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We study experimentally the force-force correlator in Barkhausen noise, measured in different soft ferromag-
nets. Our materials belong to two distinct universality classes, differing in the range of spin interactions, and
for both cases with and without eddy-current effects. We show that these correlations have a universal form
predicted by the functional renormalization group, distinct for short-range and long-range elasticity, and mostly
independent of eddy currents. For short-range elasticity, we find the correlator predicted in d = 2. For long-
range elasticity we observe its 1-loop solution, relevant at the upper critical dimension. In all cases force-force
correlations grow linearly at small distances, as is assumed in the ABBM model, but in contrast to the latter are
bounded at large distances. As a consequence, avalanches are anti-correlated, i.e. reduced in size, at short dis-
tances. We derive bounds for these correlations, which are saturated in the experiments, showing that samples
are chosen optimally and multiple magnetic domain walls effectively behave as a single wall.

Barkhausen noise in soft magnets [1–3] originates from
complex microscopic magnetization processes through the
jerky motion of magnetic domain walls. First discovered
by H. Barkhausen [4] in 1919, it is the oldest example of
depinning and avalanche motion [5–7]. Observables read-
ily accessible are the avalanche size and duration [8, 9], as
well as the avalanche shape [10–13]. On the theoretical side,
mean-field models pioneered in 1990 by Alessandro, Beat-
rice, Bertotti and Montorsi (ABBM) [14, 15] have shaped our
thinking. In these models, the domain wall is represented by
a single degree of freedom, its centre of mass, a.k.a. mean
field (MF). The question then arises how good this description
is. A partial answer was given by experiments, which show
the existence of two universality classes differing in the kind
and range of interactions governing the domain-wall dynam-
ics [6, 9]; they separate amorphous materials with short-range
(SR) interactions from polycrystals with long-range (LR) in-
teractions, the latter attributable to strong dipolar interactions.
Another distinction is whether eddy currents (EC) play a no-
ticeable effect for the wall motion [1, 6, 10, 11, 16], an
aspect experimentally tunable by varying the sample thick-
ness [1, 10, 11]. For the first class, key observables such as
the avalanche-size exponent τ ' 1.27 differ from their MF
prediction τMF = 3/2, while they are correctly accounted for
by field-theoretic models [17–19]. For LR magnets the experi-
mentally observed exponents agree with their MF predictions,
which led to the belief that MF theory is valid there.

In view of the solid evidence for critical exponents, a key
question is whether an experiment can be designed which con-
tradicts the ABBM model in one of its key predictions for LR
magnets. We show below that this is indeed the case for the
correlator of forces acting on the domain wall, or equivalently
the correlator of its positions. In order to understand this, con-
sider the equation of motion of an interface with SR interac-
tions,

η∂tu(x, t) = ∇2u(x, t) +m2[w − u(x, t)] + F (x, u(x, t)),

w = vt. (1)

Here w is proportional to the external applied field, and we

suppose that the latter increases very slowly. The term pro-
portional to m2, the demagnetization factor, is always present
in magnetic systems, usually denoted k ≡ m2 [6]. Under
slow driving conditions, most of the time the l.h.s. of Eq. (1)
vanishes. Averaging Eq. (1) over x, we arrive at1

ηu̇w = m2 [w − uw] + Fw. (2)

This is Newton’s law: At rest, the forces exerted by the confin-
ing potential are balanced by the forces from the disorder. The
key observable we study here are the interface correlations,

∆̂v(w − w′) := [w − uw] [w′ − uw′ ]
c
' 1

m4
FwFw′

c
. (3)

The index v reminds that ∆̂v depends on the driving velocity.
The normalization is different from the one used in the field
theory [20], which contains an additional factor ofm4Ld, with
L the system size, on the r.h.s. Our choice is motivated by a
lack in the knowledge of m2 and L, and by the reduction of
scales in ∆̂v(w) to a single one, namely the correlation length
ρ in w-direction. We are particularly interested in its zero-
velocity limit

∆̂(w) = lim
v→0

∆̂v(w). (4)

The observable ∆̂(w) is the central object of our work. It
is also the central object of the field theory, necessary for all
quantitative predictions [7, 20, 30–32]. In an experiment, it
is impossible to take the limit of v → 0. The effect of the
finite driving velocity v is to round the cusp |∆̂′(0+)| = σ
(see Eq. (7)) in a boundary layer of size δw ∼ vτ , where τ

1 We denote by uw(x) := u(x, t) the interface position given w = vt, and

uw :=
1

Ld

∫
x
uw(x), Fw :=

1

Ld

∫
x
F (x, uw(x)).
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FIG. 1. Barkhausen noise in an amorphous FeSiB film with thickness of 200 nm, a bulk magnet with SR elasticity and without eddy-current
effects. The signal in (a), depicted in terms of u̇w and w in our notation, is characterised by sudden bursts of activity which are recorded as
a voltage signal in the pickup coil, due to changes in the magnetic flux. Background instrumental white noise is visible, leading to negative
u̇w. (b) The connected part of the interface position, w − uw, obtained after integration. The linearly increasing parts have slope one by
construction, and correspond to an increasing magnetic field, followed by sudden jumps in force when the domain wall moves forward.

is the timescale set by the response function R(t) ' 1
τ e−t/τ

(see Fig. 2(c) for an example). One can show [25] that

∆̂v(w) =

∫ ∞
0

dt

∫ ∞
0

dt′R(t)R(t′)∆̂(w − v(t− t′)). (5)

In Appendix D we summarize the method of Ref. [25] to un-
fold Eq. (5) and reconstruct ∆̂(w) from the measured ∆̂v(w).
The result is

∆̂(w) = ∆̂v(w) + τ2∆̂u̇(w), (6)

where ∆̂u̇(w) is the auto-correlation function of u̇w, readily
accessible in our experiment. This allows us to extract the
correlation function ∆̂(w) in Eq. (4), by plotting the r.h.s.
and finding the time scale τ that best eliminates the boundary
layer. As we demonstrate below, Eq. (6) allows us to remove
a relatively large boundary layer of size δw = vτ , but it cre-
ates a smaller one of size δ′w = vτ ′. This we believe is due to
additional fast modes contributing to the response function in
Eq. (5). This is further discussed in Appendix E.

In the small-v limit Eq. (5) can be approximated by a
boundary-layer ansatz [25]. Whereas this method may be
more robust for noisy data, it is less precise. We discuss this
in Appendix D.

The ABBM model assumes the forces Fw to perform a ran-
dom walk, and as a consequence2

1

m4

1

2
[Fw − Fw′ ]2 = ∆̂(0)− ∆̂(w − w′) ' σ|w − w′|. (7)

2 Since Fw performs a random walk, Fw is not well defined, whereas Eq. (7)
is.

Field theory [7, 21, 22] predicts a combination ∆̂(0)− ∆̂(w)
which as Eq. (7) grows linearly for small w but saturates for
large w. Its shape is distinct in SR and LR systems; analytical
expressions are given in Appendix C.

The above framework has been tested in simulations [23–
25], experiments on wetting [26], as well as RNA/DNA peel-
ing [27]. Compared to these systems, magnets have important
advantages: Firstly, they permit easy repetition, increasing the
statistics; secondly, they are the only system where both LR
and SR elasticity are realized.

Our measurement procedure is as follows: Eq. (3) above
uses uw, the position of the center of mass of the interface.
Our experimental data consist of the Barkhausen-noise time
series, itself proportional to the center-of-mass velocity u̇w.
As can be seen in Fig. 1(a), this signal is characterized by
bursts when the domain wall moves forward, and a vanish-
ing signal when the wall is at rest, combined with background
white noise from the measurement device3. This allows us
to reconstruct uw, as depicted in Fig. 1(b). The domain-wall
position uw is characterized by linearly increasing parts corre-
sponding to an increasing magnetic field (i.e. w), followed by
sudden drops inw−uw when the domain wall moves forward.
Since the linear increase is due to w, its slope is one. This al-
lows us to reconstruct the a priori unknown scale between u̇w
and the induced current, reducing the unknown scales in the
experiment to a single one. Details of the construction of uw
from u̇w are discussed in Appendix B.

We analyse ∆̂(w) in different classes of materials, includ-
ing polycrystals and amorphous materials. They are respec-

3 Since the interface only moves forward [28] u̇w ≥ 0, incidences on Fig. 1
violating this condition are due to noise.
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FIG. 2. (a) Construction of the fixed-point function ∆̂(w) for the FeSiB film (SR elasticity, no eddy-current effects). In red the raw data. In
blue dashed, the result from Eq. (6) using τ = 0.17. In dotted gray the extrapolation to w = 0. The small remaining peak (blue dashed) is at a
much smaller time scale. (b) Comparison of the fixed-point function using the dotted gray curve of (a), to theoretical candidates, fixing scales
by ∆̂(0) and ∆̂′(0+). The theory candidates from top to bottom are: exponential function (red, dotted), solution in d = 0 [25, 29] (blue,
dashed), 2-loop FRG for d = 2 obtained by Pade resummation (orange, dotted), 1-loop FRG solution, valid for d = dc (black, dot-dashed).
Error bars in green represent 1-σ confidence intervals. The inset shows theory minus data in the corresponding color code, favouring the d = 2
fixed point at two loops (with error bars for this curve only). (c) Check of the unfolding procedure, Eq. (6), for the FeCoB ribbon (SR elasticity,
noticeable eddy currents), at different driving velocities v, using the same time scale τ = 0.025; magnified in the inset. Apart from a small
deviation for v = 3 they extrapolate to the same function. (d) Comparison of ∆̂(w) from (c) to the theoretical candidates, using the same color
code as in Fig. (b). The data is consistent with the 2-loop FRG fixed point at ε = 2.

tively characterized by long-range or short-range elasticity,
both for thick and thin samples, i.e., with and without eddy
currents. Table I summarises our set of samples and their
properties. Details for the samples and experiments are given
in Appendix A, and for the data analysis in Appendix F. There
we also included the relevant information to convert our units
of w to physical time and space.
Short-range interactions without eddy currents. Our first
sample is an amorphous FeSiB film with a thickness of
200 nm. Fig. 2(a) shows that the raw data for ∆̂(w) are

rounded in a boundary layer of size δw ≈ 0.6, due to the fi-
nite driving velocity. To obtain the zero-driving-velocity limit
∆̂(w), we use Eq. (6) with τ = 0.17. This reduces the bound-
ary layer (non-straight part) from δw ≈ 0.6 (in red, solid)
to δw ≈ 0.1 (in blue, dashed), allowing us to extrapolate to
w = 0 (shown in dotted grey). It is this curve we report as our
final result on Fig. 2(b) (in solid grey).

The measured values for ∆̂(0) and ∆̂′(0+) are then used to
fix all scales in the fixed-point functions we wish to compare
to on Fig. 2(b). These are from bottom to top (analytic ex-



4

(a) (b)

exponential

?

d = 0
��	

1-loop
d = dc

��*

2-loop
d = 2

�
��* measurement

?

exponential

?

d = 0
�
�	

1-loop
d = dc�

��*

2-loop
d = 2

��
�*

measurement

?

FIG. 3. The measured function ∆̂(w) for our two LR samples, i.e., (a) a polycrystalline 200-nm-thick NiFe film (with negligible eddy-current
effects), and (b) a polycrystalline FeSi ribbon (with eddy currents). Both measurements are in agreement with the 1-loop FRG fixed point.

pressions are given in Appendix C): 1-loop FRG (black, dot-
dashed, relevant for d = dc, i.e. LR elasticity), 2-loop FRG in
d = 2 (relevant for SR elasticity, in orange, dotted) [21, 22],
the d = 0 solution [25, 29] (blue, dashed) and a pure expo-
nential (red, dotted), the latter, not realized in magnets, given
as reference. The data agree best, and within error bars, with
the 2-loop FRG fixed point predicted by the theory for d = 2.
We note that from Fig. 2(b) we extract a correlation length
ρ := ∆̂(0)/∆̂′(0) ≈ 3. This agrees with the scale on which
∆̂u̇(w) decays to 0 (see Fig. 10(a) in Appendix G).

Short-range interactions with eddy currents. Our second
sample with SR elasticity is an amorphous FeCoB ribbon
where eddy currents are non-negligible. Here a range of dif-
ferent driving velocities is at our disposal. As eddy-current ef-
fects and non-linearities become more relevant as v increases,
we focus on the small-v limit of v = 1, 2, 3. Whereas for the
previous sample, finding ∆̂v(0) was sufficient, here there is
additional (white) noise contributing to u̇. After integration

Sample Interactions /
Eddy currents Correlation Length

Amorphous 200-nm-thick
FeSiB film SR / No 7.5 ms ∼ 495 µm

Amorphous FeCoB ribbon SR / Yes 0.1 s ∼ 67.5 µm
Polycrystalline 200-nm-thick
NiFe film LR / No 12.5 ms ∼ 500 µm

Polycrystalline FeSi ribbon LR / Yes 35 ms ∼ 0.9695 µm

TABLE I. The set of samples investigated in this work, belonging
to two universality classes ascribed to the kind of interaction gov-
erning the domain-wall dynamics, i.e. short-range and long-range in-
teractions. In addition, two of them are thin films with negligible
eddy-current effects, while the other two are ribbons, known for the
retarding effect of eddy currents. The correlation length ρ is given in
physical units using the information in Appendix F.

this contributes a linear function to ∆̂(w), and what we mea-
sure is

∆̂raw
v (0)− ∆̂raw

v (w) = ∆̂v(0)− ∆̂v(w) + σnoise|w|, (8)

necessitating to subtract a linear term σnoise|w| (see Fig. 8 in
Appendix F 2). Fig. 2(c) shows ∆̂v(w) after this subtraction,
for driving velocities v = 1, 2, 3 in blue, red and green. The
inset shows a zoom into the boundary layer with unfolding by
Eq. (6) in the same colour code. Having data at different v
allows us to test that

(i) the boundary layer scales linearly in v, i.e. δw ∼ vτ .

(ii) ∆̂v(w) for v = 1, 2, 3 unfold to the same ∆̂(w).

Both conditions are satisfied using τ = 0.025. Comparison
to the fixed-point candidates proceeds as before and is shown
in Fig. 2(d), using both v = 1 and v = 2 to improve the
statistics. Although the error bars are non-negligible, the data
is in agreement with the predicted 2-loop fixed point in d = 2,
as for the FeSiB film with SR elasticity without eddy currents
shown in Fig. 2(b). Note though that for w > 0.7 we observe
a slower decay and the data slightly deviates from the 2-loop
result, albeit well within error bars. We do not know whether
this is a statistical fluctuation, or due to the eddy currents.
Long-range interactions without eddy currents. Long-
range elasticity arises in materials, here a polycrystalline NiFe
film with a thickness of 200 nm, due to strong dipolar inter-
actions between parts of the magnetic domain wall. For long-
range elasticity the upper critical dimension dc = 2 coincides
with the dimension of the domain wall. The common belief
is that then MF theory, i.e. the ABBM model, is sufficient to
describe the system. A glance at Fig. 3(a) shows that the ex-
perimental result is in contradiction to the prediction (7) of
the ABBM model. While the latter holds at small w, at larger
w the correlator ∆̂(w) decays to zero. Field theory predicts
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FIG. 4. Anticorrelation of avalanches as a function of w, for the two
samples with eddy-current effects, (a) the FeCoB with SR elasticity
and (b) the FeSi one with LR elasticity. The solid line is the predic-
tion −∆̂′′(w) from Eq. (9), as obtained from the experiment. The
dashed lines are bounds on the maximally achievable reduction from
the ε-expansion (10), with error bars in cyan, for the SR elasticity
case. There are no fitting parameters.

[21, 22, 33, 34] that fluctuations are relevant at the upper crit-
ical dimension, and that the correlator ∆̂(w) is given by the
1-loop FRG fixed point. Fig. 3(a) shows that this is indeed the
case.

Long-range interactions with eddy currents. Our fourth
sample is a polycrystalline FeSi ribbon where the elasticity is
long-range and eddy currents non-negligible. Fig. 3(b) shows
a comparison of the unfolded data to the four theoretical can-
didates. As for the NiFe film with LR elasticity without eddy-
current effects, the agreement is excellent with the 1-loop
FRG solution, and inconsistent with ABBM. We refer to Ap-
pendix F 4 and Fig. 9 for details on the data analysis for this
sample.

Curiously, the question of the effective force-force or
center-of-mass correlations, the correlations of velocities or
avalanche sizes have never been addressed experimentally.
Here we aim at closing this gap. We show that these correla-
tions have a universal form, predicted by the functional renor-
malization group [7, 20–22, 31, 32], both for short-range and
long-range elasticity and mostly independent of eddy currents.

An important property of the experiments is that force-force
correlations are always bounded, and do not grow indefinitely
as in mean-field models such as the ABBM model [14, 15],
see Eq. (7). It has been shown (see Ref. [7], section 4.20, or
Eq. (8) of Ref. [35]) that as a consequence, avalanches are
anti-correlated

〈Sw1
Sw2
〉

〈S〉2
− 1 = −∆̂′′(w1 − w2). (9)

Here Sw is the size of an avalanche at w, and by definition
〈Sw〉 = 〈S〉. In the numerator is 〈Sw1

Sw2
〉, the expectation

of the product of avalanche sizes, given that one was triggered
at w = w1, and a second at w = w2. The experimental veri-
fication of this relation is shown on Fig. 4. Despite large sta-
tistical fluctuations, both the functional form as the amplitude
agree. Since ∆̂(w) is convex, ∆̂′′(w) ≥ 0. On the other
hand, 〈Sw1

Sw2
〉 ≥ 0, thus ∆̂′′(w) ≤ 1. This bound is impos-

sible to reach, as the toy-model (C6) in dimension d = 0 has
∆̂′′(0+) = 0.5. The ε-expansion [7] gives

∆̂′′(0+) ≤ 2

9
+ 0.107533ε+O(ε2), (10)

which evaluates to 0.437 for SR, and 0.222 for LR correla-
tions. A glance at Fig. 4 shows that this bound is saturated,
both for the SR and LR sample. This is surprising as both sys-
tems have multiple domain walls, estimated to be around five
for the samples on Fig. 4. So either all but one domain wall
are completely stuck, or these multiple walls are so highly
correlated that they effectively behave as a single wall.

We hope this work inspires the experimental community to
look beyond the commonly studied observables and beyond
mean field. Further experimental systems which are interest-
ing to explore are sheered colloids or foams, DNA unzipping,
and earthquakes.
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Appendix: Supplementary Material

Appendix A: Samples and experiments

In this work, we analyze force-force correlations in soft
magnetic materials. We employ two thin films and two rib-
bons to perform our Barkhausen-noise experiments. The thin
films consist of an amorphous Fe75Si15B10 (FeSiB) film and
a polycrystalline Ni81Fe19 (NiFe) film, both with a thickness
of 200 nm. The films are prepared by magnetron sputter-
ing onto glass substrates, with dimensions 10 mm × 4 mm,
using the parameters given in Refs. [2, 3]. Detailed infor-
mation on the structural and magnetic characterizations is
provided in Refs. [1–3, 11, 36]. Our ribbons are an amor-
phous Fe64Co21B15 (FeCoB) and a polycrystalline FeSi al-
loy with Si=7.8%. Both ribbons have dimensions of about
20 cm ×1 cm, with thickness of ∼ 20µm. Further informa-
tion on the ribbons and their magnetic behavior are given in
Refs. [6, 9].

Regarding the Barkhausen experiments, we record noise
time series using the traditional inductive technique in an open
magnetic circuit, in which one detects voltage pulses with a
pickup coil wound around a ferromagnetic material submit-
ted to a smooth, slow-varying external magnetic field. In our
setup, sample and pickup coils are inserted in a long solenoid
with compensation for the borders to ensure an homogeneous
applied magnetic field on the sample. The sample is driven
by a triangular magnetic field, applied along the main axis of
the sample, with an amplitude high enough to saturate it mag-
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netically. The pickup coil is wound around the central part of
the sample. A second pickup coil, with the same cross section
and number of turns, is used to compensate the signal induced
by the magnetizing field. The Barkhausen signal is then am-
plified, filtered, and finally digitalized.

For the thin films, the Barkhausen experiments are per-
formed in Brazil. The measurements are carried out using
a pickup coil with 400 turns, 3.5 mm long and 4.5 mm wide,
and under similar conditions, i.e., 50 mHz triangular magnetic
field, 100 kHz 12-dB/octave low-pass filter set in the pream-
plifier (SR560 Stanford Research Systems) and signal acqui-
sition taken with an analog-to-digital converter board (PCI-
DAS4020/12 Measurement Computing) with sampling rate
of 4× 106 samples per second [1]. At a preanalysis stage, we
employ a Wiener deconvolution [11], which optimally filters
the background noise and removes distortions introduced by
the response functions of the measurement apparatus in the
original voltage pulses, thus providing reliable statistics de-
spite the reduced intensity of the signal.

For the ribbons, the experiments are performed in Italy.
They are carried out using a pickup coil with 50 turns, 1 mm
long and 1 cm wide, a triangular magnetic field with frequency
between 3-50 mHz, and a low-pass preamplifier filter cho-
sen in the 3-20 kHz range, roughly half of the sampling rate.
Specifically, we consider sampling rate of 50 × 103 samples
per second for FeCoB, and 20 × 103 samples per second for
FeSi [6, 9]. For the FeCoB ribbon, the sample is submitted
to a small tensile stress of 2 MPa during the measurement in
order to enhance the signal-to-noise ratio.

All time series for films and ribbons are acquired around
the central part of the hysteresis loop, near the coercive field,
where the domain wall motion is the main magnetization
mechanism and the noise achieves the condition of station-
arity [6]. For each experimental run, the statistical properties
are obtained from at least 150 measured time series.

While the central issue in this work is to explore the force-
force correlations from the Barkhausen-noise time series, the
classification into the different universality classes reposes
on earlier work, where we identified the universality class
of Barkhausen avalanches by measuring the distributions of
avalanche sizes and durations, the average size as a function of
the avalanche duration, their power spectrum, and the average
avalanche shape. The results for the thin films can be found in
Refs. [1–3, 11], the ones for the ribbons in Refs. [6, 9].

Appendix B: Subtraction of the baseline and measurement of
∆̂(w)

Here we present the methods used to obtain the correlator
∆̂v(w) defined in Eq. (3) from the experimental data for the
change in flux u̇w=vt ≡ u̇(t). As the magnetic field is in-
creased at a rate v

uw − w =

∫ w/v

0

dt [u̇raw(t)− v]. (B1)

We found that there are strong sample-to-sample fluctuations
for the mean vi := 〈u̇raw〉i in sample i, due to a drift in the

FIG. 5. Distribution P (u̇) (blue, solid) with fit (green, dashed) to
all data points above the dashed line. It is obtained from the optimal
parabolic fit for lnP (u̇), as shown in the inset. The u̇-value at the
maximum of the fit is used as the position for the zero of u̇.

amplifier baseline. If the estimate for v in (B1) is not cor-
rect, this adds a term of the form cw to uw − w, with c a
random number. If we suppose that c is Gauss-distributed
with mean 0, integration leads to a parabolic contribution,
i.e. ∆̂v(w) → ∆̂v(w) + 1

2

〈
c2
〉
w2. To correct this, we pro-

ceed as follows: For each sample i we consider the distribu-
tion P (u̇) (see Fig. 5), and fit a Gaussian to its peak. This
is done by choosing the data points which satisfy P (u̇) >
0.25 maxu̇ P (u̇), and then fitting a parabola to ln[P (u̇)]. Fi-
nally, u̇ is shifted so that the maximum of the parabola lies at
u̇ = 0. Our best estimate for the driving velocity is then the
sample average over N runs,

v =
1

N

N∑
i=1

〈u̇〉i. (B2)

This allows us to construct the interface position uw − w for
sample i as

uiw − w =

∫ w/v

0

dt [u̇i(t)− v]. (B3)

The experimental setup makes appear an additional numerical
prefactor on the r.h.s. of Eq. (B3). It is eliminated by demand-
ing that the linearly increasing parts of Fig. 1 have slope 1.

The interface positions’ connected two-point correlations
are

Mi(w − w′) :=
1

2

〈
[(uw − w)− (uw′ − w′)]2

〉
i
. (B4)

Whereas the Mi show strong fluctuations (see Fig. 6), their
mean (black)

∆̂v(0)− ∆̂v(w) =
1

N

N∑
i=1

Mi(w) (B5)
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FIG. 6. The correlator ∆̂v(w) as given by Eq. (B5) for the FeSiB
film (black) with SR elasticity and no eddy-current effects. Shaded
in the background are the averages Mi over a single sweep from
(B4) which show strong sample-to-sample fluctuations.

is more stable. ∆̂v(0) is extracted from the plateau value at
large w (see Fig. 6). Statistically, the small-w region is more
robust than the large-w tail. Due to the large fluctuations be-
tween the samples Mi, error bars are computed using a sta-
tistical resampling method. One randomly divides all datasets
into two parts and computes the variance of the partial means.
Averaging this over 100 random partitions gives a robust esti-
mate for the variance (see [27] for details). To obtain the error
bars for the shape shown in the main text, all partial means
have been rescaled such that their derivative at w = 0 equals
the mean of ∆̂′(0+) over all samples. This takes out ampli-
tude fluctuations and reduces the error bars to errors of the
shape.

Appendix C: Theory predictions for the different classes

The extracted fixed-point function ∆̂(w) can be compared
to several theoretical candidates given below: the 1-loop
FRG fixed point in Eq. (C4), the 2-loop FRG fixed point in
d = 2 obtained by Pade resummation, optimized to agree
with Eq. (C6) in d = 0, the solution (C6) in d = 0, and an
exponential function. Each function contains two scales, the
amplitude ∆̂(0) and a correlation length in w-direction

ρ :=
∆̂(0)

|∆̂′(0+)|
. (C1)

Rescaling the theory candidates to have the same ∆̂(0) and
∆′(0+) ensures that one compares the shape without any fit-
ting parameter.

The dimension-dependent theoretical predictions rely on

∆̂(w)
∆̂(0)∆̂′′(0)

∆̂′(0+)2
∆̂′′(0)

Exponential 1 1
d = 0, Eq. (C6) 0.822 1

2
2-loop FRG for d = 2 (SR) 0.75 ≤ 0.437
1-loop FRG, Eq. (C3) (LR) 2

3
≤ 2

9
SR elasticity without ECs 0.73(3) 0.37(2)
SR elasticity with ECs 0.65(10) 0.41(2)
LR elasticity without ECs 0.58(10) 0.17(5)
LR elasticity with ECs 0.65(10) 0.24(4)

TABLE II. Comparison of theoretically and experimentally obtained
amplitudes and amplitude ratios.

the functional renormalization group (FRG). Contrary to con-
ventional RG, where one considers the flow of a single cou-
pling constant, the FRG follows the flow of an entire function.
Writing ε = dc − d for the expansion parameter around the
upper critical dimension dc, the FRG fixed-point equation at
1-loop order reads

∂l∆̃(w) =(ε− 2ζ)∆̃(w) + ζu∆̃′(w)

− d2

dw2

1

2

[
∆̃(w)− ∆̃(0)

]2
+ . . . (C2)

with the dots representing higher-order contributions [21, 22]
in an expansion in ε. The 1-loop solution to the fixed-point
equation ∂`∆̃(w) = 0 associated to Eq. (C2) is (see e.g.
Ref. [7])

∆̃(w) = −ε
3
W

(
− exp

(
−w

2

2
− 1
))

+O(ε2). (C3)

Here W (z) is the product-log function, the principle solution
for x in z = xex. The observable in Eq. (3) is obtained from
the (scale-free) fixed-point solution ∆̃(w) as

∆̂(w) = Aρ̂2∆̃(w/ρ̂), (C4)

ρ̂ := ρ
|∆̃′(0)|
∆̃(0)

. (C5)

The amplitude A is a number (depending on mL), whereas
the correlation length ρ of Eqs. (C1) and (C4) scales as ρ ∼
m−ζ . The fixed point (C3) gets corrected at 2-loop order [21,
22]. In principle, it allows us to predict ∆̂(w) for domain-wall
dimensions between d = 4 down to d = 0. The bulk magnets
used here have d = 2 (ε = 2), whereas a thin magnetic film
has d = 1 (ε = 3). Dimension d = 0 (ε = 4) is realized in the
DNA/RNA peeling experiment of Ref. [27]. The precision
of the approximation decreases with d, since the expansion
parameter ε = 4−d increases. We are in the fortunate position
to have an analytic solution in d = 0 [25, 29],

∆̃(w) =
w2

2
+ Li2(1− ew) +

π2

6
. (C6)

This allows us to choose a Padé approximant optimized for
agreement with the exact solution (C6). A summary of the
predictions for the different classes is presented in Tab. II.
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FIG. 7. Comparison of three different unfolding procedure for the 200-nm-thick FeSiB film with SR elasticity and no eddy currents (raw data
in solid, red): unfolding via Eq. (D7) as discussed in the main text (blue dashed), time scale τ = 0.175, and extrapolation (grey, dotted). In (a)
is shown in addition unfolding via the boundary layer given by Eqs. (D7)-(D8) (black, solid) using the same τ = 0.175, and its extrapolation
(cyan, dotted). In (b) is shown the result of secondary unfolding using Eq. (E1) (green, dotted), with τ = 0.175 and τ ′ = 0.0024.

FIG. 8. Subtraction of a linear noise contribution (grey dotted, fitting
region in green dashed) ∆(0) +σnoise|w| for the FeCoB ribbon with
SR elasticity and eddy currents at v = 2.

Appendix D: Unfolding of ∆̂v(w).

Suppose the response function decays exponentially with
time scale τ ,

R(t) =
1

τ
e−t/τΘ(t). (D1)

Then it satisfies the differential equation

(1 + τ∂t)R(t) = δ(t), (D2)

and is normalized, ∫ ∞
0

R(t)dt = 1. (D3)

This allows us to invert Eq. (5) as [25]

∆̂(w) = (1 + vτ∂w)(1− vτ∂w)∆̂v(w)

= (1− (vτ)2∂2w)∆̂v(w). (D4)

Taking derivatives of the measured function ∆̂v(w) is noisy,
but we are in the fortunate position to have direct access to the
velocity correlation function ∆̂u̇(w),

∆̂u̇(w − w′) := u̇wu̇w′ = −v2∆̂′′v(w − w′). (D5)

Using this in Eq. (D4) we get Eq. (6) of the main text,

∆̂(w) = ∆̂v(w) + τ2∆̂u̇(w). (D6)

In the small-v limit Eq. (5) can be approximated by a
boundary-layer ansatz [7, 25], which gives an alternative, ro-
bust, albeit less precise, unfolding procedure,

∆̂v(w) = ∆̂(w̃), (D7)

w̃ :=
√
w2 + (vτ)2. (D8)

Our second strategy to reconstruct ∆̂(w) is to plot ∆̂v(w)
vs. w̃, and determine τ which gives the straightest curve at
small w̃. An example is shown in Fig. 7(a).

Appendix E: Higher-order unfolding

We showed that application of Eq. (D6) to the measured
∆̂v(w) removes part of the boundary layer δw = vτ , but that
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FIG. 9. Subtraction of the noise contribution ∆̂(0) + σnoise|w| +
aw2 with a small parabolic contribution (grey dotted, fitting region
in green dashed) for the FeSi ribbon with LR elasticity and eddy
currents at v = 1. The parabolic term with a ≥ 0 results from small
errors in the procedure of Appendix B to estimate the baseline of u̇w.

it creates a new smaller boundary layer of size δ′w. On a phe-
nomenological level, we found that inclusion of an additional
term substantially improves the accuracy,

∆̂(w) = ∆̂v(w) + τ2
[
1 + vτ ′∂w + ...

]
∆̂u̇(w). (E1)

Such a term may arise for a non-exponentially decaying re-
sponse function R(t). In principle, the procedure can be im-
proved using a second-order derivative in the square brackets.
While a single derivative of ∆̂u̇(w) still gives a signal rela-
tively free of noise, adding a second derivative is not possible
for our data. In Fig. 7(b) we show for the FeSiB film the result
of the unfolding (D6) compared to the improved unfolding
(E1).

Appendix F: Details for the four samples

1. FeSiB film: SR interactions without eddy currents

For the amorphous FeSiB film with thickness of 200 nm, we
show in Fig. 6 the meansMi for a single run (in color), com-
pared to the mean N−1

∑N
i=1Mi over all N runs (in black).

∆̂v(0) is extracted from the plateau value at large w. Sub-
tracting ∆̂v(0) gives the curve reported in the main text in
Fig. 2. In Fig. 7 we show for the same sample comparison
of unfolding via Eq. (6) discussed in the main text, unfolding
via the boundary layer (D7)-(D8) and secondary unfolding via
Eq. (E1). All procedures are in quantitative agreement. In our
chosen units, w = 1 corresponds to 2.5 ms, assuming a sin-
gle wall to estimate the driving velocity. Due to the high level
of correlation between the walls, we believe this estimation
is justified. The number of domain walls is estimated to be
around 3000 [1].

2. FeCoB ribbon: SR interactions with ECs

For the amorphous FeCoB ribbon, Fig. 8 shows the sub-
traction of ∆̂(0) plus an additional linear contribution due to
white noise as given in Eq. (8). All data presented in the main
text are after this subtraction. In our chosen units, w = 1 cor-
responds to 0.2 s ∼ 135 µm. The number of domain walls is
estimated be around 5.

3. NiFe film: LR interactions without ECs

Unfolding as presented in Fig. 3(a) for the polycrystalline
NiFe film having thickness of 200 nm is done using τ = 0.39.
In our chosen units, w = 1 corresponds to 2.5 ms ∼ 100 µm.
The number of domain walls is estimated to be around 5000
[36].

4. FeSi ribbon: LR interactions with ECs

Fig. 9 shows the subtraction of a linear term plus a small
parabolic contribution for the polycrystalline FeSi ribbon.
The latter parabolic contribution arises if our estimate for the
baseline of u̇ for run i still contains a small error, see the dis-
cussion after Eq. (B1). The unfolding shown in the main text
in Fig. 3(a) has been done using τ = 0.055. In our chosen
units, w = 1 corresponds to 50 ms ∼ 1.385 µm. The number
of domain walls is estimated to be around 5.

Appendix G: Velocity correlations ∆̂u̇(w)

Measurements of the velocity correlations ∆̂u̇(w) for our
samples are shown in Fig. 10. The scale on which ∆̂u̇(w)

decays to zero is the same as the correlation length ρ of ∆̂(w)
defined in Eq. (C1).
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(a) (b) (c) (d)

FIG. 10. The correlation function ∆̂u̇(w) of the domain wall velocity u̇. The scale on which ∆̂u̇(w) decays to 0 is the correlation length ρ
of ∆̂(w). Plots are ordered, as in the main text, for (a) FeSiB film (SR elasticity, no eddy currents). (b) FeCoB ribbon (SR elasticity, eddy
currents). (c) NiFe film (LR elasticity, no eddy currents). (d) FeSi ribbon (LR elasticity, eddy currents).
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