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The Passive Polymer Problem
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In this article, we introduce a generalization of the diffusive motion of point-
particles in a turbulent convective flow with given correlations to a polymer or
membrane. In analogy to the passive scalar problem we call this the passive
polymer or membrane problem. We shall focus on the expansion about the
marginal limit of velocity�velocity correlations which are uncorrelated in time
and grow with the distance x as |x| =, and = small. This relation gets modified in
the case of polymers and membranes (the marginal advecting flow has correla-
tions which are shorter ringed.) The construction is done in three steps: First,
we reconsider the treatment of the passive scalar problem using the most con-
venient treatment via field theory and renormalization group. We explicitly
show why IR-divergences and thus the system-size appear in physical observ-
ables, which is rather unusual in the context of ordinary field-theories, like the
,4-model. We also discuss, why the renormalization group can nevertheless be
used to sum these divergences and leads to anomalous scaling of 2n-point
correlation functions as e.g., S2n(x) :=( [3(x, t)&3(0, t)]2n). In a second step,
we reformulate the problem in terms of a Langevin equation. This is interesting
in its own, since it allows for a distinction between single-particle and multi-par-
ticle contributions, which is not obvious in the Focker�Planck treatment. It also
gives an efficient algorithm to determine S2n numerically, by measuring the
diffusion of particles in a random velocity field. In a third and final step, we
generalize the Langevin treatment of a particle to polymers and membranes, or
more generally to an elastic object of inner dimension D with 0�D�2. These
objects can intersect each other. We also analyze what happens when self-inter-
sections are no longer allowed.
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polymerized membrane; renormalization group; multiscaling.

843

0022-4715�00�1100-0843�18.00�0 � 2000 Plenum Publishing Corporation

1 Fachbereich Physik, Universita� t GH Essen, 45117 Essen, Germany; e-mail: wiese�next23.
theo-phys.uni-essen.de



1. INTRODUCTION AND OUTLINE

For now more than 5 decades, turbulence has resisted a satisfying theoreti-
cal treatment. The principle question asked since Kolmogorov's pioneering
work(1) in 1941 is whether there are corrections to the simple scaling
behavior predicted in ref. 1 for higher correlation functions.(2, 3) The most
natural tool to answer this question is the renormalization group.
However, all attempts to go beyond Kolmogorov's analysis have essentially
failed so far. To better pin down the problem, simpler toy models have
been proposed. The probably most prominent such model is the passive
scalar model, introduced by Obukhov(4) and Kraichnan.(5) This model
describes the diffusion of a point-particle in a turbulent flow with given
correlations. For simplicity these correlations are taken to be Gaussian.
Nevertheless, the model is far from beeing simple, and shows multi-scaling,
i.e., higher correlation functions of the particle density scale independently of
the second moment, characterized by new critical exponents. More explicitly,
particles, or equivalently heat is injected in a finite range of size Lt1�M,
whereas the turbulent flow grows up to a bound of lt1�m, which finally
shall be taken to infinity. This is possible, if the total number of particles,
or the total heat, injected into the system is conserved. In that case, L and
not l sets the largest scale in the problem, as visualized in Fig. 1.1.

In this article, we introduce the generalization from point particles to
higher dimensional elastic objects, as e.g., polymers and membranes. In
analogy to the passive scalar problem we call this the passive polymer or
passive membrane problem.

We start by considering the passive polymer problem. Much has been
learned during the last years about higher correlation functions due to a
common effort of mathematicians and physicists.(6�27) Whereas the first to
calculate the 4-point function by considering the 0-modes of the steady
state are, (7, 9) the calculatory most convenient scheme, based on the pertur-
bative renormalization group, was introduced in ref. 16. Contrary to the
sometimes heard claim, the renormalization group is able to handle large
eddy motion. The expansion is performed about the marginal limit of
velocity�velocity correlations which are uncorrelated in time and grow with
the distance x as |x| =, and = small, a relation which gets modified for
polymers and membranes (the marginal advecting flow has correlations
which are shorter ranged.)

The generalization to polymers and membranes is then performed in
three steps: First, we reconsider the treatment of the passive scalar problem
using the most convenient treatment via field theory and renormalization
group. We explicitly show why IR-divergences and thus the system-size
appear in physical observables, which is rather unusual in the context of
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Fig. 1.1. Symbolic picture of a turbulent flow. Particles, or equivalently heat is injected in a
finite range of size Lt1�M (dark grey areas), whereas the turbulent flow grows up to scale
lt1�m, which finally shall be taken to infinity. This is possible, if the total number of par-
ticles, or the total heat, injected into the system is conserved. In that case, L and not l sets
the largest scale in the problem, and multi-point correlation functions with an anomalous
L-dependence will be observable in a domain of size L, here symbolically shaded in light grey.
As will be shown below, they have anomalous corrections depending on L.

ordinary field-theories, like the ,4-model. We also discuss, why the renormal-
ization group can nevertheless be used to sum these divergences and leads to
anomalous scaling of n-point correlation functions as e.g., S 2n(x) :=
([3(x, t)&3(0, t)]2n). To do so, we determine the full scaling dimension
of the composite operators S(n, m)

z :=[({3)2]n [z {3]2m, with |z|=1. In a
second step, we reformulate the problem in terms of a Langevin equation.
This is interesting in its own, since it allows for a distinction between
single-particle and multi-particle contributions, which is not obvious in the
Focker�Planck treatment. It also gives an efficient algorithm to determine
S2n numerically, by measuring the diffusion of particles in a random
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velocity field. In a third and final step, we generalize the Langevin treatment
of a particle to polymers and membranes, or more generally to an elastic
object of inner dimension D with 0�D�2. Our analysis will show that the
interesting range for = is &2D�(2&D)<=<0. For smaller =, the advecting
flow is irrelevant. For larger =, the polymer or membrane is overstretched.
This is the range, where already the particle, i.e., the center of mass of the
polymer, shows anomalous diffusion. We also generalize these considerations
to the case of self-avoiding polymers and membranes.

2. THE PASSIVE SCALAR

2.1. Model

The advection of a passive scalar field 3(x, t) with x # Rd the spatial
coordinate and t the time, is described by the Focker�Planck type equa-
tion(4, 5)

[�t+v(x, t) {] 3(x, t)=&0 23(x, t)+ f (x, t) (2.1)

The correlations of the advecting turbulent velocity field v(x, t) are sup-
posed to be Gaussian with zero mean and correlations which grow with the
distance r as r=

(vi (x, t) v j (x$, t$)) =D ij
v(x&x$, t&t$)

=D0 $(t&t$) |
ddk

(2?)d P ij (k)
eik(x&x$)

(k2+m2) (d+=)�2 (2.2)

where

Pij (k) :=$ ij&
kik j

k2 (2.3)

is the transversal projector and m some IR-regulator. The dimension of the
coupling u0 :=D0 �&0 in units of m is

==[u0]m (2.4)

We will see later that = serves as a regulator. Eventually one is interested
in the physically relevant case of d=3 and ==4�3 (Kolmogorov-scaling) or
corrections thereto.(28)
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f is a Gaussian scalar noise with zero mean and correlator

( f (x, t) f (x$, t$))=$(t&t$) Gf (Mx, Mx$)#$(t&t$) GM
f (x, x$) (2.5)

Often people use Gf (Mx, Mx$)=Gf (M |x&x$| ), and its Fourier-transform
G� f (k�M ). However we will use the more general case for clearness of
derivation. Gf is the source of correlation-functions of 3, which otherwise
would vanish. Physically, it may be viewed as source and sink of tracer-
particles, or heat. We will see below when explicitly calculating expectation
values that Gf sets the largest scale L#1�M appearing in physical observ-
ables. Therefore, we demand that Gf (s, s$) rapidly decays to zero for s or
s$ larger than 1.

The analysis of Eq. (2.1) is most easily done by using a dynamic
action(29, 30)

J[3, 3� , f, v]=|
x, t

3� (x, t)[�t3(x, t)&&0 23(x, t)

&v(x, t) {3(x, t)& f (x, t)] (2.6)

Expectation values are obtained by integrating e&J[3, 3� , f, v] over 3, 3� and
averaging over f and v. Since v and f are Gaussian, their average can be
taken, leading to

J[3, 3� ]=|
x, t

3� (x, t)(�t&&02) 3(x, t)

&|
x, y, t _

D0

2
+

1
2 & (2.7)

where

D0 =3� (x, t) {i3(x, t) 3� ( y, t) { j3( y, t) D ij
v(x& y)

=3(x, t) {i 3� (x, t) 3( y, t) {j 3� ( y, t) D ij
v(x& y)=D0

=3� (x, t) 3� ( y, t) GM
f (x, y) (2.8)

Note that due to the transversal projector in the turbulent interaction, the
partial integration from �x 3� (x, t) {i 3(x, t) Dij(x& y) to &�x { i3� (x, t)
3(x, t) Dij(x& y) is possible since {i D ij

v(x& y)=0.
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The free response and correlation functions read

(3� (k, |) 3(k$, |$)) 0

=(2?)d+1 $(|+|$) $d (k+k$) R(k, |), R(k, |)=
1

i|+&0k2

(3(k, |) 3(k$, |$)) 0

=(2?)d+1 $(|+|$) $d (k+k$) C(k, |), C(k, |)=
G� M

f (k)
|2+(&0k2)2

(2.9)

where in the last formula Gf (x, x$) was supposed to be of the form GM
f (x&x$).

Most convenient is a mixed time and k-dependent representation

(3� (k, t) 3(k$, t$))0=(2?)d $d (k+k$) R(k, t$&t), R(k, t)=3(t) e&&0k2t

(2.10)

This also yields the response-function in position space

R(x, t)=3(t)(4?&0 t)&d�2 e&x2�4&0 t (2.11)

2.2. Perturbative Corrections, Renormalization of the
Dynamic Action J

We now study the renormalization of the model, i.e., we want to
eliminate all UV-divergent terms at ==0. It is important to notice that
such divergences only come from the insertion of the turbulence-interaction

(D0 �2) , but not from the insertion of the source of tracer-particles
1
2 . To first order in D0 , the only contribution is

e&J �
D0

2
� &D0 (2.12)

The diagram is without the external legs in the most convenient mixed t
and k representation of Eq. (2.10)

=|
�

&�
dt |

ddk
(2?)d 3(t) e&&0k2t $'(t)

(k2+m2) (d+=)�2 \1&
1
d+ (2.13)

In order to clarify the role of the factor $(t) in , we have to recall that

this is an approximation for a sharply peaked but nevertheless smooth
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function around t=0. This is the reason why in Eq. (2.13), we have
replaced the $-distribution by a smoothened one $'(t), which in the limit
of ' � 0 will reproduce $(t). Integrating � dt %(t) e&k2&0t $'(t) and then
taking the limit of ' � 0 thus simply yields a factor of 1

2 . Equation (2.13)
becomes

=
1
2 |

ddk
(2?)d

1
(k2+m2) (d+=)�2 \1&

1
d +=

1
2 \1&

1
d+ Cd

m&=

=
(2.14)

where Cd is defined as

Cd :== |
ddk

(2?)d

1
(k2+1) (d+=)�2

=
21 (1+=�2)

1 ((d+=)�2)(4?)d�2 (2.15)

This leads at leading order to a renormalization of & (denoting with sub-
script 0 bare quantities)

&0=&Z&

(2.16)
Z&=1&

u
= \1&

1
d+

Cd

2

where we have introduced a coupling u0 and its renormalized counterpart
u through

D0=ZDD (2.17)

u0=
D0

&0

=um= ZD

Z&
(2.18)

We now claim that Eqs. (2.16) and (2.17) are all renormalizations needed,
and that even to all orders in perturbation theory. Let us first focus on the
renormalization of D. There will appear diagrams like

w�
q

w�
p

#w�
q

w�
p

#w�
q

w�
p

�w
q+l

�w
p+l

�w
q+l

�w
p+l

�w
q+l

�w
p+l

(2.19)
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We want to argue that due to the transversal projector in , this and

all similar diagrams are finite. Up to an overall factor, and integrating over
the time difference between the two vertices, they are

|
ddk

(2?)d _ 1
(k2+m2) (d+=)�2&

2

_
[q(q+l )][(k+q)2]&[q(k+q)][(q+l )(k+q)]

(k+q)2

_
[ p( p+l )][(k+ p)2]&[ p(k+ p)][( p+l )(k+ p)]

(k+ p)2 (2.20)

Since for large k

[q(q+l )][(k+q)2]&[q(k+q)][(q+l )(k+q)]
(k+q)2 =O(k0)

(2.21)
[ p( p+l )][(k+ p)2]&[ p(k+ p)][( p+l )(k+ p)]

(k+ p)2 =O(k0)

the integral (2.20) scales for large k as

|
ddk

(2?)d _ 1
(k2+m2) (d+=)�2&

2

t|
dk
k

1
kd+2= (2.22)

and is thus UV-convergent for any d and =>0. This means that ZD=1.
Note that the transversal projectors ensure that no additional divergences
appear for ==0 at d=2 or 4, since it allows to bring the derivatives always
to the external legs. Moreover, no long-range interaction can be generated.
This argument can be generalized to higher orders in perturbation theory,
however only the absence of additional divergences for d>2 is immediately
apparent. We shall not elaborate on this question any longer, since it is not
at the center of our analysis.

Let us now come back to counter-terms for &. By direct inspection,
one sees that the only diverging diagrams are chains of bubbles, of the form

, , ,... (2.23)
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However, these diagrams are already renormalized by Eq. (2.16). This is
easily seen by directly summing the perturbative (geometric) series, as e.g.,
in ref. 31. The ;-function to all orders in perturbation theory thus reads

;(u) :=m
�

�m }0 u=&=u+\1&
1
d +

Cd

2
u2 (2.24)

(Note that we do not take Cd at ==0; this ``minimal subtraction'' is com-
pletely sufficient at 1-loop order, but unsufficient for the all order result
(2.24).) This ;-function has a fixed point at

u*=
2d

(d&1) Cd
= (2.25)

One can now define the anomalous dimension #& of & as

#&(u) :=m
�

�m
ln Z&

= u \1&
1
d+

Cd

2
(2.26)

which at u=u* reads (to all orders in =)

#&*== (2.27)

Since Gf is not renormalized, this leads to an anomalous dimension of 3
(in units of xt1�m) to all orders in perturbation theory as

'*=&
=
2

(2.28)

The full dimension of 3 thus is

[3]x, f=1&
=
2

(2.29)

This simple scaling is only part of the whole story, as we shall see in the
next section.

To summarize: we have constructed a renormalized action which is
UV-finite in the limit of = � 0, and which gives the IR-scaling for =>0.
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2.3. Observables and IR-Divergences

We now want to study correlation-functions as e.g.,

S2n(x& y, t) :=([3(x, t)&3( y, t)]2n) (2.30)

We always choose x and y inside the injection region, thus especially L>>
|x& y|. It will turn out that these observables are sensitive to the size L=
1�M of the system, and demand new renormalizations. Since from the view-
point of ,4-theory this is rather strange, let us study an expectation value
in the latter theory in order to see where the difference to the passive scalar
problem lies. Suppose, one wants to evaluate the expectation value

U(x, y) :=
1
2

(,2(x) ,2( y)) (2.31)

for the theory defined by the Hamiltonian in d dimensions

H[,]=| ddx
1
2

({,(x))2+b,4(x) (2.32)

(For the difference in definition between Eqs. (2.30) and (2.31) note that for
correlation functions growing with the distance, definition (2.30) has to be
used, whereas for decaying correlation functions, (2.31) is the correct one.)

Denoting expectation values in the free theory by C(x& y) :=
(,(x) ,( y))0t |x& y|2&d, the first contributions to U(x, y) are (when
setting to 0 self-contractions in the ,4-interaction, and neglecting com-
binatorial factors)

U(x, y)= &b

+b2 \ + ++O(b3) (2.33)

This formula is to be understood such that the outer points are always x
and y and that one integrates over the inner points. Since C(s)ts2&d the
term of order b scales as

t| ddz |x&z| 4&2d | y&z|4&2d (2.34)

which for large z becomes

| ddz |z| 8&4d (2.35)
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It is IR-convergent at least for d close to 4. Now still consider one of the
terms of order b2.

=| dds ddt C(x&s)2 C(s&t)2 C(t& y)2 (2.36)

Similar to what has happened in the last section, there is a logarithmic
divergence at ==0 for small s&t, which has to be renormalized. Calculating
directly the integral over s&t in the regularized theory at d<4, this leads
to (z :=s&t)

s t =| ddz C(z)2
t

1
4&d

L4&d (2.37)

where L is an effective IR-cutoff. The question now arises, what L is.
Noting that the integral over the center of mass (s+t)�2 is IR-convergent
with the identical argument that led to Eq. (2.35), the effective scale at
which the integral (2.37) is cut off, is L=|x& y|. These kind of arguments
can be continued to higher orders.2 They show three things: First, expecta-
tion values of physical observables are IR-finite, i.e., boundaries of the
system do not enter into their calculation. Second, the distances between
the observable points set the largest scale L in the problem. Third, when
varying these distances, L changes and thus the value of diverging sub-
diagrams as (2.37). This gives rise to an anomalous scaling of the observ-
ables. The latter is most comfortably taken care of by the renormalization
group procedure, which also allows for a proof of the above statements.

Let us now turn back to the passive scalar problem, and consider

S2(x& y, t=0) :=([3(x, 0)&3( y, 0)]2) (2.38)

The order 0 contribution is

=|
�

0
dt | ddz ddz$[R(x&z, t)&R( y&z, t)]

_[R(x&z$, t)&R( y&z$, t)] Gf (M |z&z$| )

(2.39)

853The Passive Polymer Problem

2 A caveat is in order here: Calculating at small but finite values of = :=4&d, there is always
an IR-divergence at sufficiently high orders in perturbation theory. To see this take a long
chain of bubbles, similar to that of Eq. (2.36). The standard way to circumvent this well-
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Using Eq. (2.11) this can be written as

t| ddz ddz$([(x&z)2+(x&z$)2]1&d

+[( y&z)2+( y&z$)2]1&d&[(x&z)2+( y&z$)2]1&d

&[( y&z)2+(x&z$)2]1&d ) Gf (M |z&z$| ) (2.40)

Integrating over both z and z$ large, the integral (2.40) scales as

| d2ds s2(1&d )s&2Gf (Ms)t|
ds
s

Gf (s)tln L (2.41)

where the factor of s&2 is due to the differences in Eq. (2.40), and L=1�M
is the scale at which Gf starts to decay rapidly. S2(x& y, t) thus explicitly
depends on the largest distance L>|x& y| in the problem, in the very con-
trast to the example of the ,4-theory considered above.

We shall now show that perturbative corrections in D make S2

depend even stronger on L, namely as Ln= at n th order in perturbation
theory. To this aim consider the term of order D. Using the regularized
theory, it appears at two places: First & is renormalized, and thus the
resulting effective response-function R(x, t) decays faster��this effect would
render (2.41) IR-convergent. However, there is a second contribution,
namely

D =| ddz | ddz$ | dt
�

�z i
[R(x&z, t)&R( y&z, t)]

_
�

�z$j
[R(x&z$, t)&R( y&z$, t)] D ij

v(x& y) (2.42)

This is only some part of the diagram, and in principle, it has to be closed
through a , leading to

(2.43)

Since this diagram is again plagued by an IR-divergence, the leading con-
tribution in Eq. (2.42) will come from the domain of large z and z$. In that
limit, |x& y| is much smaller than both z and z$ and consequently, 3(x)&
3( y) can be replaced by (x& y) {3((x+ y)�2). Let us again stress that this
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is valid in the domain, where |x|<<L and | y|<<L, or when using
Gf (M |x& y| ) where |x& y|<<L. Due to that replacement, we can now
use a very powerful trick: Instead of analyzing the IR-divergences of
([3(x, t)&3( y, t)]2) , or more generally of S2n(x& y, t) :=([3(x, t)&
3( y, t)]2n) we can analyse the UV-divergences of the composite operator
[(x& y) {3((x+ y)�2)]2n. The latter however is a standard task in pertur-
bative renormalization. We will see in the next section, that this leads to a
whole family of operators and anomalous dimensions; the operator with
the smallest dimension will then give the term which most sensitively
depends on L. In order to avoid confusions, let us already note that the
second moment S2(r) discussed above does not depend on L, since the
contribution to the response-function and that in Eq. (2.43) just cancel.
This can also be obtained exactly.(5)

2.4. The Scaling of S2n and Renormalization of Composite
Operators

As discussed in the last subsection, we now have to study the renor-
malization of [z {3]2n. It will turn out that under renormalization this term
generates [z {3]2n&2 z2[({3)2]. In a second step, [z {3]2n&2 z2[({3)2]
generates [z {3]2n&4 z4[({3)2]2 a.s.o. until also a term of the form
z2n[({3)2]n is generated. All these operators will mix under renormalization.
The eigen-operator with the smallest dimension will give the term which
most strongly depends on L.

We now treat the general case. Define

S(n, m) :=z2n[({3)2]n [z {3]2m (2.44)

We first observe that the operator product expansion (denoted by H) is

S(n, m) H
D
2

=T ij _({i3)({ j3) H
D
2 & (2.45)

with

T ij=
1
2

�
�({i3)

�
�({ j3)

[z2n[({3)2]n (z {3)2m]

=n$ijz2n[({3)2]n&1 (z {3)2m

+2n(n&1) z2n({i3)({ j3)[({3)2]n&2 (z {3)2m

+2nmz2n[zi { j3+z j {i3][({3)2]n&1 (z {3)2m&1

+m(2m&1) z2nziz j[({3)2]n (z {3)2m&2 (2.46)
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Equation (2.45) then reads

D |
�

0
dt |

ddp
(2?)d T ijp ip jR2( p, t)

1
( p2+m2)(d+=)�2 _({3)2&

( p {3)2

p2 &+O(=2)

(2.47)

Since R( p, t)=e&&0 p2t3(t), integration over t yields (up to finite terms)

D
2&0

|
ddp

(2?)d T ij pip j

p2

1
( p2+m2) (d+=)�2 _({3)2&

( p {3)2

p2 & (2.48)

T ij in Eq. (2.46) has the form

T ij=A2$ ij+BiC j (2.49)

Inserting this into Eq. (2.48) and using the formulas from Appendix A.1
and Eq. (2.15) yields

u
2

Cd
m&=

= _A2({3)2 \1&
1
d++({3)2 (BC )

1
d

&
1

d(d+2)
(2(B {3)(C {3)+(BC )({3)2)& (2.50)

Specifying T ij in Eq. (2.49) to its value of Eq. (2.46) gives

u
2

Cd
m&=

=
1

d(d+2)

_[[n(d&1)(d+2n+4m)&2m(2m&1)] z2n[({3)2]n [z {3]2m

+m(2m&1)(d+1) z2n+2[({3)2]n+1 [z {3]2m&2] (2.51)

The final result when contracting S(n, m) with (D�2) is

S(n, m) H
D
2

=S(n, m) u
2

Cd

=
m&= 1

d(d+2)

_[n(d&1)(d+2n+4m)&2m(2m&1)]

+S(n+1, m&1) u
2

Cd

=
m&= d+1

d(d+2)
m(2m&1)

(2.52)
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This shows that S(0, n), S(1, n&1),..., S(n, 0) mix under renormalization. The
first two eigen-operators are S(n, 0) and S� (n&1, 1) :=S(n&1, 1)&(1�d ) S(n, 0),
with eigen-values

S(n, 0) H
D
2

=S(n, 0) u
2

Cd

=
m&= n(d&1)(d+2n)

d(d+2)
(2.53)

S� (n&1, 1) H
D
2

=S� (n&1, 1) u
2

Cd

=
m&= (n&1)(d&1)(d+2n+2)&2

d(d+2)

(2.54)

More importantly, due to the triangular form of the matrix, the eigen-
values can just be read off from the diagonal. Therefore the eigen-operators
S� (n, m) are multiplicatively renormalizable (again denoting by index 0 bare
quantities)

S� (n, m)
0 =Z(n, m)S� (n, m)

(2.55)
Z(n, m)=1&

u
2

Cd

=
1

d(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)]

This yields the anomalous scaling-function #(n, m)(u) of S� (n, m)
0 in units of x

as

#(n, m)(u) :=&m
�

�m
ln Z(n, m)

= &
u
2

Cd
1

d(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)] (2.56)

At the IR fixed point u=u* from Eq. (2.25), this is

#(n, m)=&
=

(d&1)(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)] (2.57)

Taking care of the naive perturbative contribution to the scaling of S� (n, m)
0

from Eq. (2.28), we finally obtain the full scaling-dimension 2(n, m) of S� (n, m)
0

2(n, m)=#(n, m)&2(n+m) '*

=#(n, m)+(n+m) =

= &=
2n(n&1+2m)

(d+2)
+=

m(4m&1)+d 2+d
(d+2)(d&1)

(2.58)
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These results have already been obtained in refs. 7, 12, and 16, where only
the case m=0 was given. The case m>0 can be found in ref. 32.

The exponents satisfy the inequality

2(n, m)<2(n&1, m+1) (2.59)

such that indeed 2n :=2(n, 0) is the smallest of all exponents 2(n&m, m) and
dominates the L-dependence of S2n(r, t) as stated above. Explicitly,

S2n(r, t)trn(2&=) \ r
L+

2n

, 2n=&=
2n(n&1)

d+2
(2.60)

Only the second moment does not depend on L. As demonstrated in ref. 5,
this is the consequence of a conservation law, which allows for an exact
calculation of the second moment.

These results have been tested numerically with different methods in
refs. 10, 21, 23, and 27.

The other question one might ask is why only one of the two factors
in Eq. (2.60) depends on L, and whether the r-dependence comes out
correctly. To understand this point, we recall that the first factor is due to
the renormalization of &, and thus contributes to the anomalous dimension
of 3, irrespective of the boundary conditions. The second factor stems from
the anomalous dimension of the composite operator S (n, 0), which was
associated to the IR-divergence, i.e., L-dependence of S2n(r, t), and which
has two contributions: the proper renormalization of S (n, 0) as given by
Z(n, 0) or #(n, 0), and the renormalization of &; these add up to 2(n, 0) as
given in Eq. (2.58). Only the combination of these terms contribute to the
L-dependence of S2n(r, t).

Also note that the exponents with m>0 are also observable, and
correspond to observables of different symmetries.

3. LANGEVIN-DESCRIPTION OF THE PASSIVE SCALAR

3.1. Model and Basic Properties

Let us now turn to a Langevin-description of the passive scalar
problem. We start from Eq. (2.1)

[�t+v(x, t) {] 3(x, t)=&0 23(x, t)+ f (x, t) (3.1)

Without the source f (x, t), this can easily be converted into a Langevin equa-
tion. The question arises, how the additional term f (x, t) can be incorpo-
rated. We will see below that it corresponds to the creation and annihilation
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of particles, and that it can indeed be formulated within a Langevin
description: However, this is a question of marginal interest, since we had
seen in the last section that the whole renormalization procedure can be
performed without ever specifying the correlations of f (x, t), just knowing
that they will deliver some IR-cutoff L. We therefore start our analysis by
studying Eq. (3.1) with f (x, t)#0. Using standard arguments, (33) it is trans-
formed into a Langevin equation for the motion of a particle with position
r(t) # Rd. Since it will turn out later, that to reproduce all expectation
values, one has to introduce N particles, we will already give the corre-
sponding generalization here.

�t r i
:(t)=vi (r:(t), t)&` i

:(t)
(3.2)

(` i
:(t) ` j

;(t$))=2&0$ij$:; $(t&t$)

The vv correlations are the same as in Eq. (2.2). The dynamic action which
enforces the Langevin-equation to be satisfied reads

J[r, r~ , v, `]= :
N

:=1
| dt r~ i:(t)[�t r i

:(t)&vi (r:(t), t)+` i
:(t)] (3.3)

Averaging e&J[r, r~ , v, `] over ` and v leads to

J[r, r~ ]=| dt :
N

:=1

[r~ i:(t) �t r i
:(t)&&0r~ i:(t)2]

&| dt
D0

2
:
N

:, ;=1

r~ i:(t) _| ddk
(2?)d Pij (k)

eik[r:(t)&r;(t)]

(k2+m2) (d+=)�2& r~ j
;(t) (3.4)

Symbolically, this is written as

J[r, r~ ]=| dt \ :
N

:=1

[ :&&0 :]&
D0

2
:
N

:, ;=1
: ; +

(3.5)

Free response and correlation functions are

R(|)=
1
i|

, R(t)=3(t)

(3.6)

C(|)=
2&0

|2 , C(t) :=
1

2d
([r(t)&r(0)]2) 0=&0 |t|
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3.2. Renormalization of the Dynamic Action

In Subsection 2.2 we have, seen that in the dynamic action (2.7) only
&0 demands a renormalization. How does this renormalization show up in
the formulation as a Langevin equation? To answer this question, write
down the first order term in D0 from the expansion of e&J:

D0

2
:
N

:, ;=1 : ;
(3.7)

with

: ;
=r~ i:(t) _| ddk

(2?)d Pij (k)
eik[r:(t)&r;(t)]

(k2+m2) (d+=)�2& r~ j
;(t) (3.8)

We now have to analyze short-distance divergences, i.e., what happens if
the two points come close together. This is most easily done using the
techniques of multilocal operator product expansion, introduced in refs. 34
and 35, further developed in refs. 36�39 and reviewed in ref. 40. By the
dashed line which encircles the two fat points, we indicate points which
come close together. We now want to express eik[r:(t)&r;(t)] through its
normal-ordered version :eik[r:(t)&r;(t)] : , which does not contain any self-
contractions. This is

eik[r:(t)&r;(t$)]=:eik[r:(t)&r;(t$)] : e&k2(1�2d )([r:(t)&r;(t$)]2)0 (3.9)

This leads to a drastic simplification: Since (1�2d )([r:(t)&r;(t)]2) 0

equals infinity except for :=; for which it vanishes, Eq. (3.8) gives

: ;
=$:; r~ i:(t) r~ j

:(t) _| ddk
(2?)d Pij (k)

1
(k2+m2) (d+=)�2&

=$:; r~ :(t)2 \1&
1
d+ Cd

m=

=
(3.10)

where Cd is defined in Eq. (2.15). Symbolically, the diagram is written as

� } �m
=\1&

1
d+ Cd

m=

=
(3.11)

which reminds of Feynman's bra and ket notation. We have added an
index m to indicate the IR-cutoff. Equation (3.11) leads to the same renor-
malization for & as given in Eq. (2.16) for the Focker�Planck formulation
of the problem.
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Even though equivalent, the treatment in terms of the Langevin equa-
tion reveals one important property: The only renormalization of the
dynamic action comes from the divergence in a single particle trajectory.
We will see later, that the renormalization of S n is due to multiparticle
diagrams.

3.3. Simple Expectation Values and Translation Table

In this section, we make more explicit the relation between the two
formulations of the problem. What we want to calculate are expectation
values of 3(x, t). We first observe that in the limit of N � �

3(x, t) W 3L(x, t) :=
1
N

:
N

:=1

$d (r:(t)&x) (3.12)

If we do not know where the particles started, then obviously

(3L(x, t)) 0=0 (3.13)

This is also true for higher moments

(3L(x, t)n)0=0 (3.14)

It is important to note that the limit of N � � is necessary in order to sup-
press correlations coming from the same particle, which in the expectation
value (3.14) are of order 1�N.

Equivalently in momentum representation, when defining the Fourier-
transform as

f (x)=|
ddk

(2?)d f (k) eikx (3.15)

Eq. (3.12) will read:

3(k, t) W 3L(k, t)=
1
N

:
N

:=1

e&ikr:(t) (3.16)

We now check that the free response-function (2.10) of the Focker�Planck
formulation is correctly reproduced. In contrast to the Focker�Planck
formulation, here we have to solve the initial time problem explicitly, i.e.,
suppose that the particles start at position x0 at time t0 .
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RL(x&x0 , t&t0)

:=(3L(x, t))0 | r:(t0)=x0
3(t&t0)

=|
ddk

(2?)d � 1
N

:
N

:=1

eik[r:(t)&x]�0 } r:(t0)=x0

3(t&t0)

=|
ddk

(2?)d � 1
N

:
N

:=1

eik[r:(t)&r:(t0)]�0 } r:(t0)=x0

eik[x0&x]3(t&t0)

=|
ddk

(2?)d e&k2&0(t&t0)e ik[x0&x]3(t&t0)

#RFP(x&x0 , t&t0) (3.17)

as given in Eq. (2.11). Note that this response-function is a single-particle
function, i.e., only the response of a single particle : to a change in its
(earlier) trajectory contributes.

Injecting particles with a rate f (x, t) at time t at position x, models the
corresponding term in Eq. (2.1), and finally leads to the same correlation
function as in the Focker�Planck representation

CL(x, t; y, t$)=| dt0 | dt$0 | ddx0 | ddy0 RL(x&x0 , t&t0) RL( y& y0 , t$&t$0)

_( f (x0 , t0) f ( y0 , t$0))

=| dt0 | ddx0 | ddy0 RL(x&x0 , t&t0) RL( y& y0 , t$&t0)

_Gf (Mx0 , My0)

#CFP(x, t; y, t$) (3.18)

By comparing the terms of order v(x, t) in Eqs. (2.6) and (3.3), we also
obtain the equivalence

3(x, t) {i3� (x, t) W 3L(x, t) {i3� L(x, t) := :
N

:=1

r~ i:(t) $d (r:(t)&x) (3.19)

3.4. The Scaling of S2n and Renormalization of
Composite Operators

We now have to reproduce the results of Section 2.4. This will be done
in two steps. First, we will show that the OPE of O i

L(x, t) :=3L(x, t)_
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{i3� L(x, t)=�N
:=1 r~ i:(t) $d (r:(t)&x) with the n th power of 3L( y, t$)=

(1�N ) �N
;=1 $d (r;(t$)& y) is as in the formulation via a Focker�Planck

equation encoded in the contraction of Oi
L(x, t) with a single 3L( y, t$):

O i
L(x, t) H 3L( y, t$)n=n3L( y, t$)n&1 [O i

L(x, t) H 3L( y, t$)] (3.20)

The reason is that when contracting r~ i:(t) in O i
L(x, t) with 3L( y, t$)n singles

out a particle : in one of the 3L( y, t$). Correlations of this particle : with
r;(t$) in another of the factors 3L( y, t$) only exist for :=; which is
suppressed by a factor of 1�N.

Therefore, it is sufficient to show that Oi (x, t) H3( y, t$) is the same in
both the Focker�Planck and the Langevin formulations. In the Focker�
Planck formulation, we have

O i
FP(x, t) H 3FP( y, t$)=3FP(x, t) {iRFP(x& y, t&t$) (3.21)

In the Langevin-formulation, the same expression reads

O i
L(x, t) H 3L( y, t$)

= :
N

:=1

r~ i:(t) $d (r:(t)&x) H
1
N

:
N

;=1

$d (r;(t$)& y)

=3(t$&t)
1
N

:
N

:=1
|

ddk
(2?)d |

ddp
(2?)d (ip) i eik[r:(t)&x] H eip[r:(t$)& y]

=3(t$&t)
1
N

:
N

:=1
|

ddk
(2?)d |

ddp
(2?)d (ip) i : eik[r:(t)&x]eip[r:(t$)& y] : ekp |t&t$|

(3.22)

where the normal-order sign `` : '' indicates that contractions between the
included operators are factored out as ekp |t&t$|. This is useful since the
normal-ordered operator :eik[r:(t)&x]e ip[r:(t$)& y] : is free of divergences when
approaching x and y. For an introduction and review of these techniques,
see ref. 40.

In the next step, the integration variable k is shifted to k � k& p

3(t$&t)
1
N

:
N

:=1
|

ddk
(2?)d |

ddp
(2?)d (ip) i

_:eik[r:(t)&x]e ip[r:(t$)&r:(t)] : e(k& p) p |t&t$|eip[x& y] (3.23)
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Codes: 2481 Signs: 1309 . Length: 44 pic 2 pts, 186 mm

Fig. 3.1. The two different types of diagrams, involved in the renormalization of (a) & (left)
and (b) S 2n (right). In both cases we have drawn the particle trajectories, as well as one inter-
action.

Partially undoing the normal-order procedure finally leads to

3(t$&t)
1
N

:
N

:=1
|

ddk
(2?)d |

ddp
(2?)d (ip) i

_:eik[r:(t)&x] : : eip[r:(t$)&r:(t)] : e&p2 |t&t$|eip[x& y] (3.24)

Note that this is not the standard procedure (as described in ref. 40) but is
particularly useful for our purposes. Two routes of argument are now open:
The first one consists in the observation that in the desired limit of t � t$,
:eip[r:(t$)&r:(t)] : is approximately 1, and thus the integrals over k and p
factorize, leading to

3L(x, t) {iRL(x& y, t&t$) (3.25)

which using Eq. (3.17) is the same result as in Eq. (3.21).
We finally want to argue that the above result becomes exact, when

specifying the boundary conditions. To that purpose, suppose that we start
at time { at position 0. The condition that the particle be at position 0 is
again expressed as a $-function and using the Fourier-representation
$d (r:({))=� (ddl�(2?)d) eilr:({), we are led to study the expectation value of

�eilr:({) |
ddk

(2?)d eik[r:(t)&x]�0

=|
ddk

(2?)d ekl |t&{|e&ikx(eilr:({)+ikr:(t)) 0 (3.26)

Since (eilr:({)+ikr:(t)) 0=(2?)d $d (k+ p), only expectation values of exponentials

:ei �n
j=1 kj r:(tj) :
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survive for which global ``charge neutrality'' �n
j=1 kj=0 holds. Therefore,

in Eq. (3.24), we have to supply an additional factor e&ikr:({) at initial time {,
leading inside the integral to

:eik[r:(t)&r:({)] : :e ip[r:(t$)&r:(t)] : e&p2 |t&t$| &k2 |t&{| (3.27)

(Note that we have already normal-ordered the first exponential, leading to
the factor of e&k2 |t&{|.) The key-observation now is that

:eik[r:(t)&r:({)] : :e ip[r:(t$)&r:(t)] :#:eik[r:(t)&r:({)]eip[r:(t$)&r:(t)] : (3.28)

as long as {<t and (by assumption) {<t$. This factorization property is
one of the essential simplifications for polymers (which are nothing but a
random walk), see e.g., Section 10 of ref. 40. For our case, it shows that the
above stated approximate equivalence between the Focker�Planck and
Langevin descriptions is indeed exact, as one expects from the equivalence
of the two equations.

In conclusion: Since the above arguments show (at least at leading
order) the equivalence of the both perturbation theories for the renor-
malization of S2n, we obtain the same results as in Subsection 2.4.

Let us still give some remarks on the class of diagrams involved in the
renormalization of S2n. Whereas the diagrams which contribute to the
renormalization of & are single-particle diagrams, i.e., diagrams where one
particle interacts with itself, the diagrams which contribute to the renor-
malization of S 2n(x& y) are multiple-particle diagrams, i.e., diagrams
where particles which finally end at x interact with other particles, which
finally end at y.

3.5. Interpretation in Terms of Particle Trajectories Only

First of all, one can determine the single particle motion, which is
super-diffusive. By means of a complete RG-analysis, or faster using the
method of exact exponent identities, (40) we obtain due to the non-renor-
malization of the terms proportional to r~ �t r and D0 the exact identity

( (r:(t)&r:(0))2)t |t|2�(2&=) (3.29)

which is the analogue of Eq. (2.27) ff.
More interestingly, S 2n(x& y, t) can also be obtained in terms of par-

ticle trajectories only, following refs. 27 and 41. We first note that due to
Eq. (3.12), 3L(x, t) is the contribution from particles which are created by
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File: 822J 750024 . By:XX . Date:25:09:00 . Time:13:50 LOP8M. V8.B. Page 01:01
Codes: 1756 Signs: 1056 . Length: 44 pic 2 pts, 186 mm

Fig. 3.2. Intuitive interpretation of S2n(x& y) via particles being advected by the turbulent
flow. Drown is one configuration which contributed to txy of Eq. (3.28). Note that particles
may return into the box, such that one has to wait long enough until the probability of return
tends to 0. For details cmp. the main text.

f (x$, t$) at time t$<t and position x$ and arrive at time t at position x:

3L(x, t)=
1
N

:
N

:=1
|

t

&�
dt$ f (r:(t$), t$) | r:(t)=x (3.30)

This gives a simple method to evaluate moments of 3 within a Monte
Carlo simulation. The following observation helps to render the derivation
more transparent:

For given ` and v, the process is deterministic. Since ` and v are
Gaussian and uncorrelated in time, they are time-reversal invariant. We
therefore write 3L(x, t) as integral over all trajectories, starting at time t at
x and ending at time t$>t at x$, where they are ``created'' by f (x$, t$):

3L(x, t)=
1
N

:
N

:=1
|

�

t
dt$ f (rx

:(t$), t$) (3.31)

where rx
:(t) satisfies the equation of motion and boundary condition

�t$rx
:(t$)=v(rx

:(t$), t$)+`:(t), rx
:(t)=x (3.32)
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We now turn to the evaluation of higher correlation functions. Let us
demonstrate the principle on the example of the second moment, keeping
in mind that finally N � �:

([3(x, t)&3( y, t)]2)

=((([3L(x, t)&3L( y, t)]2) `) f) v

=
1

N 2 :
N

:, ;=1
���|

�

t
dt1 |

�

t
dt2[ f (rx

:(t1), t1)& f (r y
:(t1), t1)]

_[ f (rx
:(t2), t2)& f (r y

;(t2), t2)]�`� f�v

=
1

N 2 :
N

:, ;=1
|

�

t
dt$((GM

f (rx
:(t$), rx

;(t$))

+GM
f (r y

:(t$), r y
;(t$))&2GM

f (rx
:(t$), r y

;(t$))) `) v (3.33)

where we used that

( f (r, t) f (r$, t$)) =$(t&t$) Gf (Mr, Mr$)#$(t&t$) GM
f (r, r$) (3.34)

is $-correlated in time. In principle, Gf (x, y) has to fulfill four conditions

(i) Gf (x, y)=Gf ( y, x).

(ii) �x Gf (x, y)=0 as a consequence of �r f (r, t)=0 in order to have
no global heating (particle conservation). This condition is necessary to
reach a steady state.

(iii) Gf (x, y) ww�x � � 0. We take it at least exponentially decaying at
scale 1.

(iv) Gf has to be realizable as a stochastic process, such that as a
consequence of ( ( f (x, t)& f ( y, t))2) �0 one must have Gf (x, x)+
Gf ( y, y)&2G(x, y)�0.

A possible choice for Gf (x, y) that satisfies the above conditions is

Gf (x, y) :=2x 2y e&x2& y2
=4e&x2& y2

(2x2&d )(2y2&d ) (3.35)

Constraint (iv) is satisfied since

Gf (x, x)+Gf ( y, y)&2Gf (x, y)

=4e&2(x2+ y2)[d(ex2
&e y2

)+2e y2x2&2ex2y2]2�0 (3.36)
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In simulations, people(27, 41) use Gf (x, y)=3( |x& y|<1) (with 3
being the step function), which violates condition (ii), but appearantly
leads to good results. (Particle conservation seems to be no problem, when
working at fixed particle number. For another argument see ref. 27.) As
explained in Section 2.1, we make the ansatz that Gf (x, y) depends both on
x and y and not only on the difference x& y. Similar in spirit to refs. 27
and 41 would thus be Gf (x, y)=3( |x|<1) 3( | y|<1). Equation (3.33)
then acquires the form

([3(x, t)&3( y, t)]2)

=
1

N 2 :
N

:, ;=1
|

�

t
dt$(([3( |rx

:(t$)|<L)&3( |r y
:(t$)|<L)]

_[3( |rx
;(t$)|<L)&3( |r y

;(t$)|<L)]) `) v (3.37)

We see that this is the v-average of a quantity which can be interpreted as
a time. Let us in general define

txy :=
1

N 2 :
N

:, ;=1
|

�

t
dt$(GM

f (rx
:(t$), rx

;(t$))

+GM
f (r y

:(t$), r y
;(t$))&2GM

f (rx
:(t$), r y

;(t$))) ` (3.38)

Then ([3(x, t)&3( y, t)]2) is the v-average of txy :

([3(x, t)&3( y, t)]2)=(txy) v (3.39)

Analogously, for the fourth moment we can write using that f is Gaussian
and N � �

([3(x, t)&3( y, t)]4)

=
3

N 4 :
N

:, ;, #, $=1
|

�

t
dt$ |

�

t
dt"

_(([GM
f (rx

:(t$), rx
;(t$))+GM

f (r y
:(t$), r y

;(t$))&2GM
f (rx

:(t$), r y
;(t$))]

_[GM
f (rx

#(t"), rx
$(t"))+GM

f (r y
# (t"), r y

$(t"))&2GM
f (rx

#(t"), r y
$(t"))]) `) v

=3( (txy)2) v (3.40)

In general, the 2n th moment is

([3(x, t)&3( y, t)]2n)=
(2n)!
2nn !

( (txy)n) v (3.41)
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One can now easily check the deviation from Gaussian behaviour by
analyzing connected expectation values. Equation (3.41) also tells us that
the anomalous behaviour of S2n comes from rare large events, i.e., rare
large txy . Moreover, the measured ensemble of txy not only contains the
information about the moments, but even the complete probability dis-
tribution function.

Let us give some comments on simulations:(41, 27) In the above for-
mulation, we have always averaged over N replicas for the particles and
their corresponding thermal noises, finally taking N � �. For the 2n th
moment, it is indeed sufficient to keep 2n different particles. Moreover, the
thermal noise can be dropped for particles which are not starting at the
same point. Finally, by going to the relative coordinate system, and using
Gf of the form Gf (x& y), only the 2n&1 relative coordinates have to be
propagated.

Also note that with a little bit of work, using Eq. (3.29) and the
anomalous dimension of ({3)2n, one can again obtain the anomalous scaling
behaviour as given in Eq. (2.60).

4. GENERALIZATION TO POLYMERS AND MEMBRANES

4.1. Construction of the Generalized Model

We are now in a position to generalize the above considerations to
polymers and polymerized (tethered) membranes.

To this aim, we introduce a polymer or polymerized tethered mem-
brane(42, 43) with coordinates

x # RD � r(x) # Rd (4.1)

where we think of D between 0 and 2, and in particular of D=0 for a
particle, D=1 for a polymer and D=2 for a membrane. For polymers, x
measures the length along the polymer; for membranes, x belongs to a
2-dimensional coordinate system. r(x) is the position of the monomer x in
imbedding space. The standard model for polymers is due to Edwards(44)

and reads generalized to membranes(42, 43)

H[r]=| dDx
1
2

({r(x))2+b | dDx | dDy $d (r(x)&r(y)) (4.2)

The second term punishes self-intersections of the membrane, making the
membrane self-avoiding. In what follows, we shall study phantom mem-
branes, i.e., drop the term proportional to b. We shall discuss the general
case in Section 4.5.
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As for particles, we introduce N copies, labeled by lower Greek
indices. For the :th polymer, the equation of motion for the monomer x
at time t and with coordinates r:(x, t) then reads

�t r i
:(x, t)=2xr i

:(x, t)+vi (r:(x, t), t)+` i
:(x, t) (4.3)

Note that the elasticity of the polymer or membrane has been scaled to 1.
The vv-correlations are the same as in Eq. (2.2), and we already note that
==0 is not the marginal case. The thermal noise is Gaussian with zero
mean and correlations

(` i
:(x, t) ` j

;(y, t$))=2&0$ij$:; $(t&t$) $D(x&y) (4.4)

The dynamic action which enforces the Langevin-equation to be satisfied
reads in analogy to Eq. (3.3)

J[r, r~ , v, `]= :
N

:=1
| dt dDx r~ i:(x, t)

_[�t r i
:(x, t)&2xr i

:(x, t)&vi (r:(x, t), t)&` i
:(x, t)] (4.5)

Averaging e&J[r, r~ , v, `] over ` and v leads to

J[r, r~ ]=| dt dDx :
N

:=1

[r~ i:(x, t) �t r i
:(x, t)&r~ i:(x, t) 2xr i

:(x, t)&&0r~ i:(x, t)2]

&
D0

2 | dt dDx dDy :
N

:, ;=1

r~ i:(x, t)

__| ddk
(2?)d Pij (k)

eik[r:(x, t)&r;(y, t)]

(k2+m2) (d+=)�2& r~ j
;(y, t) (4.6)

Symbolically, this is written as

J[r, r~ ]=| dt dDx \ :
N

:=1

[ :+ :&&0 : ]+
&

D0

2 | dt dDx dDy :
N

:, ;=1
: ; (4.7)
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where we used the abbreviations

:=r~ :(x, t) �t r:(x, t), :=r~ :(x, t)(&2x ) r:(x, t)

:=r~ :(x, t)2

: ;=r~ i:(x, t) _| ddk
(2?)d Pij (k)

eik[r:(x, t)&r;(y, t)]

(k2+m2) (d+=)�2& r~ j
;(y, t)

(4.8)

The free single-membrane response- and correlation-functions are

R(k, |)=
1

i|+k2 , R(k, t)=3(t) e&tk2

R(x, t)=3(t)(4?t)&D�2 e&x2�4t, C(k, |)=
2&0

|2+(k2)2

C(k, t) :=
&0

k2 e&|t| k2
(4.9)

At equal times, the free correlation-function has the simple form

C(x&y, 0) :=
1

2d
( (r(x, t)&r(y, t))2)0=

&0

(2&D) SD
|x&y|2&D (4.10)

All other free correlations vanish.

4.2. Renormalization of the Dynamic Action

As in Section 3.2, we now have to analyze possible renormalizations of
the dynamic action. As in Eq. (3.7), we start from

D0

2
:
N

:, ;=1 : ;
(4.11)

which is more explicitly

: ;
=| dDy r~ i:(x, t) _| ddk

(2?)d Pij (k)
eik[r:(x, t)&r:(y, t)]

(k2+m2) (d+=)�2 & r~ j
;(y, t)

(4.12)

We will see below that contracting a response-field will give no contribu-
tion. We are thus left to normal-order the r.h.s. of Eq. (4.12) by virtue of
a generalization of Eq. (3.9)

eik[r:(x, t)&r;(y, t$)]=:e ik[r:(x, t)&r;(y, t$)] : e&k2(1�2d )([r:(x, t)&r;(y, t$)]2)0 (4.13)
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Only the term with :=; gives a non-zero contribution:

| dDy r~ i:(x, t) _| ddk
(2?)d Pij (k)

_
:eik[r:(x, t)&r:(y, t)] : e&&0 �((2&D) SD) k2 |x&y|2&D

(k2+m2)(d+=)�2 & r~ j
:(y, t) (4.14)

The leading UV-divergence is obtained by expanding :eik[r:(x, t)&r:(y, t)] : and
keeping the term of order 1. (Note that such an expansion is justified since
the normal-ordered product itself does not contain any divergence.) Using
the rotational invariance of the integration over k yields

r~ :(x, t)2 \1&
1
d+ | dDy |

ddk
(2?)d

e&&0 �((2&D) SD) k2)|x&y|2&D

(k2+m2)(d+=)�2 (4.15)

Performing the integrals over y and k finally gives the contraction of

and projection onto :

� } �m
=\1&

1
d+ C D

d

m&$

$
&&D�(2&D)

0 (4.16)

$==+
2D

2&D
(4.17)

C D
d =

2SD

2&D
[(2&D) SD]D�(2&D)

_
1 (D�(2&D)) 1 (d�2&D�(2&D)) 1 (1+$�2)

(4?)d�2 1 ((d+=)�2) 1 (d�2)

ww�
$ � 0 2SD

2&D
[(2&D) SD]D�(2&D) 1 (D�(2&D))

(4?)d�2 1 (d�2)
(4.18)

This is the generalization of Eq. (3.11) to membranes. We have put the
index m to the diagram to remind the reader, that m acts as regulator.
Note that now the dimensional regularization parameter is $ instead of =.

Other renormalizations for the dynamic action do not appear: First,
contracting in Eq. (4.12) one of the response-fields, say r~ i:(x, t) leads to a
factor of ki, which together with Pij (k) gives 0. This argument is
generalized to all orders in perturbation theory upon remarking that the
same factor always appears in the MOPE for the interaction which is most
advanced in time. One can also show that the emerging diagrams them-
selves also vanish, due to a response-function at equal times. Thus, only the
term proportional to r~ :(x, t)2 is renormalized.
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Let us now turn back to the renormalization-group functions. Bare
and renormalized couplings are

&0=Z&&, u0=
D0

&2�(2&D)
0

=u
ZD

Z2�(2&D)
&

m$ (4.19)

Z&=1&
u
$ \1&

1
d+

C D
d

2
, ZD=1 (4.20)

In analogy to Eq. (2.24), the ;-function reads

;(u) :=m
�

�m }0 u=&$u+
C D

d

2&D \1&
1
d+ u2+O(u3) (4.21)

It has a non-trivial IR-attractive fixed point at

u*=
(2&D) d
C D

d (d&1)
$ (4.22)

We can as in Eq. (2.26) define the anomalous dimension #& of & as

#&(u) :=m
�

�m
ln Z&

= u \1&
1
d +

C D
d

2
(4.23)

which at u=u* reads

#&*=
2&D

2
$ (4.24)

A new exponent is associated to the equal-time inner-membrane correla-
tion function

Cm(x&y) :=
1

2d
( (r(x, t)&r(y, t))2)

t |x&y|2}* (4.25)

From Eq. (4.24) we obtain the result to order $

}*=
2&D

2 \1+
2&D

4
$+O($2)+ (4.26)
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Using that neither the term � r~ r* , nor � r~ (&2) r, nor the interaction propor-
tional to D0=D is renormalized, the scaling dimension of r can as in
Eq. (3.29) be obtained exactly:

( (r:(x, t)&r:(x, t$))2)t |t&t$|2�(2&=) (4.27)

Since x2
tt

( (r:(x, t)&r:(y, t))2)t |x&y| 2}*, }*=
2

2&=
=

2
4�(2&D)&$

(4.28)

In the limit of $ � 0, this reproduces Eq. (4.26). It is important to note that
for =>0, the exponent }* is larger than 1, thus the membrane over-
stretched, and the description of a membrane via Eq. (4.2) with only a har-
monic elastic term H[r]=� dDx 1

2 [{r(x)]2 breaks down. This coincides
with the range of =, for which already a single particle, hence the center of
mass of the membrane, exhibits anomalous diffusion. This range will not be
described by our model. In experiments one has indeed observed destruction
of polymers by a turbulent flow.(45, 46)

4.3. Higher Moments: The Scaling of S2n

Let us now address the question of higher correlation functions. To
this aim, we first have to generalize the particle-density 3L(x, t) defined in
Eq. (3.12) to polymers and membranes. Be V :=� dDx the volume of a
membrane, then define

3m(x, t) :=
1

NV
:
N

:=1
| dDx $d (r:(x, t)&x) (4.29)

Note that 3m(x, t) has a well-defined limit both for N � � and V � �.
Even though we average over all monomers, it will later turn out that
3m(x, t) can be interpreted in terms of a single monomer, in analogy of the
discussion in Section 3.5.

Let us again consider S2n(x, y) :=([3m(x, t)&3m( y, t)]2n). As in
Eq. (2.45), we have to study the contraction of T ij {i3m( y, t) { j3m( y, t)
with

Jint :=
D0

2 | dt dDx dDx$ :
N

:, ;=1

r~ a:(x, t)

__| ddk
(2?)d Pab(k)

eik[r:(x, t)&r;(x$, t)]

(k2+m2) (d+=)�2 & r~ b;(x$, t)
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This reads

T ij {i3m( y, t) { j3m( y, t) H Jint

=&\ 1
NV+

2

:
N

:=1

:
N

;=1
| dDy | dDy$ |

dd ( p&k)
(2?)d

_|
dd (l+k)

(2?)d ei( p&k)[r:(y, t)& y]ei(l+k)[r;(y$, t)& y]

_T ij ( p&k)i (l+k) j

H
D0

2 | d{ dDx dDx$ :
N

#, $=1

r~ a#(x, t&{)

_ _| ddk
(2?)d Pab(k)

eik[r#(x, t&{)&r$(x$, t&{)]

(k2+m2) (d+=)�2 & r~ b$(x$, t&{) (4.30)

where we have already shifted the l- and p-integration for later con-
venience. Following the partial normal ordering procedure of Section 3.4
and noting z=x&y, z$=x$&y$ leads to

T ij {i3m( y, t) { j3m( y, t) H Jint

=D0 \ 1
NV+

2

:
N

:=1

:
N

;=1
| dDy | dDy$ | dDz

_| dDz$ | d{ |
ddp

(2?)d |
ddl

(2?)d |
ddk

(2?)d

_T ij ( p&k) i (k+l ) j ( p&k)a Pab(k)(k+l )b

(k2+m2) (d+=)�2

_:ei( p&k)[r:(y, t)&r:(x, t&{)] :

_eip[r:(x, t&{)&x]ei(x& y)( p&k)&( p&k)2 C(z, {)R(z, {)

_:ei(k+l )[r;(y$, t)&r;(x$, t&{)] :

_eil[r;(y, t&{)&x]ei(x& y)(k+l )&(k+l )2 C(z$, {)R(z$, {) (4.31)

This expression allows for one exact simplification, namely

( p&k)a Pab(k)(k+l )b= paPab(k) l b (4.32)
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Similar to what has been done after Eq. (3.24), we use the approximations

:ei( p&k)[r:(y, t)&r:(x, t&{)] :r1
(4.33)

:ei(k+l )[r;(y$, t)&r;(x$, t&{)] :r1

which were exact for the particle (see the discussion in Section 3.4).
Next, since we are searching for the leading pole in $==+2D�(2&D),

which comes from the region, where k becomes large and where {, z and
z$ become small simultaneously, we can replace k+l by k and p&k by &k.
This leads to

T ij {i3m( y, t) { j3m( y, t) H Jint

r&D0 \ 1
NV+

2

:
N

:=1

:
N

;=1
| dDy dDy$ dDz dDz$ d{

ddp
(2?)d

_
ddl

(2?)d

ddk
(2?)d T ijkik j paPab(k) l b

(k2+m2) (d+=)�2

_eip[r:(x, t&{)&x]eil[r;(y, t&{)&x]e&k2[C(z, {)+C(z$, {)]R(z, {) R(z$, {)

=D0 | dDz | dDz$ | d{ |
ddk

(2?)d T ijkik j

_
Pab(k)

(k2+m2) (d+=)�2 e&k2[C(z, {)+C(z$, {)]R(z, {) R(z$, {)

_{a3m(x, t&{) {b3m(x, t&{) (4.34)

One now has to evaluate the integral over k, z, z$ and {, with m as an
IR-regulator. The calculation of the leading pole in $ is substantially sim-
plified by moving the regulator from the k-integration to the {-integration.
For the leading pole, we have (setting &0=1 for calculational convenience)

D0 | dDz | dDz$ | d{ |
ddk

(2?)d T ijkik j

_
Pab(k)

(k2+m2)(d+=)�2 e&k2[C(z, {)+C(z$, {)]R(z, {) R(z$, {) 3 a
m3 b

m

rD0 | dDz | dDz$ |
m&4�(2&D)

0
d{ |

ddk
(2?)d T ijk ik j

_
Pab(k)
|k|d+= e&k2[C(z, {)+C(z$, {)]R(z, {) R(z$, {) 3 a

m 3 b
m (4.35)
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where we have abbreviated 3 a
m :={a3m(x, t&{). Since the integral scales

like m&$, it can equivalently be written as

&
D0

$
m�
�m | dDz | dDz$ |

m&4�(2&D)

0
d{ |

ddk
(2?)d T ijkik j

_
Pab(k)
|k|d+= e&k2[C(z, {)+C(z$, {)]R(z, {) R(z$, {) 3 a

m3 b
m

=
4D0

2&D
m&$

$ | dDz | dDz$ |
ddk

(2?)d T ijk ik j

_
Pab(k)
|k|d+= e&k2[C(z, 1)+C(z$, 1)]R(z, 1) R(z$, 1) 3 a

m3 b
m (4.36)

In order to proceed, we specify T ij as

T ij=A2$ ij+BiC j (4.37)

The integral over k can still be performed, leading to

D0

4
2&D

m&$

$
1 (1&=�2)

1 (d�2)(4?)d�2 | dDz

_| dDz$[C(z, 1)+C(z$, 1)]=�2&1 R(z, 1) R(z$, 1)

__A2({3m)2 \1&
1
d++

d+1
d(d+2)

(BC )({3m)2

&
2

d(d+2)
({3m B)({3mC )& (4.38)

We now introduce the abbreviation

I D :=
1

C D
d

8
2&D

1 (1&=�2)
1 (d�2)(4?)d�2

_| dDz | dDz$[C(z, 1)+C(z$, 1)]=�2&1 R(z, 1) R(z$, 1) (4.39)
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Codes: 1455 Signs: 678 . Length: 44 pic 2 pts, 186 mm

which is understood to be evaluated at &0=1. In the limit of $ � 0 it reads

ID=
41 (2�(2&D))

SD[(2&D) SD]D�(2&D) 1 (D�(2&D)) | dDz

_| dDz$[C(z, 1)+C(z$, 1)]&2�(2&D) R(z, 1) R(z$, 1)

=
4DSD

(2&D)[(2&D) SD]D�(2&D) |
dz
z

zD

_|
dz$
z$

(z$)D [C(z, 1)+C(z$, 1)]&2�(2&D) R(z, 1) R(z$, 1) (4.40)

Note that ID only depends on D, but not on d. For D � 0, the integrals
over z and z$ get localized at z=z$=0, and since in that limit C(z, 1) � 1
and R(z, 1) � 1, ID � 1 and we recover our earlier results of Section 2.4.
For general D, ID is smaller than 1. Its explicit value is plotted in Fig. 4.1.

Fig. 4.1. ID as defined in Eq. (4.40). The crosses have been obtained numerically, the solid
line interpolates between theses values.
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With this abbreviation, Eq. (4.38) becomes

D0

2
m&$

$
C D

d I D _A2({3m)2 \1&
1
d+

+
d+1

d(d+2)
(BC )({3m)2&

2
d(d+2)

({3m B)({3m C )& (4.41)

Setting

S (n, m)
m :=z2n[({3m)2]n (z {3m)2m (4.42)

yields for T ij as in Eq. (2.46)

T ij =
1
2

�
�({i3m)

�
�({ j3m)

[z2n[({3m)2]n (z {3m)2m]

=n $ijz2n[({3m)2]n&1 (z {3m)2m

+2n(n&1) z2n({i3m)({ j3m)[({3m)2]n&2 (z {3m)2m

+2nmz2n[zi { j3m+z j {i3m][({3m)2]n&1 (z {3m)2m&1

+m(2m&1) z2nziz j[({3m)2]n (z {3m)2m&2 (4.43)

Insertion into Eq. (4.41) gives

D0

2
m&$

$
C D

d I D 1
d(d+2)

[[n(d&1)(d+2n+4m)&2m(2m&1)] S (n, m)
m

+m(2m&1)(d+1) S(n+1, m&1)
m ] (4.44)

Reestablishing the necessary factors of &0 gives the final result

S (n, m)
m H Jint

=S (n, m)
m

u
2

C D
d I D m&$

$
1

d(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)]

+S (n+1, m&1)
m

u
2

C D
d I D m&$

$
d+1

d(d+2)
m(2m&1) (4.45)

Equation (4.45) is formally equivalent to Eq. (2.52) upon replacing Cd by
CD

d I D. As in Eq. (2.55) this yields for the eigen-operators S� (n, m)
0

S� (n, m)
0 =Z(n, m)S� (n, m)

(4.46)
Z(n, m)=1&

u
2

C D
d ID

$
1

d(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)]
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and with the help of Eq. (4.45), we can evaluate the anomalous exponents
#(n, m) as defined in Eqs. (2.56) and (2.57):

# (n, m)
m (u) :=&m

�
�m

ln Z(n, m)

= &
u
2

C D
d ID 1

d(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)]

(4.47)

At the IR fixed point u=u* from Eq. (4.22), this reads

#(n, m)
m =&

$I D

(d&1)(d+2)
[n(d&1)(d+2n+4m)&2m(2m&1)] (4.48)

The full dimension 2 (n, m)
m of the operator S� (n, m) then is

2 (n, m)
m =(n+m) =+# (n, m)

m

=&(n+m)
2D

2&D
+$ \n+m&

$I D

(d&1)(d+2)

_[n(d&1)(d+2n+4m)&2m(2m&1)]+ (4.49)

The term (n+m) = is equivalent to the corresponding term in Eq. (2.58).
It will be derived in the next section. The contribution to S 2n is due to the
term for m=0

2 (n, 0)
m =n _&2D

2&D
+$ \1&I D d+2n

d+2 +& (4.50)

This gives the final result for S (2n)(r) with r :=|x& y|

S (2n)(r)=([3(x, t)&3( y, t)]2n)

trn(4�(2&D)&$) \ r
L+

n[&2D�(2&D)+$(1&ID (d+2n)�(d+2))]

(4.51)

Note that for D>0, ID<1 and already the second moment (n=1) has an
anomalous contribution at order $

2 (1, 0)
m =&

2D
2&D

+$(1&I D) (4.52)
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4.4. Physical Interpretation

In Section 3.5 we have interpreted equal-time correlation-functions of
moments of 3 as expectation values of moments of the time txy which is
constructed from the motion of particles starting at x and y. This discus-
sion in terms of particle-trajectories was quite general and can immediately
be carried over to polymers or membranes. In generalisation of Eqs. (3.31)
and (4.29) we write

3m(x, t)=
1

NV
:
N

:=1
| dDx |

�

t
dt$ f (rx

:(x, t$), t$) (4.53)

Again, it is to be understood that rx
:(x, t$) satisfies the equation of motion

(4.3) and that rx
:(x, t)=x. Then define txy as

txy :=
1

V2

1
N 2 :

N

:, ;=1
| dDz | dDz$ |

�

t
dt$

_(GM
f (rx

:(z, t$), rx
;(z$, t$))+GM

f (r y
:(z, t$), r y

;(z$, t$))

&2GM
f (rx

:(z, t$), r y
;(z$, t$))) ` (4.54)

Note that the expectation value is independent of z and z$ such that the
average over z and z$ can be dropped. We thus can alternatively define

txy :=
1

N 2 :
N

:, ;=1
|

�

t
dt$(GM

f (rx
:(z, t$), rx

;(z$, t$))+GM
f (r y

:(z, t$), r y
;(z$, t$))

&2GM
f (rx

:(z, t$), r y
;(z$, t$))) ` (4.55)

This object is the analog of Eq. (3.38), with a single particle : replaced by
an arbitrarily chosen monomor z on the membrane :.

Let us now come to the evaluation of observables. In Eq. (4.27), we
have seen that the scaling of time and space is related by ttr2&=, such that

32
tttr2&==r4�(2&D)&$ (4.56)

This result is identical to the particle case, such that without any proper
renormalization, ({3)2n would have dimension &n=, establishing the first
term in Eq. (4.49). Equation (4.56) also yields the non L-dependent term in
Eq. (4.51).
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Finally, in a computer-experiment, one can then measure (r :=|x& y| )

S (2n)(r)=([3(x, t)&3( y, t)]2n)

trn(4�(2&D)&$) \ r
L+

n[&2D�(2&D)+$(1&ID (d+2n)�(d+2))]

t( (txy)n) v

(4.57)

Let us state explicitly the result for polymers, which are probably easier to
simulate than membranes. Using that the integral I D in Eq. (4.40) for D=1
gives I1=0.456143, we obtain

S (2n)
Polymer(r)=([3(x, t)&3( y, t)]2n)

trn(4&$) \ r
L+

n[&2+$(1&0.456143(d+2n)�(d+2))]

t( (txy)n) v (4.58)

We also want to give some practical hints:
One should best use a box of size L and let particles or monomers

start at position \r�2, with r<<L, where the box extends to L�2 in every
direction. Also note that the evaluation of the 2n-th moment demands to
propagate 2n membranes, a number which may be reduced to 2n&1 when
going to the relative coordinate system.

Another point is whether one should best measure the L- or the r-depen-
dence. For particles, the best observable is the L-dependence, since it directly
gives the multi-scaling exponent. For polymers, one may instead measure
what happens when r � *r and L � *&1L, since for that resealing

S (2n)
Polymer(r) | r � *r; L � L�*t*n$(1&0.912286(d+2n)�(d+2)) (4.59)

4.5. Self-Avoidance

Physical membranes are always self-avoiding, i.e., they are described
by model (4.2) with b>0. One would therefore like to have a combined
treatment of self-avoidance and passive advection. In general, such a treat-
ment is impossible, since the upper critical dimensions are different and not
for both couplings exists a small control parameter. In the present problem
however, the control parameters, i.e., dimensions of the couplings are

$ :=[u0]m=
2D

2&D
+=

(4.60)

# :=[b0]+=2D&
2&D

2
d

882 Wiese



where we have introduced a scale +t1�x which is common for self-
avoidance and which is related to m by

m=+(2&D)�2 (4.61)

By choosing the range = of the turbulent advection and the dimension of
imbedding space d, both $ and # can be set to zero. This is the common
expansion point. Note that this expansion point is for ==&d�2, such that
the advecting turbulent field is indeed long-range correlated. Short-range
correlated turbulent disorder is principally different, since under renor-
malization it generates potential disorder, and physics is described by a
new universal fixed point. At least this has been observed for static disorder
in ref. 39.

Let us now turn to a diagrammatic analysis. The most complicated
diagrams come form the correction to self-avoidance by the turbulent
advection and vice versa. First of all, the turbulent advection is long-range
correlated and thus not corrected by self-avoidance, which is short-range.
On the other hand, the turbulent advection can correct self-avoidance
through the diagram

� } � (4.62)

where we have denoted with

=2 | dDx | dDy |
ddk

(2?)d r~ (x, t)(ik) eik[r(x, t)&r(y, t)] (4.63)

the self-avoidance interaction. Explicitly calculating the diagram shows that
due to the transversal projector in the turbulent advection, the MOPE
coefficient

\ } + (4.64)

identically vanishes. This substantially simplifies the analysis, since now
only the correction to the fields and to the scaling of time intervenes in the
RG-analysis. We therefore introduce renormalized fields r, r~ and a renor-
malized time. To this aim, we replace throughout this article r � r0 and
r~ � r~ 0 , as well as t � *0 t. This procedure is more formal than that
employed in the rest of this article, but necessary to obtain the renor-
malization group ;-functions. Define (again denoting with subscript 0 bare
quantities)
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r0=- Z r

r~ 0=- Z� r~ (4.65)

*0=Z* *

This gives the dynamic action (with summation over the replicas and
integration variables suppressed, setting also &0 � 1), for which we first give
the bare, and second the renormalized version:

J[r, r~ ]=| 0+*0 0&*0 0&
u0*0

2 0

+b0*0 0

=| - ZZ� +- ZZ� Z** &Z*Z� *

&
u*
2

Zu +b*Zb (4.66)

Since there is no counter-term for ,

Z� Z=1 (4.67)

Second, from the term proportional to which is corrected by self-
avoidance, we obtain

Z*=Z* - Z� Z=1&
b
#

(2&D) � } �#
(4.68)

where we have used the static notation, (36, 40) since the dynamic diagrams
involved in the renormalization of self-avoidance can all be reduced to

static ones.(37, 40) We recall the notation (see e.g., ref. 40) that ( | ) #

means the residue of the pole in 1�# of the diagram ( | ) L . The

latter is defined as the integral over the MOPE-coefficient ( | ), cut

off at scale L. The diagram and Z-factor is as defined in ref. 36, where a
different normalization was used. However the final result is only sensitive
to the ratio of diagrams; moreover since as discussed above there is no
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diagram mixing b and u, the result only depends on the ratio of the two
diagrams involved in the renormalization of pure self-avoidance. We shall
therefore in the following treat overall normalizations rather sloppily.

The term proportional to is only renormalized by the turbulent
advection(37, 40) and reads

Z*Z� =1&
1
2

u
$ � } �$

(4.69)

These relations can be solved for Z

Z=
1
Z�

=
Z*

Z� Z*
=1&

b
#

(2&D) � } � #
+

1
2

u
$ � } �$

(4.70)

The relation between bare and renormalized coupling for the turbulent
advection are in the absence of a proper renormalization of u, i.e., Zu=1

u0=um$Z� &1Z&=�2Z&1
* =um$Z1&=�2Z&1

*

=um$ \1&
b
#

D � } �#
+

u
$

1
2&D � } �$+

(4.71)

leading to the ;u -function

;u(b, u) :=m
�

�m } 0 u

=u _&$&b
2D

2&D � } �#

+u
1

2&D � } �$& (4.72)

Self-avoidance is renormalized by

Zb=1+
b
# � } vwwwv�#

(4.73)
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b0 and b are thus related by

b0=b+#Zb Z&1
* Z(d+1)�2Z� &1�2

=b+# \1+
b
# � } vwwwv� #

&
b
#

2&D
2

d � } �#

+
u
$

d+2
4 � } �$+ (4.74)

This gives the ;b-function

;b(b, u) :=+
�

�+ } 0 b

= b _&#+b � } vwwwv�#
&b

2&D
2

d � } �#

+u
2&D

2
d+2

4 � } �$& (4.75)

Equations (4.75) and (4.72) determine the critical point, and (4.70) then
gives the size-exponent

}(b, u) :=
2&D

2
&

1
2

+
�

�+ } 0 ln Z (4.76)

=
2&D

2 _1&b � } �#
+

u
4 � } �$& (4.77)

at this critical point.

Fig. 4.2. Flow of Eqs. (4.78) for $=1, and #=0.6, #=1.5, #=2.5 respectively.
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For the remainder of this section, and to allow for a simpler analysis,
we will specify to polymers. We also use our freedom in reparametrization

of u to set ( | ) $=1. This gives the system of equations

;u(b, u)=u[&$+b+u]

;b(b, u)=b _&#+2b+
3
4

u& (4.78)

}(b, u)=
1
2 _1+

b
2

+
u
4&

We can distinguish three fixed points:

(i) The pure turbulence fixed point u*=$ and b*=0 is stable for
#< 3

4$. The value of } is }*= 1
2+$�8.

(ii) The pure self-avoidance fixed point b*=#�2 and u*=0 is stable
for #>2$. The value of } is }*= 1

2+#�8.

(iii) The mixed fixed point b*= 4
5#& 3

5$, u*= 8
5$& 4

5# is stable for
3
4$<#<2$. The value of } at the fixed point is }*= 1

2+$�20+#�10.

Note that (i) and (ii) reproduce the result of the preceding sections
and for self-avoiding polymers respectively. This completes the discussion
of properties of a single self-avoiding polymer (or membrane) in a turbulent
flow.

The next question is how multiple membrane properties, especially the
scaling functions S 2n are modified. Two routes may be taken: either one
considers real physical membranes which are mutually self-avoiding.
However, then already the expectation value of 3m(x, t)2 would vanish,
since never two monomers can arrive at the same point x at time t, due to
self-avoidance. Interesting expectation values are 3m(x, t) 3m( y, t). In the
case of no turbulent advection, they are known as contact exponents;(47, 35, 40)

they are also related to the scaling dimension of operators in scalar field-
theory.

The other possible generalization, which is less physical, is to impose
self-avoidance only between monomers of the same membrane. Then, the
diagrams evaluated in Section 4.3 are complete and one simply has to use
the modified expressions for }* and for the fixed-point value of u in order
to obtain the new multiscaling exponents.

It should also be possible to take into account the back-reaction of
the membrane on itself, at least approximately. A treatment a� la Zimm(48)

would in generalization to ref. 38 lead to a triple =-expansion, namely in
d&4, D&1 and $.

We leave the exploration of these ideas for future research.
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5. CONCLUSIONS

In this article, we have shown how the multiscaling found in the
passive scalar problem carries over to extended elastic objects as polymers
and membranes. This was possible by first reformulating the problem in
terms of the advection of particles, which then allowed for a generalization
to polymers and polymerized membranes. Similar to the passive scalar
case, we have calculated the anomalous exponents to first order in a per-
turbative expansion. We have also discussed, how these quantities can be
measured numerically, by studying the drift of two monomers, which sit on
different polymers or membranes.

A. APPENDICES

A.1. Some Integrals

For a d-dimensional rotationally invariant integral over p, which may
be �p=� ddp e&� d

i=1 *i pi
2
, we have with some constant C

|
p
=| ddp e&� d

i=1 *i pi
2
=C

1

- >d
i=1 *i

(A.1)

In the case that all *i equal *, the latter reads with the same constant C

| ddp e&*p2
=C*&d�2 (A.2)

Using this, we obtain by differentiating with respect to *i moments of pi ;
e.g.,

_|p
p2&

&1

|
p

p2
1=

1
d

(A.3)

_|p
( p2)2&

&1

|
p

( p1)4=
3

d(d+2)
(A.4)

_|p
( p2)2&

&1

|
p

p2
1 p2

2=
1

d(d+2)
(A.5)

Another intelligent way of doing this is to study

|
p

e&p2�2 e*p=C$ e&*2�2 (A.6)
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This yields e.g.,

_|p
( p2)2&

&1

|
p

(ap)(bp)(cp)(dp)=
1

d(d+2)
[(ab)(cd )+(ac)(bd )+(ad )(bc)]

(A.7)

where the global prefactor is most easily checked by setting a=b=c=d
and comparing with Eq. (A.4). We need

_|p
( p2)2&

&1

|
p

(xp)( yp)(lp)2=
1

d(d+2)
((xy) l 2+2(lx)(ly)) (A.8)
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