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Scaling of Self-Avoiding Tethered Membranes: 2-Loop Renormalization Group Results
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The scaling properties of self-avoiding polymerized membranes are studied using renormalization
group methods. The scaling exponentn is calculated for the first time at 2-loop order.n is found to
agree with the Gaussian variational estimate for large space dimensiond and to be close to the Flory
estimate ford ­ 3. [S0031-9007(96)00341-9]
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The statistical properties of polymerized flexible me
branes are interesting and still poorly understood
These objects arise in either a collapsed (fractal dim
siondf ­ 3), a crumpled swollens2 , df , 3d, or a flat
sdf ­ 2d phase. The physical properties of such me
branes in three dimensions can be studied by experim
and computer simulations. Most of the simulations fi
a flat phase [2–6], due to an induced effective cu
ture term (stiffness) of the membrane [3]. A swol
phase with fractal dimension near to the Flory predic
df ­ 2.5 has been found by exactly balancing curvat
terms with a long-range attractive interaction, thus in
preting the swollen phase as a tricritical point [5]. T
experimental results are contradictory. In [7] but no
[8] a swollen phase is found.

An analytical approach inspired from polymer th
ory [11], which relies on renormalization group a
´-expansion methods, was initiated in [9,10], where
was used to perform calculations at 1-loop order.
consistency to all orders in perturbation theory has b
established in [12]. In this Letter we present the fi
application of this method to 2-loop calculations a
discuss the results obtained by this approach.

The membrane is modeled by a continuum mo
à la Edwards: The embedding of theD-dimensiona
membrane ind-dimensional bulk space is described
the mappingx [ &D ! $rsxd [ &d . The renormalized
Hamiltonian is

H f$rg ­
Z
2

Z
x
f=$rsxdg2

1 bZbm´
Z

x

Z
y

ddsss$rsxd 2 $rs ydddd , (1)

whereb is the dimensionless renormalized coupling c
stant,m the renormalization momentum scale, and´ ­
2D 2 ds2 2 Ddy2. Physical quantities are calculat
perturbatively inb. Direct calculations forD ­ 2 for
membranes are not possible, since perturbation theo
singular; D and d have therefore to be treated as c
tinuous variables and ań-expansion must be performe
The renormalization factorsZsb, ´d and Zbsb, ´d are in-
troduced in order to subtract the short-distance di
gences which appear as poles in´ at the critical dimension
´ ­ 0.
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At ordersbn one has to calculate the expectation va
with respect to the free theorysb ­ 0d of n bilocal
operators, henceforth called dipoles:

integrated over the whole membrane. Short-dista
divergences occur when dipole end points approach e
other. The most important tool to deal with the
divergences is the multilocal operator product expans
(MOPE) [12], which describes all possible contractio
of dipoles to the operators marginal at´ ­ 0. Power
counting shows that there are only two such operat
the dipole operator and the local operator

For instance, the contraction of a dipole to a po
generatesB with the MOPE coefficient

The integral over the relative distance of the two points
UV-divergent. As in [14] we use the minimal subtractio
scheme to subtract these divergences. Introducing an
cutoff L ~ m21 the diagram becomes

Our strategy is to keepD fixed and to expand (3) as
Laurent series iń , which here starts at́21. Denoting by
k j l´p the term of ordeŕ p of k j lL­1, the counterterms are
chosen to have pure poles iń, and for instance the firs
counterterm corresponding to (2) is

Extending this analysis along the lines of [12] leads to
following results (details will be given elsewhere [15]
To second order, the counterterms which render the the
© 1996 The American Physical Society
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Following [12], the renormalization groupb function and
the anomalous scaling dimensionn of $r are obtained from
the variation of the coupling constant and the field wi
respect to the renormalization scalem, keeping the bare
couplings fixed. They are written in terms ofZ andZb as

bsbd ­
2´b

1 1 b≠ lnZby≠b 1 sdy2db≠ lnZy≠b
, (6)

nsbd ­
2 2 D

2
2

1
2

bsbd
≠

≠b
lnZ . (7)

In order to compute these coefficients, we apply o
methods of [14], which must be extended in order
deal with the double poles iń22 from subdivergences.
We demonstrate the method using the example of
counterterm associated with the diagram

A subdivergence occurs when the single dipole to the rig
of the diagramG is contracted to a point. According to
the MOPE of [12], when this contraction is performe
first, the MOPE coefficient factorizes as
r
o

e

ht

This implies that the double pole of (8) is the same as
double pole appearing in the product of the counterte
associated with the two diagrams on the right-hand s
of (9)

The factor 1
2 comes from the nested integration [13

arising from the fact that the double pole is given by
right-hand side of (9), integrated with the restrictionR

that the distance in

is smaller than all the distances in

As a consequence, we can extract the difference of
residues of the single polesc1 2 c̃1 by subtracting from
the left-hand side of (8) a counterterm proportional
the right-hand side of (9),restricted to the domainR.
In fact, this combination has to be calculated; see
We get
ferent
The careful reader will have remarked that (10) and the last term in (11) are calculated with a slightly dif
regularization prescription. The difference, however, is of order´0 and thus does not change the result [15].c1 2 c̃1

is now extracted by applyingL≠y≠L to the right-hand side of (11) and taking the limit´ ! 0. We then obtain
4565
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This integral is locally finite and can be reduced to
integral over five independent distances between p
of points. We evaluate it by applying and extendi
the numerical techniques of [14]. The main difficul
thereby comes from the fact that although converg
the integral (12) has integrable singularities, which ha
to be removed by suitable variable transformations
mappings between domains of integration. Finally
integrand has large variations in some small subdom
and can be integrated only by a genuine adaptive Mo
Carlo integration. For analytical and numerical details
refer the reader to [14,15].

The other diagrams appearing in (4) and (5)
calculated similarly. Having performed all nume
cal calculations (,103 h CPU on a WorkStation), th
renormalization-group functionsbsbd and nsbd can be
calculated. bsbd has a nontrivial IR-fixed point fo
b ­ bc . 0 [i.e., bsbcd ­ 0 and b0sbcd . 0]. The full
dimension of the fieldn at this critical point,nsbcd, is a
function ofD and´:

nsD, ´d ­
2 2 D

2
1 n1sDd´ 1 n2sDd´2 1 O s´3d . (13)

The coefficients are plotted in Fig. 1. Naively setti
D ­ 2 and d ­ 3, i.e., ´ ­ 4 in Eq. (13), yields the
wrong result 0. To obtain the correct result, one h
to redevelop this expansion around any pointsssD0, d0 ­
4D0ys2 2 D0dddd on the critical curves´ ­ 0d. We use a
generalization of the methods introduced in [16]. No
that the expansion (13) is exact inD and of order 2
in ´, thus it can be expanded up to order 2 inD 2

D0 and ´. Given any invertible transformationhx.yj ­
hxsD, ´d, ysD, ´dj, one can expressD and´ as a function
of x and y and reexpand up to order 2 inx and y. The
goal is to find a set of variables such that the estim
for n depends the least on the choice of the expan
point on the critical curve and which reproduces well
known results in the following case:D ­ 1, D ­ d, and
d ! ` (see below). The setshD, Dcsdd ­ 2dys4 1 ddj
andhDcsdd, ´j have been found to be good choices. T
FIG. 1. The functionsn1sDd (dashed line) andn2sDd (solid
line). The latter is given with the statistical error.
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plot in Fig. 2 shows the value ofn as a function of the
expansion pointhD, dcsDd ­ 4Dys2 2 Ddj on the critical
curve. The prediction at 1-loop order (dashed line)
essentially independent of the expansion point. At 2-lo
order the estimate starts from the 1-loop result atD ­ 2,
grows until it reaches a plateau aroundD ­ 1.5 and then
grows rapidly again. This is a general feature of this ki
of expansion and can well be studied by applying the sa
method to the Flory estimatenFlory ­ s2 1 Ddys2 1 dd.
In this case the plateau becomes flatter if one goes
higher orders but does not cover the whole range; i.e.,
expansion is not convergent for allD. To extractn from
Fig. 2, one uses the maximum and the minimum of t
plateau. Their mean is an estimate forn, their difference
an estimate of the error inthis expansion scheme. We ge
n ­ 0.74 6 0.02. It must be emphasized that differen
sets of variables yield different values forn.

One possibility to further improve the extrapolation
to developnd or nsd 1 2d. The first is interesting, as i
calculates corrections around the estimate predicted b
Gaussian variational ansatz [17],nvar ­ 2Dyd:

nsbcdd ­ 2D 1

∑
bsbd

≠

≠b
lnZbsbd

∏ Ç
b­bc

. (14)

The smaller lnsZbd is, the more accurate the expansio
becomes. At 1- and 2-loop order lnsZbd vanishes like
exps2constydd for large d. We argue that this persist
to any order in perturbation theory. For larged, nvar thus
becomes exact.

The second possibility is a systematic expansion aro
the Flory estimatenFlory ­ sD 1 2dysd 1 2d:

nsbcd sd 1 2d ­ D 1 2 1

∑
bsbd

≠

≠b
ln

µ
Zb

Z

∂∏ Ç
b­bc

.

(15)
The Flory estimate is excellent for polymers and one ho
FIG. 2. Extrapolation ofn via (13) in Dcsdd and ´ for
membranesD ­ 2 in d ­ 3. The first order results are given
by the dashed line, the second order by the solid line.
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FIG. 3. Extrapolation ofn via (15) in d and´ for membranes
D ­ 2 in d ­ 3. The first order results are given by the dash
line, the second order by the solid line.

[16] that it is also good for membranes. Therefore t
corrections should be small. Such an extrapolation is gi
in Fig. 3. The estimate forn is slightly larger than that in
Fig. 2.

The results for a 2-loop extrapolation forn are presented
in Fig. 4 for membranessD ­ 2d in d dimensionss2 #

d # 20d.
We see that ford ! ` the prediction of the Gaussia

variational method becomes exact, as argued above.
smalld, the prediction made by Flory’s argument is clo
to our results. This is a nontrivial result, since the me
brane case corresponds to´ ­ 4 and in comparison with
polymers ind ­ 3, where ´ ­ 1y2, the 2-loop correc-
tions were expected to be large. In fact we have fou
that they are small when one expands around the crit
curve´ ­ 0 for an adequate range ofD , 1.5 (depending
slightly ond and on the choice of variables) and a suitab
e
e

a-

,

tt.

E
,

FIG. 4. Extrapolation of the 2-loop results ind and ´ for
membranesD ­ 2 in d dimensions, using (15) (squares). Th
solid line is the prediction made by Flory’s theory, the dash
line by the variational ansatz.
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choice of extrapolation variables. In this case the 2-lo
corrections are even smaller than the 1-loop correcti
and allow for more reliable extrapolations to´ ­ 4.

In conclusion, we have presented here the first renorm
ization group calculation at 2-loop order for self-avoidin
flexible tethered membranes. In order to improve the
results, one should understand if the plateau phenome
observed at 2-loop order persists to higher orders, and
should control the general large order behavior of pert
bation theory for this model. Another important issue
for which values ofD andd the IR-fixed point studied here
is stable towards perturbation by bending rigidity. Indee
it has been argued [3] that for small enoughd this might
destabilize the crumpled phase and explain why numer
simulations ind ­ 3 normally see a flat phase.

We thank E. Guitter and J. Zinn-Justin for usef
discussions and E. Guitter for a careful reading of t
manuscript. F. D. acknowledges the financial supp
of CNRS.

[1] Proceedings of the Fifth Jerusalem Winter School f
Theoretical Physics:Statistical Mechanics of Membrane
and Surfaces, Jerusalem, 1987, edited by D. R. Nels
T. Piran, and S. Weinberg (World Scientific, Singapo
1989).

[2] F. F. Abraham, W. E. Rudge, and M. Plischke, Phys. R
Lett. 62, 1757 (1989).

[3] F. F. Abraham and D. R. Nelson, J. Phys. (Paris)51, 2653
(1990); Science249, 393 (1990).

[4] G. S. Grest and M. Murat, J. Phys. (Paris)51, 1415 (1990).
[5] G. S. Grest and I. B. Petsche, Phys. Rev. E50, R1737

(1994).
[6] D. M. Kroll and G. Gompper, J. Phys. I (Paris)3, 1131

(1993).
[7] T. Hwa, E. Kokufuta, and T. Tanaka, Phys. Rev. A44,

R2235 (1991); X. Wenet al., Nature (London)355, 426
(1992).

[8] M. S. Spector, E. Naranjo, S. Chiruvolu, and J. A. Z
sadzinski, Phys. Rev. Lett.73, 2867 (1994).

[9] J. A. Aronowitz and T. C. Lubensky, Europhys. Lett.4,
395 (1987).

[10] M. Kardar and D. R. Nelson, Phys. Rev. Lett.58, 1289
(1987); Phys. Rev. A38, 966 (1988).

[11] J. des Cloizeaux and G. Jannink,Polymers in Solution,
Their Modelling and Structure(Clarendon Press, Oxford
1990).

[12] F. David, B. Duplantier, and E. Guitter, Phys. Rev. Le
72, 311 (1994).

[13] This point is already explained (without using the MOP
formalism) in B. Duplantier, T. Hwa, and M. Kardar
Phys. Rev. Lett.64, 2022 (1990).

[14] K. J. Wiese and F. David, Nucl. Phys.B450, 495 (1995).
[15] K. J. Wiese and F. David (to be published).
[16] T. Hwa, Phys. Rev. A41, 1751 (1990).
[17] E. Guitter and J. Palmeri, Phys. Rev. A45, 734 (1992).
4567


