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Abstract

Self-avoiding walks (SAWs) and loop-erased random walks (LERWs) are two ensembles of random paths 
with numerous applications in mathematics, statistical physics and quantum field theory. While SAWs are 
described by the n → 0 limit of φ4-theory with O(n)-symmetry, LERWs have no obvious field-theoretic 
description. We analyse two candidates for a field theory of LERWs, and discover a connection between 
the corresponding and a priori unrelated theories. The first such candidate is the O(n)-symmetric φ4 theory 
at n = −2 whose link to LERWs was known in two dimensions due to conformal field theory. Here it 
is established in arbitrary dimension via a perturbation expansion in the coupling constant. The second 
candidate is a field theory for charge-density waves pinned by quenched disorder, whose relation to LERWs 
had been conjectured earlier using analogies with Abelian sandpiles. We explicitly show that both theories 
yield identical results to 4-loop order and give both a perturbative and a non-perturbative proof of their 
equivalence. This allows us to compute the fractal dimension of LERWs to order ε5 where ε = 4 − d. In 
particular, in d = 3 our theory gives zLERW(d = 3) = 1.6243 ± 0.001, in excellent agreement with the 
estimate z = 1.62400 ± 0.00005 of numerical simulations.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Random walks (RWs) which are not allowed to self-intersect play an important role in com-
binatorics, statistical physics and quantum field theory. The two most prominent models are self-
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Fig. 1. Trace of a LERW in blue (black in b/w print), with the erased loops in red (gray in b/w print), on a 2-dimensional 
Honeycomb lattice.

avoiding walks (SAWs) and loop-erased random walks (LERWs). The SAW was first introduced 
in polymer physics to model long polymer chains with self-repulsion due to excluded-volume ef-
fects. It is defined as the uniform measure on RW paths of a given length conditioned on having 
no self-intersection. Though this model is difficult to analyze rigorously, it was discovered by de 
Gennes [1] that its scaling behavior in d dimensions is given by the O(n) symmetric φ4 theory in 
the unusual limit of n → 0. A loop-erased random walk (LERW) is defined as the trajectory of a 
random walk (RW) in which any loop is erased as soon as it is formed [2]. An example is shown 
on Fig. 1, where the underlying RW is drawn in red (gray in b/w print), and the LERW remain-
ing after erasure in blue (black in b/w print). Similar to a self-avoiding walk it has a scaling limit 
in all dimensions, e.g. the end-to-end distance R scales with the intrinsic length � as R ∼ �1/z, 
where z is the fractal dimension [3]. It is crucial to note that while both LERWs and SAWs are 
non-self-intersecting, their fractal dimensions do not agree since they have different statistics on 
the same set of allowed trajectories. LERWs appear in many combinatorial problems, e.g. the 
shortest path on a uniform spanning tree is a LERW. While LERWs are non-Markovian RWs, 
their traces are equivalent to those of the Laplacian Random Walk [4,5], which is Markovian, 
if one considers the whole trace as state variable. It is constructed on the lattice by solving the 
Laplace equation ∇2�(x) = 0 with boundary conditions �(x) = 0 on the already constructed 
curve, while �(x) = 1 at the destination of the walk, either a chosen point, or infinity. The walk 
then advances from its tip x to a neighbouring point y, with probability proportional to �(y). 
In a variant of this model growth is allowed not only from the tip, but from any point on the 
already constructed object. This is known as the dielectric breakdown model [6], the simplest 
model for lightning. The same construction pertains to diffusion-limited aggregation [7]. In con-
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Fig. 2. The different field theories for LERWs.

trast to SAWs, LERWs have no obvious field-theoretic description. In three dimensions LERWs 
have been studied numerically [8–11], while in two dimensions they are described by SLE with 
κ = 2 [12,13], predicting a fractal dimension zLERW(d = 2) = 5

4 . Coulomb-gas techniques link 
this to the 2d O(n)-model at n = −2 [14,15]. Below, we give perturbative arguments that this 
construction can be done in any dimension d via the O(n)-symmetric φ4 theory at n = −2.

Coming from a different direction, it was conjectured in [16] that the field theory of the depin-
ning transition of charge-density waves (CDWs) pinned by disorder is a field theory for LERWs. 
This equivalence is based on the conjecture of Narayan and Middleton [17] that pinned CDWs 
can be mapped onto the Abelian sandpile model. The connection of Abelian sandpiles with uni-
form spanning trees, and thus with LERWs, was earlier established by Majumdar [18,19]. Despite 
the lack of a proof of this equivalence, the corresponding 2-loop predictions agree with rigorous 
bounds [16] and have been tested against numerical simulations at the upper critical dimension 
d = 4 in [10] where they correctly reproduce the leading and subleading logarithmic correc-
tions of [16]. The depinning transition of CDWs is described by the functional RG (FRG) fixed 
point for random periodic systems, proposed by Narayan and Fisher [20–22], and developed in 
[23–29].

If true, both φ4-theory at n = −2 and the FRG for CDWs must agree, at least for observables 
related to LERWs. We show below that both the β-function and the fractal dimension of LERWs 
coincide. This is done using (i) graph-theoretical arguments valid at all orders in perturbation 
theory, (ii) non-perturbative supersymmetry techniques, and (iii) an explicit 4-loop calculation. 
This does not mean that the theories are identical: for example, at depinning CDWs exhibit 
avalanches which are seemingly absent in the φ4 model. Our statement is that in the sector in 
which we can compare the two theories, they agree. This is illustrated on Fig. 2. It does not 
exclude that one of the theories can handle observables the other cannot. A classical example 
for this behavior is the solution of the 2d Ising model via the conformal bootstrap, as proposed 
by Belavin, Polyakov and Zamolodchikov (BPZ) [30]. Here a theory with three operators, the 
energy ε, the spin σ , and the identity 1, closes under OPE. However, other observables can be 
constructed from the Ising model on a lattice. Examples in case are domain walls, at criticality 
described by SLE. On the other hand, SLE does not (at least obviously) describe the operators of 
the original BPZ construction. Thus, SLE and BPZ describe different sectors of the same theory.

2. Mapping of LERWs onto O(n) φ4-theory at n = −2

We now map LERWs onto the n-component φ4 theory at n = −2. The latter is defined by the 
action

S[ �φ] :=
∫

1

2
[∇ �φ(x)]2 + m2

2
�φ(x)2 + g

8
[ �φ(x)2]2 . (1)
x
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One checks that, for n = −2, the full 2-point correlation function is given in Fourier space by the 
free-theory result

〈
φi(k)φj (k)

〉 = 〈
φi(k)φj (k)

〉
0 = δij

k2 + m2 , (2)

independent of g. This fact is well known perturbatively [31–34]. A non-perturbative derivation 
is given below, by mapping onto complex fermions. Eq. (2) is the Laplace transform of the 
k-dependent Green function for a random walk (RW),

〈
φi(k)φj (k)

〉 = δij

∞∫
0

dt e−m2t × e−k2t . (3)

Here t ≥ � is the time of the RW used to construct the LERW of length �, which scales as 
� ∼ tz/2 ∼ m−z, and z is the fractal dimension of the LERW. Let us convene that we draw the 
trajectory of a random walk in blue, and when it hits itself we do not erase the emerging loop, 
but color it in red; see Fig. 1 for an example. We claim that we can reconstruct these colored
trajectories from φ4 theory. To this aim, we first reformulate the theory (1) in terms of N = n/2
complex bosons � and �∗, with �i(x) := 1√

2
[φ2i−1(x) + iφ2i (x)], i = 1, ..., N = n/2. Its action 

reads

S[ ��] :=
∫
x

∇ ��∗(x)∇ ��(x) + m2 ��∗(x) ��(x) + g

2
[ ��∗(x) ��(x)]2. (4)

This reformulation gives propagators a direction, making it easier to interpret them as RWs. 
Consider a specific path with s intersections in the path-integral representation. This conditioning 
introduces a small-length cutoff a [35,36]: One may think of putting a grid of box-size a, and 
introduce for each box a 
-function, which is one if the path passes through twice, and zero 
otherwise. It is crucial that for the self-intersections encoded in the quartic term we use the 
same prescription, that it squares to one, and is symmetric under exchange of the momenta. The 
contributions to paths with s = 1 self-intersections are

(5)

The drawing on the l.h.s. of equation (5) is a LERW starting at x, ending in z, and passing 
through the segments numbered 1 to 3. Due to the crossing at y, the loop labeled 2 is erased; 
we draw it in red. The r.h.s of equation (5) gives all diagrams of φ4 theory up to order gs . The 
first term is the free-theory result, proportional to g0. The second term ∼ g cancels the first 
term, if one puts g → 1. Here it is crucial to have the same regularization for the interaction 
as for the conditioning. The third term is proportional to N , due to the loop, indicated in red. 
Setting N → −1 compensates for the subtracted second term. Thus setting g → 1 and N → −1, 
the probability to go from x to z remains unchanged as compared to the free theory. This is 
a necessary condition to be satisfied. Since the first two terms cancel, what remains is the last 
diagram, corresponding to the drawing for the trajectory of the LERW we started with.

Let us consider how this continues for s = 2 intersections. Once a first loop has been formed, 
there are two possibilities: The walk can either hit a blue or a red part of its own trace. Let us first 
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assume it hits a blue part. Then a second loop is formed, and the mapping at g = 1, and N = −1
reads

(6)

This is a result of multiple cancelations, which we can analyze vertex by vertex. The tricky part 
is what happens at point y: We can either not use any interaction, use the interaction following 
the lines of the original walk, or reconnect the lines of the walk to form a loop. Here we used can-
celation of the first two terms, retaining the last one, which resulted in the given drawing. (Note 
that the drawn red trace has the statistics of Brownian motion, as the two possible interaction 
terms mutually cancel.)

The other possibility is to hit a red part of the trace, say at point y

(7)

Here nothing should happen, since the walk does not see the erased part of its trace. The appro-
priate cancelation is between “no interaction” and “reconnecting”, since the latter would result 
in the erased loop appearing again in blue in perturbation theory. Thus also in this case we map 
onto the appropriate diagram of φ4-theory. Continuing these arguments inductively allows us to 
prove this for any number of intersections s.

We have thus established a one-to-one correspondence between traces of LERWs and dia-
grams in perturbation theory. We still need an observable which is 1 when inserted into a blue 
part of the trace, and 0 within a red part. This can be achieved by modifying the probability to 
diffuse from x to z, given by the expectation of �∗

1(x)�1(z), to

O(x, y, z) := �∗
1(x)�1(z)

[
�∗

1(y)�1(y) − �∗
2(y)�2(y)

]
. (8)

As shown in appendix A this observable can be simplified to

O(x, y, z) = �∗
1(x)�1(y)�∗

2(y)�2(z) . (9)

The fractal dimension z of a LERW is extracted from the length of the walk after erasure (blue 
part) 〈∫

y,z
O(x, y, z)

〉
〈∫

z
�∗

1(x)�1(z)
〉 ≡ m2

〈 ∫
y,z

O(x, y, z)

〉
∼ m−z . (10)

We recall that the fractal dimension of SAWs is given by zSAW = 1/ν where the critical exponent 
ν is taken in the limit of n → 0. Remarkably, we can deform the measure on the RWs in a 
continuous way by tuning the parameter n. This interpolates between SAWs and LERWs, and 
more generally gives critical curves in the n-component vector model. Indeed, the operator in 
square brackets of (8) is related to the so-called crossover exponent [37–39]. It is defined as (see 
e.g. [38], Eq. (8))
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φc = 2 + γφφ − η

2 + γφ2 − η
≡ (

2 + γφφ − η
)
ν . (11)

Here γφφ is the RG function for the operator �1�
∗
2, and η is the anomalous exponent for the 

dimension of the fields. For the LERWs considered here, η = 0 and ν = 1/2. More generally 
[37,38,40],

z = df = 2 + γφφ − η (12)

is the fractal dimension of a curve in the critical O(n) symmetric φ4 theory. Let us discuss what 
this means for LERWs and SAWs. First, for n = −2, the 2-point function between two points 
x and z in the φ4 theory is the sum over all LERWs from x to z, weighted by the chemical 
potential m2 conjugate to its construction time t . It equals the free propagator from x to z, since 
coloring loops in red or erasing them does not change the propagator. On the other hand, if we 
apply our picture to SAWs, red loops carry a factor of N = 0, and only configurations without 
self-intersections survive. In this case the ratio (11) equals 1, and the fractal dimension can be 
inferred from the 2-point function alone, i.e. φc(n = 0) = 1 and df = 1/ν(n = 0) = zSAW. Thus, 
the 2-point function of φ4 theory with n = 0 equals the sum over all SAWs connecting the two 
points.

Let us now turn our attention to d = 2: There it is known that SLEκ for 0 ≤ κ ≤ 4 is a simple 
curve. RWs generated by the 2-dimensional O(n)-symmetric φ4 theory with n = −2 cos(4π/κ)

are non-self-intersecting for −2 ≤ n ≤ 2, corresponding to 2 ≤ κ ≤ 4. For κ > 4 the curves are 
self-intersecting. For |n| > 2 the field theory becomes massive, and the connection breaks down. 
As we now know that n = −2 and n = 0 correspond to LERWs and SAWs in arbitrary dimension 
d , we conjecture that there is a family of non-selfintersecting random walks in arbitrary dimen-
sion d , parameterized by n, such that their measure can be continuously deformed from that of 
LERWs at n = −2 to that of SAWs at n = 0, and beyond to n > 0. Interestingly, the barrier of 
|n| = 2 in two dimensions is seemingly absent in higher dimensions. This may be understood 
from the fact that the return probability of a random walk to the origin decreases with increasing 
dimension.

3. φ4-theory at N = −1, and fermions

Up to now, we worked with N = −1 families of complex bosons. We show below that in-
stead one can consider the limit of Nf → 1 in a theory with Nf complex fermions, or more 
generally with Nb bosons and Nf fermions, where N = Nb − Nf. Among others, this provides a 
non-perturbative proof that the propagator at N = −1 is independent of g.

The correspondence is based on the observation that Nb-component bosons �� carry a factor 
of Nb per loop, while Nf-component fermions �� yield a factor of −Nf. On a more formal level, 
this can be inferred from the path integrals for both theories. Setting H0 := −∇2 + τ(x),

Zb
0 =

∫
D[ ��∗]D[ ��] e− ∫

x
��∗(x)H0 ��(x) = e−Nbtr ln(H0), (13)

Z f
0 =

∫
D[ ��∗]D[ ��] e− ∫

x
��∗(x)H0 ��(x) = eNftr ln(H0). (14)

The bosonic correlation function is given by〈
�i(x)�∗

j (y)
〉
= δij

(
H−1

0

)
x,y

= 1

Zb

∫
D[ ��∗]D[ ��]�i(x)�∗

j (y) e− ∫
x

��∗(x)H0 ��(x) . (15)

0
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For fermions an equivalent expression holds, and 
〈
�i(x)�∗

j (y)
〉
=

〈
�i(x)�∗

j (y)
〉
. Setting τ(x) =

m2 + iρ(x), a Hubbard Stratonovich transformation allows us to decouple the quartic interaction 
in a theory of Nb bosons �i and Nf fermions �i ,

e− g
2

∫
x [ ��∗(x) ��(x)+��∗(x) ��(x)]2 =

∫
D[ρ] e− 1

2g

∫
x ρ(x)2−iρ(x)[ ��∗(x) ��(x)+��∗(x) ��(x)]

. (16)

As a consequence, a system of Nb bosons and Nf fermions with the interaction (16) has partition 
function

Zb+f =
∫

D[ ��∗]D[ ��]D[ ��∗]D[ ��]e− ∫
x

��∗(x)(−∇2+m2) ��(x)+��∗(x)(−∇2+m2) ��(x)

×e− g
2

∫
x [ ��∗(x) ��(x)+��∗(x) ��(x)]2 =

∫
D[ρ] e(Nf−Nb) tr ln(H0+iρ)− 1

2g

∫
x ρ(x)2

. (17)

More generally, the correlations 
〈
�1(y)�∗

1(x)
〉

in complex N -component �4 theory can be cal-
culated from a theory with Nb bosons and Nf fermions, where N = Nb −Nf. For Nb = 0, Nf = 1
one gets N = −1, and the interaction is [ ��∗(x) ��(x)]2. It vanishes due to the squares of Grass-
mann variables: This theory of complex fermions,

SNf=1
Nb=0[�∗,�] =

∫
x

∇�∗(x)∇�(x) + m2�∗(x)�(x) , (18)

is a free theory. It provides a non-perturbative proof that correlation functions of complex 
�4-theory at N = −1 (n = −2 real fields) are equivalent to those of the free theory. In d = 2
this is also known from lattice models [14]. However, it does not yield the renormalization of the 
coupling g at N = −1. To obtain the latter, one has to study Nf �= 1, and take the limit of Nf → 1
at the end. Or one uses one family of complex bosons Nb = 1 and two families of complex 
fermions Nf = 2, a formulation onto which we will map CDWs at depinning later.

Finally, care has to be taken in identifying observables in both theories: While the 2-point 
functions of bosonic fields are symmetric under their exchange, those of the fermionic theory are 
antisymmetric. As a consequence 〈φ1φ1〉 �= 0, whereas 〈ψ1ψ1〉 = 0.

4. Equivalence between φ4-theory at N = −1 and CDWs at depinning

Charge-density waves are ground states of solids, where the charge density is varying spatially, 
with a period set to 1. Coupling these elastic objects to quenched disorder leads after averaging 
over disorder to the dynamic field theory [42,43,20–22,44]

SCDW =
∫
x,t

ũ(x, t)(∂t −∇2 +m2)u(x, t)− 1

2

∫
x,t,t ′

ũ(x, t)ũ(x, t ′)�
(
u(x, t)−u(x, t ′)

)
. (19)

The function �(u) is an even function with period 1. Its renormalization can be studied using 
functional RG (FRG) [20,22,21,23–27]. The analysis of the FRG flow for the function �(u)

shows that the fixed point has the form

�(u) = �(0) − g

2
u(1 − u) . (20)

In the absence of higher-order terms in u, the RG flow closes in the space of polynomials of 
degree 2, and for the quadratic term one is left with the renormalization of a single coupling con-
stant g. Thus, as long as one is not interested in 2-point correlation functions, or avalanches, the 
fixed-point function can be replaced by �(u) → g

u2, which generates the simpler field theory,
2
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SCDW
simp :=

∫
x,t

ũ(x, t)(∂t − ∇2 + m2)u(x, t)

− g

4

∫
x,t,t ′

ũ(x, t)ũ(x, t ′)
[
u(x, t) − u(x, t ′)

]2
. (21)

Let us define a further variant which retains from �
(
u(x, t ′) − u(x, t)

)
only the term 

u(x, t)u(x, t ′),

SSAW :=
∫
x,t

ũ(x, t)(∂t − ∇2 + m2)u(x, t) + g

2

∫
x,t,t ′

ũ(x, t)u(x, t)ũ(x, t ′)u(x, t ′) . (22)

Perturbation expansion in this theory looks exactly like the one in Eq. (4), with a different prop-
agator to be compared with Eq. (3),

R(k, t) := 〈ũ(k,0)u(−k, t)〉 = 
(t) e−t (k2+m2) . (23)

In this theory closed loops have weight zero, as they are acausal in Itô discretization. If one can 
integrate freely over all times, diagrams in the dynamic theory reduce to those in the complex 
scalar theory. Thus the theory defined by Eq. (22) can be mapped onto the action (4) with n =
N = 0, i.e. a self-avoiding walk. This is well-known due to de Gennes [1].

We now show that the action (21) has the same effective coupling as the action (4) at N =
−1. We first remark that the renormalized coupling is extracted from diagrams with times on 
which they depend taken far apart. An example is given by the first diagram in Eq. (24) below. 
To show the equivalence, we start by drawing all diagrams present in the SAW-theory (22), 
complementing them by the missing diagrams originating from the additional vertices of (21) as 
compared to (22). These missing diagrams, a.k.a. children, can be generated from the diagrams 
for SAWs by moving one arrow from one side of the vertex into which it enters to the other side,

(24)

We then extract contributions to the effective coupling; this is cleverly done by remarking that 
(i) the form of the effective interaction is proportional to the second line of Eq. (21), and (ii) it 
is extracted by retaining only terms of the form present in Eq. (22). This implies that the second 
diagram in Eq. (24) does not contribute. Indeed it comes with two other ones,

(25)

After time-integration, the two fields at the left-most vertex cancel, thus the above sum vanishes. 
The next diagram

(26)

has two children,
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(27)

They both vanish, since the first is an acausal loop, thus zero, and the second has only one 
connected component, thus does not contribute to the renormalization of g. Now consider

. (28)

This diagram contains an acausal loop, thus does not contribute to the SAW theory (22) where it 
vanishes due to a factor of N = 0. The diagram however has children; together they are

(29)

The modified lines are in red. We first remark that none of them restricts the time-difference 
between the left and right-most vertices, and they all contribute to the effective coupling. Their 
coefficients are 0 × 1 − 1 − 1 + 1 = −1. Integrating over times, the result is the same as in 
φ4-theory at N = −1, graphically represented as

(30)

Noting the pairwise cancelations in loops of the form (29), this can be interpreted as the missing
contribution of the first (acausal) diagram. To summarize: We showed that at 1-loop order the 
action (21) has the same effective coupling as the action (4), diagram by diagram (after time 
integration). These considerations can be formalized to higher orders, and we checked them 
explicitly up to 4 loops.

The theory (21) has a second renormalization, namely of friction, or time, which shows up 
in a renormalization of 

∫
x,t

ũ(x, t)u̇(x, t). The standard route to study this is to write down all 
diagrams constructed from (21), in which one field ũ and one field u remain [26]. Due to the 
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structure of the action, the latter has the form u(x, t) −u(x, t ′) and can be expanded as u̇(x, t)(t −
t ′). The additional time difference, when appearing together with a response function, acts by 
inserting an additional point into the latter, as can be seen from the definition (23), and the 
relation

tR(k, t) =
t∫

0

dt ′R(k, t ′)R(k, t − t ′) . (31)

Following this strategy, we checked that up to 4-loop order all diagrams appearing after time-
integration are equivalent to those encountered in expectations of O, defined in Eq. (8). Graph-
ically, this is proven by first realizing that one can alternatively study the renormalization of 
friction by considering insertions of 

∫
x,t

ũ(x, t)u̇(x, t). Doing this, the time derivative on u̇ can 
be passed through a closed string of response functions to either the earliest time in the diagram, 
and will then act on the remaining uncontracted field u, or it will end on a vertex with no further u
field, and thus vanish. The same argument can be done by moving the time derivative to the field 
ũ. These operations restrict the class of diagrams. Graphically, inserting 

∫
x,t

ũ(x, t)u̇(x, t) cor-
responds again to inserting a point into diagrams correcting expectations of ũ(x, t)u(x′, t ′). The 
final step of the proof is to realize that this is equivalent to insertions of the crossover operator 
�1(y)�∗

2(y) in the theory (4).
Finally note that the absence of a renormalization of −∇2 + m2 in Eqs. (19) and (21) implied 

by the statistical tilt symmetry is equivalent to the absence of a renormalization of the theory 
(18).

5. A non-perturbative proof for the equivalence of φ4-theory at N = −1 and CDWs

The method introduced in [45,46] allows one to write the disorder average of any observable 
O[ui] as

O[ui] =
∫ r∏

a=1

D[ũa]D[ua]D[ψ̄a]D[ψa]O[ui]×

× exp

⎡
⎣−

∫
x

ũa(x)
δH[ua]
δua(x)

+ ψ̄a(x)
δ2H[ua]

δua(x)δua(y)
ψa(y)

⎤
⎦. (32)

The integral over ũa ensures that ua is at a minimum. ψ̄a and ψa are fermionic degrees of 
freedom (Grassmann variables), which compensate for the functional determinant appearing in 
the integration over u, yielding a partition function Z = 1. Averaging over disorder gives an 
effective action [47]

S[ũa, ua, ψ̄a,ψa] =
∑
a

∫
x

ũa(x)(−∇2+m2)ua(x) + ψ̄a(x)(−∇2+m2)ψa(x)

−
∑
a,b

∫
x

[1

2
ũa(x)�

(
ua(x) − ub(x)

)
ũb(x) − ũa(x)�′(ua(x) − ub(x)

)
ψ̄b(x)ψb(x)

− 1
ψ̄a(x)ψa(x)�′′(ua(x) − ub(x)

)
ψ̄b(x)ψb(x)

]
. (33)
2
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The function �(u) is the same as in Eq. (19). Note that we allow for an arbitrary number of 
replicas r . In the work [45] the focus was on r = 1, which does not allow to extract the second 
cumulant of the disorder, i.e. its correlations. To do the latter, one needs at least r = 2 copies, to 
which we specify now. We introduce center-of-mass coordinates,

u1(x) = u(x) + 1

2
φ(x) , u2(x) = u(x) − 1

2
φ(x) , (34)

ũ1(x) = 1

2
ũ(x) + φ̃(x) , ũ2(x) = 1

2
ũ(x) − φ̃(x) . (35)

The action (33) can then be written as

S =
∫
x

φ̃(x)(−∇2 + m2)φ(x) + ũ(x)(−∇2 + m2)u(x) +
2∑

a=1

ψ̄a(x)(−∇2 + m2)ψa(x)

+ φ̃(x)2
[
�

(
φ(x)

) − �(0)
]
− 1

4
ũ(x)2

[
�

(
φ(x)

) + �(0)
]

+ 1

2
ũ(x)�′(φ(x)

)[
ψ̄2(x)ψ2(x) − ψ̄1(x)ψ1(x)

]
+ φ̃(x)�′(φ(x)

)[
ψ̄2(x)ψ2(x) + ψ̄1(x)ψ1(x)

]
+ ψ̄2(x)ψ2(x)ψ̄1(x)ψ1(x)�′′(φ(x)

)
. (36)

As in the derivation of the action (21) replacing �(u) → g
2 u2, the action (36) takes the form

S =
∫
x

φ̃(x)(−∇2 + m2)φ(x) + ũ(x)(−∇2 + m2)u(x) +
2∑

a=1

ψ̄a(x)(−∇2 + m2)ψa(x)

+ g

2
ũ(x)φ(x)

[
ψ̄2(x)ψ2(x) − ψ̄1(x)ψ1(x)

]
− g

8
ũ(x)2φ(x)2

+ g

2

[
φ̃(x)φ(x) + ψ̄1(x)ψ1(x) + ψ̄2(x)ψ2(x)

]2
. (37)

Note that only ũ(x), but not the center-of-mass position u(x) appear in the interaction. While 
u(x) may have non-trivial expectations, it does not contribute to the renormalization of g, and 
the latter can be obtained by dropping the third line of Eq. (37). What remains is a φ4-type theory 
as in Eq. (17), with one complex boson, and two complex fermions. It can equivalently be viewed 
as complex φ4-theory at N = −1, or real φ4-theory at n = −2.

What is yet missing is information about the exponent z. One can use the operator O defined 
in Eqs. (8) or (9), replacing �i by ψi , and �∗

i by ψ̄i . Another possibility is to introduce time, 
adding a time argument to all fields, and replacing −∇2 + m2 by ∂t − ∇2 + m2. The interaction 
part, i.e. the last line of Eq. (37), then becomes bilocal in time, i.e. the time integral appears 
inside the square bracket. The tricky part is to ensure that time-integrated vacuum bubbles retain 
their static expectations. This can be done by specifying an initial condition, once again adding 
the action (37) where all fields are evaluated at some initial time t0. This implies that

R(k; t ′, t) =
〈
φ(−k, t ′)φ̃(k, t)

〉
= 〈

ψi(−k, t ′)ψ̄i(k, t)
〉

= 
(t ′ − t)e−(k2+m2)(t ′−t) + δt,t0δt ′,t0
k2 + m2 . (38)
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The δ-functions are to be understood s.t.∫
t

R(k1, t, t)...R(kn, t, t) = 1

(k2
1 + m2)...(k2

n + m2)
. (39)

We explicitly checked to 3-loop order that terms proportional to ∂t receive the same renormal-
ization as at depinning. Furthermore we can analyze the renormalization of φ̃(x, t)∂tφ(x, t) as 
an insertion. Contributing diagrams carry two external fields, one φ̃, and one φ. Passing the time 
derivative ∂tφ(x, t) of the insertion to this external field, what remains is the insertion of a sin-
gle point in the line connecting the external fields φ̃ and φ, but no contribution from insertions 
into loops. After integration over times, this is equivalent to the insertion of O defined above in 
Eqs. (8) or (9).

6. Fractal dimension of LERWs at 5-loop order

We generated all diagrams entering into O(x, y, z) at 5-loop order, and into the renormaliza-
tion of the coupling constant at 4-loop order, supplemented by the diagrams of [34] at 5-loop 
order. At 3-loop order we obtain the fractal dimension z of LERWs using the massive diagrams 
of Ref. [28]. To 4- and 5-loop order, we use diagrams in a massless minimal subtraction scheme 
obtained in [33,34]. The result reproduces at 4-loop order the one given for the crossover ex-
ponent in Ref. [38], setting there n = −2. This yields for the fractal dimension z of LERWs in 
dimension d = 4 − ε, equivalent to the dynamical exponent of CDWs at depinning,

z = 2 − ε

3
− ε2

9
+

[
2ζ(3)

9
− 1

18

]
ε3 −

[
70ζ(5)

81
− ζ(4)

6
− 17ζ(3)

162
+ 7

324

]
ε4

+
[

121ζ(3)

972
− 8ζ(3)2

81
+ 17ζ(4)

216
− 103ζ(5)

243
− 175ζ(6)

162
+ 833ζ(7)

216
− 17

1944

]
ε5

+O(ε6)

= 2 − ε

3
− ε2

9
+ 0.211568ε3 − 0.611186ε4 + 2.43354ε5 + O(ε6) . (40)

Using Borel resummation of (40), where to improve the precision we have included the 6-loop 
term yields [41]

z(d = 2) = 1.244 ± 0.01, (41)

z(d = 3) = 1.6243 ± 0.001. (42)

This can be compared to the exact value z(d = 2) = 5/4 [12,13] and the most precise numerical 
simulations to date by David Wilson [11],

z(d = 3) = 1.62400 ± 0.00005 . (43)

7. Summary and perspectives

We presented evidence that both φ4 theory with O(n)-symmetry at n = −2, as well as the 
field theory for CDWs at depinning describe loop-erased random walks. We sketched a proof of 
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this equivalence, based on a diagrammatic expansion, and gave an algebraic proof for the latter. 
All claims were explicitly checked to 4-loop order. This equivalence gives a strong support for 
the Narayan-Middleton conjecture [17] that CDWs pinned by disorder can be mapped onto the 
Abelian sandpile model, and thus for the conjecture of [16]. Remarkably, while CDWs at de-
pinning map onto Abelian sandpiles, disordered elastic interfaces at depinning map onto Manna 
sandpiles [48,49]. Thus each main universality class at depinning corresponds to a specific sand-
pile model.

The result is surprising, since a simple φ4-type theory contains all necessary information to 
obtain the FRG fixed point of CDWs, a disordered system. It does not directly yield the renor-
malized 2-point function, or the physics of avalanches. As sketched on Fig. 2, our understanding 
is that the different field theories are not equivalent, but when restricted to the same physical 
sector make the same predictions. This opens a path to eventually tackle other systems which 
necessitate FRG via a simpler scalar field theory.

Finally, the mapping of φ4-theory at n = −2 onto LERWs was done at a microscopic cou-
pling g = 1. Changing the latter to p < 1 can be interpreted as a random walk where loops are 
erased with probability p. Since the RG fixed point is reached for any 0 < p < 1, we conjecture 
that these partially loop-erased random walks are in the same universality class as LERWs. We 
propose taking p close to 1 to measure the correction-to-scaling exponent ω precisely. While 
its ε expansion is known to 6-loop order [34], it is only slowly converging, and we estimate 
ω = 0.83 ± 0.01.
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Appendix A. Rewriting the operator O

We had defined in Eq. (8)

O(x, y, z) := φ∗
1 (x)

[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
φ1(z) . (A.1)

Due to the symmetry of the action under the mapping φ2 → −φ2, and φ∗
2 → −φ∗

2 with all other 
components fixed, it follows that

0 = 〈
φ∗

1 (x)φ2(z)
〉 = 〈

φ∗
1 (x)

[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
φ2(z)

〉
. (A.2)

Symmetry upon exchange of components 1 and 2 further yields〈
φ∗

1 (x)
[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
φ1(z)

〉
= −

〈
φ∗

2 (x)
[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
φ2(z)

〉
. (A.3)

Using Eqs. (A.2) and (A.3) we deduce that〈
φ∗

1 (x)
[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
φ1(z)

〉
= 1 〈

[φ∗
1 (x) − φ∗

2 (x)]
[
φ∗

1 (y)φ1(y) − φ∗
2 (y)φ2(y)

]
[φ1(z) + φ2(z)]

〉
. (A.4)
2
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Define

φ+(x) = 1√
2

[φ1(x) + φ2(x)] ,

φ−(x) = 1√
2

[φ1(x) − φ2(x)] . (A.5)

The complex conjugate fields are obtained by complex conjugation of both sides of the above 
equations. Then expectations of the observable O(x, y, z) can be rewritten as

〈
O(x, y, z)

〉 = 〈
φ∗−(x)φ+(y)φ∗−(y)φ+(z)

〉
. (A.6)

Eq. (A.5) is a rotation. Relabeling φ− → φ1 and φ+ → φ2, this proves the equivalence of the 
definitions (8) and (9).

Appendix B. Renormalization group functions and critical exponents

The β-function is defined as

β(g) := −m∂mg(g0)

∣∣∣
g0=g0(g)

. (B.1)

It has a non-trivial fixed point at g∗, s.t. β(g∗) = 0. The slope of the β-function at g = g∗ yields 
the correction-to-scaling exponent ω,

ω := −β ′(g∗) = ε − 2ε2

3
+

(
4ζ(3)

3
+ 5

9

)
ε3 +

(
π4

90
− 4ζ(3)

3
− 70ζ(5)

9
− 31

54

)
ε4

+
(

19ζ(3)2

27
+ 163ζ(3)

54
+ 479ζ(5)

81
+ 833ζ(7)

18
− 5π6

486
− π4

90
+ 23

36

)
ε5

+O(ε6) (B.2)

This result agrees with the literature on the O(n)-model [33,34] and for CDWs [29] (where 
ω := β ′(g∗)). To obtain the exponent z, we use that

〈∫
z

φ∗
1 (x)φ1(z)

〉
= 1

m2 ,

〈∫
y,z

O(x, y, z)
〉

〈∫
z
φ∗

1 (x)φ1(z)
〉 ≡ m2

〈∫
x

O(x, y, z)

〉
∼ m−z . (B.3)

With the help of Eqs. (C.1) and (D.1), this yields

z = 2 + ∂γφφ

∂g
β(g)

∣∣∣
g=g∗ . (B.4)

The result is given in Eq. (40) in the main text. Note that when using the diagrams of Ref. [34], 
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the mass m gets replaced by a momentum scale. Due to universality, the critical exponents are 
independent of the scheme.

Appendix C. The effective coupling at 5-loop order

(C.1)

Note that at 5-loop order the vertices are sitting on a circle, and crossings inside this circle are 
not vertices. There are (2n + 1)!! terms at n-loop order.
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Appendix D. The observable O at 5-loop order

Amputating the external points of the observable O, and integrating over all but one point, we 
find

(D.1)

There are (2n − 1)!! diagrams at n-loop order. At 5-loop order the vertices are sitting on a circle, 
and crossings inside this circle are not vertices.
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