, Z f i a i '  (6.27) 
i 

where the sum runs over all boxes and fi  and Ai are the mean value of f in and Ai the 
area of the ith subbox, respectively. The new error estimate for the ith subbox is: 

6Ii = Ai~/'-~i - ~i . (6.28) 

This determines the total (statistical) error estimate: 

61stat = ~ ~ 812 • (6.29) 
V i " 

This time only in the upper left subbox the error estimate will be large and this box 
has to be subdivided again. We repeat the procedure recursively until the error estimate 
of every subbox is smaller than a given E. In our example this process stops after three 
recursive subdivisions. 

It should be emphasized that we did not divide the error estimate 81 in a subbox by 
x/number of sample points as can be done for gaussian distributions. This is due to the 
fact that we are normally far from the domain where the central limit theorem is valid 
(ganssian domain). 

6.5.2. Capabilities and performances 
The algorithm is able to integrate singular integrands. In low dimensions (n = 1,2) 

this works with appropriate accuracy in a very short time (some seconds). In higher 
dimensions (e.g. n = 5) however singular integrals may impose severe problems: The 
algorithm can simply overlook divergences. Of course, one could start with a finer 
sublattice, i.e. demand a minimal number of subdivisions in every direction, or one can 
use a smaller e. In practical calculations however, the execution time will explode. 

As a general rule the algorithm seems to work well for functions whose second 
moment f f2(x)  exists. For such well-behaved integrands the integration time scales 
slightly better than inverse proportional to the demanded precision. 

6.5.3. Implementation of the algorithm 
The algorithm works recursively, so the appropriate language is C. It was implemented 

on a SUN workstation. A translation to FORTRAN is possible, but tedious because of 
its missing capabilities to use structures and recursions. 

6.5.4. Numerics for the 4-point integral 

We recall that ( * - - - ~ . ~ ~  -- [ ~ . , ~ )  was decomposed into three sectors. 
£ 

The main numerical problem, identical in each sector, is the concentration of the integral 
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Fig. 15. Numerical results for the diagram (6.2). 

in small domains. This problem is solved by the AMC algorithm discussed above. 
Additional numerical problems arise for D ~< 1.3 and become dominant for D ~< 1.1. 

The floating point routines of  the workstation are implemented in double precision (64 
bits, 52 bits fraction ~ 15 digits). In this range the routines more and more often fail to 
calculate the integrand, i.e. R F  (6.8) times the measure term, compare (6.17). These 

problems reflect the fact that for D ~ 1 the (modified) measure becomes a distribution. 

They either return a wrong result or "not a number" (NAN), +cx~ or -o~ .  Only the 
latter events can be excluded from the integration. They are counted and serve as an 

error estimate via the formula 

I #{NAN,-I-c~} 
Msys ~ P # { i ~ n p - ~ ' n t s }  ' (6.30) 

where p was determined from similar, but analytically known integrals to be 

p ,,~ 2. (6.31) 

These estimates have to be taken with some precautions as p depends on the actual 
integral and on the machine. The systematic errors in Fig. 15 and Table 4 were calculated 
by this method and seem to give a reasonable estimate for D ~ 1, the limiting case for 
which the analytical result is 2¢r (see next section). 

This line of  arguments could be confirmed by working in quadruple precision (128 
bits, 112 bits fraction ~ 33 digits). The systematic error for D -- 1.05 was reduced 
by a factor 3. No further analysis however was undertaken as the performance of the 
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Table 4 

Numerical results for the diagram (6.2). The first error in the table is the statistical error (6.29) ,  the second 
the systematic error (6.30) 

D residue 

1.00 6.283 (exact: 27r) 
1.01 3.99 4- 0.03 -4- 2.0 
1.02 4.40 -4- 0.03 -4- 1.6 
1.05 4.87 + 0.03 4- 1.3 
1.10 4.70 4-4- 0.034-4:- 0.4 

1.15 4.23 + 0.03 4- 0.08 
1.20 3.75 4-4- 0.03 4-4- 0.03 
1.25 3.31 4- 0.03 4- 0.01 
1.30 2.92 4- 0.03 4- 0.004 
1.35 2.57 4- 0.03 
1.40 2.27 4- 0.03 
1.45 1.98 4- 0.03 
1.50 1.73 4- 0.03 
1.55 1.50 4- 0.03 
1.60 1.28 -4- 0.03 
1.65 1.08 4- 0.02 
1.70 0.91 4- 0.02 
1.75 0.74 -4- 0.02 
1.80 0.57 4- 0.02 
1.85 0.42 4- 0.02 
1.90 0.27 4- 0.02 
1.95 0.13 4- 0.01 
1.99 0.03 4- 0.01 
2.00 0 

workstation drops by a factor 300. A reasonable calculation which before took one hour 
now needs two weeks. 

6.6. D--~ I 

In the limit D ~ 1, ~ - - < ~ / ; ~  ~- can again be calculated ana- 
L 

lytically. This calculation is interesting as it reveals the connection to standard polymer 

theory and the fact that -~ - ~ , ~  : decomposes into three topo- 
L 

logically different and non-equivalent diagrams. As in Subsection 6.1 we keep c = 1 
fixed. By a direct calculation it can be verified that the measure indeed reduces to an 
integral over a line. On this line two points, the endpoints of  c, are already fixed. Then 
there are 12 different possibilities to distribute the last two points. They still can be sep- 
arated into three topological inequivalent classes A, B and C, cf. Fig. 16. These are the 
three standard diagrams, arising in polymer theory. In each of  these classes the line with 
c = 1 may be chosen to be the line connecting (12) ,  (14) ,  (23) or (34) .  Readers more 
familiar with Feynman diagrams arising in the framework of a scalar field theory may 
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7 " "  . . . . . . .  "" ' ,  

'" 2 " 4 
A =  --' - ; = 

e 

/ ", 

B -  i' ', 2 4 "- -7 ? = 
1 3 ' , ,  

• . .." 

e 
• e. 

C =  2 2  4 i  = 
7 - ,  ~ s , ,  ,' 

Fig. 16. The three topological inequivalent classes A, B and C. 

5 3 5  

recover the three corresponding diagrams after a de Gennes transformation [23] .  They 

contribute to the renormalization of  the ~6-interaction at d = 3 and are represented on 
the r.h.s. Diagrams in one class can be mapped onto each other by the now well-known 
mapping of  sectors. 

As an example, we calculate the diagram A, where c = 1 is chosen to be the line 
(23) .  Counterterms are neglected: 

"""--~-'"'"" 0(3 O0 

~ '~ ~ = -~ d a  d b  ( a b  - 1)-3/2 

"" 1 1 
" ' " T - " "  

i 
O0 

i fda(a i)_1/2 
2 a 

1 

_/- ,2(½) I 

r ( , )  2 
(6.32)  

The other three diagrams of  this class were explicitly checked to give ½7r too. In the 

classes B and C all diagrams equal 0. So together, the contribution is 2~" confirming the 
numerical results. 

This result was already obtained in a different parametrization in Ref. [24] .  
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7. Results  for  the 3 -body  hami i ton ian  

7.1. Renormalization and critical exponents 

In this chapter we detail the renormalization of the model at l-loop order, the deriva- 
tion of the renormalization group equations and the determination of the critical ex- 
ponents, along the line of Subsection 2.3 and Subsection 2.4. This is nothing but an 
application of the general procedure of Refs. [ 15,16]. The purpose of renormalization 
is the following. We start from the bare hamiltonian (2.1) 

1/ 
7~g o [ro] = 2-----D 

x 

x y 

~ (XTro(X) )2 

f 6d(ro(X) -- -- rO(Z)) .  (7.1) ro(y) )~d(ro(x) 

Z 

Expectation values of "bare" observables Oo[ro], i.e. functionals of the bare field ro, 
are defined as 

<Oo[ o])go = f 9trol Oo[ro] exp (-7~go[ro]) , 

Zgo = f Dtr0] exp (-7-~80 [r0] ) . (7.2) 

Expressed as perturbative series in the bare coupling constant go, they are UV finite for 
e > 0, where we recall that 

e = 3D - 2ud, (7.3) 

if the relevant UV-divergences due to the 2-point operator are subtracted according to the 
prescription of Subsection 3.2. They suffer from UV-divergences for e = 0, which appear 
at l-loop order as single poles in e. Renormalization consists in reexpressing the theory 
in terms of renormalized quantities - the renormalized field r and the renormalized 
coupling constant g - defined as 

r (x )  = z - l / 2 r o ( x )  , g = z -dZgl tZ-~go (7.4) 

(with/.t the renormalization momentum scale) so that the expectation values of physical 
observables, expressed in terms of the renormalized field r and of the renormalized 
coupling constant g, are UV finite as e ~ 0. In renormalized quantities, the bare 
hamiltonian is rewritten as the renormalized hamiltonian (see Eq. (2.21)) 

_ _Z D 1 ~gR[r] =-- 7"(gO°[ro] 2--  / 2 (Vr(x))2 

x 

+ g Z g l f f f / f 6 d ( r ( x ) - - r ( y , ) ~ l ( r ( x ) - - r ( z ) )  (7.5, 

x y z 
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and the expectation values of renormalized quantifies are 

(Otr])~------ (O[r])g o = 
fDtr] Otr] exp (-~tr])  

f l ) [ r ]  exp (-7"/~tr]) 
(7.6) 

At l-loop order, i.e. to first order in g, the counterterms are, in the spirit of the minimal 
subtraction scheme, chosen to have pure poles in e of the form (2.28), (2.29): 

a b 
Z = l + g - +  (7.7) . . . .  L . =  ~ - ~ - ~ -  . . . .  

8 

Expanding (7.6) in terms of the renormalized coupling constant g we obtain 

(O[r])~=(O)o-g#ffSSS(o~ll °nn 

+,.,.sss sss ( ° . L . L  )] °° 
a 1 i (0-~?-)o n" 

g e 2  - D 

J-... , ( 7 . 8 )  

where we made use of the standard abbreviations for the expectation value in the free 
theory 

(Otr])o = f D[r] O[rl exp ( - ( 2  - D ) - l f x  ½(~Tr) 2) (7.9) 
f D [ r ]  exp ( - ( 2 -  D ) - I  L l ( v r ) 2 )  

and for the connected correlators 

( , ¢ t ¢ )  c o . .  = ( . ¢ t ~ )  - ( A ) ( t ~ )  

(,A/3C) c°nn = (,A/3C) - (,A){BC) - (/3)(C.A) - (C) (,,ad3) + 2(,A)(B)(C). (7.10) 

The poles in e of the bare expectation values are given by the MOPE and we have for 
instance 

sis (0.L.)]°"-I <<'+>o"+'"it0t°rm' 
"(@l+) I< +> 

-~. - -  ~ c o l i n  
e 0 + finite terms. 

( 7 . 1 1 )  
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Similarly, the third term on the r.h.s, of (7.8) contains a single pole which comes from 
9 9 

the contraction of two 3-point operators into one 3-point operator: ~ A 
a¢" "~ ic" ",o 

~ / ~ .  There three different kind of contractions, the number of are Including inequiv- 

alent ways of contracting the vertices, one has 

~7-":' 36 ~ ~ '  
x - I - x  + 9 x : -~,~ ~_-- : (7.12) 6 

, - -  2 

This term also contains poles which come from the contractions of 3-point operators into 

thel-pointoperator-~-: / ~  >-~-and / ~ / ~  >--~-.Thefirstpoles 

will be subtracted by the same wave-function renormalization which subtracts the l-loop 
divergence (7.11). The second pole corresponds to a 2-loop wave-function divergence 
and need not to be considered here. Thus we have 

+36L~((~~'ic,/~,.,.)e fir( O ~ / ~  )corm0 

( k) iis( .L)- +9- -  = ~'---~' .~i~------ -- O 
E .... e 0 

+higher-order wave-function divergences 

+finite terms. (7.13) 

From (7.8), (7.11) and (7.13), one sees that the single poles cancel and that the 
renormalized theory is finite at l-loop order if the counterterms Z and Zg are given by 
(7.7) with 

a -  < .  

- - - - - J  S 
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(7.14) 

The renormalized observables satisfy the renormalization group equations. They are 
easily obtained by calculating the variation of the renormalized quantities with respect 
to the renormalization scale/z, which corresponds to the scale at which the theory is 
probed, keeping the bare hamiltonian, which represents the microscopic theory, fixed. 
The flow of the coupling constant is given by the fl-function: 

O - e g  

f l (g)  = l~-ff~ go g = 1 + gO ln Z~/Og + degO ln Z/Og 

= - e g  + gZ(d~a + b) + O(g2) ,  (7.15) 

with dc= 3D/(2 - D). The scaling dimension of the field, v(g), is similarly obtained 
from the flow of the dimensionless renormalized field ? = 1~(2-°)/2r: 

O l n ( ? ) = 2 - D  1 O ln(Z) 
--T- 

2 - D  1 
- 2 + g a + O ( g 2 ) .  (7.16) 

v(g)  is related to the "fractal dimension" dF(g) of the membrane through v(g)  = 

D/dF(g) .  

The analytical and numerical calculations of the previous sections show that the 
coefficients a and b (7.14) are both strictly positive for 1 < D < ~. This implies that 
for positive (and at least small) e, the fl-function has a non-trivial IR-attractive fixed 
point at 

1 
g = e + O(e2).  (7.17) 

ado + b 

This fixed point governs the large-distance (small/z) behaviour of the membrane at the 
O-point. The scaling dimension of the membrane at the O-point is given by 

v* D 2 - D a 
- d~ - v(g*) - 2 + e2(ade + b) + O(e2)"  (7.18) 

Finally, let us recall that, while the fl-function and the anomalous dimension v(g)  
depend on the normalization of the hamiltonian and on the choice of the renormalization 
scheme, the result for the anomalous dimension v* is universal. In particular, it does not 
depend on the normalization introduced in Subsection 2.5. 
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Fig. 17. Anomalous correction to ~,* at l-loop order (3-point interaction). 

Table 5 
Anomalous correction to ~* at l-loop order (3-point interaction) 

D A(D) 

1.00 0 
1.05 0.003390 
1.10 0.007252 
1.15 0.01167 
1.20 0.01669 
1.25 0.02225 
1.30 0.02802 
_4 0.03175 3 

7.2. Results f o r  the anomalous dimension at l-loop order 

One possibi l i ty  to make the expansion is to consider the dimension D o f  the membrane 

as fixed and to vary the dimension of  the external space d around the critical dimension 

de = 3 D / ( 2  - D ) .  This means to expand ~,* in ~ = de - d: 

u* = - - 2  - D + g A ( D )  + O ( ~  2) , A ( D )  = a ( 2  - D)  (7.19) 
2 2(ado + b) " 

The value of  the coefficient A ( D ) ,  which determines the scaling dimension of  the 

membrane at order ~, is plotted in Fig. 17 and listed in Table 5 for 1 < D < 4. 

In this region, A ( D )  is positive and the scaling dimension v* is larger than the 

scaling dimension o f  the free "phantom" membrane v = (2 - D ) / 2 ,  as expected since 
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the interaction should swell the membrane. The correction vanishes for D ~ 1. This is 
in agreement with the known results [21] for polymers at the O-point: corrections to 
the scaling dimension first appear at two loops, i.e. at order ~2. Interestingly, although 
individual diagrams diverge at D = 4, the correction for the anomalous dimension seems 
to be regular as D --+ 4" We shall prove in the next section that this is indeed the case 
and that the correction can be calculated analytically at D = 4_ 3" 

8. D =  4 
3 

As we remarked in the calculation of some of the diagrams, new singularities appear 
at D = 4. They come from the fact that the modified 2-body operator e. :: e., 
defined by (2.41), which is irrelevant for D < 4 and e = 0, becomes marginal at D = 4 
and is relevant for D > 4. As argued in Ref. [ 15], it is this last interaction term which 
is relevant to describe the O-point for D > 4 and d close to the critical dimension, 
which is now given by d~c = 2(3D - 2 ) / (2  - D). 

In this section we first discuss the limit D ~ 4 of the l-loop results obtained for 
D < 4 by the 3-point interaction only and show how the modified 2-point interaction 
emerges from the 3-point interaction as D ~ 4. This allows one to prove that this limit 
is regular as far as physical quantities such as the anomalous dimensions are concerned. 

In the second subsection we briefly recall the l-loop results for the modified 2-point 
interaction, which are a priori valid for D > 4. The limit D --+ 4 also turns out to 
be regular and the l-loop correction for the anomalous dimension can be continued to 
D < -  4 

3" 
Finally, in the third subsection we study the domain around D = 4 and d = 6, which 

is characterized by a crossover between the 3-point interaction and the modified 2-point 
interaction, described by the full hamiltonian (2.20). We show that at l-loop order this 
case can be treated analytically and that the crossover between the two interactions is 
understood. 

8.1. The limit D --+ 4 f o r  the 3-body interaction 

Regarding the analytical and numerical results for the integrals involved in the calcu- 
lations for the 3-body interaction (Figs. 5, 8, 10 and 15), one remarks that the integrals 

/ ~ - - ~ -  ) and / ( " ~ ~  ~ /  are diverging for D ---+ a whereas the 

twoothers, ( ~ ~  - ~ ) a n d  (~i~"--..~_~rs'~_-~ =1--~) ,stay finite. There- 

fore, the first two are expected to dominate in the limit D ~ 4. 
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Let us start with the integral ( ~  -5~-) , given by (3.17) and (3.9). This 

-------" L 

integral has a global divergence as e ~ 0. The additional subdivergence as D --+ 4 is 

due to the subcontraction of two out of the three points: L ("";~-'~ 
iC" "o 

This subcontraction is given by the MOPE (2.13). If we denote by (y, z) the pair of 
subcontracted points, it takes the explicit form: 

~ ('-"..'~ ,... °x=C({Y'Z} )ye 

C({y, z }) = IY - z I -~a , 

~.x+ D({y,z})ye. '.'. ¢.x+ . . . .  

O({y, z}) = l l y  - z [-~,(d-2). 
q. (8.1) 

We remind the notation of points and distances represented in Fig. 2. The first term 
is the most singular one and is subtracted by the finite-part prescription described in 
Subsection 3.2. The second gives the singularity at D = 4. Remind, that the factorization 

of the integrations is valid only if b = mY - z l is (much) smaller than a = [x - Yl. So an 
effective IR-cutoff L ~ has to be introduced. It will be specified later. Integrating in the 

domain b = lY - z l < U, we get 

/ 
b=-ly-zl<U 

\ 
e :: - - )  .~ :: e + f i n i t e t e r m s ,  

/ U 

(8.2) 

where we used the notation, similar to that of Subsection 3.3, for the singular coefficient 

:.""~___.. I b _ ~ ( a _ 2 )  
< , . ~  --le. :'. :)£ = f D({y,z})= f ~ 

b=lY-zl<L' b<L ~ 

1 L,2-~a, (8.3) 
4(2 - vd) 

which diverges as ud - 2 ~ 0. Since we are interested in the pole given by the global 
divergence for e = 0, we can replace pd by 3D/2 and the pole term 1 / ( 2 -  ~,d) by 

2 4  ~ / ~  g/(  5 - D).  It is this term, associated to the subcontraction , ~. :'. ~., 

which gives the dominant contribution as D --* 4 3" 
In this limit, another interesting thing happens: (8.3) depends only logarithmically on 

U. This solves the delicate problem of how to choose this regulator when one integrates 
over the other distances. One can simply take U to be the distance a between the two 
points in ~ :: ~. This is natural since this distance is the only one available. It is 
equivalent to integrate in the sector b < a. 

In the integration over the remaining distance, the dominant contribution comes from 
the contraction e :: .~ ~ --~-, given by a MOPE of the form 
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Fig. 18. Anomalous corrections to v* at l-loop order (A(D) from the 3-point interaction and B(D) from the 
modified 2-point interaction). 

@ . ,  = H ( { x , y } ) .  + l ( {x , y} )  + + . . . .  

d + 2 _ ylZO_z_va" H({x ,y} )  = dlx - yl -~(d+2) , l ( {x , y} )  = --~ x (8.4) 

The integration over a = Ix - y[ has to be performed for a < L. Since there are three 
inequivalent sectors we end up with 

........ " L u,b, L 

=3 f D ( {y , z } ) l ( { x , y } )  +less singular terms 
, /  

~lY-zl<a=lx-Yl<L 

_ 3 1 4 4 _ o e l L ~ + O ( e o , ( 4 - D )  o) . (8.5) 

This result agrees with the numerical predictions. 
A similar analysis shows that 

( ( ~ )  / ~ ) = 1 8  4 - D e l  1 L ~ + O ( e O , ( ~ _ D ) O ) .  (8.6) 

L 
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Table 6 
Anomalous corrections to u* at l-loop order (A(D) from the 3-point interaction and B(D) from the modified 
2-point interaction) 

D B(D) 

1.00 0.10000 
1.05 0.08266 
1.10 0.06937 
1.15 0.05882 
1.20 0.05023 
1.25 0.04306 
1.30 0.03695 
4 0.03333 

To perform the limit D ~ 4 it is convenient to reexpress g in (7.5) in terms of 

1 
~ =  2 ( 4 _ D ) g  (8.7) 

and analogously for bare quantities. The renormalization group functions become in this 

limit 

fl(~) =/z a-- ~o~= -e~  + 21-2 o~ ~-g + 0 (~ ) ,  (8.8) 

2 - D  1 
b,(~) = T q" 2g  -4- O(~2) .  (8.9) 

These functions are used to analytically calculate the function A ( D )  plotted in Fig. 17 
in the limit D ~ 4 

3 "  

In addition an interesting and striking property can be remarked: ~ is the appropriate 
variable to analytically continue to D > 4. For e > 0 the fixed point ~* stays positive 
whereas in terms of the original coupling g the associated g* becomes negative. This 

fact will be further clarified in Subsection 8.3. 

8.2. Comparison with the modified 2-body hamiltonian 

Since the modified 2-point interaction --. ',: = becomes relevant for D > 4, it is 
interesting to compare the l-loop renormalization group calculations for this interaction 

with the results for the 3-point interaction. These calculations are very similar to the 
original calculation for the 2-point interaction and can be performed analytically at 
l-loop order [25]. Here we recall the principle of the calculation and the results. 

Let us start from the bare hamiltonian 

1/, // 
~ ° [ r ° ]  = 2- ' --D 2 (Vr° (x ) )2  + bo (--Ar)~l(rO(x) -- r o ( y ) ) .  (8.10) 

x x y 

The dimension of the coupling constant b0 is 
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e I = 3D - 2 - t,d (8.11) 

and the model has UV-divergences, i.e. poles in e ~, for e ~ = 0, that is, for d = d~c = 
2 (3D  - 2 ) / ( 2  - D) .  The model is made finite by defining a renormalized field r and 
a renormalized coupling constant b: 

r ( x )  = Z - l / 2 r o ( x )  , (8.12) 

b= z - d / 2 - 1 Z b l  lz-e'bo , (8.13) 

At l- loop order, the counterterms are found to be 

~ t  

Zo = 1 + ~ = :: = + O ( b 2 ) .  (8.15) 

" 4 . . ' '  ~ /  

T h e r e s i d u e s < , ~ )  --~-> a n d < ~ / i ~ '  = :: = >  are analytic functions of  D 
. . . .  81 . . . . . -  8 I 

for 0 < D < 2, listed in Appendix B. The fl-function and the scaling dimension ~(b)  
for the field r are: 

/xd/z-- b0 1 a l n Z .  (8.16) f l (b )  = 3 b,  v (b)  = u - ~/z~--~ bo 

The new fl-function has a non-trivial 1R fixed point b* > 0 for ~ > 0 and the scaling 
dimension of  the membrane at the O-point, ~*, can be expanded in g~ = d e - d for fixed 
D: 

t,'* - 2 - D + ~ B ( D )  + O ( g  '2) . (8.17) 
2 

The 1-1oop coefficient B ( D )  has no singularity at D = 4. Its value for 1 ~< D ~< 4 is 

shown in Fig. 18 and Table 6, where it is compared to the l-loop coefficient A ( D )  from 
the 3-point interaction. At D = 4, the expansion is around the same critical dimension 
de = 6 and it is interesting to note that, although the expansion parameters e and e t are 
different, the two coefficients A and B are very close, but not identical at D = 4. 

8.3. Mixing o f  2- and 3-body interaction at D = 4 

At D = 4 the two operators = :: 

~ / ~ i s  relevant, above 4 more g =  

T 
and . ~  interchange their role. Below 

:: e .  At D = 4 and d = 6 both operators 
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are marginal: We have the interesting situation of a system with two coupling constants. 
The associated bare hamiltonian, one wants to renormalize, is: 

1 

x x y 

+,oiSi,.<ro<x>-ro<y>>,.<.o<x>-ro<z>>. <8.18> 
x y z 

In contrast to standard perturbation theory, where in first order of the coupling constant 

the divergences are single poles, the leading singuladty of ( ~  - - ~ - ) i s  adouble 

- -  . . . . . .  - L 

pole, due to the sequence of divergent contractions 

This prevents us from performing the renormalization in the standard way. Let us 
look at the problem from another point of view. As the modified 2-point interaction 
; :: -- renormalizes the elastic energy l(X~r)2, perturbations in this operator have 
to be controlled by a small coupling b as is done in the hamiltonian (8.18). On the 

other hand, the 3-point interaction L renormalizes the modified 2-point interaction 

~, :: e via the contraction 

there has to be a small parameter controlling the ratio of ~ and Therefore, 

-- :,, e. These demands are satisfied by redefining the 3-point coupling constant 
go as bogo. The bare hamiltonian becomes 

1 b o f S ( - A ~ ) 6 d ( r o ( x )  ro(y)) [ r0 ] -  2 -of (Vro(x))2+ 
x x y 

+bogo f S i ~ d ( r o ( x ) - - r o ( y ) ) ~ ( r o ( x )  - - ro ( z ) ) .  (8.19) 
x y z 

Orders in b0 and go are counted equivalently. The canonical dimensions of the coupling 
constants bo and go are: 

eb = 3D - 2 -- vd,  eg = 2 - yd.  (8.20) 

As the perturbative expansion is valid in the vicinity of the critical point de = 6 and 
Dc = 4, the two small parameters eb and eg are independent. The theory will be finite 
in terms of the renormalized hamiltonian 
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Z r 1 
H~,g[r] = 2 - O / )2 ~(Vr (x )  + bZMffb f r(y))  

x x y 

(8.21) 
x y z 

involving the renormalized quantities 

r( x ) = z - l  /2ro( x ) , 

b= z-d/2-1Zbl lz-ebbo , 

g =  z-d/2 + l Zgl lz-es g 0 , (8.22) 

where the renormalization factors have up to first order in b and g the form 

b 
Z = l + p g  +q - 

~,g ~,b 

with constants p and q. We draw the attention to the important point that pole terms in 
eb are always proportional to b as should be evident from dimensional arguments. The 
same is true for eg and g. It is also important to note that this would not be the case 
for the parametrization (8.18), nor if one there replaces go by ~ ,  what one might be 
tempted to do. 

In order to explicitly perform the calculations, we have as in Subsection 7.1 to expand 
(O)gRb in g and b: 

1 -  Z r O c o n n  / /  conn 
<O)~,g[r]=<O)o+~--D ] (  -+-)o -Zbb~  ~b~ (0.~ :', ~')o 

-z,,.,..iis(o L)i ° 
,.....//// -° +~Z{,b tz (0¢. . . . .  :: ~')o 

(o. 
o 

+higher-order terms. (8.23) 

The following diagrams contribute in first order of g and b at D = 4 (for more details 
cf. Appendix B): 

3 ' 

" ' - -°"  ~b 

(8.24) 

(8.25) 
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o b \ 

F 

/ J 
D- 4/3 T A/B / 

H 

d-6 
D 

J 
( ~ 0  . < - - -  

/ %1{ 

" S t / ~  ' 
0 

Fig. 19. The different domains in the (d, D)-plane (middle). The corresponding flow diagrams are drawn 
around. 

~g /i~'? ~)=_3.4 
~b 

They determine the renormalization factors at l - loop order: 

(8.26) 

(8.27) 
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b 
Z =  1 + - - ,  (8 .28)  

eb 

+ + Z,=l 
4eg 2 eb 
3g  b 

= 1 - + - 'eb ( 8 . 3 o )  

As usually we define the renormalization group fl-functions of the two couplings b and 
g as their variation with respect to the renormalization scale/z at fixed bare parameters: 

0 b,  (8.31) 
flb( b ,g)  = l~"~ to.go 

# g ( b , g )  i z +  to, go 
= g. (8.32) 

Plugging in the definitions of b and g, we get two coupled linear equations in fib and 
fig, which can be solved after some algebra. They lead to the fl-functions at l-loop 
order: 

3 
flb ( b, g ) = --ebb -- -~ bg + 5b 2 (8.33) 

f lg(b ,g)  = - e g g +  b g +  ~g . (8.34) 

The scaling function of the field z , (b,g)  becomes: 

1 a 
u ( b , g )  = u - ~/z~-~ lnZ 

1 1 
= -  + b. (8.35) 

3 

The system of Eqs. (8.33), (8.34) determines four fixed points in the (g, b) plane. The 
physical couplings must correspond to a repulsive interaction at short distance, hence to 
the domain (b /> 0, g ~> 0). One of the fixed points is IR-attractive, one IR-repulsive 
and the other two have one attractive and one repulsive direction. For special values 
of the parameters eb and %, fixed points may coincide. Passing through these special 
values describes the transition from one fixed point to another, resulting in an eventual 
non-analyticity of the critical exponent l,(b, g). We first list the different critical points 
visualized in Fig. 19. 

Pl: The gaussian fixed point be = 0 and ge = 0: it is stable for eb < 0 and eg < 0. 
P2: The fixed point be = 0 and gc =394e describes also a trivial theory, although ge has 
a non-trivial value. Indeed, regarding the action (8.19), we see that both interactions 
are renormalized to 0. Also the critical exponent ~,(b,g) equals that of the free 
(gaussian) theory. The stability condition is eg > 0 and eb -k- eg < O. 

P3: The fixed point be = l eb  and gc = 0: for this non-trivial fixed point only the 
modified 2-point interaction plays a role. It is stable for eb > 0 and 1 leb > lOeg. 
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Fig. 20. The renormalization flow of the expansion for constant D. The fixed points are marked with points. 
An additional circle indicates an attractive direction. The graph was obtained through a numerical study of 
(8.33) and (8.34). The length of the arrows is scaled as the square root of the speed of the renormalization 
flow. 

P4: The fixed point be = 2(eb+eg) and gc = -~-3(--lleb+lOeg) is the most interesting. 

Both couplings flow to a finite non-zero value. This point is stable for eb q- eg > 0 

and 1 leb < lOeg. It corresponds to the earlier derived fixed point for the case of  a 
4 3-point interaction only in the limit D --~ ~ from below. We will explain that in more 

detail below. 
Let us discuss the graphics of  Fig. 19: We can distinguish eight different regions 

in the (d,  D)  plane around the critical point (de = 6, Dc = 4),  named A to H. The 
separating lines are: 

( i)  eg = 0 separating D,E and A,H ; 
(ii) eb + eg = 0 between E,F and A,B ; 

(iii) eb = 0 separating F,G and B,C ; 

( iv) lleb = 10eg between C,D and G , H .  
The flowgraphs in Fig. 19 correspond to these regions A to H, starting with region H 

in the upper left comer. 
The situation encountered in the discussion of Subsection 8.1 corresponds to an 

expansion in d - 6 for D = 4 fixed. This direction lies in the sector H and is near to 
the transition line 1 leb = 10eg, separating the domain of  attraction of the fixed points 
bc = ½eb, gc = 0 and be = 2 ( e b  + e g ) ,  gc = 4 ( - - l l e b  + 10eb) .  The correct value for 
the anomalous scaling dimension of  the field is thus given by the calculation with the 
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modified 2-point interaction only. The fixed point described by the calculations for a 
4 3-point interaction only before taking the limit D ~ ~ is equivalent to the non-trivial 

but unstable fixed point bc = ~(eb +eg ) ,  ge = A(- - l leb  + 10eb). This can be seen 
by calculating the flow equation for bg, which has the same fixed point as the flow 
equation (/3-function) for ~ in Subsection 8.1, if b here and ~ there are identified. 
In this parametrization also u ( b , g )  here and ~,(~) there are equivalent. The fact that 
the direction of expansion is near to the transition line, at which the two fixed points 
coincide, explains why the anomalous corrections for the scaling of the membrane differ 
so little. The flow graph representing this situation is drawn in Fig. 20. 

Coming back to the general situation depicted in Fig. 19, the flows are such that: 
(i) In regions C, D and E, the gaussian fixed point Pl or the pseudo-gaussian fixed 

point ,°2 are IR-stable. The modified 2-point and 3-point interactions are irrelevant 
and the large-distance properties of the manifold at the O-point are those of a free 
gaussian manifold. 

(ii) In regions A, B and H, the fixed point P3, described by the modified 2-point 
interaction only, is IR-stable. The 3-point interaction is irrelevant and the modified 
2-point hamiltonian (8.10), discussed in Subsection 8.2, is sufficient to describe the 
large-distance properties of the manifold at the O-point through an eb expansion. 

(iii) Finally, in regions F and G the fixed point P4, which contains a mixture of 3-point 
and modified 2-point interactions, is IR-stable. As discussed above, this fixed point 
corresponds to the limit D --~ ~ for the 3-point hamiltonian (2.1). Therefore, the 
pure 3-point hamiltonian is sufficient to describe the O-point in an eg expansion. 

If we extrapolate these l-loop results, we obtain the picture already summarized in 
Fig. 1 for the O-point as a function of the external dimension of space d and of the 
internal dimension of the membrane D: The (d, D) plane is separated into three regions: 

(i) For D < 2 and d sufficiently large, both the 3-point interaction and the modified 
2-point interaction are irrelevant. The O-point is described by the gaussian model. 

(ii) For d < dc = 3 D / ( 2 - D )  and D sufficiently small, the 3-point interaction is more 
relevant than the modified 2-point interaction and governs the O-point. 

( i i i )  For  d < d~c = 2 ( 3 D  - 2) / (2  - D) and D sufficiently large, the modified 2-point 
interaction is more relevant than the 3-point interaction and governs the O-point. 

At l-loop order, the separatrix between these two domains is given by line number 4. 
( l leb = 10eg, with eb and eg given by (8.20)), i.e. by the line 

d = 1 0 8 D -  138. (8.36) 

Thus, if we trust this picture far from the critical point (d = 6, D = 4), we expect 
that for 2-dimensional membranes (D = 2), the modified 2-point interaction will always 
be the most relevant to describe the O-point, even for d < 6. One also checks that 
the modified 2-point interaction is less relevant than the standard 3-point interaction to 
describe polymers (D = 1) in two dimensions (d = 2) at the O-point. 

Finally, let us stress that our analysis of the relevance of the two interaction terms 
leads to results drastically different from naive power counting or approximate schemes. 
Naive power counting predicts a separating line given by 
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4 
d = - -  (8.37) 

2 - D  

and that for D = 2 the 3-body interaction is always more relevant than the modified 
2-body interaction. Flory-type arguments give a separatrix 

d = 3 D +  2,  (8.38) 

while a gaussian variational approximation leads to 

d = 6. (8.39) 

Both approximations predict that for D = 2 the 3-body interaction is relevant for low 
dimensions d (d < 8 and d < 6, respectively). 

9. Conclusions 

In this paper we discussed the renormalization of self-avoiding tethered membranes 
at the tricritical point. The 3-body repulsive interaction has been considered first. From 
a technical point of view the calculations at l-loop order are difficult and led us to 
the development of new technical tools. These tools have successfully been applied to 
membranes with intrinsic dimension 1 ~< D ~< 4 at the O-point and gave the critical 
exponent v* at l-loop order. They equally should apply for the 2-loop calculations in 
the case of pure self-avoidance, Eq. (1.1). 

The limit D ~ 4, d -~ 6 is especially interesting, since in this situation a crossover 

between the 3-body repulsive interaction and a modified 2-body interaction takes place. 
For D ~ 4 we were able to analytically calculate v*. The expansion around the point 
D = 4 and d = 6 revealed new and interesting phenomena. Thanks to a new double 
e-expansion we were able to completely describe the structure of the renormalization 
group flow and of the fixed points. The crossover is understood as the passing from 
one IR-attractive fixed point to another. This approach also settles the question which 
interaction is expected to be relevant to describe the O-point for the "physical" systems: 
While for polymers it is the 3-body interaction, it is the modified 2-body interaction 

which is relevant for 2-dimensional tethered surfaces. 
Although the models considered in this paper seem to be rather complicated and 

cumbersome they possess a great mathematical and physical richness, which we hope 

will further be explored in the future. 
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A p p e n d i x  A 

About the finite-part prescription 

In order to eliminate the relevant UV-divergences which appear in subeontractions 

. ,.~..~ --, we had in Eq. (3.13) defined a subtracted 3-point interaction 

by adding a counterterm proportional to the 2-point interaction. Another possibility is 

not to add such a counterterm, but to subtract the relevant divergences by a finite-part 

prescription on the level of diagrams. Let us demonstrate that for the diagram involved 
in the elastic term renormalization (Section 3). We start from expression (3.9) 

B({x,y,z}) 
2 d (C 2 + a  2 - b 2 ) b  2 j ' + ( a  2 + b  2 - c 2 ) c  2 Y + ( b  2 + c  2 - a 2 ) a  2Y 

= - ' D  [ ( a  Y + b Y + c Y) ( a  u + b ~ _ c ~) (/~, + c ~ _ a u) ( c  Y + a u _ b Y ) ] l +d/2 ' 

(A.1) 

which shall be integrated over the sector .4, defined in Section 4 and characterized by 

L = a > b, c. Divergences occur only for b --* 0 and c --~ 0. The finite-part prescription 

amounts to: 

f .p . f  B({x,y, })= f B({x ,y ,z})-  f 1 _yd.4_c_Yd)aD_ud z ~-~(b . (A.2) 

-4 -4 -4,B,¢ 

In the counterterm the integration is not restricted by b, c < a = L. Mapping the sectors 

/3 and C onto .4  y ie lds  a n e w  expression c'(e) for the residue in ( 3 . 1 8 ) .  It differs from 

the one obtained in Section 3, given in (3.21), by 

1 / (a_~,dbD_pd q- c_YdbD_Yd)(b_ ~ _ 1) 
c ' ( e )  = c ( e )  - 4-15 

.4 
+(a-Yale °-vd + b-Yale °-Yd) (C -~ -- 1) .  (A.3) 

This difference is of order e as e ~ 0 and so does not change the residue c(0) at e = 0. 

The same statement holds for the other diagrams involved in the l-loop renorrnal- 
ization of the 3-point interaction. Different subtraction prescriptions of the relevant 
divergences (associated to the 2-point interaction) thus do not change the pole terms 
at e = 0, which determine the renormalization group functions at l-loop order, but they 
may change the finite parts at that order. This implies that the renormalization group 
functions at 2-loop order will depend on the choice of the subtraction prescriptions. 

Another point, which has to be discussed, is whether the limit d ~ de in (3.21) 
or with the modified counterterm discussed above can be performed. It is clear that 
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problems may only arise for small b or c. In this limit, the integrals may be expanded 

in the form 

f b a (A.4)  

b 

According to the definition of  the finite-part prescription it is sufficient to check that no 

pole term in 1/(D - A) may occur for D - a = 0. The reader may easily verify that 

this is indeed the case. 

A p p e n d i x  B 

Some diagrams 

In this appendix the MOPE is given for all contractions not calculated in the main 

text. In addition the residue o f  some more diagrams can be found, which was used but 

not calculated up to now. 

The labeling of  distances is either unambiguous or follows the notations in Figs. 2, 

7 , 9 o r  11. 

= ~ a 2~ + b 2" ~ = 
- . _ . . ,  

+ ~  a 2. + b 2~ . . . . .  

+ . . . .  (B.1)  

3 D - 2  F ( D / ( E - D ) )  2 

-- = (2 - D )  2 F ( 2 D / ( 2  - D ) )  ' (B.2)  
3D--2-vd 

D + 2 F ( D / ( 2 -  D ) )  2 

-- - 4 (2  - D )  2 F ( 2 D / ( 2  - D ) )  ' (B.3) 
2D-vd 

= 4 a2~, _~ b 2 v j  e. : 

d 2 + 6d - 8 ( 1 .~d/2+1 
+ 16 . a2~ q2 b2~/  . . . .  

+ . . . .  (B.4) 

3D = 10D - 0 2 - 8 F ( D / ( 2  - D ) )  2 (B.5)  
e 2(2  - D )  3 F ( 2 D / ( 2  - D ) )  ' 

- 2 - vd 
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~ = da-v(d+2) • 

+> 
. . . .  " 3D-2--vd-- 2 -- D ' 

d + 2a2D_2_vd + 
4D 

='~ (aEv $ b2v.] 

= ( 2 -  D) 2 F ( 2 D / ( 2 -  D)) ' 
3 D - - 2 - - v d  

555 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

,,~/ ',.-7/ 

= (4b2re2V -4- (a" + c" + b")(a" + 

4 ) d/2 

c ~ b ~)(a ~ - c  ~+b  ~)(c v + b  ~ - a  ~) 
x -- =. + . . . .  (B.IO) 

= (B.11) 

3 D - - 2 - p d  

Appendix C 

Renormalization of relevant operators: away from the tricritical point 

The tricritical point (O-point) was obtained by demanding the renormalized coupling 
t for the 2-point interaction to vanish. It is possible to study the general situation with 
t 4= 0 by regarding the renormalized hamiltonian: 

Z / l ( v r ( x ) ) 2 + t Z t l ~ ( o + . ) / 2 f  / ~ ( r ( x ) _ r ( y ) )  7"[gR't[ r] - 2 - D 
x x y 

+gZgtz~fff~(r(x)-r(y))~(r(x)-r(z)). (C.1) 
x y z 
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The dimensions of the renormalized couplings t and g are adjusted to vanish, g was 
defined in (7.4), t analogously is 

t = z - d / 2 z t l ] j , - ( o + e ) / 2 t o  . (C.2) 

From general arguments it is known that t as the coupling of a relevant operator does 
not appear in the renormalization factors Z, Zt and Zg as long as we stay within the 
frame of the minimal subtraction scheme. So Z and Zg are unchanged. In addition to 
(7.8) there is to first order in t: 

(0[  r] )g~t - (O[r])Rg = _tZtlzO/2+~/2 (0  : 

+tgtl~ D/2+3e/2 ( 0  .~ 

This determines 

(c.3) 

Zt = 1 + 6 ( (  i ~  (,',i~) : ~" ) g+e O(g2)" (C.4) 

; ~  ] 6 ( i  ~ (i~.) -- : )  

(C.5) 
The new diagram involved in (C.5) has already been calculated: 

s 

(C.6) 

This is understood from the fact that the additional exterior leg on the r.h.s, of (C.6) 
does not appear in the calculation of the MOPE coefficient. 

By now it should be clear that the limit D --~ ~ is regular if one uses the rescaled 
coupling ~ in (8.7). It is equally possible to calculate around D = 4 and d = 6 following 
the discussion in Subsection 8.3. The reader willing to perform this exercise will find 
the necessary diagrams in Appendix B. 

0 
Yt =/z~-~ t 

to, go 

[e_Lln o ] 
- 2 fl(g) [2Og Z + ~ g l n Z t  

- 

+O(g z) . 

The scaling of the 2-point interaction is thus described by the renormalization group Yt 
function: 
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