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Abstract.  We study the Brownian force model (BFM), a solvable model of 
avalanche statistics for an interface, in a general discrete setting. The BFM 
describes the overdamped motion of elastically coupled particles driven by 
a parabolic well in independent Brownian force landscapes. Avalanches are 
defined as the collective jump of the particles in response to an arbitrary 
monotonous change in the well position (i.e. in the applied force). We derive 
an exact formula for the joint probability distribution of these jumps. From 
it we obtain the joint density of local avalanche sizes for stationary driving 
in the quasi-static limit near the depinning threshold. A saddle-point analysis 
predicts the spatial shape of avalanches in the limit of large aspect ratios for the 
continuum version of the model. We then study fluctuations around this saddle 
point, and obtain the leading corrections to the mean shape, the fluctuations 
around the mean shape and the shape asymmetry, for finite aspect ratios. Our 
results are finally confronted to numerical simulations.
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1.  Introduction

A large number of phenomena, as diverse as the motion of domain walls in soft mag-
nets, fluid contact lines on rough surfaces, or strike-slip faults in geophysics, have been 
described by the model of an elastic interface in a disordered medium [1–3]. A promi-
nent feature of these systems is that their response to external driving is not smooth, 
but proceeds discontinuously by jumps called ‘avalanches’. As a consequence of this 
ubiquitousness, much effort has been devoted to the study of avalanches, both from a 
theoretical and an experimental point of view [4–7]. Despite this activity, there are few 
exact results for realistic models of elastic interfaces in random media.
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An exactly solvable model for a single degree of freedom, representing the center 
of mass of an interface, was proposed by Alessandro, Beatrice, Bertotti and Montorsi 
(ABBM) [8, 9] on a phenomenological basis in the context of magnetic noise experi-
ments. It describes a particle driven in a Brownian random force landscape. In [1, 10] 
it was shown that for an elastic interface with infinite-ranged elastic couplings, the 
motion of the center of mass has the same statistics as the ABBM model.

In this article, we study a multidimensional generalization of the ABBM model, the 
Brownian force model (BFM). This model, introduced in [11–14], was shown to provide 
the correct mean-field theory describing the full space-time statistics of the velocity in a 
single avalanche for d-dimensional realistic interfaces close to the depinning transition. 
Remarkably, restricted to the dynamic of the center of mass, it reproduces the ABBM 
model. This mean-field description is valid for an interface for ⩾d duc with =d 4uc  for 
short ranged elasticity and =d 2uc  for long ranged elasticity.

As shown in [13, 14] the BFM has an exact ‘solvability property’ in any dimen-
sion d. It is thus a particularly interesting model to describe avalanche statistics, even 
beyond its mean-field applicability, i.e. for any dimension d and for arbitrary (monoto-
nous) driving. It allows to calculate the statistics of the spatial structure of avalanches, 
properties that the oversimplified ABBM model cannot capture. In [14] some finite 
wave-vector observables were calculated, demonstrating an asymetry in the temporal 
shape. Very recently the distribution of extension of an avalanche has also been calcu-
lated [15].

In this article we study a general discrete version of the BFM model, i.e. N points 
coupled by an elasticity matrix in a random medium, as well as its continuum limit. In 
the discrete model each point experiences jumps Si upon driving. We derive an exact 
formula for the joint probability distribution function (PDF) P[{Si}] of the jumps 
Si (the local avalanche sizes) for an arbitrary elasticity matrix. In the limit of small 
driving this yields a formula for the joint density ρ { }S[ ]i  of local sizes for quasi-static 
stationary driving near the depinning threshold. This allows us to discuss the ‘infinite 
divisibility property’ of the BFM avalanche process. The obtained results are rather 
general and contain the full statistics of the spatial structure of avalanches. They are, 
however, difficult to analyze in general since they contain many variables, and thus 
require computing marginals (i.e. probabilities where one has integrated over most 
of the variables) from a joint distribution. This is accomplished here in detail for the 
fully-connected model. We find that in the limit of large N there exist two interest-
ing regimes. The first one corresponds to the usual picture from mean-field depinning 
models [3, 18], whereas the second one is novel and highlights the intermittent nature 
of the avalanche motion.

We then analyze the shape of avalanches, first in a discrete setting by considering 
few degrees of freedom. The probability exhibits an interesting saddle-point structure 
in phase space. We then study the continuum limit of the model. We find that the spa-

tial shape of avalanches of fixed total size S and extension �, becomes, in the limit of a 

large aspect ratio �S/ 4, dominated by a saddle point. As a result, the avalanche shape 
becomes deterministic, up to small fluctuations, which vanish in that limit. We calcu-
late the optimal shape of these avalanches. We then analyze the fluctuations around 
the saddle point. This allows us not only to quantify the shape fluctuations seen in 
numerical experiments, but also to obtain the mean shape for avalanches with smaller 
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aspect ratios. We test our results with large-scale numerical simulations. While our 
results are obtained in the special case of an elastic line with local elasticity (d   =   1) the 
method can be extended to other dimensions d and more general elasticity. Finally, we 
discuss the applicability of our results to avalanches in realistic, short-ranged correlated 
disorder. The outline of this article is as follows: section 2 recalls the definition of the 
BFM model, which is first studied in a discrete setting with general, non-stationary 
driving. The results of [12–14] allow us to obtain the Laplace transform of the PDF 
of local avalanches sizes. Section 3 contains the derivation of the main result: the full 
probability distribution of the local avalanche sizes. Section 4 focuses on the limit of 
small driving, and how to obtain the avalanche density. Section 5 contains a detailed 
analysis of the fully-connected model. Section 6 studies avalanche shapes for interfaces 
with a few degrees of freedom. Section 7 contains one important application of our 
result, namely the deterministic shape of avalanches with large aspect ratio for an elas-
tic line. Section 8 analyses the fluctuations around this optimal shape. Section 9 dis-
cusses the application of our results to short-ranged disorder and quasi-static driving. A 
series of appendices contains details, numerical verifications and some adjunct results. 
In particular, in appendix C, we introduce an alternative method, based on backward 
Kolmogorov techniques, to calculate the joint local avalanche-size distribution, follow-
ing a kick in the driving.

2. The Brownian force model

2.1. Model

We study the over-damped equation of motion in continuous time t of an ‘interface’, 
consisting of N points with positions R∈u it , = …i N1, , . Each point feels a static ran-
dom force F u( )i it  and is elastically coupled to the other points by a time-independent 

symmetric elasticity matrix cij with ∑ == c 0j
N

ij1 . Each particle is driven by an elastic 

spring of curvature m2 centered at the time-dependent position w it. The equation of 
motion reads

∑η∂ = − − +
=

u c u m u w F u( ) ( )t

j

N

ij jt iit

1

2
it it it� (1)

for = …i N1 . The Fi(u) are N independent Brownian motions (BM) with correlations

∣ ∣σ− = − = ≠′ ′ ′F u F u u u F u F u i j[ ( ) ( )] 2 , ( ) ( ) 0 fori i i j
2� (2)

and =F u( ) 0i ; the overline denotes the average over the random forces Fi(u). For defi-

niteness we consider1 a set of one-sided BMs with ⩾u 0 and Fi(0)   =   0.
We furthermore suppose that (i) the driving is always non-negative: ∀ t i, , ⩾ẇ 0,it  

and (ii) the elastic energy is convex i.e. cij  > 0 for ≠i j. Under these assumptions, the 

1 The model can also be studied in a stationary setting, see e.g. [13, 14]. 
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Middleton theorem [16] guarantees that if all velocities are non-negative at some initial 
time: ∃ ∈ ∀Rt i0 ∣ , ⩾u̇ 0it0 , they remain so for all times: ⩾∀ ∀i t t, 0, ⩾u̇ 0it .

2.1.1.  Some explicit examples of elasticity matrices.  Throughout the rest of this article, 
we sometimes specify the elasticity matrix. The models studied are (where c denotes 
the elastic coefficient):

	(i)	 The fully connected model: δ= −( )c cij N ij
1

	(ii)	 The elastic line with short-range (SR) elasticity and periodic boundary contitions 

(PBCs) δ δ δ= + −− −c c( 2 )ij i j i j ij, 1 1,  with + ≡i N i

	(iii)	The elastic line with SR elasticity and free boundary conditions: 

δ δ δ δ δ= + − − −− −c c[ (2 )]ij i j i j ij i iN, 1 1, 1

	(iv)	The general d-dimensional elastic interface with PBCs, where Z∈i d and 

� � � �δ= − − ∑ −( )c c f i j f i j( ) ( ) ;ij ij j  here � �−i j  is the Euclidean distance in Zd and 

f (r) the elastic kernel. Long-ranged elasticity (LR) is usually described by kernels 

such that ∼ α− +f r r( ) d( ) (i.e. ∼ αq  in Fourier).

2.2. Velocity theory

Supposing that we start at rest for t   =   0, = == =u u̇ 0i t i t, 0 , 0 , then it is more convenient 
(and equivalent) to study the evolution of the velocity field directly. The equation of 
motion reads

∑η σ ξ∂ = − − +
=

u c u m u w u˙ ˙ ( ˙ ˙ ) 2 ˙ ,t

j

N

ij jt t
i

it

1

2
it it it� (3)

where the ξt
i are N independent Gaussian white noises, with ξ ξ δ δ= − ′′ t t( )t

i
t
j

ij and 

ξ = 0t
i . Equation  (3) is taken in the Itô sense. Note that we replaced the original 

quenched noise ∂ F u( )t i it  by an annealed one σ ξu2 ˙ t
i

it , making equation  (3) a closed 
equation for the velocity of the interface. The fact that (1) and (3) are equivalent (in 
the sense that disorder averaged observables are the same) is a non-trivial exact prop-
erty of the BFM model. It was first noted for the ABBM model [8, 9] and extended 
to the BFM [13, 14]. It originates from the time-change property of the Brownian 

motion ≡ ′B f t f t B td ( ( )) ( ) d (̃ )inlaw  for increasing f (t)   =   ut, valid as a consequence of 

the Middleton property ⩾u̇ 0t . A derivation of this property is recalled in appendix A.

2.3. Avalanche-size observables

In this article we focus on the calculation of avalanche-size observables defined in the 
following way. Starting from rest at t   =   0 as previously described, we apply a driving 

http://dx.doi.org/10.1088/1742-5468/2015/08/P08019
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⩾w 0it  for t  >0 during a finite time interval such that ∫ =
∞

t w wd ˙ i
0

it  (stopped driving 

protocol). In response to this driving, the points move and we define the local ava-

lanche size Si as ∫=
∞

S t ud ˙i
0

it, that is the total displacement of each point. We adopt 

the vector notation

= … = …
→ →S S S w w w( , , ) , ( , , ).N N1 1� (4)

The Si’s are random variables whose statistics is encoded in the Laplace transform, also 

called generating function λ
→

G( ), and defined as

λ = λ ⋅
→ →→

G( ) e .S� (5)

The BFM possesses a remarkable ‘solvability property’ that allows us to express this 
functional as [13, 14]

λ = =
∑λ ⋅

→ →→
=G( ) e eS

m u w˜
i

N

i i
2

1
� (6)

in terms of the solution ũi of the ‘instanton’ equation. The latter reads

∑λ σ= − +
=

u m C u˜ ˜ ,i i
j

N

ij j
2 2

1
� (7)

where we have defined the dimensionless matrix

δ= −C
m

c
1

,ij ij ij2� (8)

which contains all elastic and massive terms in the instanton equation. The solution of 
equation (7) which enters into equation (6) is the unique set of variables ũi continuous 
in λj with the condition that all =ũ 0i  when all λ = 0j . The derivation of this property 
is recalled in a discrete setting in appendix A. The instanton equation thus allows us in 

principle to express the PDF 
→

P S( ) of the local avalanche sizes, as the inverse Laplace 
transform of λ

→
G( ). In the next section we obtain 

→
P S( ) directly, without solving (7), 

which admits no obvious closed-form solution. We will note ⟨ ⟩…  the average of a quan-

tity with respect to the probability P. Note that the PDF 
→

P S( ) depends only on the 

total driving ∫=
∞

w t wd ˙i
0

it and not on the detailed time-dependence of the w it. This is 

a particularity of the BFM model.

2.4. The ABBM model

Before going further into the calculation, let us recall the result of [13, 14] that the 
statistical properties of the center of mass of the discrete BFM model is equivalent to 
that of the ABBM model. To be precise, if we write the total displacement (i.e. swept 
area) = ∑ ut i itu  and total drive = ∑ wt i itw  then, in law, we have

η σ ξ∂ = − − +m˙ ( ˙ ˙ ) 2 ˙ .t t t t t t
2u u w u� (9)

http://dx.doi.org/10.1088/1742-5468/2015/08/P08019
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Here ξt is a Gaussian white noise ξ ξ δ= − ′′ t t( )t t  and ξ = 0t .2 This equivalence implies 

that the PDF of the total avalanche size ∫= = ∑
=

∞
=S t Sd ˙

t
t i

N
i

0 1u  in the discrete BFM 

model, following an arbitrary stopped driving w w∫ =
∞

td ˙ t
0

, is given by the avalanche-

size PDF of the ABBM model [8, 9, 13],

w w

π

σ
=




−

− 




=P S
S S

S

SS
S

m
( )

2
exp

( )

4
, .

m m
mABBM 3

2

2

4� (10)

Here Sm is the large-scale cutoff for avalanche sizes induced by the mass term. This 

first result on a marginal of the joint distribution 
→

P S( ) will provide a useful check of 
our general formula obtained below for N  >  1.

3. Derivation of the avalanche-size distribution in the BFM

For simplicity we now switch to dimensionless units. We define

 σ
λ λ= = = =v

m
u w

w

S
S S

S

S
˜ , ˜ , ˜ , ˜ ,i i i

i

m
i m i i

i

m
2� (11)

where = σ
Sm m4. The instanton equation (7) now reads

∑λ = − +
=

v C v˜ .i i
j

N

ij j
2

1
� (12)

The generating functional is given by

λ λ= = =
∑ ∑λ→ →

= =G G( ) ˜( ˜) e e .
S v w˜ ˜ ˜

i

N

i i

i

N

i i

1 1
� (13)

In the following we drop the tildes on dimensionless quantities to lighten notations, 
and explicitly indicate when we restore units. For the ABBM model, it was possible 
to explicitly solve the instanton equation for the generating function λG( ). The inverse 
Laplace transform was then computed, leading to (10). Here this route is hopeless 
because equation  (12) admits no simple closed-form solution. We instead compute 

directly the probability distribution 
→

P S( ) using a change of variables in the inverse 
Laplace transform (ILT):

�

C∫

∫ ∫ ∑ ∑ ∑

π
λ λ λ

π
λ

=






 − ⋅

=













∂
∂










−





− +






+





− ∞

∞

− ∞

∞

= = =

→ → → → →
P S S G

v v
v

v C v S v w

( )
1

2i
d exp( ) ( )

1

2i
d d det exp ,

N
N

N

N
i

j i

N

i
j

N

ij j i

i

N

i i
i

i

1
i

i

1

2

1 1
�

(14)

2 Note that this result uses ∑ =c 0j ij  and that the center of mass obeys the same equation with a noise scaled as 
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Avalanches in the BFM

9doi:10.1088/1742-5468/2015/08/P08019

J. S
tat. M

ech. (2015) P
08019

where ‘i’ denotes the imaginary unit number to avoid confusion with indexes. The first 
formula is the ILT where we left unspecified the multi-dimensional contour of integra-
tion C. In the second line we used the expression of λi in terms of vj from (12), as well 
as the dimensionless version of (6). Changing variables from λi to vj, the contours of 
integration are chosen to obtain a convergent integral, see second line of equation (14). 
This makes this derivation an educated guess, which however is verified in appendix B. 
We also give another derivation for a special case in appendix C. To pursue the deriva-
tion, the Jacobian is written using Grassmann variables as

∫ ∏ ∑
λ

ψ ψ ψ δ ψ





∂
∂






=





− +




= =v
v Cdet d d exp ( 2 ) .i

j i

N

i i

i j

N

i i ij ij j

1 , 1
� (15)

Reorganizing the order of integrations and changing i→v vi i, we write

R∫ ∫∏ ∏ ∑ ∑

∑ ∑

π
ψ ψ

ψ δ ψ

=












−






+






+ + − +






= = = =

= =

→
P S v v C v S

v w v C

( )
1

2
d d d exp i

i ( 2i ) .

N

i

N

i i

i

N

i

i

N

i
j

N

ij j i

i

N

i i

i j

N

i i ij ij j

1 1 1

2

1

1 , 1

�

(16)

Integrating on vi leads to

∫∏ ∏ ∑

∑

π
ψ ψ π

ψ ψ

ψ ψ

























−






− − ∑





+






= =

−

=

=

=

S

w C S

S

C

1

2
d d ( ) exp

1

4

2

.

N

i

N

i i
N

i

N

i

i

N
i i i

j

N

ij j

i

i j

N

i ij j

1

( /2)

1

1
2

1

1

2

, 1
�

(17)

Finally, using ψ ψ= = 0i j
2 2

, the integration over the Grassmann variables can be 

expressed as a determinant, leading to our main result

 

∏ ∑π

δ δ

=
























−






− ∑











= +
− ∑

= −

=

−

=

=
×

=

→
P S S

w C S

S
M

M C

w C S

S
C

m
c

( )
1

2
exp

1

4
det( )

,
1

.

N

i

N

i

i

N i
j

N

ij j

i
ij N N

ij ij ij

i
k

N

ik k

i
ij ij ij

1

1
2

1

1

2

1
2

�

(18)
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Here cij is the elasticity matrix. This is the joint distribution expressed in dimensionless 

units (11). The expression in the original units is recovered by substituting →S S S/i i m, 

→w w S/i i m and →P S Pm
N  in (18) while keeping Cij fixed3.

Note that for zero coupling, cij   =   0, equation (18) becomes = ∏ =
→

P S P S( ) ( )i
N

i1 ABBM : 

the different points are decoupled and one retrieves N independent ABBM models. 
Non-trivial tests of the formula are performed in appendix B. One general property 

is that the average local size is ⟨ ⟩ = ∑ =
−S C wi j

N
ij j1

1 . This average gives the shape of the 

interface in the large-driving limit. When �w 1i  uniformly in i, it is easy to see by 

expansion of the above formula that ⟨ ⟩ η= +S S O w( )i i i i where ηi are (correlated) 
Gaussian random variables.

We show in appendix C, using different methods, that when the driving is in the 

form of kicks, δ=w w t˙ ( )iit
4 

→
P S( ) satisfies the exact equation

∑ ∑




−

∂
∂

+
∂
∂

−
∂
∂






=

α α
α

α
α α

α= =

P

w
C w

P

w
w w

P

S
0.

N

j

N

j j

1 1

2

2� (19)

We also show that (18) solves this equation. This alternative derivation support our 
result (18) ans shed some light on its structure.

Interpretation: some features of our main result can be understood as follows. 
Consider the equation of motion (3). Upon integration from t   =   0 to = ∞t  we obtain

∫∑ σ ξ= − − +
=

∞
c S m S w t u0 ( ) d 2 ˙ .

j

N

ij j i i t
i

1

2

0
it� (20)

If we could replace the sum of white noises by a gaussian random variable

∫ ∫σ ξ σ σ→ Ξ = Ξ
∞ ∞

t u tu Sd 2 ˙ 2 d ˙ 2 ,t
i

i i i
0

it
0

it� (21)

then we would obtain (18), but with a slightly different determinant given by the 

replacement δ δ→ij ij
1

2
 in Mij in (18). However, the replacement (21) is not legitimate 

because the variables u̇ it are correlated in time. The determinant in (18) takes care of 
that correlation.

3.1. Probability distribution of the shape

Even if it is far from being obvious on equation (18), we know from section 2.4 that the 

probability distribution of = ∑ =S Si
N

i1  is given by (10) with w= ∑ = wi
N

i1 . This allows us 

to define the probability distribution of the shape of an avalanche, given its total size 

N−1/2 and driving by N−1. 
3 Note that this formula can be generalized to the case of site-dependent masses and disorder strengths, σm ,i i: the 

expression in the original units is obtained by the substitution →S S S/i i m
i , →w w S/i i m

i  and → ∏P S Pi m
i  in (18) 

with = σ
Sm

i

m

i

i
4
 and δ= −

σ

σ
C cij ij

m

m

m
ij

1

i

i j

j i
2

2

2
. 

4 This is sufficient, since we noted above that the result does not depend on the detailed time-dependence of the 
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S: Consider … ∈s s, , [0, 1]N1  with = − ∑ =
−s s1N i

N
i1

1 , such that =S Ssi i. The probability 

distribution of the si variables, given that the avalanche has a total size = ∑ =S Si
N

i1  is

∑π=





−
=

+

=

→ →P s S
S S

S
P Ss s( ) 2 exp

( )

4
) ( ), 1 .

N

i

N

i

2

1

1
2

w
w

∣  � (22)

4. Avalanche densities and quasi-static limit

The goal of this section is to define and calculate avalanche densities. These allow us 
to describe the intermittent motion of the interface in the regime of small driving, wi 

small. The dependence of the PDF, →
→

P S( )w , on the driving is denoted by a subscript →w. 
We first study the jumps of the center of mass described by the ABBM model.

4.1. Center of mass: ABBM

For the ABBM model (and for the total size = ∑ =S Si
N

i1  in the BFM model) the ava-

lanche-size PDF is given by

π
=




−

− 




P S
S

S

S
( )

2
exp

( )

4
,

3
2

2w w
w� (23)

where w= ∑ = wi
N

i1  is the total driving. The limit of small driving w is very non-uniform. 

In the sense of distributions, its limit is a delta distribution at S   =   0,

w w δ→ →P S S( ) ( ).0� (24)

However, this hides a richer picture and a separation of scales between typical small 
avalanches ∼S 2w  and rare large ones ∼S 1. If one defines =S s2w , the PDF of s has a 
well-defined w→ 0 limit given by

π
=



−



p s

s s
( )

1

2
exp

1

4
,0 3

2
� (25)

which is indeed normalized to unity ∫ =s p sd ( ) 10 . Hence avalanches of sizes w∼S 2 are 

typical ones. However, all positive integer moments of p0 are infinite. This indicates 
that these small avalanches, though typical, do not contribute to the moments of Pw, 
which are finite and controlled by rare but much larger avalanches which we now 
analyze. In the limit of small w, there remains a probability of order w to observe an 

avalanche of order 1. For fixed w= �S O(1) 2 one has

ρ ρ
π

= + =


−



P S S O S

S

S
( ) ( ) ( ), ( )

1

2
exp

4
.2

3
2

w ww  � (26)

This defines the density (per unit w) of avalanches. These are the ‘main’ ava-
lanches with w�S 2, which are also called ‘quasi-static’ avalanches (see below and 
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section  9). The density is not normalizable because of the divergence at small S, 
but all its integer moments are finite and contain all the weight in that limit, i.e. 

∫ ρ= +S S S S Od ( ) ( )n n 2w w⟨ ⟩ . In particular, w⟨ ⟩ =S  implies ∫ ρ =S S Sd ( ) 1.
We now show that the avalanche density contains more information and controls 

the moments even for finite w, a property that follows as a consequence of Pw(S) being 
the PDF of an infinitely divisible process. This is best seen on its Laplace transform

w w
w  ∫λ λ λ= = =



 − −





λ λG S P S Z( ) d e ( ) e , ( )
1

2
1 1 4 .S Z( )

� (27)

The ‘infinite-divisibility property’ indeed follows: ∀ m and w w w∀ �= + +1 m such that 
> 0wi

w w w w wi  ∏λ λ= =
=

�G G P S P P S( ) ( ), ( ) ( * * )( ) ,
i

m

1
1 m� (28)

where * denotes the convolution operation. Hence S is a sum of m independent random 
variables for all m. The ABBM avalanche process can thus be interpreted as a Poisson-
type jump process (a Levy process) with jump density ρ S( ) see e.g. [17]. In general the 

density can be defined as 
w w

w ∣ρ =S( )
P Sd ( )

d =0 for fixed S  >  0 (i.e. it does not hold in the 

sense of distributions), and the relation between λ = λ
Z( ) :

Gd ( )

d =0w w
w ∣  and ρ is

∫λ ρ= −λZ S S( ) d (e 1) ( ).S
� (29)

The  −1 takes care of the divergence at small S. This allows us to write the relation 
between wP  and ρ, expanding (27) in powers of w, as

∫ ∫∑ ρ ρ= − −λ λ λ

=

∞

� � �S P S
n

s s s sd e ( )
!

d d (e 1) (e 1) ( ) ( ) .S

n

n

n
s s

n

0

1 1
n1

w
w  � (30)

Taking derivatives w.r.t. λ, this decomposition shows that the (positive integer) 
moments of wP  are entirely controlled by ρ, for arbitrary fixed w (beyond the small-w 
limit). In this sum the term of order nw  can be interpreted as the contribution to the 
total displacement S of the interface (after a total driving w) of a n-avalanche (quasi-
static avalanche) event (of order O(1)). The convolution structure in (30) shows that 
these events are statistically independent in the ABBM model. In this model however, 
this interpretation only holds at the level of moments. The accumulation of infinitesi-
mal jumps, manifest in the non-normalizable divergence of ρ at small S prevents us 
to extend this interpretation to the probability itself, see appendix D for a discussion.

4.2. BFM

In the BFM, ‘the infinite-divisibility property’ of the avalanche process is even richer, 
since avalanches occur at different positions along the interface. Let us define the jth 
‘elementary’ driving which applies only to site j, i.e. δ=w wi j ij, and denote the cor-

responding size-PDF as 
→

P S( )wj . Consider now the PDF for the general driving, →
→

P S( )w . 
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From the structure of its LT, see (13), as a product of exponential factors linear in the 

wi, this PDF can be written as a convolution for =→w w w( , ..., )N1 ,

�=→
→ → →

P S P S P S( ) ( ) * * ( ).w w wN1� (31)

An avalanche in the BFM can thus be understood as a superposition of N avalanches 
independently generated by each local driving wj.

As for the ABBM model (center of mass), the structure of the LT of the PDF 
→

P S( )wj  

shows that each of these elementary jump processes is infinitely divisible. We define the 
avalanche density generated by the driving on the jth point as

∣ ∣ρ = == =
→

→
→

→ →

S
P S

w

P S

w
( ) :

d ( )

d

d ( )

d
j

w

j
w

w

j
w0 0,

j

j� (32)

where as in the previous case, this equality is to be understood point-wise in the 
→
S  

variables. Consider the functions vj of λ
→
 which appear in equation (13) and satisfy equa-

tion (12). It is the analogue of λZ( ) appearing in (27) for the ABBM model and we thus 
conjecture the generalization of (29),

∫ ρ= −λ ⋅
→ →→ →

v S Sd (e 1) ( ).j
N S

j� (33)

This allows us to write an equation  relating 
→

P S( )wj  to ρ
→
S( )j  similar to (30) (see  

appendix D). The subtleties linked with the accumulation of small avalanches and the 

non-normalizability of ρ
→
S( )j , are the same as in the previous case, which is also reminis-

cent of the fact that the limit of small driving of →
→

P S( )w  is very non-uniform, as we now 

detail. Consider =w wfi i with →w 0 and f i fixed: the limit of →
→

P S( )w  is again given (in 

the sense of distributions) by δ∏ = S( )i
N

i1 . More precisely, in this small-w regime, almost 

all avalanches are O(w2): =S w si i i
2  with the si distributed according to

∏=
=

→p s p s( ) ( ),
i

N

i0

1

0� (34)

as can be seen from an examination of (18) in that regime. The PDF p0 was defined in 
(25). One sees that the regime ∼S wi

2 contains all the probability, and that for these 
very small avalanches the local sizes are statistically independent.

The remaining O(w) probability to observe large avalanches Si   =   O(1) is encoded 

in the densities ρ
→
S( )j ,

∑ ρ= +
=

→
→ →

P S w S O w( ) ( ) ( ).w

j

N

j j
1

2
� (35)

As before, the positive integer moments are entirely controlled by ρj. A more general 
expression, which illustrates that these large avalanches occur according to a Poisson 
process, is given in appendix D.

We now give exact expressions for these densities. For a general elasticity matrix, the 
expression of ρj is obtained from equation (18), and contains a determinant. Remarkably, 
one can compute this determinant in various cases, leading to the following result
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∑ρ
π

=








∏







−






∑









=
=

=→ →

( )
S

S

S

K S

C S

S
( )

1

2
( ) exp

1

4
,j

N
j

i
N

i
i

N
j

N

ij j

i

1

1
2 1

1

2

� (36)

where 
→

K S( ) depends on the chosen elasticity matrix:

	•	 Fully connected model: = − ∑

∏

→ =
−

=

( )
K S( ) ( )

c

Nm
N

S

S
1 i

N
i

N

i
N

i
2

1

2

1

	•	 Linear chain with periodic boundary conditions: = ∑
−

=
→

+
( )K S( )

c

m

N

i
N

S S

1

1
1

i i
2

1

	•	 Linear chain with free boundary conditions: =
−→ ( )K S( )

c

m

N

S S

1 1

N
2

1

4.2.1. PDF of the shape in the small-driving limit.  As we just detailed, the small-driv-

ing limit of →
→

P S( )w  exhibits a complicated structure due to the accumulation of small 
avalanches. The situation is very different for the PDF of the shape of the interface 
conditioned to a given total size S   =   O(1) (22). This conditioning naturally introduces 
a small-scale cutoff that simplifies the small driving limit =w wfi i with →w 0 which 
reads

∣ ∣ ∑ρ π ρ= =
∑







→

+

=

→ → →s S P s S
S

f

S
f Ss( ) lim ( ) 2 exp

4
( ).

w

N

i
i j

N

j j
0 1

1
2

� (37)

This limit holds in the sense of distributions, and ∣ρ →s S( ) defines a normalized prob-
ability distribution. This indicates that the only small-scale divergence present 
in ρj originates from the direction ∼ →S S 0j  uniformly in j, in agreement with the  
conjecture (33).

5. Fully-connected model

In this section we use our result (18) and analyze it for the fully-connected model with 
uniform driving. Most calculations are reported in appendix E, where we also consider 
driving on a single site, δ=w wi i1 1.

5.1. Structure of the PDF and marginals

In the fully-connected model with homogeneous driving wi   =   w, it is shown in appendix 
E that our main result (18) has the simple structure

http://dx.doi.org/10.1088/1742-5468/2015/08/P08019


Avalanches in the BFM

15doi:10.1088/1742-5468/2015/08/P08019

J. S
tat. M

ech. (2015) P
08019

∏=
+ =

→
P S

w

w cS N
p S( )

/
( ).

i

N

w S N i

1

, /� (38)

We defined

π
=

+ 


−

+ − + 




p S
w cz

S

w cz c S

S
( )

2
exp

( (1 ) )

4
.w z i

i

i

i
, 3/2

2

� (39)

For each w, z  >  0, it is a probability distribution, that corresponds to the (dimension-

less, with m2   =   1) PDF of the avalanches of one particle in a Brownian force landscape 

(ABBM model), interacting with one parabolic well through the force −m w u( )i
2  and 

with another parabolic well through the force c(z  −  ui). Formula (38) is thus reminiscent 
of the fact that the various sites interact with one another only through the center 

of mass of the interface. This simple structure permits a direct evaluation of various 

marginals of (38) of the type { … }P S S S( , , , )p1  (local sizes on p  <  N sites and total size). 
This is done in appendix E. Here we focus on the joint PDF of the total size S, and the 
single-site local avalanche size S1  <  S. Its explicit form is

π π
= −

+

−




−

+ − + 




×




−

− + − + −
−






P S S
w

S

N
w cS N

S S

w cS N c S

S

N w cS N c S S

S S

( , )

2

( 1)
/

2 ( )
exp

( / (1 ) )

4

exp
(( 1)( / ) (1 )( ))

4( )
.

1

1

3
2 1

3/2

1
2

1

1
2

1

           
�

(40)

Of interest is the participation ratio =s S S/1 1  of a given site to the total motion. 
Its average is =s N1/1 . Its second moment, conditioned to the total size S, is easily 
extracted from (40),

∣E
π

= −
− +

+ +( )
s S

N

N cS Nw

N S
( )

1
( 1)e ( )erfc

2
.

cS Nw

S
cS Nw

S
1
2

( )2

4
2

2

� (41)

We now study the limit of a large number of sites N in equation (40). There are (at 
least) two relevant regimes depending on how the driving w scales with N.

5.2. First regime: w   =   O(1) (‘many avalanches’)

Consider the case → ∞N  with w fixed. In this case, typical values of = ∑ =S Si
N

i1  are of 

order O(N). Consider = ∑ =S
S

N
i
N

i1  (empirical mean avalanche-size Si), which is distributed 

according to

π
δ=




−

− 




→ → −∞P S
Nw

S

N S w

S
S w( )

2
exp

( )

4
( ).N3

2

2

� (42)

The joint probability P S S( , )1 , is given by equation (40) (with the change of variable 

→S NS), and admits the large-N limit
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Hence the jump of the center of mass becomes peaked at =S w, while the individual 
sites keep a broader jump distribution. The local avalanche statistics is the same as the 

one for a particle submitted to the parabolic driving force −m w u( ),i
2  and to the elastic 

force from the center of mass of the interface, −c S u( )i . This observation extends to 
any number of particles =n O(1)part  with respect to N: in the large-N limit, the par-

ticles become independently distributed according to the law (43). This picture is the 

‘mean-field’ regime usually studied in fully-connected models [3, 18], and here derived 
in a rigorous way. Note that in this case, due to a cancellation in (41), the participation 

ratio scales as ∣E =s S O N( ) (1/ )1
2 2  which shows that s1 is typically of order 1/N.

5.3. Second regime: small driving w   =   O(1/N ) (‘single avalanche’)

We now focus on the regime =w w Nˆ/  with ŵ fixed. In this case = ∑ =S Si
N

i1  is typically 

of order 1 and is distributed according to

π
=




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− 


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P S
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4
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� (44)

We now compute, using (40), the joint PDF of S and S1 in the scaling regime S1   =   O(1) 
fixed,

π π
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The first factor is reminiscent of the density of avalanches and contains a non-

normalizable divergence ∼ −S1
3/2 . However (40) implies a cutoff on small S1 of order 

N

1
2. 

The scaling =w w Nˆ/  allows to isolate single (quasi-static) avalanches (in the interpre-
tation of the BFM avalanche process as a Levy process discussed above) and the factor 
of 1/N is the probability that the site i   =   1 is part of the avalanche. In this regime, the 

fluctuations are large and the participation ratio scales as ∣E =s S O N( ) (1/ )1
2 .

6. Spatial shape in small systems N   =   2, 3

In this section we analyze the PDF of the spatial avalanche shape in the small-driving 
limit, = →w w 0i , mostly for N   =   2, 3. It already exhibits a saddle-point which allows 
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us to discuss the general-N case below. The analysis can be repeated for finite wi. 
Similarities and differences give insight into the link between the quasi-static distribu-
tion and finite driving. This is done in appendix F.

6.1. N   =   2, 3

We start with N   =   2, for which the different models we considered are all equivalent. 
To fix notations, we study the linear chain with PBCs (see section 2.1.1) and m   =   1. 
The quasi-static PDF of the shape (37), conditioned on the total size S, reads

∣ρ
π

=
−

−
−

−s S
c

s s
( )

2

4 ( (1 ))
e .

c S
s

s s
3
2

(1 2 )

(1 )
2

2

�

(46)

We noted = =s s S S/1 1 , the shape variable of the first site. The behavior of this PDF is 
summarized on figure 1. For small S, typical avalanches are mainly distributed on one  
site. As S increases, the most probable avalanches become more homogeneously distrib-

uted over the two sites, and for S larger than =Sc c

3

8 2, the probability distribution is 

peaked around =s
1

2
 and the avalanche is extended over the whole system. We call this 

phenomenon the shape transition: For small total size, the most probable avalanches 
have �smax( ) 1i , whereas for large avalanches � =s Nmax( ) 1/ 1/2i .

The case N   =   3 for a linear chain with PBC is similar. For <S
c

1
2 , the quasi-static 

density distribution of the shape ∣ρ = − −s s s s s S( , , 1 )1 2 3 1 2  has three symmetric max-

ima corresponding to avalanches mainly centered on a given site, whereas for >S
c

1
2 

there is only one maximum at =si
1

3
. This can be seen on figure 2.

6.2. General N

This study already gives some insight into the structure for generic N: the quasi-static 
distribution of the shape ∣ρ →s S( ) exhibits different saddle-points, whose positions and 
stabilities depend on the value of S. For small S, avalanches are preferentially located 
on a single site j and �smax( ) 1i . As one increases S, the most probable avalanches are 
more and more extended. The analytical calculation of the properties of these saddle 
points is difficult. However, we can generalize the shape transition observed for N   =   2, 

3: The symmetric configuration defined by ∀i, =si N

1
 (a situation corresponding to 

infinitely extended and uniformly distributed avalanches) is always a saddle-point of 
translationally invariant models. This saddle-point is only stable for S  >  Sc(N ), which 
is computed in appendix G for the fully connected model, and for the linear chain with 
PBC. The result is

π

=

∼ → + +∞

S N
N

c

S N
c

N N O N

( )
3

,

( )
1

16
( 12 ( )).

c

c N

fc
2

PBC
2 4

5 4 3
�

(47)

This critical value gives the scaling of the total size above which most probable ava-
lanches are uniformly distributed on all the interface. Below this scaling they adopt a 
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more complex structure (e.g. they are localized on several sites, possess maxima, etc.). 
Let us already mention that other saddle-points of the shape PDF are numerically 
studied in appendix I, where the results are compared to the one obtained in the next 
section for the most probable avalanche shape in a continuum model.

7. Continuum limit: avalanches of an elastic line and typical shape of avalanches 
with large aspect ratio

7.1. Avalanche size PDF and density in the continuum limit

We now study the generalization of the previous result to the continuum Brownian-
force model with short-ranged elasticity for a line of length L

η σ ξ∂ = ∇ − − +u u m u w u˙ ( ˙ ˙ ) 2 ˙ .t xt xt xt xt xt xt
2 2

�
(48)

Here ξxt is a gaussian white noise with ξ ξ δ δ= − −′ ′′ ′ x x t t( ) ( )xt x t  and the boundary con-

ditions are either free or periodic. Starting from rest at t   =   0 and imposing a driving 

Figure 1.  Shape transition of the quasi-static PDF (46) for N   =   2 and c   =   1 in 
the linear chain with PBCs. For S   =   0.1 Sc (black, solid curve) and S   =   0.3 Sc 
(blue), the distribution has two symmetric maxima. For S   =   5 Sc, the distribution 

is peaked around =s
1

2
 (red, upper curve). The transition occurs at S   =   Sc   =   3/8 

(black, dashed curve).

0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(s S)

Figure 2.  Shape transition of the quasi-static shape distribution for N   =   3 and 
c   =   1. From left to right: S   =   0.5; 1; 2.
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⩾ẇ 0xt  for ⩾t 0 such that ∫ =w w˙
t

xt x, we note the total displacement of the interface 

⩾∫=S u̇x
t

xt
0

. The method used in the discrete case can be extended to derive the PDF 

of avalanches in the continuum. Another route is to consider the continuum model as 
the appropriate → ∞N  limit of the discrete model, as is detailed in appendix H. Both 
procedures give the same result, which, for the dimensionless PDF of continuum ava-
lanches, includes a functional determinant

∫

δ

∼



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
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(49)

Here ∇2 is the usual Laplacian, ″δ∇ = −x y( ) ( )xy
2 . Dimensions can be reintroduced 

as in the discrete case using = σ
Sm m

c

4. Sm is the avalanche-size scale of the continuum 

theory. The first factor 
∏( )S

1
1
2

x x
 also comes from a determinant and could be included 

in the definition of the operator M.

As in the discrete case, the mean displacement ⟨ ⟩Sx  satisfies ⟨ ⟩ ⟨ ⟩−∇ + =S S wx x x
2 . 

For instance, if the driving is only at one point, δ=w w x( )x , one has ⟨ ⟩ ∣ ∣= −S ex
w x
2

. The 

case of a general wx is obtained by superposition. This is consistent with the discussion 
in section 4. As in the discrete case, the mean displacement gives the avalanche shape 

in the limit of large driving (plus an O w( ) Gaussian noise).
One can also study the homogeneous quasi-static limit: = →w x w( ) 0 and S(x)   =   O(1) 

uniformly in x. Then � ρP S w S[ ] [ ] with ρ S[ ] the quasi-static density of sizes of continu-
ous avalanches, also obtained as the limit of the discrete ones,

∫
∫

ρ ∼

∏




−

− ∇ 


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exp d
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1
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� (50)

From now on we set m   =   1 (by a rescaling of x). The term BC [Sx] depends on the 

chosen boundary conditions with ∫=BC S[ ]x
L x

S0

d

x
2  (resp. =BC S[ ]

S S

1

L0
) for the periodic 

case (resp. free case).

7.1.1. Other continuum models.  Our discrete setting allows us to obtain the ava-
lanche-size PDF of various continuous models, equation (49) being generalizable to an 
interface of internal dimension d. One may also consider an arbitrary elasticity matrix 

cxy by changing ∫∇ →u yc udx xy y
2 . The continuum limit of the formula for the PDF of 

the shape conditioned to the total size, either at finite w, see equation (22), or for →w 0 
(quasi-static limit), see equation (37), are also easily derived.
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7.2. Rewriting the probability measure on avalanche sizes

We now wish to determine the most probable shape of quasi-static avalanches, in the 
limit → ∞L 5. To render the problem well defined, one needs to specify two scales. 

A natural choice is the total size ∫=S x Sd
x

x and the spatial avalanche extension (or 

length) �, i.e. the size of the support of Sx. While the avalanche-size PDF P(S) is given 
by the ABBM result (10), the existence of a finite extension � (i.e. local avalanche sizes 
being strictly zero outside a finite interval) is non-trivial6. Here it naturally arises in 
the search for saddle-points of the shape PDF: we only found solutions which vanish 
outside of an interval. This property was also shown recently in [15] where the PDF of 
the extension P(l) is computed.

In the following we study the shape distribution at fixed S and �. We do not take 
into account the term implementing boundary conditions in (50) since it should not 
play a role in the bulk (this hypothesis is explicitly checked on the discrete model in 
appendix I). So we write the density of continuum avalanches Sx as

H∏ ∏ ∑ρ ∼








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To eliminate the factor of ∏
−

( )Sx x
1/2

 in the measure, we set

= ΦS x( ).x
2

� (53)

The integration ∫ ∫= Φ
∞

−∞

∞
xd ( )

S

S0

d x

x

, thus the integral over Φ x( ) runs from −∞ to ∞. 

To further simplify the calculations, we note that the problem is invariant by transla-

tion. We thus impose the center of the support to be at x   =   0. This leads to the defini-

tion of the reduced shape φ=s x x( ) ( )2

∣ ∣ ⩾
�

�
�

� ∫φ φ φ= = Φ = = ⇒ =
−

S
S

s x x
S

x x x x x( / ) ( ) ( / ) , d ( ) 1 ,
1

2
( ) 0.x

2 2
1
2

1
2 2

� (54)

Note that to study fluctuations around the saddle point it is more convenient to use 
φ x( ), but the saddle point itself can be obtained equivalently using s(x) or φ x( ). Below 
we use φ x( ), but also indicate the corresponding formulas for s(x) when these are 
simpler.

driving. 
5 In general the shape of avalanches depends on the driving. However, an avalanche following an arbitrary driving 
(in particular in a quasi-static setting more usual for experiments, see section 9) in the BFM is a sum of quasi-
static avalanches (section 4), whose spatial structure is, by definition, independent of the driving. 
6 In a mathematical sense it may be a peculiarity of the BFM in d   =   1 with short range elasticity. Of course 
rapid decay in space is expected more generally beyond some support region of extension �, and often obtained in 
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We search for the most probable shape in the limit of small driving, at fixed size S 
and extension �. The path integral takes the form

�
H

H ∫

∏

″
″

φ φ

φ φ
φ
φ
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(55)

The boundary conditions are φ φ φ φ= − = = − =′ ′( ) ( ) ( ) ( ) 0
1

2

1

2

1

2

1

2
 and

∫ φ =
−

x xd ( ) 1.
1
2

1
2 2

� (56)

Note the appearance of the factor of 
�
S
4 in front of the ‘elastic’ energy.

7.3. The saddle point for large aspect ratio S/4

The path integral (55) is for large �S/ 4 dominated by a saddle-point. To enforce the 

constraint (56), we minimize H A ∫φ φ−
−

x x[ ] d ( )el
1/2

1/2 2 , with Lagrange multiplier A, 

leading to the saddle-point equations7.

A
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δφ
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In order to find the solution A φ x( , ( ))0 0  of (57) satisfying the properties written in 
(54), we first obtain numerically, using a shooting method, another solution A φ x( , ( ))1 1  

of (57). We impose A = ×2.5 101
5, φ =(0) 11 , ″′φ φ= =′(0) (0) 01 1 , and look for the cor-

rect shooting parameter ″φ (0)1  such that the numerical solution has a support of finite 

size −x x[ , ]c c  with the desired behavior at the boundary, i.e. φ φ− = =′ ′x x( ) ( ) 0c c1 1 . The 
obtained (unique) solution has the following properties: ″φ = −(0) 276.797 090 676 0181 , 

=x 0.162 713c , �φ −x x x( ) 7.858 83( )c1  for →x xc and ∫ φ= =
−

S x x: ( )d 0.106 289
x

x
1 1

2

c

c
. 

We now take advantage of rescaling, setting

φ φ φ= =x
x

S
x x s x x( ) :

2
(2 ) , and ( ) ( ) .c

c0
1

1 0 0
2     � (58)

This function is automatically a solution of (57) with a different Lagrange multi-

plier A A= x(2 )c0
4

1, and the desired properties (54). By multiplying (57) by φ x( )0  and 

integrating for ∈ 
−


x ,

1

2

1

2
 (using φ ± =′( ) 00

1

2
 ), we obtain the relation H Aφ =[ ]el 0 0. 

Numerically we find

numerical simulations. 
7 The saddle point equation has a simpler form in terms of s(x). It reads: [ ( ) ( )] [ ( ) ( )] A″ ″ ″− =s x s x s x s x/ /

1

2

1

4
2 . 

Hence ″s x s x/( ) ( ) is a Weirstrass function which diverges as ∼ ± −x xc
2( )  at the boundaries. 
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E H A Aφ= = = = ±x: [ ] (2 ) 2803.8 0.2.c0 el 0 0
4

1� (59)

An estimate of the numerical accuracy is given. The error is mostly due to the impreci-
sion in determining xc.

Alternatively, a variational solution can be used. We make the ansatz

N ∑φ φ=
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� (60)

The behavior at the boundary = ±x
1

2
 is chosen in agreement with the numerical  

solution of the saddle-point equation. One can also show that this ansatz leads to an 
energy which remains finite at the boundary. The →c -dependent normalization Nc is 

chosen s.t. ∫ φ =
−

x xd ( ) 1
1/2

1/2

var
2 . For a given vector = { }→c c c, ..., i1 max , one then evaluates 

H φ[ ]var . Using a Monte Carlo algorithm, the minimum energy is searched by steepest 

decent in the space of all →c  with given ∫ φ =
−

x xd ( ) 1
1/2

1/2

var
2 . In figure 3 we show that 

for the shape of the avalanche, this procedure rapidly converges against the solution 
obtained by solving the differential equation (57). Our best estimate is for =i 15max , 
where we find

= {− − −
− − − − }

→c 1.003 01, 20.6871, 83.4237, 211.353, 270.898, 179.973, 72.6636, 16.3962,

12.2786, 6.111 79, 0.330 42, 11.777, 0.750 034, 6.775 98, 4.562 53 .
�

(61)

This result is compared to the numerical solution of the saddle point on figure 3. The 
energy of this solution gives us, in good agreement with equation (59), the variational 
bound

⩽E 2803.96.0� (62)

In appendix I we confront this result to a study of the optimal shape in a dis-
crete setting. There we also show (see also figure 10 below) that this saddle-point is 
stable. Hence, the reduced shape of an avalanche becomes deterministic in the limit of 

� �S/ 14 : ⟶ φ=
→ ∞�

s x s x x( ) ( ) ( )0 0
2S/ 4

 with probability one. Formula (55) then shows that E0 

is measurable in the tail of the distribution of aspect ratios,

∼


−



�
�

� � ES
S

Proba( / ) exp4
0 4

S/ 14

� (63)

with possibly some sub-dominant factors, as e.g. a power-law. This is confronted to 
numerics below.

7.4. Simulations: protocol and first results

7.4.1. Protocol.  Here we describe the simulation used to numerically study the shape 
of avalanches. We use a discretization with N   =   512 points of the equation of motion 
for the velocity in the BFM (48) using periodic boundary conditions for a system of 
total size L   =   N. The mass is chosen as m   =   10/L in order to get a scale-free statis-
tics for a wide range of events. The other parameters are set to unity, η σ= = 1. The 
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time is discretized using a time-step =td 0.01 and a discretization scheme identical to 
[19]. Simulations are done via Matlab and results are analyzed using Mathematica. At 
t   =   0 the system is at rest and we choose to drive it using a kick of size δ =w 100 on 
a single site. This is motivated by the fact that we want to study (single) quasi-static 

avalanches: the value of δw is chosen to be small in adimensioned units �δ
σ

−w 7.4.10
m 4

3

. 

Following the discussion of section 4 and appendix D, we thus know that an avalanche 

resulting from our driving protocol can either be a ‘small’ avalanche δO w( )2  or, with a 
small probability δ=p O w( )0  a quasi-static avalanche of total size S   =   O(1) (we neglect 

the δO w( )2  probability that several quasi-static avalanches have been triggered). Sche-
matically, we write

δ ρ− +
→ → →
�P S p S p S( ) (1 )‘ ’( ) ( ) ,i0 0 0

 � (64)

where i0 is the driven site. Here δ
→
S‘ ’( ) is not a true delta distribution since in the BFM 

the interface always moves, but it rather denotes the PDF of all the small, non quasi-
static avalanches, which is expected to depend highly on the driving. This is made more 
precise below, and in particular we discuss how we identify the quasi-static avalanches 
and p0 from our data set.

We stop the simulation for the rare events when an avalanche reaches the periodic 
boundary, since we are interested in the distribution of shapes on an infinite line. For 
every generated avalanche, we numerically compute its shape characteristics �S,  (ava-
lanches are indeed observed as having a finite support) and s(x) (discretized with � 
points). We report results using =n 2.10it

7 simulations of a kick. As a first verification, 
we check on figure 4 a coarse-grained information on the spatial structure by measuring 
the mean local avalanche size. The discrepancy at the boundaries can be attributed to 
the fact that we stop the simulation when an avalanche reaches the PBCs. This is the 

Figure 3.  Left: The function φ=s x x( ) ( )0 0
2 , as obtained by solving the differential 

equation (57) (red solid curve). This is contrasted to the variational ansatz (60), 
with one (blue dotted), two (green dashed) and 15 variational parameters (black-
dashed, indistinguishable from the solution of the differential equation). Right: 
Difference between the solution of the differential equation, and the best variational 
solution.
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only bias expected in our procedure. It is not a problem since for the rest of the article 

we are interested in observables at large �S/ 4, automatically excluding the largest �.

7.4.2. Consistency check of ε0 = 2804.  We predicted above that E0 controls the tail of 
the distribution of aspect-ratios. Numerically, we find that this distribution possesses 
a power-law part coherent with an exponent of 2 and an exponential cutoff for large 

�S/ 4 with a prefactor coherent with E = 28040 : � � � �E−S S SProba( / ) / exp( / )4 8 2
0

4  (see 
left and center of figure 5). We also remark that the exponential cutoff function seems 

to entirely control the PDF of �S/ 4 for ‘massive’ avalanches, of extension ⩾� m1/  (see 
right of figure 5). Obviously this does not constitute a precise measurement of E0, but 
rather a verification of its non trivial value, which can probably only be understood by 
studying the complete spatial structure of avalanches as we did.

7.4.3.  Identifying quasi-static avalanches.  From now on we restrict our numerical 
results to avalanches of extension ⩾� 10 to obtain a decent spatial resolution. This 
also allows us to isolate quasi-static avalanches. Avalanches with extension larger than 
10 only represents 3.5% of the data. Obviously, this is not a proof that this subset of 
avalanches only contains quasi-static avalanches, and one needs to check that it has 
the statistical properties of a set generated by the quasi-static density. One ‘test’ is to 
study the number >n S1

 of avalanches of total size S larger than S1, for which the quasi-
static hypothesis implies,

∫

∫

ρ

ρ
=> >

∞

∞n n
S S

S S

( )d

( )d
,S S

S

S

2 1

2

1

� (65)

where ρ was defined in (26). Numerically, we find that this relation holds for all S S,1 2 
larger than =S 0.5min  (see figure 6). We thus further restrict our set of avalanches to 
avalanches of total size ⩾S Smin. Note that though our reduced set of avalanches now 
only contains 2.7% of the total number of avalanches, it contributes to 99.44% to the 
first moment ⟨ ⟩S . (This gives a precise sense to equation (64) with p0   =   0.027). We do 

Figure 4. Measurement of ⟨ ⟩Si  and comparison with the exact result ∣ ∣〈 〉 = − −S ei
mw m i i
2

0  

with i0   =   256. The total moment is measured as ⟨ ⟩ =S 99.461.
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i
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not further study the other avalanches here, since their characteristics is highly depen-
dent on the chosen driving.

7.4.4. The convergence to the saddle-point.  We now check the striking prediction that the 

shape of avalanches becomes deterministic in the limit of large �S/ 4. To this aim, we measure 

the distance between the optimal shape φ=s x x( ) ( )0 0
2  and the simulated shapes s(x) using 

either the L1 or the (squared) L2 canonical norms (see figure 7). As expected, we find that 

the mean value of these quantities at fixed �S/ 4 converge to 0 as �S/ 4 becomes larger. How-

ever, we find that the rate of convergence of these quantities is slower than what is expected 

from perturbation theory (this is developed in the next section), which predicts for both a 

convergence as � S/4 . This will be taken into account when comparing the numerical results 
to the prediction of perturbation theory for the fluctuations around the optimal shape.

7.4.5. The mean shape of avalanches.  Finally, we verify on figure 8 that the mean 

shape ⟨ ⟩s x( )  is given by the optimal shape s0(x) for large �S/ 4. We also explicitly check 

Figure 5.  Different histogram of the PDF of �S/ 4 obtained numerically with 
different binning procedures for the x axis and scale for the y axis. Left: log–log 
histogram of the full distribution. Center: log histogram of the distribution for 

aspect ratio ⩾� ES/ 1/54
0. Right: log histogram of the distribution for avalanches 

of extension ⩾� m1/ . The black line on the left emphasizes the observed power-

law behavior � �∼S SProba( / ) /4 8 2. Blue lines are fits using an ansatz of the form 

� � �E∼ −S S SProba( / ) / exp( / )4 8 2
0

4 . The red line is a fit using only the cutoff 

function: � �E∼ −S SProba( / ) exp( / )4
0

4 .
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Figure 6.  Left: n>S measured from the datas (blue dots) and compared to the 
quasi-static prediction ((65), black line) with →S S2  (S1 can be chosen anywhere 
in [0.5 , 105] and >n S1

 is measured from the datas).
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that the mean-shape decays as ±x( 1/2)4 close to the boundaries. The agreement is 

very good, though one can notice that the numerical mean shape is slightly flatter than 
expected. This observation motivates a study of the fluctuations of the shape around 
the optimal shape.

8. Fluctuations around the saddle point

8.1. Field theoretic analysis

We now study the fluctuations around the saddle point φ x( )0 . To this aim, we set

φ φ δφ= +x x x( ) ( ) ( ).0� (66)

Figure 7.  Left: (resp. Right:) Mean-value at fixed �S/ 4 of the L1 (resp. squared 

L2) norm between the optimal shape and the simulated shape ∣ ∣∫ −
−

x s x s xd ( ) ( )
1/2

1/2

0  

(resp. ∫ −
−

x s x s xd ( ( ) ( ))
1/2

1/2

0
2). Inset: log–log plot of the same quantity, fitted with 

a power-law � S( / )4 1/3 (resp. � S( / )4 1/2). Error bars are given using a Gaussian 
estimate and a numerical measurement of the variance. The fits with power-laws 

are of low quality, but sufficient to prove that the convergence is slower than � S/4 .

Figure 8.  Left: Mean shape obtained by averaging over the 1000 avalanches with 

the largest �S/ 4 (blue dots, ⩽ ⩽�S0.0011 / 0.00414 ), compared to the optimal shape 

s0(x) (red line). Right: test of the predicted behavior ∼ +s x x( ) ( 1/2)4 close to the 

boundaries.
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Expanding the action yields

H E E H H∫φ φ δφ φ δφ φ δφ= + + + +x x[ ] 2 ( ) ( ) [ , ] [ , ] ...
x

el 0 0 0 2 0 3 0� (67)

∫
″

″φ δφ δφ
φ φ

φ

φ

φ
δφ

φ

φ
δφ=







−






+ +
′ ′

′
′

H x
x x

x

x

x
x

x

x
x[ , ] ( )

20 ( ) ( )

( )

15 ( )

( )
( )

10 ( )

( )
( )

x
2 0

2 0
2

0

0
3

0
4

0
4

2 0
2

0
2

2

� (68)

                   

∫
″

″′ ″

φ δφ δφ δφ
φ φ φ φ

φ
δφ δφ

φ

φ

δφ
φ

φ
δφ

φ φ φ

φ

=
−

−

+ −
+

′
′ ′

′
′

′
′ ′

H x x
x x x x

x
x x

x

x

x
x

x
x

x x x

x

[ , ] 5 ( ) ( )
3 ( ) ( ) ( ) ( )

( )
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( )

4
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( )

( )

( )
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3
( )
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0
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� (69)

The first term in equation (67) comes from the saddle-point equation (57) at φ φ= 0, 

∣A Hφ = δ φ
δφ φ φ=x( )

x x x0 0
1

2

[ ]

( ) ( ) ( )
el

0
 together with (59). We have used our freedom to integrate 

by part to arrive at these expressions: For H φ δφ[ , ]2 0  we gave a form in which each term 
is proportional to the square of a δφ-derivative. For the cubic term, which is used in 

perturbation theory our strategy is different: Since derivatives of Hδφ δφx y( ) ( )
2
 are 

numerically unstable, we wrote this expression without a second derivative ″δφ x( ).
To evaluate the coefficients, we use the variational ansatz (60), with the optimal →c  

of equation (61). The plot in figure 9 shows that δφ x( ) should have the same behavior 

∼ −x( 1/4)2 2 as φ x( )0  at the boundary = ±x 1/2. We therefore make the ansatz

∑δφ = + +
=

−x a v x a v x a u x( ) ( ) [ ( ) ( )].
n

n

n n n n0 0

1

2 1 2

max

� (70)

Figure 9.  The coefficients multiplying the different terms in H φ δφ[ , ]2 0  (left) 

and H φ δφ[ , ]3 0  (right), after replacing δφ → −x x( ) ( 1/4)2 2 and δφ → −′ x x( ) 1/42 . 

This shows that δφ x( ) must have the same behavior ∼ −x( 1/4)2 2 as φ x( )0  at the 
boundary = ±x 1/2.
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The basis un(x), vn(x) is constructed using Gram–Schmidt out of

π= +v x x( )
2

3
[1 cos(2 )]0� (71)

⩾π π= − + ++v x n x x n( ) ( 1) cos(2 ( 1) ) cos(2 ) for 1n
n 1

� (72)

π π
=

+ + − +

+ +

+
u x

n x n x

n
( )

( 1) sin(2 ) ( 1) sin(2 ( 1) )

1
.n

n

n

1

2

2� (73)

This basis is orthonormal. In this basis, the energy H φ δφ[ , ]2 0  can be written as

H M M∫ ∑φ δφ δφ δφ= =x x y y a a[ , ]
1

2
( ) ( , ) ( )

1

2
.

x y i j

ij i j2 0
, ,

� (74)

This defines M which we now diagonalize. Its lowest eigenvalue is Eλ = 20 0, with 

eigenfunction δφ φ=x x( ) ( )0 0 . This can be proven with the help of the saddle-point 
equation (57). The higher eigenfunctions δφ x( )n  have n knots, see figure 10. Since M is 
symmetric they form an orthonormal basis. The spectrum is massive (no soft massless 
modes); we observe that �λ + nln 13.1 0.256n , i.e. the eigenvalues grow in geomet-
ric progression. This ensures that a truncation at =n 10max  is sufficient for practical 
purposes.

A delicate problem is to obtain results at fixed ∫ φ =x( ) 1
x

2 . To do so, we write for 

the expectation value of an observable O φ[ ]

Figure 10.  Left: The spectrum of M. The smallest eigenvalue is Eλ = 20 0 (given 
with precision 10−4 for =n 10max . The next two eigenvalues are λ λ= 5.1431 0, and 
λ λ= 19.202 0. Eigenvalues for large modes grow exponentially with the mode, 

�λ +ln 13.1 0.256n  n (black dashed line), showing that the spectrum of fluctuations 
is massive. The lowest modes are colored in red, blue, orange and cyan. Right: plot 
of the first four eigenfunctions in the same colors as the corresponding eigenvalues. 
δφ x( )n  has n nodes.

http://dx.doi.org/10.1088/1742-5468/2015/08/P08019


Avalanches in the BFM

29doi:10.1088/1742-5468/2015/08/P08019

J. S
tat. M

ech. (2015) P
08019

∫ ∫
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∫
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(75)

We subtracted the constant E0 from the energy in the path integral and used the 

constraint ∫ φ =x( ) 1
x

2  to rewrite the linear term appearing in (67) as a quadratic term: 

E E∫ ∫φ δφ δφ= −x x x2 ( ) ( ) ( )
x x

0 0 0
2. It ensures that the minimum of the exponential factor 

at δφ =x( ) 0 becomes a global saddle point; in addition, the lowest-energy fluctuation 

δφ0 has zero energy. If we write φ x( ) in the basis of eigenmodes δφ x( )n  of M, i.e.

∑ ∑φ φ δφ φ δφ= + ≡ + +
=

∞

=

∞

x x a x a x a x( ) ( ) ( ) (1 ) ( ) ( ),
n

n n
n

n n0
0

0 0
1

� (76)

then

∫ ∫ ∑ ∑φ φ δφ=




 +





 = + +

=

∞

=

∞

x x a x a a( ) ( ) ( ) (1 ) .
x x n

n n
n

n
2

0
0

2

0
2

1

2
� (77)

Solving ∫ φ =x( ) 1
x

2  for a0 yields

⟹∑ ∑= − − = − +
=

∞

=

∞

a a a a1 1
1

2
...

n
n

n
n0

1

2
0

1

2
� (78)

With this, the path-integral (75) can be written using equations (76) and (78) as

�

O O

H H
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∑

φ φ

λ λ
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�

(79)

The factor of − ∑ =
∞ −

( )a1 n n1
2

1
2
 comes from the derivative of the δ-function, which has  

been used to eliminate the integration over a0. Note that the Jacobian of the trans-

formation from φ∏ xd ( )x  to ∏ adn n is Nδφ =∈
−


 ∈xdet( ( )) 1n x n, ,1

2
1
2

, since the δφ x( )n  are 

orthonormal.

Hence, to leading order in an expansion in � S/4 , the expectation value of an observ-
able of δφ x( ) can be obtained using the decomposition δφ δφ= ∑ =

∞x a x( ) ( )i i i0 , where a0 
is given by (78) and the ai are centered Gaussian variables with correlation matrix M′ 
defined for ⩾i j, 1 by
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One then uses Wick’s theorem for expectation values of δφ. As an example, the 
2-point correlation function is

�

� �
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(81)

8.2. Generating a random configuration, and importance sampling

Our setting allows us to generate a random fluctuation with the measure given by 

the the leading behaviour of H for large �S/ 4: Denote by gn a series of uncorrelated 
Gaussian random numbers with mean zero and variance 1. Then

      ∑δφ δφ
λ λ

= =
−

>
=

∞ �
x a x a

S

g
n( ) ( ), with for 0 ,

n

n n n
n

n

rand

0

4

0
� (82)

and a0 given by equation (78). In figure 11 (left) we show as an example the expecta-

tion of δφ x( )2 (solid blue line). This is compared to the average over 500 realizations 
drawn with the measure (82), repeated 5 times (the three gray-blue lines, lower set of 

curves). To illustrate the importance to properly eliminate the mode φ x( )0 , the upper 

(red) curves are obtained without the constraint on ∫ φ x( )
x

2 , i.e. including fluctua-

tions proportional to φ x( )0  (with amplitude λ∼ )1/ 0 , and not constraining them by 

equation (78).
On figure 12 we show five realizations for the shape drawn from the measure (82), 

and compare this to numerical simulations at the same ratio �S/ 4. The agreement is 
quite good.

We can use this formulation for an efficient algorithm, known in the literature as 
importance sampling [20]. One writes

�

�

O O H H

O H E

M

M

∑

∑ ∑

φ φ φ δφ φ δφ

φ φ δφ
λ λ

=





−







− { + + }





=





−









−






+ − −
− 










=

∞ −

=

∞ −

=

∞

′

′

a
S

a
S

a

[ ]
1

1
[ ] 1 exp [ , ] [ , ] ...

1

1
[ ] 1 exp [ ]

2
.

n
n

n
n

n

n
n

1

2

1
2

4 3 0 4 0

1

2

1
2

4 el 0 0

1

0 2

�
(83)

In the second line we reintroduced the full Hamiltonian Hel using equation (67). We 
will compare to simulations below.
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8.3. The leading correction to the shape at large sizes

For large �S/ 4, the mean shape is given by the optimal shape s0(x). For smaller �S/ 4, 
this mean shape becomes flatter, an effect which we now investigate using perturbation 
theory. Consider
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The notation M′ indicates that all expectation values are taken at � =S/ 14 , making 

the factors of 
�
S
4 explicit.

Figure 11.  Left: plot of the fluctuations δφ x( )2 (blue solid line), and including the 
mode δφ0 (red solid line). The dashed lines are averages over 500 samples using 
equation (82), including (top pink) or excluding (bottom, blue-gray) this mode.

Figure 12.  Left: plot of the normalized shape φ δφ

 + 


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Right: The same functions from numerical simulations.
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8.4. Fluctuations of the shape for large avalanches

We now consider the fluctuations of the shape of an avalanche in perturbation theory:
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Note that the only term which survives is the contraction between one δφ x( ) of each 
factor s(x).

8.5. Asymmetry of an avalanche

Another interesting observable is the asymmetry A of an avalanche, defined by

A ∫ φ= x x: 2 ( ).
x

2
� (86)

By construction ⩽ ⩽A−1 1. The asymmetry has mean zero A = 0, and variance given 
in perturbation theory by

� �
A M∫ φ φ δφ δφ=











= ×

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




−
′

S
xy x y x y

S
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2
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,
0 0
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� (87)

8.6. Comparison of the perturbative corrections to the numerics

We had already shown some results of our numerical simulations above. For large �S/ 4, 
the perturbation theory developed in the preceding section gives the correction δs x( )  

of the mean shape to the saddle-point solution, as well as the shape fluctuation δs x( ) c
2  

around the saddle-point. However, as already pointed out in section 7.4, the scaling of 

these quantities with a factor of � S/4  is not seen in the convergence of the numerical 
simulations to the saddle point, see figure 7. This indicates that, even at � ≈ −S/ 104 3, 

the simulations are not yet in the perturbative (first-order) scaling regime. Non-linear 

corrections are still important, and 
�

δs x( )
S
4  as well as 

�
δs x( )

S
c

2
4  still depend on 

�
S
4. This 

is illustrated on figure 13.
As can be seen on the left of figure 13 (as well as on the left of figure 4), corrections 

to the mean shape are very small, of the order of 10−4, difficult to measure, and at the 
limit of our simulations. The red solid line is the perturbative result (84). The points 

correspond to the same quantity from the numerics with increasing �S/ 4 from green 
over blue-gray to red (see caption for the precise parameters). The dashed blue line is 
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obtained for � =S/ 1/9004  via importance sampling, see equation (83)8. One remarks 
that the amplitude is lowered as compared to the perturbative result, in qualitative 
agreement with the simulations. In view of the difficulty of the numerical simulations, 
it is very encouraging that at least a qualitative agreement has been obtained, and that 
importance sampling explains why the observed corrections are smaller than the pertur-
bative result, in agreement with intuition: the shape has to remain positive.

The fluctuations around the mean shape, 
�

δs x( )
S

c
2

4 , are given on the right of fig-

ure 13 with the same color code as previously. One sees that the numerical results 

approach the perturbative result for large �S/ 4. In this case, importance sampling pre-
dicts fluctuations slightly smaller than our numerical simulations, which converge more 
quickly towards the perturbative result. We remark that numerically the estimation of 

�
δs x( )

S
c

2
4  is less sensitive than the estimation of 

�
δs x( )

S
4 . This may be explained by 

the fact that only the latter quantity involves non-linearities of H at dominant order 

in �S/ 4.

For the asymmetry we find 
�
A = × −1.1 10

S 2 5
4  in perturbation theory, and 

± × −5.97 0.04 10 6 via exact sampling for � =S/ 1/9004 . Numerical simulations 

give 
�
A = ± × −(7 2) 10

S 2 6
4  for the largest avalanches ⩾�S/ 0.0024  (37 samples), 

± × −(5.6 0.3) 10 6 for the data with ⩽ ⩽�S1.1/900 / 0.0024  (697 samples), ± × −(4.7 0.2) 10 6 

for the data with ⩽ ⩽�S0.9/900 / 1.1/9004  (946 samples) and ± × −(3.05 0.05) 10 6 for 

8 For =S/ 1/9004� , about 44% of the proposed configurations in the importance sampling have a zero-crossing in 

s(x), and therefore do not contribute. The measured expectation of the weight is = ±1 1.61 0.012, showing that 

averages are not dominated by a few configurations.

Figure 13.  Left: (resp. Right:) normalized mean shape displacement 

⟨ ⟩� −S s x s x/ ( ( ) ( ))4
0  (resp. shape fluctuations ⟨ ⟩� −S s x s x/ ( ( ) ( )) c

4
0

2 ). Red line: 
result of perturbation theory (84) (resp. (85)). Dashed-blue line: result from 

importance sampling using (83) for � =S/ 9004 . Dots: results from the simulations 
for avalanches with aspect-ratio ⩽ ⩽�S0.9/1800 / 1.1/18004  (7023 samples, green), 

⩽ ⩽�S0.9/900 / 1.1/9004  (946 samples, blue) and ⩾�S/ 1.1/19004  (734 samples, 
red). We take advantage of the symmetry of the observable ≡ −s x s x( ) ( )  to 
symmetrize the numerical result. We estimate error bars using the difference 
between the original result and the symmetrized one.
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the data with ⩽ ⩽�S0.9/1800 / 1.1/18004  (7023 samples). Once again we see that the 

order of magnitude is correctly predicted (an already non-trivial achievement), and 

that the numerical results get closer to the perturbative one as �S/ 4 increases.
From a conceptual point of view it is interesting to note that most of the amplitude 

of the ‘double-peak’ structure observed on the right of figure 13 is due to the first sub-

leading mode δφ x( )1  with one node at x   =   0 (see figure 10). The same holds true for A2 .

In conclusion, we have seen that the numerical results agree very well with the theoreti-

cal prediction at large �S/ 4, and that the mean shape of avalanches is given by the optimal 

shape s0(x) (figures 7 and 8). The consequence for the tail of the PDF of �S/ 4 was suc-

cessfully verified (figure 5). For finite �S/ 4, namely fluctuations around the optimal shape, 
we only got a partial, though already satisfying agreement: The discrepancy with the per-

turbative results was clearly identified as a consequence of strong non-linearities, even for 

the largest �S/ 4. This was qualitatively understood by an implementation of importance 
sampling, though the remaining discrepancy raises the question of wether our simulations 
are sufficiently precise to measure these delicate observables (figures 12 and 13).

8.7. The optimal shape beyond extreme value statistics

Before concluding this section, let us mention that though our results on the shape of 
avalanches were a-priori obtained for the most peaked avalanches (i.e. avalanches with 

a large aspect ratio of �S/ 4, some of our result extend at least qualitatively to generic 
avalanches. As an example we show in figure 14 that the characteristic decay of the 

optimal shape near the boundary ∼ ±s x x( ) ( 1/2)0
4 can still be observed in the decay of 

the mean shape at fixed �.
In this spirit, we thus encourage experimental and numerical comparison of our 

results to various, and non-necessary extremal, shape observables.

9. Application of our results to realistic interfaces and stationary driving

Up to now we considered avalanches following a stopped driving (see section  2). 
However, as discussed in [12–14] this setting also yields the densities for the statistics 
of quasi-static avalanches in the steady state (Middleton state) for stationary driving 
in the quasi-static limit ( =w v˙t  and → +v 0 ). These are the avalanche densities defined 
in section 4, hence the denomination used in this article.

Furthermore, it was shown in [14], that the BFM is the mean-field theory of an 
avalanche in the quasi-static limit for an interface in short-ranged disorder with equa-
tion of motion

∫η ∂ = + − +u c u m w u F x u( ) ( , ).t xt
y

xy yt xt xt xt0
2

� (88)

The disorder-force correlator is given by δ= ∆ − −′ ′ ′ ′F x u F x u u u x x( , ) ( , ) ( ) ( )d
0  with  

∆ u( )0  a fast decaying function as ∣ ∣ → ∞u  and cxy a convex elastic kernel. The prediction 
of the functional renormalization group (FRG) for such systems is that, in the quasi-
static limit, when →m 0 and for ε= −d duc , ⩾ε 0 ( =d 4uc  for short-ranged elasticity and 
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more generally γ=d 2uc  for ∼ → γ
∞g q q( ) q ), the physics becomes universal in the small-m 

limit (e.g. independent of microscopic details of the disorder) and entirely controlled by 
only two relevant couplings, the renormalized friction ηm and the renormalized disorder 
cumulant ∆ u( )m . The (rescaled and renormalized) second cumulant of the disorder at 
the fixed point is non-analytic and exhibits a cusp. It is uniformly εO( ), allowing to 
formulate a controlled perturbative expansion of any observable. For observables asso-
ciated to a single avalanche, it was shown in [12, 14] that near the upper critical dimen-
sion duc only the behavior of ∆m near zero, i.e. its cusp, ∣ ∣� σ∆ → = −u u( )m u m0  plays 
a role. In this context, the mean-field theory for single-avalanche motion is the BFM 
studied here, with renormalized parameters η η→ m and σ σ→ m. Hence, the avalanche 
densities derived in section 4 are exact for interfaces at their upper critical dimension. 
They also open the way to a perturbative calculation for ⩽d duc. Interestingly, some 
physical systems described by (88) are at their upper critical dimension, as e.g. domain 
walls in certain soft magnets for which γ = 1 [21].

10. Conclusion

In this article we obtained an exact formula for the joint PDF of the local sizes of ava-
lanches in a discrete version of the BFM model. This result is valid for an arbitrary 
elasticity matrix and arbitrary monotonous driving. This allowed us to derive the den-
sities describing the quasi-static avalanches in the limit of small driving, and to discuss 
in depth the physical picture underlying this avalanche process. We presented two 
applications where it was possible to go further in the analytical calculation of detailed 
physical properties. For the fully connected model we obtained the joint distribution 
of the local and global jumps. This allowed us to retrieve in a rigorous way the usual 
large-N limit, as well as a new regime, and finite-N information.

Figure 14.  Log–Log plot of the numerical measurement of the mean shape at fixed 
� for � = 40 (blue dots), � = 70 (orange dots) and � = 100 (green dots) close to 
the boundary  −1/2  <  x  <  −1/4. The first point of each shape was not taken into 
account to avoid discretization artefacts. As a consequence of the discretization of 
the simulation, the first visible point of each shape is located at �= − +x 1/2 1/ . 
The plain line serves as a guide to compare with the behavior (−1/2   +   x)4 obtained 

from the study of the optimal shape at large �S/ 4.
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We then presented another application by analyzing the most probable shape of 
avalanches of a given size and extension, first for systems made of few coupled par-
ticles, then in the continuum limit for an elastic line with short-ranged elasticity. 
Quantitative results for the optimal shape and the fluctuations around it were obtained 
and compared to a numerical simulation of the model.

Let us conclude by stressing that, since our formula was obtained in a general set-
ting and contains all the spatial statistics of avalanches, it should be possible to extract 
from it a variety of new information on their spatial structure of direct experimental 
interest. It would also be interesting to compare our results for the shape of avalanches 
to other models through simulations or experiments, the BFM being the relevant mean-
field theory for various more realistic systems.
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Appendix A. Recall of the result for the generating function

For completeness, we recall in this section, the derivation, here in a discrete setting, of 
the exact result for the generating function of the BFM (6). Related derivations can be 
found in [13, 14]. The original equation of motion, including the quenched noise term 
∂ F u( )t i it  reads

∑η∂ = − − + ∂
=

u c u m u w F u˙ ˙ ( ˙ ˙ ) ( ).t

j

N

ij jt t iit

1

2
it it it� (A.1)

We use the dynamical field theory formalism [22, 23] which allows to compute the dis-
order average of any physical observable O u[ ˙]. We introduce N response fields ũ it such 
that disorder averages can be computed as

D∫= −O u u u O u[ ] [ ˙, ˜] [ ]e .S u u[ ˙, ˜]
� (A.2)

The dynamical action splits into a deterministic, quadratic part and a disorder part: 
= +S u u S u u S u u[ ˙, ˜] [ ˙, ˜] [ ˙, ˜]0 dis , with

∫

∫ ∫

∑ ∑
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η

η
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(A.3)
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where in the second line, we made an integration by part assuming u̇ vanishes at infin-
ity. The disorder part of the action is

∣ ∣∫∑
σ

= ∂ ∂ −
= ′

′ ′ ′S u u u u u u[ ˙, ˜]
2

˜ ˜ ,
i

N

tt
t tdis

1

it it it it� (A.4)

it contains all the correlation of the Gaussian force (2). As noted in [13, 14], the action 
functional can be simplified using the Middleton property recalled in the main text, 
valid for our setting: ⩾ ⟺ ⩾t t u u2 1 it it2 1 so that

δ∂ ∂ − = ∂ − = − −′ ′′ ′ ′u u u t t u t t˙ sgn( ) 2 ˙ ( ) .t t tit it it it∣ ∣  � (A.5)

This leads to

∫∑σ= −
=

S u u u u[ ˙, ˜] ˜ ˙ .
i

N

t
dis

1
it
2

it� (A.6)

It is straightforward to check that the replacement σ ξ∂ →F u u( ) 2 ˙t i t
i

it it  used in the 

main text leads to the same action. This shows that both theories are equivalent for 
this choice of initial conditions. As written, the action is linear in u̇: this simplifies the 

calculation of the generating functional of the velocity field λ = ∫ λ∑ =G w[ , ] e u̇i
N

t1 it it:

D

D

∫

∫ ∏ ∑

∫

∫

∫
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δ λ σ η
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(A.7)

In the last line, the response field λũit is solution to the ‘instanton’ equation [12–14]

∑λ σ η+ + ∂ + − =
=

u u c u m u˜ ˜ ˜ ˜ 0.t

j

N

ij jtit it
2

it

1

2
it� (A.8)

It is imposed by the delta functional. Note that this evaluation involves a w-indepen-
dent Jacobian, which equals unity since we have supposed the interface to be at rest 
and stable for ⩽t 0, so that if =ẇ 0it  then =u̇ 0it . The above result is thus correctly 
normalized. Equation (A.8) must in general be supplemented by some boundary con-
ditions, depending on the observable (e.g. if λ = 0it  for all i and t  >  t1, we should also 
have =ũ 0it  for all i and t  >  t1). Note that a rigorous version (in discrete-time, without 
path integral) of this result was given in [13]. In the main text we are looking for the 
statistics of avalanches Si, which is obtained using constant sources λ λ= iit , and for 
which one can look for constant solutions =u u˜ ĩit  of (A.8).
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Appendix B. Tests of the main formula, computation of moments and numerical 
checks

We checked (18) using two methods: the first one consists in solving exactly the instan-
ton equation for small values of N in an expansion in powers of c for a given elasticity 
matrix. This gives an approximation of the Laplace transform, which can be inverted to 
give the joint probability distribution up to a certain order in c. This program has been 
successfully achieved up to O(c4) for N   =   2, O(c3) for N   =   3 and O(c2) for N   =   4. The 
other method consists in numerically computing various moments of the probability 
distribution, which can then be compared to the exact results that use the instanton 
equation (12): the cumulants are given by

⟨ ⟩�
� �∑λ λ

λ
λ λ

=





∂
∂ ∂




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∂ ∂


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ln ( )i i
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i i k
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i i v0 1 0

n

n
i

n
i

1

1 1

� (B.1)

and theses derivatives are numerically computed using =
λ

∂
∂

−J
v

ij
1i

j
 where δ= − +J v C2ij i ij ij, 

as seen from (12).

Appendix C. Backward Kolmogorov method for a kick driving

In this section, we provide another verification that (18) is correct when the system is 
driven by a kick (i.e. δ=w w t˙ ( )iit ). For simplicity, we directly consider the dimension-
less equation of motion

∑

∑

ξ

ξ

∂ = − + +

= − +

=

>
=

u c u u w u

C u u
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ij jt t
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ij j t
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it

1

it it it

0

1

it

�

(C.1)

where in the second line we used the definition of Cij (8) and wrote the equation for 
t  >0 when =ẇ 0it . For a kick, it is equivalent to consider the equation  of motion 
with ==u̇ 0it 0 , or to consider the equation  without driving for t  >  0 (C.1) supple-
mented with the initial condition == +u w˙i t i, 0 . The generating function G is still given 

by λ = ∫λ∑→
=

∞

G( ) e tud ˙i
N

i1 0
it. For a kick, we can write it as a conditional expectation value 

on the process without driving (C.1): λ λ= ∞
→ → →G G w( ) ˆ( , , 0, ) where Ĝ is defined as

∣E ∫λ =





=







∑ λ→ →
=G w t t u wˆ( , , , ) e ˙i f

tu

i

d ˙
iti

N

i
ti

tf

i1

it

� (C.2)

where u̇ it evolves according to (C.1) for all times and ∣E … =u w( ˙ )iiti  denotes the aver-
age on the stochastic process without driving (C.1) conditioned to the initial condi-
tion =u w˙ iiti . We now derive a partial differential equation (PDE) fo G, similar to a 
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Backward Kolmogorov equation, using a splitting of t t[ , ]i f  into δ δ+ ∪ +t t t t t t[ , ] [ , ]i i i f  
with δt small:

∫ ∫
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(C.3)

Where in (C.3) we used that u̇ it is continuous. The expectation value in (C.3) can now 
be split in two parts. We can first average over the noise for δ∈ +t t t t[ , ]i i , with δt small, 
or equivalently on the velocity variation δ = − = −δ δ+ +w u u u w: ˙ ˙ ˙i i t t i t i t t i, , ,i i i

, as obtained 

from the equation of motion (C.1). Secondly, we average over the noise in δ+t t t[ , ]i f  
(these are independent) knowing that the velocity at δ+t ti  is δ= +δ+u w w˙i t t i i, i

, i.e.
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The average over δ{ }wi  can be computed at first order in δt using Ito’s lemma (we 

use δ δ= − ∑α α=w t C wj
N

j j1  and δ δ δ= +α αw w t O t2 ( )2 2 ). This leads to
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λ δ δ
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(C.5)

We also expanded the last term at first order in δt. In the r.h.s. of (C.5), all generating 

functions are taken at the same position λ
→ →G w t tˆ( , , , )i f . Now the l.h.s. is of order δO t( )0  

and in the l.h.s., we exactly computed the δO t( ) term. This shows that the generating 
function Ĝ solves the following PDE:

∑ ∑ λ−
∂
∂

=




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∂
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+
∂
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2� (C.6)

which is also equal to 
∂
∂
G

t

ˆ

f
 as a consequence of the time translation invariance of the 

Brownian motion. The initial condition is λ =
→ →G w t tˆ( , , , ) 1i i .

To study avalanche sizes, we consider the long-time behavior of Ĝ to obtain 

λ= ∞
→ →G G w tˆ( , , , )i . In this case we can assume that Ĝ reached the stationary state, i.e.
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This is automatically satisfied if G is given by (6) and if the ũi satisfy the instanton 
equation (7). This provides a connection between the two methods.

An interesting feature of this method is that one can now write a PDE directly 

for the probability distribution → →
P w S( , ) of avalanche sizes in the BFM model following 

arbitrary (positive) kicks δ=w w t˙ ( )iit . This equation reads:

∑ ∑

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We need to find a solution which satisfies the following boundary condition:

∏ δ= =
=

→ → →
P w S S( 0, ) ( ).

i

N

i

1
� (C.9)

Let us now discuss its solution. Inspired by our result (18), we make the change of 

variable =→ → → →
P w S F x S( , ) ( , ) with = − ⋅→ → →

x w C S . The equation for F then takes a very 
simple form:

∑
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

∂
∂

−
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where = + ∑α α α=w x C Sj
N

j j1  and we used that C is a symmetric matrix. In this new vari-

ables, we write our main result (18) using the following decomposition:

δ= = +×
→ → → →

F x S M F x S M C
x

S
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� (C.11)
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This decomposition sheds some light on the structure of (18), here rewritten as F in 
(C.11): it is simple to see that F̃ defined in (C.12) already solves (C.10), F̃ can indeed 
be interpreted as the PDF of the position xi at ‘time’ Si of N independent particles dif-
fusing from the origin at time Si   =   0. However the result =F F̃ would not satisfy the 
boundary conditions (C.9). We now check that the extra factor Mdet( ) provides the 
proper solution. In order for (C.11) to also solve (C.10), the determinant must verify

∑
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2� (C.13)

Using = −∂
∂ α

α

α
F̃

F

x

x

S

˜

2
, this implies an equation for Mdet( )
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The first term 
∂

∂ α

M

x

det( )2

2  is equal to 0, since αx  only appears in the αth column of M.  

The remaining terms vanishes since M depends on αx  and αS  only through the combi-

nation α

α

x

S
. This completes the proof that our result (18) indeed solves the PDE (C.8). 

The boundary condition is now satisfied since →
→

P S( )w  is a continuous PDF on positive 

variables and we know (see section 3 and appendix A) that ⟨ ⟩ = ∑ =
−S C wi j

N
ij j1

1  vanishes 

when →w 0i .

Appendix D.   Poisson-Levy process for normalizable jump densities

D.1. Center of mass

We already discussed in the main text the infinite divisibility property (28) of P S( )w . 
Given this property, one would like to interpret an avalanche S as the sum of n iid 
elementary avalanches si with n drawn from a Poisson distribution and si drawn from a 
given distribution (this defines a Poisson-Levy jump process, see e.g. [17]). This inter-
pretation is valid at the level of the moments of wP S( ) (see (30)) but we now show that 
it does not extend to the probability itself. Let us first assume that the jump density ρ 
appearing in (30) is normalizable (see also the discussion in [11], Appendix J). Then one 

can write ρ ρ=s p s( ) ( )0  with p a regular function normalized to unity ∫ =sp sd ( ) 1 and 

ρ0 the density of avalanches; i.e. the mean number of quasi-static avalanches occuring 
in response to the total driving w is ρ0w. Using the following identity:
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equation (30) can be rewritten as (performing the sum over n  >  m):

∫ ∫∑
ρ

=λ ρ λ

=

∞
− + +� ��(

S P S
m

s s p s p sd e ( )
)

!
e d d e ( ) ( ) .S
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0
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m0 1

w
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(D.2)

This leads to a formula for the probability, = ∑
ρ ρ

=
∞ −P S p S( ) e ( *) ( )

(
m m

m
0

))

!

0
m

0w
w w . Here 

(p*)m denotes m convolutions of p with itself, making the interpretation in terms of a 
Poisson jump process transparent. One can define the ‘complete’ avalanche-size density 
as
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P S
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w
w∣� (D.3)

Where here the first equality holds in the sense of distributions. This total density 
appears as the sum of the regular density ρ S( ) (defined in the main text) and of 
a delta singularity that accounts for the finite probability that the interface does 

not jump. As a consequence, 
w w
w ∣ ∫ ∫λ ρ ρ= = = −λ λ λZ S S S S( ) d ẽ (̃ ) d (e 1) ( )

G S Sd ( )

d =0 . For 

the ABBM model, the scale invariance of the Brownian motion leads to an accu-
mulation of small avalanches of arbitrary small sizes, leading to ρ = ∞0  (in partic-
ular for any w> 0, = = →ρ−P S( 0) e 00w

w ) and one can not define ρ̃. The formula 

w w
w ∣ ∫ ρ= −λ λS Sd (e 1) ( )

G Sd ( )

d =0  is however still valid and allowed us to prove (30).

D.2. Levy process for the interface

The generalization to the interface is immediate: in this case, the LT of →
→

P S( )w  reads
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where the second sum is for all … ∈ { … }i i N( , , ) 1, ,n
n

1  and the vi variables are func-
tions of λ

→
 solutions of (12). Using our conjecture (33), we obtain
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which is the multidimensional generalization of (30) and shows that the densities ρ
→
S( )j  

entirely control the moments of →
→

P S( )w . It is also in agreement with the interpretation 

of an avalanche 
→
S  as a superposition of independent avalanches, as already discussed 

in the main text.

Appendix E. Details on the fully connected model

Here we detail the calculations leading to the results of section 5, and give some results 
for the fully-connected model driven by a single site.

E.1. Marginals distributions for uniform driving

For uniform driving, the matrix C and M entering in (18) admit the following simple 
expressions, allowing us to evaluate Mdet  in a concise way:
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This leads to (38). Various marginals of this PDF can be computed by noting that the 
Laplace transform of pw,S/N(s) entering into (38) reads
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We write the joint PDF of local and total size as

∑δ=





−



=

→ →
P S S S S P S( , ) ( ).

i

N

i

1
� (E.3)

For any ⩽ ⩽ −m N1 1, the marginal { … }P S S S( , , , )m1  can be computed as
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Where the multiple convolution of pw , S/N(s) has been easily calculated as a conse-
quence of the simple structure of it’s Laplace transform. In particular, this leads to the 
formula (40) of the main text.

E.2. Single-site driving

Taking wi to be non-uniform breaks the permutation invariance ↔i j of the problem, 
making the computation more complicated than for the uniform case. Another solvable 
case is wi   =   0 for ≠i 1, for which the PDF (18) takes the form

∏=
+ =
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The computation of marginals involving an integration over some Sj for j  >  1 is identi-
cal to the uniform driving case and leads, for ⩽ ⩽ −m N1 1, to
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In particular, we obtain
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In this case = ∑ =S Si
N

i1  is typically of order 1 and is distributed according to

π
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The large-N limit now exhibits a single non-trivial regime, with =w O N( )1
0 , and for 

which (E.7) admits the limit
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Remarkably, in this case one can even integrate over the total size to find the marginal 
PDF P(S1) in the large-N limit,

π
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In agreement with the physical intuition, this is the ABBM result for a particle with 

driving −m w u( )2
1  and −c S u( ), as discussed above, and =S 0, since the center of mass 

has not moved appreciably.

Appendix F. Shape for small N at finite driving

Here we briefly discuss what becomes of the shape transition observed in the quasi-
static PDF of avalanche shape at fixed total size S of the linear chain with PBCs (see 
section 6) when one is interested in the full PDF for finite wi   =   w as given in (22). For 

N   =   2 and <w
c

3

16
, there is now an additional regime with two transitions instead of 

one:

	•	 < − − − +
S

cw cw

c

8 3 3 16 3

8 2  : the distribution of s is peaked around 
1

2
.

	•	 < <− − − + − + − +
S

cw cw

c

cw cw

c

8 3 3 16 3

8

8 3 3 16 3

82 2 : the distribution possesses two sym-

metric maxima around =s
1

2
.

	•	 > − + − +
S

cw cw

c

8 3 3 16 3

8 2 , one retrieves a single maximum at =s
1

2
.

The first regime is new, and was not captured by the study of ρ. For small →w 0 it 

corresponds to avalanches smaller than the lower-scale cutoff <S w
4

3
2, which are not 

described by ρ as we know from section 4. In this regime, the fact that the saddle-point 
again corresponds to uniform avalanches with s   =   1/2 is not a consequence of elasticity 
(as noted in section 4, local avalanche sizes are even independent in this limit), but is 

related to the fast decay of p0(s) at its lower cutoff (see section 4). For larger >w
c

3

16
, 
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the intermediate regime disappears, and the most probable avalanches are homoge-
neously distributed. Indeed, as w increases, the motion of the interface becomes mostly 
deterministic and the remaining fluctuations become negligible.

The case N   =   3 is identical. For <w
c

1

4
 the finite w probability distribution exhibits 

the same three different regimes with boundaries 
− − −

0,
cw cw

c

1 2 1 4

2 2  and 
− + −cw cw

c

1 2 1 4

2 2 . 

The interpretation is identical to N   =   2.

Appendix G. Stability of infinite, uniform avalanches

In this appendix, we compute the value Sc(N) such that avalanches uniformly distrib-
uted over all the system, and of total size S  >  Sc(N) are stable. We do this for the fully-
connected model and for the linear chain with PBC s, for which uniform avalanches 
uniformly distributed are always an extremum of the quasi-static density ρ (for uniform 
driving f i   =   1). As such, Sc(N) is the value of S above which all the eigenvalues of the 
hessian of the quasi-static distribution at this uniform saddle-point are negative. Since 
this saddle-point and the elasticity matrix are translationally invariant, the Hessian of 
the logarithm of the probability at the saddle point is a circular matrix given by

∣
∣
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(G.1)

c is the elasticity matrix of the model (here m2   =   1), s   =   1/N is the uniform 
local avalanche size at the saddle-point and αβh  depends on the chosen model as 

δ δ δ= − + + +αβ αβ α β α β− +h (4 )
N s Ns

4 1
, 1 , 12 2 2  for the linear chain with periodic boundary 

conditions, and δ= − +αβ αβ
−

h
N

Ns s

( 2)

( )

1
2 2  for the fully connected one. The eigenvalues of 

these matrices can be computed using a discrete Fourier transformation, showing that 

they are indexed by a wave-vector = π
q

k

N

2
 with k   =   1, ... , N  −  1. The q   =   k   =   0 mode 

does not intervene since it corresponds to a uniform displacement of the interface, 
which is forbidden by the fact that we work at fixed S: ∑ =sd 0i i . The eigenvalues of 

the Hessian are all identical for the fully-connected model: λ = − + +cf c
S

s s s. . 2
2 1

2

1
2 2. For 

the linear model they are given by λ = − − + + +q q[1 cos( )] [4 2 cos( )]q
S

s s Ns

2 2 1

2

4
2 2 . In the 

latter case, the most unstable mode is = π
q

N

2
, leading to the following critical values

=S N
N

c
( )

3
,c

fc
2� (G.2)
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Appendix H. Continuum limit

Here we detail the scaling that allows to find the probability distribution of the dimen-
sionless continuum avalanches P[Sx] knowing the probability distribution of the discrete 

case 
→

P S( ). We denote for clarity the continuum field as ut(x), ∈x L[0, ], and its N-point 

discretization as = ( )u u it
L

Nit . We will add indices c and d to distinguish between physi-

cal quantities of the continuum and discrete models. An easy way to ensure that the 
statistic of the discrete case corresponds to the statistic of the continuum one is to 
compare the different terms in the dynamical action (see appendix A) :

	•	 The disorder term: ( ) ( )( ) ( )�∫ ∫ ∫ ∫σ σ σ∑ ≡ ∑= =u u x u x u x u i u i˜ ˙ d ˜ ˙ ˜ ˙i
N

t
d

L

t
c t t i

N L

N c
t

t
L

N t
L

N1 it
2

it
0

2
1

2

	•	 The elastic term: ∫ ∫ ∫∑ − + ≡ ∆= + −u c u u u x u x c u x˜ ˙ 2 ˙ ˙ d ˜i
N

t
d i t i t

L

t
t c t1 it 1 it 1

0
( ) ( ) ( ) � 

∫∑ =

+ − + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟u i c˜i

N L

N t
t

L

N c

u i u i u i

1

˙ 1 2 ˙ ˙ 1t
L

N t
L

N t
L

N

L

N

2

2

( ) ( ) ( )( ) ( )

	•	 The driving term: ∫ ∫ ∫ ∫∑ ≡ ∑= =m u w x m u x w x m u i w i˜ ˙ d ˜ ˙ ˜ ˜i
N

t d

L

t c t t i
N L

N c t
t

L

N t
L

N1
2

it it
0

2
1

2 ( ) ( )( ) ( )�

This indicates that the quantity of the discrete model should be =m md
L

N c
2 2, =c cd

N

L c 

and σ σ=d
L

N c. In particular, the rescaled quantities which appear in the text, in the 

formula for the dimensionless discrete distributions are =c

m

N

L

c

m

d

d

c

c
2

2

2 2 and =S Sm
d N

L m
c . Note 

that we will choose everywhere in the main text cc   =   1. This implies that the prob-
ability distribution of the dimensionless rescaled continuum avalanches denoted by Pc 
is given in terms of its discrete analog ≡P Pd given in (18) as (introducing the explicit 
dependence in the driving):

=














→∞

→ →P S x w x
L

N
P

L

N
S

L

N
w[ ( ), ( )] lim ,c

N

N

d� (H.1)

where here �= =
→
S S Li N( ( / ))i N1, ,  and �= =

→w w Li N( ( / ))i N1, , . This leads to the formula 

of the main text. Note also that for η-dependent observables, one should choose η η=d
L

N c.

Appendix I. Optimal shape in the discrete model

Here we compare the results on the continuum optimal shape with the discrete case. 
This is not only a consistency check, but also allows us to compare the results of the 
optimization when we include boundary conditions, and to investigate the stability of 
the shape. We choose to work on the discrete model with an elastic coefficient set to 
unity, which corresponds to a N-point approximation of the continuum model with 
a line of length L   =   N, i.e. the index i of the discrete model is the coordinate of the 
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continuum line (see appendix H). In the continuum, the optimal reduced shape s0 is 
obtained for total size S and extension � fixed, and contains all the probability when 

� �S/ 14 . To compare this result with the discrete model we used two different optimi-
zation procedures on the discrete probability. We always impose the total size S and 
optimize on the shape variables =s S S/i i  with

	(i)	 either the two central points tuned to coincide with the optimal continuum result: 

we note nmid the integer part of N/2 and impose �
�

= =+s s s (0.5/ )n n 1
1

0mid mid
.

	(ii)	 either N  −l successive shape variables fixed to be small (below we use = −s 10i
5)

Procedure (i) is an indirect way to impose the extension by imposing that the ava-
lanche shape is peaked around some region, whereas procedure (ii) is closer to the  
continuum setting where we directly imposed the finite extension. In both cases we 
impose ��S 4 to obtain a true maximum. The optimal shape is always found to be 
symmetric, which allows us to impose this condition to study reasonably large N. The 
result of the optimization is then compared with the prediction from the continuum 

theory: ��� �
= ==

s s i( / )i
S x i

S S
( ) 1

04 . One can then

	•	 Verify that the optimization on ρ (including boundary conditions) or H alone 

(defined in the continuum in (51)) give the same results. It is already obvious 

for ��N  and figure I1 explicitly shows that it is always true for ��S 4, even if 

� �N . This validate the hypothesis made in the continuum that boundary condi-

tions do not play a role for large �S/ 4.

	•	 Using an optimization on H, we can verify that the discrete optimal shape 
coincides with the continuum one. The results are shown in figure I2. One can 
see that, apart from some discretization artefacts, procedure (ii) give results in 
agreement with the continuum result. On the other hand, procedure (i) leads 
to a shape with an effectively larger extension. This is in agreement with the 

Figure I1.  Comparison between the most probable shape of length � = 10 with 
N   =   12 computed using optimization on H (blue dots) or ρ (red dots), using 

procedure (i), and for different total sizes S from left to right: = − −
�

10 , 10 , 1
S 2 1
4

. 

The influence of boundary conditions quickly decreases as �S/ 4 is increased.
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idea that the property that avalanches have a strictly finite extension is only 
a feature of the continuum limit, as explained in section 7.2, and is coherent 
with the idea that procedure (i) only imposes a ‘characteristic’ extension in the 
discrete setting.

	•	 Finally, we can study the behavior of the maximum eigenvalue λmax of the 
Hessian of the discrete Hamiltonian H at the most probable shape (since the 
eigenvalues are negative it is the maximum one that is the closest to 0 and that 
controls the stability of the saddle-point) using procedure (i). The behavior of the 
eigenvalues of the Hessian with S is trivial: since S can be factorized in front of 
the Hamiltonian, they are proportional to S. However, in the discrete case, there 

is no way to see the scaling 
�
1
4 emerge from the Hamiltonian. Still, we clearly 

numerically find (see figure  I3) that λmax scales with �1/ 4 for �→ 0. This thus 
provides an alternative verification that the saddle-point is stable, and that it’s 
stability is controlled by � �S/ 14 .

Figure I2.  Most probable shape in the discrete model obtained using numerical 
optimization on H with procedure (i) (blue dots) or procedure (ii) (red square) 
with N   =   30 and � = 16 (left) or � = 22 (right), compared to the continuum saddle-
point prediction � �s x( / )/0  (straight line).
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Figure I3.  Maximum eigenvalue of the hessian of the hamiltonian at the numerical  
optimum as a function of 

�
1
4
 for large, fixed S with procedure (i).
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