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Fabry-Perot interference and spin filtering in carbon nanotubes
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We study the two-terminal transport properties of a metallic single-walled carbon nanotube with good
contacts to electrodes, which have recently been shown@W. Liang et al., Nature~London! 441, 665~2001!# to
conduct ballistically with weak backscattering occurring mainly at the two contacts. The measured conduc-
tance, as a function of bias and gate voltages, shows an oscillating pattern of quantum interference. We show
how such patterns can be understood and calculated, taking into account Luttinger liquid effects resulting from
strong Coulomb interactions in the nanotube. We treat backscattering in the contacts perturbatively and use the
Keldysh formalism to treat nonequilibrium effects due to the nonzero bias voltage. Going beyond current
experiments, we include the effects of possible ferromagnetic polarization of the leads to describe spin trans-
port in carbon nanotubes. We thereby describe both incoherent spin injection and coherent resonant spin
transport between the two leads. Spin currents can be produced in both ways, but only the latter allow this spin
current to be controlled using an external gate. In all cases, the spin currents, charge currents, and magnetiza-
tion of the nanotube exhibit components varying quasiperiodically with bias voltage, approximately as a
superposition of periodic interference oscillations of spin- and charge-carrying ‘‘quasiparticles’’ in the nano-
tube, each with its own period. The amplitude of the higher-period signal is largest in single-mode quantum
wires, and is somewhat suppressed in metallic nanotubes due to their subband degeneracy.

DOI: 10.1103/PhysRevB.68.205423 PACS number~s!: 73.63.2b, 71.10.Pm, 72.25.2b
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I. INTRODUCTION

Spin transport represents a new branch in mesosc
physics with several technological applications,1–6 e.g., in-
formation storage, magnetic sensors, and potentially qu
tum computation.7 While most theoretical models are bas
on Fermi-liquid theory, some work has been done
strongly correlated one-dimensional~1D! systems using Lut-
tinger liquid theory.8–12 This work has focused in the wea
tunneling regime between the ferromagnet and the 1D
tem and found that spin transport may provide experime
evidence of spin-charge separation, one of the main pre
tions of Luttinger liquid theory that remains to be observ
experimentally in an unambiguously accepted way. Des
the possible technological applications and contributions
the study of spin-charge separation in strongly correla
systems, very little experimental work has been carried
on spin transport in 1D systems.13 This work is complicated
by the use of multiwalled carbon nanotubes, and explo
only situations with ferromagnetic contacts with parallel
antiparallel magnetizations.

Early experimental work with nanotube devices was li
ited by poor contacts between the electrodes and the n
tube, and accordingly, theoretical models focused on
weak tunneling regime. Recently, Lianget al.14 have suc-
ceeded in fabricating single-walled carbon nanotube dev
with near-perfect ohmic contacts to the electrodes. A sc
matic representation of their experiment is presented in
1. These devices are characterized by values of the con
tance as high asG53.7e2/h, close to the theoretically pre
dicted higher limit15 of 4e2/h. At temperatures below 10 K
the measured conductance exhibits approximately peri
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oscillations as a function of the gate voltage. These osc
tions are due to Fabry-Perot interference—i.e., quantum
terference between propagating electron waves inside
resonant cavity defined by the two nanotube-electrode in
faces.

In order to explain their result, Ref. 14 considered
model of noninteracting electrons~see also Ref. 16! and used
the multichannel Landauer-Bu¨ttiker formalism to calculate
the differential conductance as a function of the bias and g
voltages. They have found qualitative agreement between
calculated conductance and their experimental data, e
cially with regard to the variation of the low-bias condu
tance with gate voltage.

On the other hand, transport experiments on carb
nanotubes17–20 have shown that electrons in nanotubes
strongly correlated and are better described by a Luttin

FIG. 1. Experimental geometry~from Ref. 14!. A single-walled
carbon nanotube is located on a silicon gate and oxide layer.
electrodes, which may be ferromagnetic, are grown on top of
nanotube. The doped silicon is used as a gate electrode to mod
the charge density. The electronic-transport properties of the n
tube devices were characterized as a function of bias~V! and gate
(Vg) voltages.
©2003 The American Physical Society23-1
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liquid model.21–26This implies the electrons in these system
do not exhibit Fermi-liquid properties but instead form co
lective excitations better described by chargelike and s
like density waves that propagate with different velocitie
Luttinger liquid behavior drastically changes the charge c
ductance for these systems and it is interesting to know h
this affects the results obtained for the particular setup u
in Ref. 14. Furthermore, this setup can be generalized to
use of ferromagnetic electrodes, in order to study both cha
and spin transport in 1D electron systems.

In this paper we investigate the spin and charge trans
properties in 1D electron systems with near-perfect cont
to ferromagnetic electrodes~the normal-metal electrodes co
respond to the particular case of zero magnetization!. We
consider both the case of quantum wires~i.e., single-channe
electron systems! and single-walled carbon nanotubes, b
mainly focus on the latter one. We use a noninteract
Stoner model to treat the ferromagnetic leads and a Luttin
liquid model for the nanotube and consider the case of n
perfect contacts to the leads, therefore treating backscatte
at the contacts perturbatively. In order to introduce the eff
of a finite bias voltage, we use the nonequilibrium Keldy
formalism. Following this procedure, we obtain the condu
tance, spin, and spin current as functions of the gate and
voltages, the external magnetic field, and the orientation
the magnetization in each lead. We study how the str
Coulomb interactions affect these transport properties
find some features in the Fabry-Perot interference patt
that are related to spin-charge separation.

II. THE MODEL

A single-walled carbon nanotube with long-range Co
lomb interactions is well described by a forward-scatter
model.25,26 In this model the Hamiltonian density is given b

HLL52 ivF (
a51

2

(
a5↑,↓

~cRaa
† ]xcRaa2cLaa

† ]xcLaa!

1lF (
a51

2

(
a5↑,↓

~cRaa
† cRaa1cLaa

† cLaa!G2

, ~1!

where the right/left moving electron operatorscR/L aa have
the labelsa51,2 for the band anda5↑,↓ for the spin pro-
jection of the electrons in the nanotube andl is the interac-
tion strength. The term in the square brackets correspond
the electron density. We also consider the same problem

FIG. 2. Schematic representation of the model. The leads
modeled as 1D noninteracting electron systems, the Luttinger liq
parameter is thereforeg51. The nanotube~bold line!, on the other
hand, is described by a 1D interacting system, in this caseg,1,
which corresponds to repulsive interactions. The contacts to
leads are modeled as two weak backscattering barriers. The
backscatterers generate Fabry-Perot interference.
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single-channel quantum wire, for which there is no subba
degeneracy and the band index can be dropped. Due to
similarities between the two cases, we give explicit analy
cal formulas throughout the paper only for the nanotube,
will present results for the quantum wire where appropria

The metallic leads are modeled as two semi-infinite
noninteracting systems,27–29 the correspondent Hamiltonia
is obtained from Eq.~1! using a position-dependentl, which
is constant in the wire and zero in the leads.

We allow for ferromagnetism in the leads using a non
teracting Stoner model8,9 ~mean-field treatment of the mag
netization!. The Hamiltonian density isHFM5H01HM ,
with H05HLL(l50) and

HM52MW •(
aab

~cRaa
† sW abcRab1cLaa

† sW abcLab!, ~2!

wheresW ab are the Pauli matrices andMW is the ‘‘exchange
field,’’ which is proportional to the magnetization. This
constant in each ferromagnetic lead, i.e.,MW im̂1 for x

,2L/2 andMW im̂2 for x.L/2 ~L is the length of the nano
tube! and in ordinary paramagnetic leadsMW 50. In this case,
the total system corresponding to a nanotube between
ferromagnetic leads is described by the Hamiltonian

H5E
uxu.L/2

dx HFM1E
uxu,L/2

dx HLL . ~3!

The total HamiltonianH can take a form identical to the
Hamiltonian in the case of normal-metal leads by apply
the following transformation to the electron field operato
separately in the left and right leads, respectively,

cR/L~x!→expF6~ i /vF!E
2L/2

x

dx8MW ~x8!•sW GcR/L~x!,

x,2
L

2
,

~4!

cR/L~x!→expF6~ i /vF!E
L/2

x

dx8MW ~x8!•sW GcR/L~x!, x.
L

2
.

This transformation leavesHLL invariant andHFM trans-
forms intoH0.

We apply the usual bosonization procedure to study
model.23,24 The four electron modes are associated to fo
bosonic modes described by the fieldsuaa and their duals
waa via the bosonization transformation

cR/Laa5
1

A2pL
ei (waa6uaa), ~5!

whereL is a short-distance cutoff. It is convenient to co
sider the following linear combinations of the fields:26 u i ,c/s

5(1/A2)(u i ,↑6u i ,↓) and u6,m5(1/A2)(u1,m6u2,m), with i
51,2, andm5c,s. This allows us to define the new field
u15u1c ~which corresponds to the total charge mode and
the only interacting mode!, u25u1s , u35u2c , and u4

re
id

e
o

3-2



ity

m
t

th

g
t

on
e

wi
a
n

c
t

sh
o

ia

the
no-
nian

the
o
k-
er
n

ia

to
r
he

e-

s-
-

e
d

f
-
ith
nd
this
a-

be

by

but

ng
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5u2s; with similar transformations for thew fields. In terms
of these new fields the Luttinger liquid Hamiltonian dens
~1! is diagonalized,

HLL5
v

2p Fg~]xw1!21
1

g
~]xu1!2G

1(
i 52

4
vF

2p
@~]xw i !

21~]xu i !
2#, ~6!

wherevF is the Fermi velocity,v is the renormalized velocity
due to the interactions, andg is the Luttinger liquid param-
eter. In the inhomogeneous modelg and v are functions of
the position: in the leadsg51 andv5vF , and in the nano-
tubeg5AvF/(vF18l/p),1 andv5vF /g ~see Fig. 2!.

The contacts between the leads and the nanotube are
eled by weak backscattering at the contact points, and
corresponding Hamiltonian density has the form

Hbs5 (
m51

2

(
a,b51

2

(
a,b5↑,↓

d~x2xm!@ ũm
abcLaa

† cRba

1 ṽm
abcLaa

† MW m•sW abcRbb1H.c.#

5 (
m,a,b51

2

(
a561

$~um
ab1avm

abMm
z !exp$ i @u11au2

1~21!a11dab~u31au4!1~21!a11~12dab!

3~w31aw4!#%1vm
ab~Mm

x 1 iaMm
y !

3exp$ i @u11~21!a11dabu31~21!a11~12dab!au4

1aw21~21!a11~12dab!w31~21!a11dabaw4#%

1H.c.%d~x2xm!, ~7!

wherem labels the position of the contacts:x1/257L/2 and
um

ab andvm
ab are constants proportional to the strength of

backscattering,um
ab5ũm

ab/(2pL) and the same forvm
ab . The

backscattering terms are restricted by symmetry accordin
charge conservation and spin rotational symmetry around
axis of magnetization of the ferromagnetic contact. We c
sider only terms of the formcR

†cL because these are th
most relevant in the renormalization-group sense@the scaling
dimension in real space of these terms isD5(g13)/4, while
the scaling dimension of terms of the formcR/L

† cR/L is D
51]. Hence if all scattering terms are weak, these terms
dominate. It is straightforward to extend the present tre
ment to include the neglected interactions, though we do
attempt this here.

The effect of the magnetization appears only on the ba
scattering term. In the case of near-perfect contacts to
electrodes, we can treat the backscattering HamiltonianHbs
as a perturbation to the HamiltonianH5HLL . This proce-
dure is described in Sec. III in the context of the Keldy
formalism that we use in order to account for the effects
the finite bias voltage.

The gate voltage introduces a term in the Hamilton
density proportional tor Vg52/p Vg ]xu1, wherer is the
20542
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electron density. The constant of proportionality relates
voltage applied at the gate with the voltage felt by the na
tube and therefore depends on the sample. The Hamilto
densityH5HLL1HVg

becomesH5HLL , after applying the

following transformation to theu1 field: u1→u12Vg x,
where we absorbed a constant of proportionality into
definition of Vg for simplicity. This transformation needs t
be applied to the total Hamiltonian, including the bac
scattering termHbs, which means that the gate voltage aft
this transformation will only contribute to the perturbatio
Hamiltonian.

The effect of the external magnetic field is introduced v
a Zeeman coupling term in the Hamiltonian

Hh52hW •E dx~cRaa
† sW abcRab1cLaa

† sW abcLab!. ~8!

The contribution of the magnetic field can be transferred
the perturbation HamiltonianHbs using a procedure simila
to the one described above for the gate voltage. Taking tz

direction as the direction of the magnetic field~i.e., hW

5hẑ), the Zeeman Hamiltonian density becomesHh
52(h/p)]xu2, and applying u2→u21Bx ~with B
52h/vF) to the HamiltonianH5HLL1Hh , it transforms as
H→HLL . The results for nonzero magnetic field are pr
sented in Appendix B.

III. THE NONEQUILIBRIUM TRANSPORT PROBLEM

Due to the finite bias voltage the distribution in this sy
tem is not in thermal equilibrium. This nonequilibrium situ
ation is studied using the Keldysh formalism~for a review,
see Ref. 30!. To define a nonequilibrium initial state, w
assume that until some initial timet0, the system has reache
quasiequilibriumin the absence of impurity scattering um

ab

5vm
ab50. Without impurity scattering, the total number o

right- and left-moving carriers,NR , NL , are separately con
served, so that a partial equilibrium can be established w
well-defined separate chemical potentials for the right a
left movers. Hence, the system can be described, up to
time, by a thermal distribution governed by the grand c
nonical Hamiltonian

HV5HLL2m1NR2m2NL , ~9!

where the chemical potentials in each lead are taken to
m1/257V/2 andNR/L5*dxnR/L . The right- and left-moving
particle densities are given in the bosonization procedure
nR/L5(1/2p)(aa]x(6waa1uaa). Then

HV5HLL2E dx
2V

p
]xw1 . ~10!

We emphasize that the appearance of the voltageV in HV
does not represent a physical force on the electrons,
rather parametrizes their nonequilibrium distribution.

After the initial time t0 the evolution of the system is
governed by a different HamiltonianH, which as deduced in
Sec. II isH5HLL1Hbs, with HLL given in Eq.~6! andHbs
in Eq. ~7!. We expect on physical grounds that introduci
3-3
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localized scattering at the ends of the wire or nanotube
duces the current, but cannot affect the nonequilibrium d
tribution in the reservoirs. Hence, we believe that the p
scription of defining the voltageV from the initial
distribution as is done using Eq.~9! gives a faithful descrip-
tion of ideal leads. According to this prescription, a physi
observable, represented by an operatorÔ, is then calculated
from

^O&5
1

Z
Tr~e2bHVeiHtÔe2 iHt !, ~11!

where

Z5Tr~e2bHV!. ~12!

The difficulty in evaluating such an expectation value is th
unlike in a conventional equilibrium calculation, the Ham
tonianHV governing the initial distribution is different from
H, which governs the time evolution. Thus such an expe
tion value cannot be evaluated by equilibrium Green’s fu
tion techniques.

Instead, we take advantage of the special property ofHV
that the voltage couples only toNR/L , which are decoupled
‘‘zero-mode’’ degrees of freedom. This technique has be
applied a number of times before to related problems,31–33

but to our knowledge the details of its derivation have ne
been published. For completeness, pedagogical value, a
highlight the physical assumptions of the method, we inclu
a thorough derivation in Appendix A. The correction to^O&
due to the backscattering is given by

^dO&5
1

ZLL
Tr@e2bHLLS†~ t !ÔS~ t !#, ~13!

where

S~ t !5T expF2 i E
0

t

dt8HI~ t8!G ~14!

is the evolution operator for a system with the tim
dependent HamiltonianHI(t8). Here HI(t) is the Hamil-
tonian in the frame comoving with the ideal current, defin
by

HI~ t !5eitV̂He2 i tV̂5HLL1@Hbs#u1→u11Vt , ~15!

with V̂5(V/2)(NR2NL). Note that~because@V̂,HLL#50)
all the time dependence inHI(t) is in the backscattering
term, and is hence easy to handle when working pertu
tively in Hbs.

Equations~13!–~15! provide a reformulation of the trans
port problem which is particularly convenient for a perturb
tive treatment of the backscattering. Note that—because
voltageV appears only withinHbs—a direct expansion of Eq
~13! in Hbs will involve equilibrium real-time propagators
calculated with respect toHLL . We develop this perturbation
theory using the Keldysh path-integral formulation. This
volves the usual trotterization of the two evolution operat
S†,S in Eq. ~13! using coherent-state fields denoted
u1,w1 for S ~‘‘forward branch’’! and u2,w2 ~‘‘backward
20542
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branch’’! for S†. Further noting thatHLL is quadratic andHbs

acts only at the ends of the nanotube/wire, the fields aw
from x56L/2 can be integrated out to obtain the Keldy
integral

^dO&5E D@u6~ t !w6~ t !#OKexpF iS02 i E dtHpert~ t !G ,
~16!

with

Hpert5Hbs@w i
1 ,u i

11d i1Vt#2Hbs@w i
2 ,u i

21d i1Vt#.
~17!

HereOK is an appropriate Keldysh representation of the o
eratorO, which can be chosen as usual from fields lying
either the forward or backward moving branch, or any line
combination thereof—see below for convenient choices. T
quadratic actionS0 is a functional ofu6(t),w6(t), which
can be determined from the fact that it must reproduce
equilibrium correlation and response functions for the
fields. Indeed, we do not require an explicit expression
S0, but instead give the response and correlation functio
defined by

Cu~x,t;x8,t8!5^u~x,t !u~x8,t8!&5 1
2 ^$û~x,t !,û~x8,t8!%&,

Ru~x,t;x8,t8!5^u~x,t !ũ~x8,t8!&

52 iQ~ t2t8!

3^@ û~x,t !,û~x8,t8!#&, ~18!

where we have applied the standard Keldysh rotation to
fields u65u6( i /2)ũ. By construction ^ũ(x,t) ũ(x8,t8)&
50. The Green’s functions involving thew fields are defined
in a similar way, replacingu by w in the above equations
There are also Green’s functions that involve bothu andw,
these are defined by

Cuw~x,t;x8,t8!5^u~x,t !w~x8,t8!&5 1
2 ^$û~x,t !,ŵ~x8,t8!%&,

Ruw~x,t;x8,t8!5^u~x,t !w̃~x8,t8!&

52 iQ~ t2t8!

3^@ û~x,t !,ŵ~x8,t8!#&, ~19!

and similar definitions forCwu andRwu. Again, by construc-
tion ^ũ(x,t)w̃(x8,t8)&5^w̃(x,t) ũ(x8,t8)&50.

Using the above procedure we obtain~up to additive con-
stants that will not contribute to the final result! the Green’s
functions for theu1 fields:
3-4
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R11
uI~ t !52

p

2
~12a!FQ~ t !1

11a

a (
k>1

a2kQ~ t22ktv!G ,
R12

uI~ t !52
p

2
~12a2!(

k>0
a2kQ@ t2~2k11!tv#,

C11
uI~ t !52

12a

4 F ln t21
11a

a (
k>1

a2klnUt22~2ktv!2UG ,
C12

uI~ t !52
12a2

4 (
k>0

a2klnut22@~2k11!tv#2u, ~20!

where the subscripts label the position of the contactsx1,2
@e.g.,Cab(t)5C(xa ,t;xb,0)] and

a5
12g

11g
and tv5

L

v
. ~21!

We also need the Green’s functions for the noninterac
modesu2,3,4, RF, andCF. These are obtained from Eq.~20!
by takinga50 and replacingtv by tF5L/vF ,

R11
F ~ t !52

p

2
Q~ t !,

R12
F ~ t !52

p

2
Q~ t2tF!,

C11
F ~ t !52

1

4
ln t2,

C12
F ~ t !52

1

4
lnut22tF

2 u. ~22!

The Green’s functions for thew fields can be obtained from
those for theu fields given in Eq.~20!, by replacingg by
1/g, i.e., by replacinga by 2a. On the other hand, the onl
w Green’s functions that contribute to the transport prop
ties studied in the following sessions are those that co
spond to the noninteracting modesw2,3,4, and therefore they
are identical to the functions given in Eq.~22!.

In order to compute the spin transport properties in Sec
we also need the following functions for theu2 and w2
fields:

Ru2w2~x,t !5sgn~x!
p

2
Q~ t !Q~ uxu2vFt !,

Cu2w2~x,t !52
1

4
lnUvFt2x

vFt1xU, ~23!

andCw2u2(x,t)5Cu2w2(x,t), andRw2u2(x,t)5Ru2w2(x,t).

IV. THE DIFFERENTIAL CONDUCTANCE

In this section we study the charge transport propertie
1D electron systems and how these are affected by the m
netization of the leads and, more importantly, the presenc
20542
g

r-
e-

V,

of
g-
of
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We use the procedure described in Secs. II and III

calculate the differential conductance for these systems. T
is obtained from the expectation value of the current in
nanotube, i.e., a four-mode 1D electron system with
Hamiltonian given in Eq.~6!, as

I 5(
aa

^cRaa
† cRaa2cLaa

† cLaa&5
2

p
^] tu1&. ~24!

After a lengthy but straightforward calculation we obta
that the differential conductanceG5]I /]V to second order
in perturbation theory is given by

G5
2

p H 11(
m

UmE dt t eC1m(t)sinF1

2
R1m~ t !Gcos~Vt!J ,

~25!

with

U15(
mab

@~um
ab!21~vm

ab!2MW m
2 #,

U252 cos~VgL !(
ab

@u1
ab u2

ab1v1
ab v2

ab MW 1•MW 2#, ~26!

and

Cab~ t !5Cab
uI ~ t !13Cab

F ~ t !, ~27!

and similarly forRab(t). For a quantum wire~i.e., a single-
channel electron system! these are replaced byCab(t)
52@Cab

uI (t)1Cab
F (t)# and the global normalization is di

vided by a factor of 2~since the quantum wire has tw
modes instead of four!.

Equations~25! and ~26! are valid for zero external mag
netic field, which is the case considered in this section,
equations for nonzero magnetic field are presented in App
dix B.

Equation~25! can be easily generalized to arbitrary ord
in perturbation theory, but the time integrals need to be co
puted numerically. We present the calculated conductanc
second order for three different physical models in Fig.
This models correspond to~a! a nanotube with noninteract
ing electrons, i.e., takingg51, which is equivalent to the
theoretical model in Ref. 14,~b! a quantum wire withg
50.5, and~c! a nanotube withg50.25, which is a physi-
cally relevant value for single-walled carbo
nanotubes.17–20,26The effect of the interactions is visible i
the dependence of the conductance with bias voltage, at
stant gate voltage.

The conductance is a quasiperiodic function of the b
voltage. AtVg50, for the noninteracting case@see Fig. 3~a!#,
this dependence is a cosine function with period 2p/tF . For
a quantum wire, Fig. 3~b!, there are clearly two differen
‘‘periods’’ in the oscillations; these are related to the tw
time scalestF5L/vF and tv5gtF5L/v. The existence of
these two different time scales is due to the two boso
excitations in this system: The spin excitation with veloc
3-5
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FIG. 3. Calculated conductance for identical contacts andMW 15MW 2 for ~a! a free-electron model, i.e., a nanotube withg51; ~b! a
quantum wire, i.e., a LL with two modes: spin and charge, withg50.5; and~c! a nanotube withg50.25, as a function of bias~V! and gate
(Vg) voltages~top! and as a function of the bias voltageV at constant gate voltageVg50 ~bottom!. As can be seen, the effect of th
interactions is quite appreciable, in particular with the dependence on bias voltage atVg50. The ‘‘period’’ of these oscillations is given by
2p/tF (tF52p in these figures!, in agreement with Ref. 14, but in~b! and~c! there is another quasiperiodic component in these oscillatio
with period given by 2p/tv , the presence of these two time scalestF and tv is a direct result of spin-charge separation.
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vF and the charge excitation with velocityv, and is therefore
an effect of spin-charge separation. The same effect app
in Fig. 3~c!, but since for the nanotube there are three n
interacting modes with velocityvF and only one mode, the
total charge, with velocityv, it is less visible than in the
previous example. The most visible effect of the interactio
in the nanotube is the enhancement of the amplitude in
conductance aroundV50. Unfortunately, with the presen
experimental accuracy and range of data presented in
14, the differences between the noninteracting and the
tinger liquid models cannot be resolved experimentally.

The calculated conductance atVgL5p/2 as a function of
the bias voltage for a nanotube with different interacti
strengths corresponding tog50.25, 0.5, and 1, is presente
in Fig. 4. It can be seen using Eqs.~25! and ~26! that the
conductance for this value of the gate voltage only depe
on the Green’s functionsC11 andR11, which depend only on
tv . As a result, we can clearly see in Fig. 4 that the period
the oscillations isp/tv , and therefore depends strongly o
the interaction strength. The amplitude of these oscillati
is very small except for the first oscillation, which is enou
to identify this effect.

As for the dependence on the gate voltage, the cond
tance is a periodic function, which is modulated byMW 1

•MW 2, and this is the main effect of the magnetization in t
leads on the conductance. In particular, if(u1

abu2
ab

<(v1
abv2

ab , there is an angle between the two magneti
tions for whichU2 vanishes for any value of the gate vo
age; in this case the conductance is also given in Fig. 4. N
that electron interactions have no effect in functional dep
20542
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dence of the conductance with the gate voltage, which
simply a sinusoidal function as observed in Ref. 14.

V. SPIN TRANSPORT

In this section we study spin transport properties, i.e.,
spin density in the nanotube and the spin current gener
by the magnetization in the leads.

The spin-density expectation value in the nanotube, c
culated using bosonization and the Keldysh perturbation
malism as described in Secs. II and III, is given by

SW 5
1

2 (
aab

^cRaa
† sW ab cRab1cLaa

† sW ab cLab&. ~28!

FIG. 4. At constant gate voltage,VgL5p/2, the period of os-
cillations is p/gtL , i.e., depends strongly on the interactio
strength. In order for this effect to be clearly visible, we scaled a
shifted the functions differently, therefore the values of theG axes
are not meaningful.
3-6
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FIG. 5. Calculated spin for a nanotube withg50.25, the component of the spin in the direction of the magnetizationMW 1 as function of
the angle between the two magnetizationsu and the bias voltageV, at constant gate voltage~a! Vg50 and ~b! Vg5p/2, and ~c! the
component of the spin perpendicular to the plane formed by the two magnetizations as a function of the gate and bias voltages.
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For zero magnetic field, it is technically simplest to calcula
Sz from the bosonized form,

Sz5
1

p
^]xu2&, ~29!

and then obtain the other two components by rotational
variance. For nonzero magnetic field the calculation as w
as the final results are much more involved, therefore and
the sake of clarity we only present the results in Appendix

The result is

SW 52
1

vF
S uW 1E dt eC11(t)sinF1

2
R11~ t !Gsin~Vt!1sin~VgL !

3H uW 2E dt eC12(t)sinF1

2
R12~ t !Gsin~Vt!

1uW 3E dt eC12(t)sinF1

2
R12~ t !Gcos~Vt!J D , ~30!

with

uW 15(
ab

~u1
abv1

abMW 12u2
abv2

abMW 2!,

uW 25(
ab

v1
abv2

abMW 13MW 2 ,

uW 35(
ab

~u1
abv2

abMW 21u2
abv1

ab MW 1!. ~31!

Notice that the spin density does not depend on the p
tion in the nanotube, hence the total spin isLSW .

The first term, proportional touW 1, is the known nonequi-
librium spin accumulation effect.1–6 It is maximum forMW 1

52MW 2, when, in the case of identical contacts, the oth
terms vanish. This term does not couple two backscatte
is independent of the gate voltage, and is an increasing fu
tion of the bias voltage. It is depicted in Fig. 5~a!, since it is
the only term that corresponds to the component of the s
20542
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in the direction ofMW 1 at Vg50. The second term corre
sponds to the component of the spin perpendicular to
plane of the magnetizations and is depicted in Fig. 5~c!, as a
function of the bias and gate voltages. The third term is
only one that survives in equilibrium, i.e., at zero bias, it
due to the fact that the backscattering strengths depen
the spins of the incoming and outgoing electrons relative
the direction of the magnetizations. It is maximum forMW 1

5MW 2, when again for identical contacts the other terms v
ish. This corresponds tou50,2p in Fig. 5~b!. These terms
that couple the two backscatterers, and hence depend o
gate voltage, vary with bias voltage in a manner appro
mately described by a sum of two periodic functions, w
‘‘periods’’ given by 2p/tF and 2p/tv , as discussed in the
preceding section for the conductance.

The spin current

JW s5
vF

2 (
aab

^cRaa
† sW ab cRab2cLaa

† sW ab cLab& ~32!

is as the spin density calculated from theJs
z component in its

bosonized form~again see the result for nonzero magne
field in Appendix B!,

Js
z5

1

p
^] tu2&. ~33!

It is not well defined at the contact points because the ba
scattering term in the Hamiltonian~7! does not conserve
spin, and therefore it has different expressions in the na
tube and the leads.

The spin current in the left (1) and right (2) leads is
given by

JW s5uW 4E dt eC11(t)sinF1

2
R11~ t !Gsin~Vt!1@6sin~VgL !uW 2

1cos~VgL ! uW 3#E dt eC12(t)sinF1

2
R12~ t !Gsin~Vt!, ~34!

and in the nanotube by
3-7
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FIG. 6. Calculated spin current for a nanotube withg50.25: the component of the spin current in the direction of the magnetizationMW 1

as function of the angle between the two magnetizationsu and the bias voltageV, at constant gate voltage~a! Vg50 and~b! Vg5p/2; and
~c! the component of the spin current perpendicular to the plane formed by the two magnetizations as a function of the gate and bia
@this figure corresponds to the spin current in the nanotube, in the leads this component of the spin current is identical to Fig. 5~c!#.
fir
e
je
n

io

in
in

tiz
s

1
s
m

id
e
ra
p
g

is-
are
er
-
in
of

e of

two

ling
o-
for
ocus
e of
be

g-
for-
all
pa-
e-
e is

the
wo
This
pin

he
ula-

and
pro-
cts.
xi-
ith

he
o-
JW s5uW 4E dt eC11(t)sinF1

2
R11~ t !Gsin~Vt!1cos~VgL !

3H uW 2E dt eC12(t)sinF1

2
R12~ t !Gcos~Vt!

1uW 3E dt eC12(t)sinF1

2
R12~ t !Gsin~Vt!J . ~35!

with uW 2 anduW 3 defined in Eq.~31! and

uW 45(
mab

um
abvm

ab MW m . ~36!

Similar to the results for the spin discussed above, the
term, which only involves one backscatterer and is indep
dent of the gate voltage, corresponds to the usual spin in
tion effect. It is an increasing function of the gate voltage a
is maximum for MW 15MW 2. This can be seen in Fig. 6~b!,
since it is the only term that does not vanish in the direct
of MW 1 at VgL5p/2. At Vg50, the terms proportional touW 1

anduW 3 contribute equally to the component of the current
the direction ofMW 1, the result for this case is presented
Fig. 6~a!. The second term, proportional toMW 13MW 2, corre-
sponds to an exchange interaction between the magne
tions of the leads, mediated by the nanotube. It has oppo
signs in the two leads and it is shown in Fig. 6~c!.

VI. CONCLUSIONS

We studied the charge and spin transport properties of
systems, e.g., quantum wires and carbon nanotubes, focu
on the latter. We considered the case of nearly perfect oh
contact between the 1D system and the electrodes and
cluded the strong Coulomb interaction via a Luttinger liqu
model. We found important effects on the transport prop
ties of these systems that are due to the Coulomb inte
tions. These appear in dependence with bias voltage. In
ticular, the conductance is enhanced at low bias volta
20542
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furthermore, it is an oscillatory function where we can d
tinguish two quasiperiodic components, with periods that
related to the two velocities of the excitations of a Lutting
liquid, v and vF . This effect is therefore a direct conse
quence of spin and charge separation. It is clearly visible
single-band quantum wires. In nanotubes, the amplitude
the higher period component is reduced by the presenc
three ~as opposed to one! neutral modes. Still, we can find
evidence of the two velocitiesv and vF by comparing the
dependence of the conductance with bias voltage for
different gate voltages (VgL50 andp/2). Experimental evi-
dence of these velocities has been obtained using tunne
between quantum wires in GaAs/AlGaAs heter
structures,34–37 but more experimental data are needed
the setup considered in this paper. These data should f
on the dependence of the conductance on a wide rang
bias voltages, and single-channel quantum wires would
preferable to nanotubes.

It is perhaps worth noting that, for the case of nonma
netic leads with symmetric contacts, the conductance
mula involves only two unknown parameters: the over
amplitude of the backscattered current and the Luttinger
rameterg, both of which can be simply estimated. Neverth
less, a nontrivial functional dependence upon bias voltag
predicted.

The spin and spin current have one component in
plane of the magnetization, which does not couple the t
leads and is therefore independent of the gate voltage.
term should be understood as arising from incoherent s
injection at each contact. It is a monotonic function of t
bias voltage, and corresponds to the known spin accum
tion ~for the spin! and spin injection~for the spin current!
effects. The other components that couple the two leads,
therefore depend on the gate voltage, are backscattering
cesses occurring with coherence between the two conta
These oscillate with the bias voltage, in a manner appro
mately described as a sum of two periodic components, w
periods related to the two velocities of the excitation of t
Luttinger liquid. The amplitude of the higher-period comp
3-8
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nent is largest in a single-channel quantum wire, and so
what suppressed in nanotubes by the subband degenera
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APPENDIX A: DERIVATION OF EQ. „13…

In this appendix, we derive Eq.~13!. In particular, we
consider a large periodic system of sizeL, where ultimately
L→`. We define the right-/left-moving combinations

f iR/L5w i6u i . ~A1!

In the system of sizeL we can decompose into finite wav
vector and ‘‘zero-mode’’ components. In particular, for t
total charge fields, we define

f1R~x!5f̃1R~x!1
2pNRx

L
1FR , ~A2!

f1L~x!5f̃1L~x!2
2pNLx

L
1FL , ~A3!

where f̃1R/L(x) contains the nonzero momentum modes
the f1R/L fields. With these definitions, the zero-mode va
ables form two canonically conjugate pairs:

@NR ,FR#5@NL ,FL#5 i ,

@NR ,FL#5@NL ,FR#5@NR ,NL#5@FR ,FL#50. ~A4!

Moreover, NR/L , FR/L commute with f̃1R/L(x) and all
fields associated with channels 2, 3, and 4.

Since the interactions which transform the system from
Fermi liquid into a Luttinger liquid@Eq. ~1!# exist only for
uxu,L/2, they do not affect the zero-mode terms in t
Hamiltonian. Hence one may separate

HV5H̃LL1
pvF

L
~NR

21NL
2!2

V

2
~NR2NL!, ~A5!

whereH̃LL is the Luttinger liquid Hamiltonian, Eq.~6!, with
the zero-mode terms subtracted, i.e., withw1→w̃1 and u1

→ ũ1. We then see, using the independence of the zero-m
variables, that the unitary operator

UV5ei (VL/4pvF)(FR2FL) ~A6!

generates the transformationNR/L→NR/L6VL/(4pvF),
hence

e2bHV5e2CUVe2bHLLUV
† , ~A7!

whereC5bL/(8pvF) is an unimportant constant. Insertin
this into Eqs.~11! and ~12!, one obtains
20542
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^O&5
1

ZLL
Tr@e2bHLLei (H1V̂)t~UV

†ÔUV!e2 i (H1V̂)t#,

~A8!

with

ZLL5Tr~e2bHLL! ~A9!

and

V̂5
V

2
~NR2NL!. ~A10!

For the operators of interest,

UV
† Î UV5I 01 Î , ~A11!

UV
†SW UV5SW , ~A12!

UV
†JW sUV5JW s , ~A13!

where I 054(e2/h)V5(2/p)V is the current which would
flow in an ideal nanotube in the absence of backscatter
DefiningdO5O2O0, with O05I 0 for O5 Î andO050 for
O5SW ,JW s , one has then

^dO&5
1

ZLL
Tr~e2bHLLei (H1V̂)tÔe2 i (H1V̂)t!. ~A14!

We then apply the formula

e2 i t (H1V̂)5e2 i tV̂T expF2 i E
0

t

dt8 HI~ t8!G ~A15!

to arrive at Eq.~13! ff given in the main text.

APPENDIX B: DIFFERENTIAL CONDUCTANCE, SPIN,
AND SPIN CURRENT AT NONZERO

MAGNETIC FIELD

The differential conductance including the magnetic fie
is still given by Eqs.~25! and ~26! with only the following
change inU2:

U252 cos~VgL !(
ab

$u1
abu2

ab1v1
abv2

ab@MW 1•MW 21~MW 1•ĥ!

3~MW 2•ĥ!~cosBL21!#%1sin~BL!sin~VgL !

3(
ab

@u1
abv2

ab~MW 2•ĥ!1u2
abv1

ab~MW 1•ĥ!#, ~B1!

whereĥ5hW /h.
The total spin of the nanotube is
3-9
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SW 5
1

p
ĥBL2

1

vF
(
ab

S H ~u1
abv1

abMW 12u2
abv2

abMW 2!
1

B
sinBL1@u1

abv1
ab~MW 1•ĥ!ĥ2u2

abv2
ab~MW 2•ĥ!ĥ#S L2

1

B
sinBLD

1@u1
abv1

ab~MW 13ĥ!2u2
abv2

ab~MW 23ĥ!#
1

B
~12cosBL!J E

t
eC11sinS 1

2
R11D sin~Vt!

1H F ~u1
abv2

abMW 21u2
abv1

abMW 1!
1

B
sinBL1@u1

abv2
ab~MW 2•ĥ!ĥ1u2

abv1
ab~MW 1•ĥ!ĥ#S L cosBL2

1

B
sinBLD GsinVgL

2u1
abu2

abĥL sinBL cosVgL2v1
abv2

abF @~MW 1•ĥ!MW 21~MW 2•ĥ!MW 1#
1

B
~12cosBL!1~MW 1•ĥ!

3~MW 2•ĥ!ĥXL sinBL2
2

B
~12cosBL! CGcosVgLJ E

t
eC12sinS 1

2
R12D cos~Vt!1H @u1

abv2
ab~MW 23ĥ!2u2

abv1
ab~MW 13ĥ!#

3
1

B
~12cosBL!cosVgL1v1

abv2
abF @~MW 1•ĥ!~MW 23ĥ!2~MW 2•ĥ!~MW 13ĥ!#S L2

1

B
sinBLD

1MW 13MW 2LGsinVgLJ E
t
eC12sinS 1

2
R12D sin~Vt! D . ~B2!

The spin current in the nanotube@Eq. ~B3!# and the leads@Eq. ~B4!# is

JW s5(
ab

$u1
abv1

abMW 1cosB~x2x1!1u2
abv2

abMW 2cosB~x2x2!1u1
abv1

ab~MW 1•ĥ!ĥ@12cosB~x2x1!#1u2
abv2

ab~MW 2•ĥ!

3ĥ@12cosB~x2x2!#1u1
abv1

ab~MW 13ĥ!sinB~x2x1!2u2
abv2

ab~MW 23ĥ!sinB~x2x2!%E
t
eC11sinS 1

2
R11D sin~Vt!

1(
ab

ˆ$u1
abv2

ab~MW 2•ĥ!ĥ@cosBL2cosB~x2x1!#1u2
abv1

ab~MW 1•ĥ!ĥ@cosBL2cosB~x2x2!#1u1
abv2

abMW 2cosB~x2x1!

1u2
abv1

abMW 1cosB~x2x2!%cosVgL1v1
abv2

ab$~MW 1•ĥ!~MW 2•ĥ!ĥ@sinBL2sinB~x2x1!1sinB~x2x2!#

1~MW 1•ĥ!MW 2sinB~x2x1!2~MW 2•ĥ!MW 1sinB~x2x2!1u1
abu2

abĥsinBL%sinVgL‰E
t
eC12sinS 1

2
R12D sin~Vt!

1(
ab

ˆ@u1
abv2

ab~MW 23ĥ!sinB~x2x1!2u2
abv1

ab~MW 13ĥ!sinB~x2x2!#sinVgL2v1
abv2

ab$~MW 1•ĥ!~MW 23ĥ!

3@12cosB~x2x1!#2~MW 2•ĥ!~MW 13ĥ!@12cosB~x2x2!#1MW 13MW 2%cosVgL‰E
t
eC12sinS 1

2
R12D cos~Vt!, ~B3!

JW s5(
ab

$u1
abv1

abMW 1cosB~x2x1!1u2
abv2

abMW 2cosB~x2x2!1u1
abv1

ab~MW 1•ĥ!ĥ@12cosB~x2x1!#1u2
abv2

ab~MW 2•ĥ!

3ĥ@12cosB~x2x2!#7@u1
abv1

ab~MW 13ĥ!sinB~x2x1!1u2
abv2

ab~MW 23ĥ!sinB~x2x2!#%E
t
eC11sinS 1

2
R11D sin~Vt!

1(
ab

$@u1
abv2

ab~MW 2•ĥ!ĥ@cosBL2cosB~x2x1!#1u2
abv1

ab~MW 1•ĥ!ĥ@cosBL2cosB~x2x2!#1u1
abv2

abMW 2cosB~x2x1!

1u2
abv1

abMW 1cosB~x2x2!#cosVgL1v1
abv2

ab@~MW 1•ĥ!~MW 2•ĥ!ĥ@sinBL2sinB~x2x1!1sinB~x2x2!#

1~MW 1•ĥ!MW 2sinB~x2x1!2~MW 2•ĥ!MW 1sinB~x2x2!#sinVgL7@u1
abv2

ab~MW 23ĥ!sinB~x2x1!1u2
abv1

ab~MW 13ĥ!

3sinB~x2x2!#cosVgL7v1
abv2

ab
†~MW 1•ĥ!~MW 23ĥ!@12cosB~x2x1!#2~MW 2•ĥ!~MW 13ĥ!@12cosB~x2x2!#

1MW 13MW 2‡sinVgL1u1
abu2

abĥ sinBL sinVgL%E
t
eC12sinS 1

2
R12D sin~Vt!, ~B4!
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where the7 sign correspond to the left and right lead
respectively.

One can verify that the spin current and spin density
not independent and are, in fact, related by the precessi
equation of motion,

] tSW 1]xJW s522hW 3SW . ~B5!
,

L.
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In the steady state,^] tSW &50, so one has

]x^JW s~x!&522hW 3^SW ~x!&. ~B6!
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