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Abstract 

A complete classification of the renormalization-group flow is given for impurity-like marginal operators of membranes 
whose elastic stress scales like (AT)~ around the external critical dimension d, = 2. These operators are classified by 
characteristic functions on Iw2 x Iw’. 

1. Introduction 

Fluctuating tethered membranes have attracted 
much interest during the last years. Considerable the- 
oretical advance has been made through the work of 
David, Duplantier and Guitter [l] who proved that 

the theory described by 

‘Ft = dDn$-(.x)(-A)k’2r(X) +A??$-(x)) (1) 
s 

with k 2 2 is a renormalizable field theory, if D and d 
are properly chosen. The case k = 2 corresponds to the 
case of a D-dimensional Gaussian manifold imbedded 
in d dimensions. The field 

r : x E P -+ r(x) E iRd (2) 

is the coordinate of the membrane. 
For k = 4 Eq. ( 1) represents a manifold with van- 

ishing tension but with bending rigidity. In this case 
r(x) is the amplitude of the orthogonal modes, the 
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Fig. 1. Membrane interacting with a point. 

membrane thus imbedded in D + d dimensions. It is 
this latter object which shall be studied in the follow- 
ing. 

The S-potential describes the interaction of the man- 
ifold with a fixed point. 

The case of a membrane (D = 2) is remarkable as 
r has dimension - 1 in internal momentum-units such 
that Vr is dimensionless. Possible marginal perturba- 
tions are thus 

Nnt = s @x @(r(X) > fPr(x) > (3) 
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with an arbitrary function f instead of a simple 6- 
distribution. The model has infinite many marginal 
perturbations for D = d = 2 and one expects a rich 
mathematical structure. The goal is to find the eigen- 
operators of the renormalization-group flow. 

The paper is organized as follows: First a brief de- 
scription of the model without interaction is given. It 
is shown that it is not conformal invariant. Therefore 
the methods of conformal field theory do not apply 

and the model can only be studied in the framework of 
perturbation-theory. After reviewing the relation be- 
tween the l-loop p-function and the leading coeffi- 
cient in the operator product expansion the eigenoper- 
ators are constructed. The renormalization-group flow 
and the physical relevance are discussed. 

2. Description of the free model 

We are interested in membranes (D = 2), whose 
motion is governed by bending rigidity. Let us there- 
fore introduce the free Hamiltonian (r : IRD -+ I@) 

7-h = - 
1 

2(4-0)(2-D) s 
$<A+> j2 (4) 

x 

where we abbreviated the integration measure (So is 
the volume of the D-dimensional unit-sphere) 

f=+--dDx. &,=2& (5) 

At the end of the calculations we intend to take the 
limit D + 2. The factor & therefore seems to be 
rather strange. It is however necessary to define an 
analytic continuation of the model for D 2 2. With 
this choice of the Hamiltonian we have 

i ( (yi(X) - rj(Y))2)~ = 4j IX - Y14-D (6) 

thus especially 

((r(x) - r(Y))2)o > 0 (7) 

as demanded from physical arguments even for D < 
2. The factor l/(2(4 - D) SD) in front of the action 
(4) is introduced for pure convenience, i.e. to have 
normalization 1 in (6). 

For D > 2 the model is positive definite, for D < 2 
negative definite. In the latter regime we understand 

it as analytical continuation from D > 2. This phe- 
nomenon reflects the fact that the expression for the 
free 2-point correlation function 

3 ((r(x) - r(~))~), = 2(4 - D)(2 - D)SDD 

s dDp e"~~ _ 1 

x mp4 (8) 

becomes IR-divergent in the limit D --+ 2 from above. 

3. Remark about conformal invariance 

An interesting question arising in this context 
is, whether the 2-dimensional biharmonic model is 
conformal invariant. Its free Hamiltonian is (with 
a change in normalization and for a scalar field for 
simplicity) 

so = 4 
J 

d2x (AP)~ (9) 

To answer the question, the stress tensor has to be 
calculated. It is well known that it is not uniquely de- 
fined. We only give the result for one of the symmetric 
versions of the stress tensor 

+$&&P + gD+&& (10) 

We have proven that it is impossible to render the 
stress tensor both symmetric and traceless. The trace 
of (10) is 

0 = -2a, (papAp) + pA2~ (11) 

The last term on the r.h.s. is a redundant operator 
which can be neglected because of the classical equa- 
tion of motion 

A2p=0 (12) 

So the trace of the stress tensor has the form 

0 = -a,Kfl (13) 

where Kp cannot be written as a total divergence (up 
to redundant operators). According to [ 31 this implies 
that the free theory is scale invariant but not confor- 
ma1 invariant. The standard methods of 2-dimensional 
conformal field theories thus can not be applied. 
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It is interesting to note that it is possible to construct 
a biharmonic conformal field theory by introducing 
an additional gauge field, which cancels the unwanted 
terms in the stress tensor [ 41. 

4. Renormalization and operator product 
expansion 

Before actually analyzing possible marginal pertur- 
bations, let us discuss how these perturbations gener- 
ate divergencies and how these divergencies have to 
be treated in the framework of renormalization [ 61. 

The goal of renormalization is to eliminate UV- 
divergences, occurring in the perturbation expansion 
of IR-finite physical quantities 

(14) 

0, e.g., may be a neutral product of vertex-operators 

0 = n eikrJ(xn) with x k,, = 0 (15) 
n n 

Denoting the perturbations by 

Flint= E(x) J (16) 
n 

where E(x) is some local functional of r(x) , the n- 
th order term in the perturbative expansion of (0),0 
becomes 

(--AoJn 
1 JJ . . . 

Il. 
(0 E(x1). . .E(xn))conn (17) 

Xl &L 

Use was made of the standard abbreviations 

(dB)Co”n = (4 - (dW) (18) 

(ABC)“““” = (ABC) - &WC) - (WW 

- (C) VB) + 2(d) (3 (C) (19) 

Let us suppose that UV-divergencies occur according 
to the operator product expansion for Ix - y 1 -+ 0, 
z=y 

E is a small dimensional regularization parameter, 
which will be defined later. We will prove that the 
divergences which appear for small Ix - yI are of this 
type. According to [ 1,2] these are the only divergen- 
cies which may occur. In the perturbation expansion, 
the first divergent term is 

+j 
2 JJ (0 E(x)E(Y))Co”” 

x Y 

= 2 J(wzQ &c 
z 

+ less singular terms (21) 

In the last integral the small positive parameter E plays 
the role of an regulator. An IR-cutoff L is also needed. 
(For the regularization procedure cf. [ 51.) We get 

(22) 

At l-loop order the theory is thus renormalized by 
introducing a renormalized coupling constant 

A = Z-‘@-“A() (23) 

where Z takes the form 

z=1+; 

This is the only necessary renormalization. Especially 
the field r(x) has not to be renormalized as is known 
from [ 1 ] . Intuitively this is understood from the obser- 
vation that no renormalization is needed if the mem- 
brane is far away from the origin as in this case the 
membrane is non-interacting. Thus divergencies are 

always proportional to operators localized at r = 0. 

The renormalization-group p-function describes as 
usual the variation of the coupling constant A with 
respect to a variation of the renormalization-scale ,u 

PO=w& A 
A0 

= -&A + $A2 + 0 (A3) (25) 

For E > 0 this equation has a non-trivial m-stable 
fixed point 

+ less singular terms (20) A* = 2E (26) 
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5. Perturbations to have 

Let us analyze the canonical scaling dimensions of 
the free model in order to determine all marginal per- 
turbations. In internal units such that [x] = -1 we 
have 

s e-p2a = a-d/2 

P 

The marginal perturbations for D = 2 and d = 2 are 
D-4 

[rl = 7j-- 

Therefore 

[Vr] = 7 

(35) 

(27) 

I : e@‘VPri(x)#(r(x)) : 

x 

(36) 

and is dimensionless in D = 2. 
Regarding polynomial operators, the following 

marginal perturbations are possible 

H pal = 
J 

WW2f(W (29) 

x 

where we did not specify the index structure for V 
and f is an arbitrary function. This is a class of per- 

turbations, we do not want to consider here. This is 
consistent as they are not generated in perturbation 
theory. We will see that below. On the other hand we 
may have impurity-like interactions 

Hint = s ~do-tX>) 
x 

which are dimensionless, if 

20 
d=- 

4-D 

i.e. for D = 2, if 

d=2 

We again use convenient normalizations 

Bd(r(x)) = (~T)~/~+(T(x)) = /eip’(X) 

P 

with 

/ =.rrd12/ddp 
P 

(30) 

(31) 

(32) 

(33) 

(34) 

Normal-ordering has been used to eliminate contribu- 
tions due to self-contractions. Let us further introduce 
the notation of vertex-operators 

vak(x) =. eiaVr(n)eWn) . 
(37) 

where the indices for (Y from (36) have been sup- 
pressed. The marginal perturbations now read 

K(x) = 
J 

V&(x) =: eiavr(“)8d(r(x)) : (38) 

k 

In the spirit of [ 21 all possible contractions of pertur- 
bations have to be analyzed. At l-loop order there is 
only one possibility 

v,(X>V,(Y) (39) 

Following [ 21, these operators are contracted accord- 

ingto(x-y-+Oandz=T): 

J.I KYk(X)q31(Y) = JS : KktX)Vpl(Y) : 
k 1 k 1 

x exp[-((av + k)r(x)tPV + Or(y))01 

= JJ : eXp[(X - Z)&]Vak(Z) e(y-z)dzVpl(Z) : 
k 1 

x ew[-(CaV -t k)r(x)WV+ Orb))01 (40) 

In order to retain only the most relevant contribution 
in (40) three simplifications can be made. First of all, 
terms proportional to d, I&k ( z ) are irrelevant and thus 
can be neglected. (40) becomes after the change of 
variables Z---f 1 - k 
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= 
JJ 

: exp[i(a+p)Vr(z) +iZr(z)l : 

k 1 

x exp[-((~V + k)f-(x)(pV + I- k)r(y))ol 

+ less singular terms (41) 

The integration over I yields @ ( r ( z ) ) plus its higher 
derivatives, which are irrelevant and thus neglected 

V,+p(z) J exp[-((d7 + k)r(x) WV - k)r(y))ol 

k 

= K+p(z) 
J [ 

exp -k21x - y14-D 

k 

- [4x - Y)l [P(x - Y>l 

x (4-0)(2-D)lx-yl-” 1 
x exp 

[ 
-(4 - O)aPlX -Y/2-D 

+ +-y) 2(4-D)21x-Yl-D 1 1 (42) 
where the integral over k was shifted to isolate the 
term quadratic in k. After integration over k, Eq. (42) 
becomes 

%+dz) (Ix _ :li,)d’2 
x exp 

[[ 
~(Y-_X)]2(4-D~21X-YI-D 

- ra(x-~)i [P(x-Y)I (4-D) wml~-~l-D 

- (4 - D)@lx - Y12-D 1 (43) 

As explained in Section 4, the integration over the 
relative distance determines the renormalization of an 
operator. So we have to analyze the singularity for 
x + y. Introducing 
parameter E 

e=D-2d+y 

the dimensional regularization 

(44) 

Fig. 2. The critical curve E = 0. 

( jX_;,4_D)d’2= lr-Yl”-D (45) 

Integration over Ix-y 1 thus yields pole terms in E. In 
addition, the only dependence of the pole term on the 
exponential factors in (43) comes from (x - y 1 = 0. In 
the spirit of analytic continuation we choose D < 2 in 
order to have a regular expression for the exponential 
factors in (43). As by this way they equal 1 at x = 
y, the analytical continuation to D > 2 is unique, 
delivering 1 for the whole range. This would not be the 
case, if the limit D --f 2 had been performed before. 

Finally we arrive at 

J KY(X>V,(Y) 

In-Yl<L 
L 

= v,+p(z) J ds 
-s” + less singular terms 
s 

0 

LE 
= V,+p (z ) y + less singular terms (46) 

We construct now eigenoperators E(x) of the contrac- 
tion. Define 

E(x) = 
J 

e(n) K(x) (47) 

(Y 

we get which have to satisfy 
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E(x)E(y) = Ix - yyDE(z> 

+ less singular terms (48) 

This fixes the normalization of E(X) . Plugging in the 
definition of E(X) results in 

JJ 
e(~)e(P) WY - a -P) = e(r) (49) 

ff P 

This equation can be solved by introducing the Fourier 
transform of e(a) 

e”(P) = 
J 

e@“e( a) 

cy 

(49) becomes 

e”(P)2 = e”(P) 

(50) 

(51) 

Let us recall that cx was in R2 x Iw2, hence p. 

Solutions of (5 1) are characteristic functions of 
(measurable) subsets A4 of Iw2 x IK2 : 

e”(P) = xM(P) (52) 

Eigenoperators of the contraction (46) and therefore 
of the renormalization-group flow are 

EM(X) = 
JJ 

e-i,,+i,V,(,)XM(p)Bd(r(X)) 

ff P 

=xM(v~(x)) ~db-w) (53) 

Another interesting conclusion can be drawn: Rewrit- 
ing (48) for two different perturbations EMU (x) and 
,!?MZ ( y) gives in the limit IX - yI + 0 

EM, (-X>EM~(Y) = IX - YI&-~EM,~M~ 

+ less singular terms (54) 

This is an orthogonality relation for contractions. 
At this point we should study what happens if in the 

free Hamiltonian (4) we do not introduce the factor 
A,, i.e. if we use 

Rio=- l 
2(4 - D) .I 

;(A~(x))~ 

X 

(55) 

instead of tie. Eq. (43) then becomes 

K+,(z) ( ,x:;;_D)d’2 
x exp I a+P 

F(Y - x) 
1 

2 (4 - D>2 
2_D lx-Yl-D 

- [cX(X - Y)l [P(x - Y)1(4 - D)lx - YI-D 

4-D 
- 7_naPIx - Y12=) 1 (56) 

This equation looks rather ugly, so let us put CY = p = 
0 for the moment. If d # 2 (56) is even non-analytic 
in the regularization parameter D for D -+ 2. But also 
the case d = 2 is peculiar 

(2 - D> h(z) ,x _ $-D (57) 

Although the integration over x - y yields a pole term 
in l/(2 - D) 

(-& = J$x--D) 

A 

1 

= 2(2 -0) 
A2(2--D1 (58) 

it will be cancelled by the factor (2 -0) in (57). The 

system has no UV-divergence at all! For LY $ /3 the 
situation is even worse: Strong IR-singularities appear. 
We conclude that the Hamiltonian (55) is too “weak” 

and thus there is no way to define a sensible model in 
the limit D -+ 2. 

6. Interpretation of the result 

The operators EM(X) defined in (53) were con- 
structed as eigenoperators of the contraction, Eq. (48) 
or equivalently (20). Their renormalization has been 
analyzed in Section 4. There we showed that in the 
regime & > 0 the renormalization-group flow of AM in 

EM=- 
1 

2(4-0)(2-D) s 
~(A~(x))2 

x 

+AM 
s 

EM(X) 

n 

(59) 
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has an IR-stable fixed point Ah = 2~. This result is 
independent of M, i.e. the fixed-point Hamiltonian is 

3_1* = - 
1 

2(4-0)(2-D) s 
;(Ar(x))’ 

X 

+ 2E 
s 

8$-(X)) (60) 

n 

So the interaction part of l-L* does not depend on 

Or(x). 
This result however may be false in practical cases. 

Suppose 

X(t) =7-b+/f(t,+~,+) (61) 
P x 

where f is normal distributed 

f (1,~) = 28 eCp21d 

and ,u = t-lpU.0. 
The typical time T which is necessary until f( t, p) 

has reached the fixed point 2~ is approximately 

1 P2 f(p) M -- 
& & (63) 

thus increases rapidly with p. If the microscopical 
Hamiltonian is given by (61) and (62) and if the mi- 
croscopical scale and the scale of experiment are re- 
lated by a renormalization-group transformation with 
say t = 106, then the modes with t* > lo6 will stay 
nearly 0 after the renormalization-group transforma- 
tion. Stated otherwise, the critical regime for these 
modes is not reached. Whether this line of arguments 
is relevant depends on the initial values of f( 1 ,p) . 

7. Conclusions 

We discussed a 2-dimensional field theory which is 

not conformal invariant but which can be treated in 
the framework of perturbation theory. Although the 
question of the physical interpretation of the model, 
especially the normalization involved in (4)) had to 
stay open, a complete classification of all marginal 
impurity like perturbations was given at l-loop order. 
Those are characteristic functions on I%* x R2. The 
renormalization-flow shows a rich structure which is 

special for the considered model. 
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