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We study the two-terminal transport properties of a metallic single-walled carbon nanotube with good
contacts to electrodes, which have recently been sHdWriiang et al,, Nature(London 441, 665(2001)] to
conduct ballistically with weak backscattering occurring mainly at the two contacts. The measured conduc-
tance, as a function of bias and gate voltages, shows an oscillating pattern of quantum interference. We show
how such patterns can be understood and calculated, taking into account Luttinger liquid effects resulting from
strong Coulomb interactions in the nanotube. We treat backscattering in the contacts perturbatively and use the
Keldysh formalism to treat nonequilibrium effects due to the nonzero bias voltage. Going beyond current
experiments, we include the effects of possible ferromagnetic polarization of the leads to describe spin trans-
port in carbon nanotubes. We thereby describe both incoherent spin injection and coherent resonant spin
transport between the two leads. Spin currents can be produced in both ways, but only the latter allow this spin
current to be controlled using an external gate. In all cases, the spin currents, charge currents, and magnetiza-
tion of the nanotube exhibit components varying quasiperiodically with bias voltage, approximately as a
superposition of periodic interference oscillations of spin- and charge-carrying “quasiparticles” in the nano-
tube, each with its own period. The amplitude of the higher-period signal is largest in single-mode quantum
wires, and is somewhat suppressed in metallic nanotubes due to their subband degeneracy.
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[. INTRODUCTION oscillations as a function of the gate voltage. These oscilla-
tions are due to Fabry-Perot interference—i.e., quantum in-
Spin transport represents a new branch in mesoscopierference between propagating electron waves inside the
physics with several technological applicatidn8,e.g., in-  resonant cavity defined by the two nanotube-electrode inter-
formation storage, magnetic sensors, and potentially quarfaces.
tum computatior. While most theoretical models are based [N order to explain their result, Ref. 14 considered a
on Fermi-liquid theory, some work has been done onmodel of noninteracting electroitsee also Ref. J@and used
Strong'y correlated One_dimensior(a_D) Systems using Lut- the multichannel Landauer-Biker formalism to calculate
tinger liquid theory~*2 This work has focused in the weak the differential conductance as a function of the bias and gate
tunneling regime between the ferromagnet and the 1D sys¢oltages. They have found qualitative agreement between the
tem and found that spin transport may provide experimentafalculated conductance and their experimental data, espe-
evidence of spin-charge separation, one of the main predicially with regard to the variation of the low-bias conduc-
tions of Luttinger liquid theory that remains to be observedtance with gate voltage.
experimentally in an unambiguously accepted way. Despite On the other hand, transport experiments on carbon
the possible technological applications and contributions t&/@notubes2° have shown that electrons in nanotubes are
the study of spin-charge separation in strongly correlategtrongly correlated and are better described by a Luttinger
systems, very little experimental work has been carried out
 Drain g

on spin transport in 1D system$This work is complicated

by the use of multiwalled carbon nanotubes, and explored
only situations with ferromagnetic contacts with parallel or
antiparallel magnetizations.

Early experimental work with nanotube devices was lim-
ited by poor contacts between the electrodes and the nano-
tube, and accordingly, theoretical models focused on the
weak tunneling regime. Recently, Liargg al'* have suc-
ceeded in fabricating single-walled carbon nanotube devices g5 1. Experimental geometirom Ref. 14. A single-walled
with near-perfect ohmic contacts to the electrodes. A schesarhon nanotube is located on a silicon gate and oxide layer. The

matic representation of their experiment is presented in Figsjectrodes, which may be ferromagnetic, are grown on top of the
1. These devices are characterized by values of the conduganotube. The doped silicon is used as a gate electrode to modulate
tance as high a=3.7e*/h, close to the theoretically pre- the charge density. The electronic-transport properties of the nano-
dicted higher limit® of 4e?/h. At temperatures below 10 K, tube devices were characterized as a function of Biasand gate

the measured conductance exhibits approximately periodi¢v,) voltages.
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degeneracy and the band index can be dropped. Due to the
similarities between the two cases, we give explicit analyti-
cal formulas throughout the paper only for the nanotube, but
will present results for the quantum wire where appropriate.
FIG. 2. Schematic representation of the model. The leads are The metallic leads are modeled as two semi-infinite 1D
modeled as 1D noninteracting electron systems, the Luttinger liquighoninteracting systenf$;?° the correspondent Hamiltonian
parameter is thereforg=1. The nanotub¢bold line), on the other 5 optained from Eq(1) using a position-dependent which
hand, is described by a 1D interacting system, in this casé, is constant in the wire and zero in the leads.
which corresponds to repulsive interactions. The contacts to the We allow for ferromagnetism in the leads using a nonin-
leads are modeled as two weak bagkscattering barriers. The twt%racting Stoner mod®f (mean-field treatment of the mag-
backscatterers generate Fabry-Perot interference. netization. The Hamiltonian density isHpy="Ho+ Hy
with HOZHLL()\:O) and

— - — =} —= single-channel quantum wire, for which there is no subband
—~— -
g=1 g<1 g=1

liquid model?*~?5This implies the electrons in these systems
do not exhibit Fermi-liquid properties but instead form col- R ~ ~
lective excitations better described by chargelike and spin- Hy=—M- 2 (¢;;aacra5¢Raﬁ+ wtaagaﬁwLaﬁ)! (2
like density waves that propagate with different velocities. aap

Luttinger liquid behavior drastically changes the charge ConWhereéaﬁ are the Pauli matrices arld is the “exchange

ductance for these systems and itis interesting to know howey » \hich is proportional to the magnetization. This is
this affects the results obtained for the particular setup used ' .

in Ref. 14. Furthermore, this setup can be generalized to thgonstant in- each ferromagnetic lead, i.4|lm; for x
use of ferromagnetic electrodes, in order to study both charge: —L/2 andM|m; for x>L/2 (L is the length of the nano-
and spin transport in 1D electron systems. tube and in ordinary paramagnetic lealls=0. In this case,

In this paper we investigate the spin and charge transpothe total system corresponding to a nanotube between two
properties in 1D electron systems with near-perfect contactierromagnetic leads is described by the Hamiltonian
to ferromagnetic electrodéthe normal-metal electrodes cor-
respond to the particular case of zero magnetizativve
consider both the case of quantum wifes., single-channel
electron systemsand single-walled carbon nanotubes, but o ] .
mainly focus on the latter one. We use a noninteracting "€ total HamiltonianH can take a form identical to the
Stoner model to treat the ferromagnetic leads and a Luttingef@miltonian in the case of normal-metal leads by applying
liquid model for the nanotube and consider the case of neathe following transformation to the electron field operators
perfect contacts to the leads, therefore treating backscatteririgParately in the left and right leads, respectively,
at the contacts perturbatively. In order to introduce the effect «
of a finite bias voltage, we use the nonequilibrium Keldysh ';bR/L(X)_’eX[{ i(i/UF)f dxX'M(x')- o
formalism. Following this procedure, we obtain the conduc- -L/2
tance, spin, and spin current as functions of the gate and bias
voltages, the external magnetic field, and the orientation of L
the magnetization in each lead. We study how the strong X<_§’
Coulomb interactions affect these transport properties and (4)
find some features in the Fabry-Perot interference patterns L

. . X N N
that are related to spin-charge separation. ¢R/L(X)—>6XF{ i(i/vF)f dX' M(X)- 0|y (X), x>§.
L/2

H:J dX HFM‘l‘f dX HLL' (3)
[x|>L/2 |x|<L/2

Ui (X),

Il. THE MODEL This transformation leave${,, invariant andg,, trans-

A single-walled carbon nanotube with long-range Cou-forms intoH,.

lomb interactions is well described by a forward-scattering We apply the usual bosonization procedure to study this
model®>?6|n this model the Hamiltonian density is given by model?>?* The four electron modes are associated to four

bosonic modes described by the fields, and their duals
©a. Via the bosonization transformation

2
Ho=—iveY, > (P aaOxVraa— Ul aadxtPLac)

a=1 a=1,|
ei(ipaai ‘gaa), (5)

2 UriLaa™

2
+A a§=:l a;l (lpgaalpRaa_{— wlaalpLaa) ’ (l)

V2mA

where A is a short-distance cutoff. It is convenient to con-
where the right/left moving electron operatafg, ., have sider the following linear combinations of the fiel%iisei,c,S

the labelsa=1,2 for the band an&=1,| for the spin pro-  =(1//2)(6; ;= 6;|) and 0. ,=(1\2)(0;,* 6,,), with i
jection of the electrons in the nanotube ands the interac- =1,2, andu=c,s. This allows us to define the new fields
tion strength. The term in the square brackets corresponds # = 6. . (which corresponds to the total charge mode and is
the electron density. We also consider the same problem forthe only interacting mode 6,=60,,, 6;=60_., and 6,
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=6_g; with similar transformations for the fields. In terms  electron density. The constant of proportionality relates the
of these new fields the Luttinger liquid Hamiltonian density voltage applied at the gate with the voltage felt by the nano-

(1) is diagonalized, tube and therefore depends on the sample. The Hamiltonian
densityH=H|_,_+7’-{\,g becomes{="H,, , after applying the
v 1 following transformation to thed, field: 6,— 6;—V
Hi =—| a( g0 )2+ =(3.6:)2 ollowing transformation to thef, field: 6,— 6;,—VgXx,
L 2n 9(dxer) (9x61) where we absorbed a constant of proportionality into the

definition of V for simplicity. This transformation needs to
©6) be applied to the total Hamiltonian, including the back-
scattering ternHg, which means that the gate voltage after
_ _ o ) ~this transformation will only contribute to the perturbation
wherev is the Fermi velocityy is the renormalized velocity Hamiltonian.
due to the interactions, arglis the Luttinger liquid param-  The effect of the external magnetic field is introduced via
eter. In the inhomogeneous modekndv are functions of 3 Zeeman coupling term in the Hamiltonian
the position: in the leadg=1 andv =vg, and in the nano-
tubeg=+ve/(vet+ 8N/ 7)<l andv=uvg/g (see Fig. 2 o - i
The contacts between the leads and the nanotube are mod-  h= ~N" | OX(VRan0aptiragt ¥aaTapiiiap)- ()

eled by weak backscattering at the contact points, and th_T:h buti £ th i< field b ferred
corresponding Hamiltonian density has the form e contribution of the magnetic field can be transferred to

the perturbation Hamiltoniahl, using a procedure similar

4
+3, L)+ (2,007,

2 2 to the one described above for the gate voltage. Taking the
Hpe= 2, > S(x—Xp) U] rbe direction as the direction of the magnetic fielde., h
Mot ab=l @fl =hZ), the Zeeman Hamiltonian density becomés,
+ paP Iaamm'&aﬁ¢Rbﬁ+H-C-] =—(h/m)d6,, and applying 6,— 6,+Bx (with B

=2h/vg) to the HamiltoniarH =H | +H,,, it transforms as

2 ab ab sz ) H—H_, . The results for nonzero magnetic field are pre-
= g:l 2, {(uR’+ av M y)expfi[ 61+ a6, sented in Appendix B.
+(—1)3 18, ( 03+ a )+ (— 1) (1—6,p) lIl. THE NONEQUILIBRIUM TRANSPORT PROBLEM
X (@3t ags) ]} +v(MX+iaMY) Due to the finite bias voltage the distribution in this sys-

) a1 a1 tem is not in thermal equilibrium. This nonequilibrium situ-
Xexpi[ 01+ (1) "0apfs+(—1)*" (1~ ap)abs  ation is studied using the Keldysh formalisiior a review,

+ (=12 Y 1—8 +(—1)aT1g see Ref. 30 To. define.a_ _nonequilibrium initial state, we
gzt (—1TH an) st (—1) aba@al} assume that until some initial tintg, the system has reached
+H.c}(X—Xm), (7) quasiequilibriumin the absence of impurity scattering?fh

=v?nb=0. Without impurity scattering, the total number of

wherem labels the position of the contacts;,= *L/2 and right- and left-moving carrierd\ir, N, , are separately con-

ab ab :
u2® andv?’ are gsnit::)nts proportional to the strength of thegg ey 5o that a partial equilibrium can be established with

backscatteringui’=ua’/(27A) and the same fosg’. The  well-defined separate chemical potentials for the right and

backscattering terms are restricted by symmetry according tieft movers. Hence, the system can be described, up to this
charge conservation and spin rotational symmetry around thgéme, by a thermal distribution governed by the grand ca-

axis of magnetization of the ferromagnetic contact. We connonical Hamiltonian

sider only terms of the formp;w,_ because these are the

most relevant in the renormalization-group seftbe scaling Hy=H —uiNg—uoNL, 9

dimension in real space of these termAis(ngL3)/4, while \here the chemical potentials in each lead are taken to be
the scaling dimension of terms of the forgg, ¢r, is A o= FVI2 andNgy, = fdxng, . The right- and left-moving

=1]. Hence if all scattering terms are weak, these terms wilharticle densities are given in the bosonization procedure by
dominate. It is straightforward to extend the present treath . = (1/27) 4,05 (* @an+ 0a). Then

ment to include the neglected interactions, though we do not
attempt this here. 2V
The effect of the magnetization appears only on the back- Hy=Hy — f dx7 Ixp1. (10
scattering term. In the case of near-perfect contacts to the
electrodes, we can treat the backscattering Hamiltokign We emphasize that the appearance of the voldge H,,
as a perturbation to the Hamiltonigh=H,, . This proce- does not represent a physical force on the electrons, but
dure is described in Sec. Il in the context of the Keldyshrather parametrizes their nonequilibrium distribution.
formalism that we use in order to account for the effects of After the initial time ty the evolution of the system is
the finite bias voltage. governed by a different Hamiltoniad, which as deduced in
The gate voltage introduces a term in the HamiltonianSec. Il isH=H, +H,s, with H | given in Eq.(6) andH
density proportional tp Vy=2/mV,d,6,, wherep is the in Eq. (7). We expect on physical grounds that introducing
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localized scattering at the ends of the wire or nanotube repranch”) for S'. Further noting thaH LL is quadratic andH

duces the current, but cannot affect the nonequilibrium disacts only at the ends of the nanotube/wire, the fields away
tribution in the reservoirs. Hence, we believe that the prefom x="+L/2 can be integrated out to obtain the Keldysh
scription of defining the voltageV from the initial integral

distribution as is done using E¢P) gives a faithful descrip-
tion of ideal leads. According to this prescription, a physical

;Jrgi?rvable, represented by an oper&®oris then calculated <5O>:f D[ 0+(t)<p+(t)]OKexp{iSO—iJ’ dthen(t)}(’]ﬁ)

1 A
OV= =T —BHy |Ht0 —iHt , 11
(0)=ZTr(e HveOe M) aw
where
_ Hoer=Hopd @i, 67+ 8Vt —Hpd @ , 07 + 6, Vit].
— BH pert b i i i1 bd i i i1
Z=Tr(e P"v). (12 17)

The difficulty in evaluating such an expectation value is that,

unlike in a conventional equilibrium calculation, the Hamil- ere 0, is an appropriate Keldysh representation of the op-
tonianH,, governing the initial distribution is different from erator®, which can be chosen as usual from fields lying on
H, which governs the time evolution. Thus such an expectagither the forward or backward moving branch, or any linear
tion value cannot be evaluated by equilibrium Green’s functompination thereof—see below for convenient choices. The
tion techniques. . quadratic actionS, is a functional of§*(t),¢™(t), which
Instead, we take advantage of the special propertdof can pe determined from the fact that it must reproduce the
that the voltage couples only tdg, , which are decoupled equilibrium correlation and response functions for these
“zero-mode” degrees of freedom. This technique has beefie|gs. Indeed, we do not require an explicit expression for

applied a number of times before to related probléts} g put instead give the response and correlation functions,
but to our knowledge the details of its derivation have nevegefined by

been published. For completeness, pedagogical value, and to

highlight the physical assumptions of the method, we include

a thorough derivation in Appendix A. The correction(iG) CoUx,t;x" t)=(0(x,1) O(x’ ,t"))=2({B(x,1),(x’ ,t")}),
due to the backscattering is given by

<50>: ZiTr[e*ﬁHLLsT(t)(bs(t)]’ (13) RH(X,t;X/,t,)=<0(X,t)0(X',t')>
L ——i0(t—t")
where - -
t X([O(x,1),0(x",t")]), (18
S(t):Texr{—iJ dt’H|(t’)} (149
0 where we have applied the standard Keldysh rotation to the

is the evolution operator for a system with the time-fields == 6+ (i/2)6. By construction (6(x,t)f(x’,t'))

dependent Hamiltoniamd,(t"). Here H(t) is the Hamil- =0. The Green’s functions involving thefields are defined
tonian in the frame comoving with the ideal current, definedin a similar way, replacing by ¢ in the above equations.
by There are also Green'’s functions that involve béthnd ¢,

. . these are defined by
Hi(h=e"He "™=H_ +[Hpdy o +vt, (15

with V=(V/2)(Ng—N,). Note that(becausdV,H, ]=0)  C(x,t;x",t")=(0(x,t) o(x",t"))=3({O(x,t), (X" ,t")}),

all the time dependence iHl,(t) is in the backscattering

term, and is hence easy to handle when working perturba- _

tively in Hys. R7(x,t;x",t") =(0(x,t) (X' ,t"))
Equationg(13)—(15) provide a reformulation of the trans- — iO(t—t"

port problem which is particularly convenient for a perturba- =-ie(t=t)

tive treatment of the backscattering. Note that—because the v T

voltageV appears only withird ,c—a direct expansion of Eq. (OO0, (D), (19

(13) in Hyg will involve equilibrium real-time propagators

calculated with respect td . We develop this perturbation and similar definitions foC¢” andR#". Again, by construc-

theory using the Keldysh path-integral formulation. This in-tion (6(x,t) o(x’,t"))={e(x,t)8(x',t"))=0.

volves the usual trotterization of the two evolution operators Using the above procedure we obt#imp to additive con-

S',S in Eq. (13) using coherent-state fields denoted bystants that will not contribute to the final reguite Green’s

0*,0" for S (“forward branch”) and 6~,¢~ (“backward  functions for theg, fields:
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T 1+« the strong Coulomb interactions.
Rfll(t)Z—E(l—a){@(tHT > a2k®(t_2ktv)}! We use the procedure described in Secs. Il and Il to
k=1 calculate the differential conductance for these systems. This
- is obtained from the expectation value of the current in a
Rt =—=(1—a?) >, a®O[t—(2k+1)t,], nanotube, i.e., a four-mode 1D electron system with the
2 k=0 Hamiltonian given in Eq(6), as

2
co(t)= 1%1 2+ 20 2l (ke )? } 1= 2 (Vhatraa— Waatian) = (402). (24
@ k=1
1- a2 After a lengthy but straightforward calculation we obtain
Clyt)=— > o®n|t2—[(2k+1)t,]3, (200 that the differential conductand®@=dl/4V to second order
4 k=0 in perturbation theory is given by
where the subscripts label the position of the contagts 1
[e.9.,Cap(t) =C(Xa,t;X,0)] and G=— 1+§ umf dtteclm(t)sir{Ele(t) cos(Vt)},
1- L 25
az—g and t,=—. (21 @9
1+g v with
We also need the Green'’s functions for the noninteracting
modesé, 3 4, RY, andCF. These are obtained from E@QO) U= U202 4 (2D)2Ni2
by takinga=0 and replacing, by te=L/vg, ! r%b[( m)"+ m)"Minl,
RY (H)=- z@(t) ab ab_, ab_abpyr a7
11 50, U2=2c09{VgL)% [u2°usP+ 02205 M,-M,], (26)
T and
RLAD)=— 5O (t—te),
Can(t) = Cap(t) +3CLy(1), 27
cgl(t): — %th, and similarly forR,,(t). For a quantum wiréi.e., a single-

channel electron systemthese are replaced b{,,(t)
. =2[Ccl(t)+CE ()] and the global normalization is di-
Ch(t)=— ZIn[t2—t2]. (220  vided by a factor of 2(since the quantum wire has two
12 4 F
modes instead of four
Equations(25) and (26) are valid for zero external mag-
netic field, which is the case considered in this section, the

those for thed fields given in Eq.(20), by replacingg by X o ;
1/g, i.e., by replacingx by — a. On the other hand, the only g&ugﬂons for nonzero magnetic field are presented in Appen-

¢ Green’s functions that contribute to the transport proper-

ties studied in the following sessions are those that corre- Equation(25) can be easily generalized to arbitrary order

spond to the noninteracting modes s, and therefore they in perturbatiqn theory, but the time integrals need to be com-
are identical to the functions given’?h'EQZZ) puted numerically. We present the calculated conductance to

In order to compute the spin transport properties in Sec. \/,Sl_i?sor::oggfserc;?;etshrgﬁ ddtl(grgnr:a?wgiljgzslw?:ﬁdne;i il!]r:e'r:;gc't_g'
we also need the following functions for th& and ¢, P

fields: ing electrons, i.e., takingg=1, which is equivalent to the
theoretical model in Ref. 14(b) a quantum wire withg
T =0.5, and(c) a nanotube withg=0.25, which is a physi-
Raz‘PZ(X,t):Sgr(X)§®(t)®(|x|—th), cally relevant value for single-walled carbon
nanotubes/~2%%The effect of the interactions is visible in
vt —X the dependence of the conductance with bias voltage, at con-
F (23  stant gate voltage.
vpt X The conductance is a quasiperiodic function of the bias
and C#2%(x,t) = C%2¢2(x,t), andR¥2%(x,t) = R%%2(x,t). voltage. AtV,=0, for the noninteracting cagsee Fig. 83)],
this dependence is a cosine function with periae/ . For
a quantum wire, Fig. ®), there are clearly two different
“periods” in the oscillations; these are related to the two
In this section we study the charge transport properties ofime scalestr=L/vg andt,=gtr=L/v. The existence of
1D electron systems and how these are affected by the mathiese two different time scales is due to the two bosonic
netization of the leads and, more importantly, the presence axcitations in this system: The spin excitation with velocity

The Green’s functions for the fields can be obtained from

1
Cl2e2(x,t)= - Zln

IV. THE DIFFERENTIAL CONDUCTANCE
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FIG. 3. Calculated conductance for identical contacts ﬁl"pizl\ﬁz for (a) a free-electron model, i.e., a nanotube wik1; (b) a
quantum wire, i.e., a LL with two modes: spin and charge, gith0.5; and(c) a nanotube witly=0.25, as a function of bia®/) and gate
(Vg) voltages(top) and as a function of the bias voltayeat constant gate voltagé,=0 (bottom. As can be seen, the effect of the
interactions is quite appreciable, in particular with the dependence on bias voltdge @t The “period” of these oscillations is given by
27/t (te=2 in these figures in agreement with Ref. 14, but {ib) and(c) there is another quasiperiodic component in these oscillations,
with period given by 2r/t, , the presence of these two time scalesndt, is a direct result of spin-charge separation.

ve and the charge excitation with velocity and is therefore ~ dence of the conductance with the gate voltage, which is
an effect of spin-charge separation. The same effect appeasinply a sinusoidal function as observed in Ref. 14.

in Fig. 3(c), but since for the nanotube there are three non-

interacting modes with velocityr and only one mode, the V. SPIN TRANSPORT

total charge, with velocity, it is less visible than in the . . . Lo
previous example. The most visible effect of the interactions In this section we study spin transport properties, i.e., the

! ; . .~ spin density in the nanotube and the spin current generated
in the nanotube is the enhancement of the amplitude in thBy the magnetization in the leads.

conductance around=0. Unfortunately, with the present = spin-density expectation value in the nanotube, cal-

experimental accuracy and range of data presented in Re . o . )
14, the differences between the noninteracting and the Lutréhu;ﬁ;er:]j ;:'Z%Sbc?isg) en(;zi?]tlgr; fsnd”tgﬁ dKﬁ:dBi/SS giegrntubr)?atlon for

tinger liquid models cannot be resolved experimentally.

The calculated conductance\§§L = 7/2 as a function of o1 . .
the bias voltage for a nanotube with different interaction S=3 > (Vhan Tup Vrapt Vlan Tap Piap). (29
strengths corresponding tp=0.25, 0.5, and 1, is presented aaf
in Fig. 4. It can be seen using Eq25) and (26) that the
conductance for this value of the gate voltage only depends
on the Green'’s function§,; andR;4, which depend only on
t, . As a result, we can clearly see in Fig. 4 that the period of
the oscillations isw/t,, and therefore depends strongly on
the interaction strength. The amplitude of these oscillations
is very small except for the first oscillation, which is enough
to identify this effect.

As for the dependence on the gate voltage, the conduc-

G (conductance)

tance is a periodic function, which is modulated b7y1 0 ' > 3 ] 1 5
M. and this i : i V' (bias voltage)
-My, is is the main effect of the magnetization in the
: ab, ab
leads on the conductance. In particular, Eu; u; FIG. 4. At constant gate voltag¥,L = /2, the period of os-

<Zv3°3°, there is an angle between the two magnetizacijations is wlgt,, i.e., depends strongly on the interaction
tions for whichU, vanishes for any value of the gate volt- strength. In order for this effect to be clearly visible, we scaled and
age; in this case the conductance is also given in Fig. 4. Notghifted the functions differently, therefore the values of Giaxes
that electron interactions have no effect in functional depenare not meaningful.
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2

(@)

2

(b)

2

(©)

-2

2 0 T £2 T

T 2 0 by
9 0
FIG. 5. Calculated spin for a nanotube wghk-0.25, the component of the spin in the direction of the magnetizaﬁgras function of
the angle between the two magnetizatigh&ind the bias voltag®/, at constant gate voltag@ Vy=0 and(b) V4==/2, and(c) the
component of the spin perpendicular to the plane formed by the two magnetizations as a function of the gate and bias voltages.

For zero magnetic field, it is technically simplest to calculatejn the direction ofM; at V4=0. The second term corre-

S* from the bosonized form, sponds to the component “of the spin perpendicular to the
plane of the magnetizations and is depicted in Fig),5s a
Sz=£<‘9x02>- (29) function of the bias and gate voltages. The third term is the
™ only one that survives in equilibrium, i.e., at zero bias, it is

and then obtain the other two components by rotational Ir]due to the fact that the backscattering strengths depend on

variance. For nonzero magnetic field the calculation as Weﬁhe spins of the incoming and outgoing electrons relative to
as the final results are much more involved, therefore and foih€ direction of the magnetizations. It is maximum idr;
the sake of clarity we only present the results in Appendix B.= M », When again for identical contacts the other terms van-

The result is ish. This corresponds t8= 0,27 in Fig. 5b). These terms

that couple the two backscatterers, and hence depend on the
- i i J'dtecll(t)si ER (t) gate voltage, vary with bias voltage in a manner approxi-
vE| L 2 1 mately described by a sum of two periodic functions, with
“periods” given by 2x/tg and 2r7/t,, as discussed in the
sin(Vt) preceding_ section for the conductance.
The spin current

sin(Vt) +sin(V4L)

. 1
X sz dteclit)sir{ERlz(t)

R 1
+ U3J dt eclz(t)sir{ERlit) COS(Vt)] ) ) (30 jszv_': 2;8 <¢Laa aaﬁ ‘pRa,B_ lr//Iaa 30{,8 ‘/’Laﬁ> (32)

with . : . L
is as the spin density calculated from tifecomponent in its

. ab abe ab abe bosonized form(again see the result for nonzero magnetic
UF% (U7 v Mi—Uu3"v;"Mp), field in Appendix B,

Z__ __
U=, v3%3M ;X M,, Js 7T<‘9t‘92>- (33
ab
It is not well defined at the contact points because the back-
- ab. abys ab. ab scattering term in the Hamiltoniaf7) does not conserve
u3—% (T3 Mo+ U3 v} Ml)' (31) spin, and therefore it has different expressions in the nano-
tube and the leads.

Notice that the spin density does not depend on the posi- The spin current in the left) and right (=) leads is

tion in the nanotube, hence the total spirL&. given by
The first term, proportional t&l, is the known nonequi- 1
librium spin accumulation effect.® It is maximum forM J= LLJ dtecll(t)sir{ERn(t) sin(Vt) +[ = sin(VgL) Uy

=—l\7|2, when, in the case of identical contacts, the other
terms vanish. This term does not couple two backscatterers, R Colt) e 1

is independent of the gate voltage, and is an increasing func- T 0$Vgl) U3]j dtem27sin SRyo(t)
tion of the bias voltage. It is depicted in Figah, since it is

the only term that corresponds to the component of the spiand in the nanotube by

sin(Vt), (34
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FIG. 6. Calculated spin current for a nanotube vgth 0.25: the component of the spin current in the direction of the magnetizkﬁon
as function of the angle between the two magnetizattbasd the bias voltag¥, at constant gate voltaga) V,=0 and(b) V,=7/2; and

(c) the component of the spin current perpendicular to the plane formed by the two magnetizations as a function of the gate and bias voltages

[this figure corresponds to the spin current in the nanotube, in the leads this component of the spin current is identicaki® Fig. 5

furthermore, it is an oscillatory function where we can dis-
tinguish two quasiperiodic components, with periods that are
related to the two velocities of the excitations of a Luttinger
liquid, v and vg. This effect is therefore a direct conse-
coqVt) . : : A
quence of spin and charge separation. It is clearly visible in
single-band quantum wires. In nanotubes, the amplitude of
sin(Vt)]. (35) the higher period component is reduced by the presence of
three (as opposed to onaneutral modes. Still, we can find
evidence of the two velocities andvg by comparing the
dependence of the conductance with bias voltage for two
different gate voltageszL =0 andw/2). Experimental evi-
64:2 u%bv%bmm_ (36) dence of these veIocme; has k_)een obtained using tunneling
mab between quantum wires in GaAs/AlGaAs hetero-
structures*~37 but more experimental data are needed for
Similar to the results for the spin discussed above, the firsthe setup considered in this paper. These data should focus
term, which only involves one backscatterer and is indepengn the dependence of the conductance on a wide range of
dent of the gate voltage, corresponds to the usual spin injegsias voltages, and single-channel quantum wires would be
tion effect. Itis an incre»asing function of the gate voltage andpreferame to nanotubes.
is maximum forM;=M,. This can be seen in Fig.(19, It is perhaps worth noting that, for the case of nonmag-
since it is the only term that does not vanish in the directiometic leads with symmetric contacts, the conductance for-
of l\7|1 atVgL=m/2. At Vy=0, the terms proportional tﬁl mula involves only two unknown parameters: the overall
andus contribute equally to the component of the current inamplitude of the backscattered current and the Luttinger pa-
the direction ofM, the result for this case is presented in F@meterg, both of which can be simply estimated. Neverthe-
Fig. 6(a). The second term, proportional t31>< '\7|2, corre- Iess,.a nontrivial functional dependence upon bias voltage is
sponds to an exchange interaction between the magnetizB[ed'CtEd'_ . .
tions of the leads, mediated by the nanotube. It has opposite | "€ SPIn and spin current have one component in the

sin(Vt)+coqVylL)

.. 1
J=uy f dt e°11<t>sir{§Rn(t)

x{ﬁzf dt e“120sin

1
§R12(t)

N 1
+ u3f dt eclﬂt)sir{ERlz(t)

with U, anduz defined in Eq(31) and

signs in the two leads and it is shown in Figc plane of th_e magnetization, which does not couple the twq
leads and is therefore independent of the gate voltage. This
term should be understood as arising from incoherent spin

VI. CONCLUSIONS

injection at each contact. It is a monotonic function of the

We studied the charge and spin transport properties of 1bias voltage, and corresponds to the known spin accumula-
systems, e.g., quantum wires and carbon nanotubes, focusitign (for the spin and spin injection(for the spin current
on the latter. We considered the case of nearly perfect ohmieffects. The other components that couple the two leads, and
contact between the 1D system and the electrodes and itherefore depend on the gate voltage, are backscattering pro-
cluded the strong Coulomb interaction via a Luttinger liquid cesses occurring with coherence between the two contacts.
model. We found important effects on the transport properThese oscillate with the bias voltage, in a manner approxi-
ties of these systems that are due to the Coulomb interaenately described as a sum of two periodic components, with
tions. These appear in dependence with bias voltage. In paperiods related to the two velocities of the excitation of the
ticular, the conductance is enhanced at low bias voltagd,uttinger liquid. The amplitude of the higher-period compo-
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nent is largest in a single-channel quantum wire, and some- 1 o e 2 CHT
what suppressed in nanotubes by the subband degeneracy. (O)= Z—LLTF[E_B el UioUy)e IV,

(A8)
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APPENDIX A: DERIVATION OF EQ. (13 (Nr=Ny). (A10)
In this appendix, we derive Eq13). In particular, we
consider a large periodic system of sizewhere ultimately
L—oo. We define the right-/left-moving combinations

For the operators of interest,

UlTuy=1y+1, (A11)
DirRIL=PiE ;. (A1)
In the system of sizé& we can decompose into finite wave ulsSuy=S§, (A12)
vector and “zero-mode” components. In particular, for the
total charge fields, we define N .
UldUy=1Js, (A13)
7NRX
D100 =Bar0 + T e, (A2) \ihere 1o=4(e2/h)V=(2/m)V is the current which would
flow in an ideal nanotube in the absence of backscattering.
7N X = =
b ()=d 00— g, (A3) Def|n|ng 50=0— 0y, with Og=1, for O=1 and©0,=0 for

0= S,JS , one has then

where ¢, (X) contains the nonzero momentum modes of
the ¢1g,. fields. With t_hese defi_nitions, th_e zero-mode vari- (50)= iTr(e‘f"HLLe‘(H +V)‘@e‘i(H+<’)‘). (A14)
ables form two canonically conjugate pairs:

[Nr, PrI=[N_, P ]=1, We then apply the formula
[N, ® ]=[N_,Pr]=[Ng,N |=[Pg,® ]=0. (A4)

Moreover, Ng, , ®r commute with ¢ (x) and all
fields associated with channels 2, 3, and 4.

Since the interactions which transform the system from ag arrive at Eq(13) ff given in the main text.
Fermi liquid into a Luttinger liquid Eq. (1)] exist only for

|x|<L/2, they do not affect the zero-mode terms in the
Hamiltonian. Hence one may separate APPENDIX B: DIFFERENTIAL CONDUCTANCE, SPIN,

AND SPIN CURRENT AT NONZERO
MAGNETIC FIELD

_ . . t
elt(H+V):e|tVTeXF{_if dt’ Hl(t')} (A15)
0

Hy= H|_,_+ (N +N?)— (NR—N,_), (A5) . . . ) o
The differential conductance including the magnetic field
is still given by Egs.(25) and (26) with only the following

whereH,, is the Luttinger liquid Hamiltonian, Eq6), with change inU:

the zero-mode terms subtracted, i.e., with— ¢; and 6,
—9,. We then see, using the independence of the zero-mode ) o
variables, that the unitary operator U,=2 coing)g {u2Pu8P+ 3P 8 M- M+ (M, - h)

UV:ei(VmeF)(@R—@L) (AB) o
_ X(M3-h)(cosBL—1)]} +sin(BL)sin(V4L)
generates the transformatioMNg, —Ng, =VL/(47vg),

hence XE [u3P03° (M- h)+ugu2P(My-h)], (B1)
e Plv=e=CU,e AHuU! (A7)

whereC=BL/(87vg) is an unimportant constant. Inserting whereh=h/h.

this into Egs.(11) and(12), one obtains The total spin of the nanotube is

205423-9
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1 ab. abpz ab. abpz 1- ab. ab/ a7 B\R ab. ab/n 7 B\R 1-
S:;hBL_U_Eb (Lll Ul Ml_uZ Uz M2)§SIHBL+[U1 Ul (Mlh)h_uZ U2 (Mzh)h] L_§S|nBL

L I | 1
+[u2bv‘1‘b(|v|lxh)—ugbvgb(szh)]g(l—cosBL) fecllsin<ER11)sin(Vt)
t

+ sianL

B

. S 1 S I 1
(u"i‘bv‘;‘bM2+ugbv"i‘bM1)§sinBL+[ui‘bv§b(M2~h)h+u"§‘bvi‘b Ml-h)h](LcosBL— —sinBL)

[(l\7|1-ﬁ)l\7lz+(l\7lz-ﬁ)Ml]%(l—cosBLH(l\Zl-ﬁ)

—u3ud’hL sinBL cosVyL —v§"u 3P

A 2 1 A A
x(Mz.h)h(L sinBL—E(l—cosBL)) cosVgylL J'tecﬂsin(ERlz)COS(Vt)"‘ [ui‘bvgb(szh)—ugbvib(MMh)]
1 ab, abl r nd . BN SR (N BN 1.
Xg(l—COSBL)COSVgL‘FUl v5 | [(M1-h)(MyXh)—(M,-h)(M{Xxh)] L—EsmBL

=] e (1 _
+ M XML |sinV4L te 12sin| ERlz sin(Vt) |. (B2)

The spin current in the nanotubEg. (B3)] and the lead$Eq. (B4)] is

Jo= % {3\, cosB(X— X;) + U3Py 3°M ,COSB (X — X,) + uZPw3(M ;- h)A[ 1— cosB(x—x;) ]+ ud®u 3% (M, h)

" .o oA 1

X A[1—cosB(x—X,) ]+ u2Pu@ (M, x h)sinB(x—x;) — udPu3°(M, x h)sinB(x—xz)}fecnsin(ERn) sin(Vt)
t
+% {u2Pu3P(M,- h)h[ cosBL — cosB(x—x;) ]+ uPu (M- h)h[cosBL — cosB(x—X,)]+ u2Pu3°M ,cosB(x— ;)
+ 30 3°M 1CoSB(X—Xp) }cosVyL + 053 (M- h) (M- h)R[SinBL —SinB(X—X,) + SiNB(X—Xy)]
LA - LA ~ 1
+(Ml-h)MzsinB(x—xl)—(Mz-h)MlsinB(x—x2)+uﬁbugbhsinBL}sianL}fecl2sin(ERlz)sin(Vt)
t
+§; {[u2Pu3°(M X R)sinB(x—x1) — U3 3°(M ;X R)sinB(x—Xz)IsinVL —v2%3°{(M - h) (M X )
X[1—=cosB(x—X1)]—=(M5-h)(M;Xh)[1—cosB(x—X,)]+Mj;X Mz}congL}feCﬂsm( ER”) coqVt), (B3)
t
J= > {u2P3°M 1 cosB(X—X;) + U3 3PN ,cosB(X—X,) + u2Pu2P(M ;- h)A[ 1— cosB(x—x;) 1+ ud®u3%(M,- h)

ab

~ LA . A 1
X h[1—cosB(x—x,)]F[u2Pu2P(M; x h)sinB(x—x;) + ud’u 3P (M, x h)sinB(x—xz)]}fecllsin(ERll) sin(Vt)

t

+ >, {[ud®3%(M - h)A[cosBL— cosB(x—xX;) ]+ uw(M; - h)A[ cosBL— cosB(x— X,) ]+ u2Pva°M ,cosB(x—X;)
ab

+U3P08PM ;1 coSB(X—X;) ]cosVyL + 0503 [ (M- h) (M- h)R[SiNBL—SiNB(x—X;) +SinB(X—Xy)]
+(My-h)M,SinB(x—x3) — (M- )M sinB(x—x,) IsinVL 7 [u2®w3°(M,x h)sinB(x—x,) + ugu3°(M, X h)

X SiNB(X—X2)]cosVyL 7 v2% 3 (M- h) (M, A)[1—cosB(x—X;)]— (M- h)(M ;X h)[1—cosB(x—X,)]
- - ~ 1
+M3XM,lsinVyL+uiPu3’h sinBL sinVyL} f eclzsin( ERQ) sin(Vt), (B4)
t
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where the+ sign correspond to the left and right leads, |n the steady statdﬁt§>=0, so one has

respectively.

One can verify that the spin current and spin density are
not independent and are, in fact, related by the precessional

equation of motion,

85+, Jg=—2hxS. (B5)

I(Js(X)) = — 2R X (S(x)). (B6)
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