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Scaling of Self-Avoiding Tethered Membranes: 2-Loop Renormalization Group Results
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The scaling properties of self-avoiding polymerized membranes are studied using renormalization
group methods. The scaling exponents calculated for the first time at 2-loop ordew: is found to
agree with the Gaussian variational estimate for large space dimethsiod to be close to the Flory
estimate ford = 3. [S0031-9007(96)00341-9]

PACS numbers: 68.10.—-m, 05.70.Fh, 11.10.Gh, 11.25.-w

The statistical properties of polymerized flexible mem- At ordersbd” one has to calculate the expectation value
branes are interesting and still poorly understood [1]with respect to the free theoryp = 0) of n bilocal
These objects arise in either a collapsed (fractal dimenmeperators, henceforth called dipoles:
siondy = 3), a crumpled swollef2 < dy < 3), or a flat dfes .

(dy = 2) phase. The physical properties of such mem- vy = 6°(F(z) — ™(y))

branes in three dimensions can be studied by experimen.tst ted th hol b Short-dist
and computer simulations. Most of the simulations fingNtegrated over the whole membrane. ort-distance

a flat phase [2—6], due to an induced effective CurVa_dlvergences occur when dipole end points approach each

ture term (stiffness) of the membrane [3]. A swollen other. The most important tool to deal with these

phase with fractal dimension near to the Flory predictiond'vergences is the multilocal operator product expansion

d; = 2.5 has been found by exactly balancing curvature(MOPE) [12], which describes all possible contractions

terms with a long-range attractive interaction, thus inter-mc dipoles to the operators marginal at= 0. Power

preting the swollen phase as a tricritical point [5]. TheCounting shows that there are only two such operators:
experimental results are contradictory. In [7] but not inthe dipole operator and the local operator

[8] a swollen phase is found. %[VF(:v)]Z =4, .

An analytical approach inspired from polymer the-

ory [11], which relies on renormalization group and For instance, the contraction of a dipole to a point
e-expansion methods, was initiated in [9,10], where itgenerates- with the MOPE coefficient

was used to perform calculations at 1-loop order. Its

consistency to all orders in perturbation theory has bee Q
established in [12]. In this Letter we present the first z 4
application of this method to 2-loop calculations and

discuss the results obtained by this approach. _ _ _ o
The membrane is modeled by a continuum modellhe integral over the relative distance of the two points is

a la Edwards: The embedding of thB-dimensional UV-divergent. As in [14] we use the minimal subtraction
membrane ind-dimensional bulk space is described byscheme to subtract these divergences. Introducing an IR-
the mappingx € R? — 7(x) € R?. The renormalized cutoff L = ! the diagram becomes

Hamiltonian is
+ > - all distances (Q ‘ +) . 3)
L

HIF] = % fX[V?(x)]z <<> smaller than L

+ bZ;,,u*’f f 84(F(x) — 7(v)), (1) Our strategy is to kee@ fixed and to expand (3) as a

whereb is the dimensionless renormalized coupling Con_Laurent Series i, Wh'CQ here starts at™!. Denoting by
stant, u the renormalization momentum scale, asd= {|)=» the term of ordee °f<.| Ji=1, the counterterms are
2D — d(2 — D)/2. Physical quantiies are calculated chosen to have pure po.Ies i anq for instance the first
perturbatively inb. Direct calculations forD = 2 for counterterm corresponding to (2) is

membranes are not possible, since perturbation theory is 11

singular; D and d have therefore to be treated as con- <Q|+> =

tinuous variables and astexpansion must be performed. e -1 2D ¢

The renormalization factorZ(b, &) and Z, (b, €) are in-

troduced in order to subtract the short-distance diverExtending this analysis along the lines of [12] leads to the
gences which appear as polegiat the critical dimension following results (details will be given elsewhere [15]).
e = 0. To second order, the counterterms which render the theory

1 -D
b | =——|z—ql 2
) 2D|$ vl ' @
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(C0f), A9 ().

finite are found to be

+> b+
-1

&)

Following [12], the renormalization grouf function and O - 4
the anomalous scaling dimensiorof 7 are obtained from \/ ~ v."_'_',:.

the variation of the coupling constant and the field with

respect to the renormalization scale keeping the bare oIS .9
couplings fixed. They are written in terms BfandZ, as % ”\—/'+ ©)
®) —¢ebh ) This implies that the double pole of (8) is the same as the
B(b) = , 6 double pole appearing in the product of the counterterms
L+ baInZ,/3b + (d/2)baInZ/ob associated with the two diagrams on the right-hand side
of (9)
2—-D 1 d c ¢
= - = = 2 | &2 | 1 0
W(b) = 252 = 2Bb)-InZ. @ 1*|%+2 100
In order to compute these coefficients, we apply oul 1 g ‘
methods of [14], which must be extended in order to = B Q + O tie— - (10)
deal with the double poles ia~? from subdivergences. <\ 7 L L

We demonstrate the method using the example of théhe factor ; comes from the nested integration [13],

counterterm associated with the diagram arising from the fact that the double pole is given by the
right-hand side of (9), integrated with the restrictiGh
e that the distance in
is smaller than all the dlstances in
e| € ¢ o TS
<O’O|°—°> =[2+2406)] . ® L
L

As a consequence, we can extract the difference of the
residues of the single poles — ¢; by subtracting from
A subdivergence occurs when the single dipole to the righthe left-hand side of (8) a counterterm proportional to
of the diagramG is contracted to a point. According to the right-hand side of (9)estricted to the domairiR.
the MOPE of [12], when this contraction is performedIn fact, this combination has to be calculated; see (5).
first, the MOPE coefficient factorizes as | We get

L?* [Cl —61 ] ﬁt<\/<>"—’) /{dlmnces}m (Q‘ ) (\/* ._.) (11)

The careful reader will have remarked that (10) and the last term in (11) are calculated with a slightly different
regularization prescription. The difference, however, is of oefeand thus does not change the result [15]. — &;
is now extracted by applyino/dL to the right-hand side of (11) and taking the limit— 0. We then obtain

et b1alf e (OOF ) (1) (255}

stance= stance=L

4565



VOLUME 76, NUMBER 24 PHYSICAL REVIEW LETTERS 10uNE 1996

This integral is locally finite and can be reduced to anplot in Fig. 2 shows the value af as a function of the
integral over five independent distances between pairexpansion poindD, d.(D) = 4D /(2 — D)} on the critical
of points. We evaluate it by applying and extendingcurve. The prediction at 1-loop order (dashed line) is
the numerical techniques of [14]. The main difficulty essentially independent of the expansion point. At 2-loop
thereby comes from the fact that although convergentyrder the estimate starts from the 1-loop resulbat= 2,
the integral (12) has integrable singularities, which havegrows until it reaches a plateau aroubd= 1.5 and then
to be removed by suitable variable transformations androws rapidly again. This is a general feature of this kind
mappings between domains of integration. Finally theof expansion and can well be studied by applying the same
integrand has large variations in some small subdomainsethod to the Flory estimateq,y = (2 + D)/(2 + d).
and can be integrated only by a genuine adaptive Montén this case the plateau becomes flatter if one goes to
Carlo integration. For analytical and numerical details wehigher orders but does not cover the whole range; i.e., the
refer the reader to [14,15]. expansion is not convergent for @l. To extracty from

The other diagrams appearing in (4) and (5) arerig. 2, one uses the maximum and the minimum of the
calculated similarly. Having performed all numeri- plateau. Their mean is an estimate fgrtheir difference
cal calculations £10° h CPU on a WorkStation), the an estimate of the error ithis expansion scheme. We get
renormalization-group function@(b) and v(b) can be » = 0.74 = 0.02. It must be emphasized that different
calculated. B(b) has a nontrivial IR-fixed point for sets of variables yield different values for

b =b.>0][ie., B(b.) =0andB'(b.) > 0]. The full One possibility to further improve the extrapolation is
dimension of the fieldv at this critical point,»(b.), is a to developrd or v(d + 2). The first is interesting, as it
function of D ande: calculates corrections around the estimate predicted by a
27— D Gaussian variational ansatz [17),, = 2D/d:
v(D,g) = + v1(D)e + 1r(D)e® + O (). (13) 5
The coefficients are plotted in Fig. 1. Naively setting v(be)d =2D + [:3(1’)5 Ian(b)} Lb - 14

D=2 andd =3, ie, e =4 in Eq. (13), yields the ) )
wrong result 0. To obtain the correct result, one has/ne smaller IZ,) is, the more accurate the expansion
to redevelop this expansion around any pdib,do = Pecomes. At 1- and 2-loop order(l),) vanishes like
4Dy/(2 — Dy)) on the critical curvee = 0). We use a €XP(—consfd) for larged. We argue that this persists
generalization of the methods introduced in [16]. Notet® any order in perturbation theory. For largev.,. thus
that the expansion (13) is exact b and of order 2 becomesexact. _ _

in &, thus it can be expanded up to order 2 fin— The secon'd possibility is a systematic expansion around
Do ande. Given any invertible transformatiofr.y} =  the Flory estimaterpioy = (D + 2)/(d + 2):
{x(D, &), y(D, &)}, one can expres® ande as a function d Z
of x andy and reexpand up to order 2 inandy. The  »(bc)(d +2)=D +2 + [B(b)ﬁ In(;ﬂ
goal is to find a set of variables such that the estimate

for » depends the least on the choice of the expansion (15)
point on the critical curve and which reproduces well theThe Flory estimate is excellent for polymers and one hopes
known results in the following cas® = 1, D = d, and

d — « (see below). The sef®,D.(d) = 2d/(4 + d)}
and{D.(d), e} have been found to be good choices. The

b=b,
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b FIG. 2. Extrapolation ofy via (13) in D.(d) and ¢ for
FIG. 1. The functionsy,(D) (dashed line) and,(D) (solid membraned = 2 in d = 3. The first order results are given
line). The latter is given with the statistical error. by the dashed line, the second order by the solid line.
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choice of extrapolation variables. In this case the 2-loop
corrections are even smaller than the 1-loop corrections
and allow for more reliable extrapolations ¢0= 4.

In conclusion, we have presented here the first renormal-
ization group calculation at 2-loop order for self-avoiding
P ’ flexible tethered membranes. In order to improve these
results, one should understand if the plateau phenomenon
observed at 2-loop order persists to higher orders, and one
041 should control the general large order behavior of pertur-
bation theory for this model. Another important issue is
for which values o andd the IR-fixed point studied here
is stable towards perturbation by bending rigidity. Indeed,
it has been argued [3] that for small enouglthis might

destabilize the crumpled phase and explain why numerical
o 12 Mo, 1 18 : simulations ind = 3 normally see a flat phase.
FIG. 3. Extrapolation o¥ via (15) ind ande for membranes .We thank E. Gmtter_ and J. Zinn-Justin fgr useful
D = 2ind = 3. The first order resuits are given by the dasheddiscussions and E. Guitter for a careful reading of the
line, the second order by the solid line. manuscript. F.D. acknowledges the financial support
of CNRS.
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