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Motivated by recent experiments, we extend the Joanny-deGennes calculation of the elasticity of a contact
line to an arbitrary contact angle and an arbitrary plate inclination in presence of gravity. This requires a
diagonalization of the elastic modes around the nonlinear equilibrium profile, which is carried out exactly. We
then make detailed predictions for the avalanche-size distribution at quasistatic depinning: we study how the
universal �i.e., short-scale independent� rescaled size distribution and the ratio of moments of local to global
avalanches depend on the precise form of the elastic kernel.
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I. INTRODUCTION

One of the theoretically best understood classes of disor-
dered systems are elastic manifolds in presence of disorder.
Examples include pinning and depinning of vortex-lattices
�1,2�, magnetic domain walls �3–5�, contact-line experiments
�6–12�, earthquakes �13�, and fracture �14,15�.

Two universality classes exist in these systems: zero-
temperature equilibrium, where the system finds its ground
state; and depinning, i.e., a driven system where thermal ac-
tivation plays no role. Here, we study the latter class.

The experimentally best accessible system is contact-line
depinning, since the advance of the contact line can be
filmed. This allows to make close contact to the theory. The
theory in question is based on the functional renormalization
group, as reviewed in �16�. The idea is that the central object
of the theory is the disorder correlator, which evolves under
renormalization, and acquires a cusp at the Larkin length, the
scale beyond which disorder dominates over elasticity. From
a theoretical point of view, the cusp had been questioned for
some time, since it seemingly invalidates the renormalization
group �RG� treatment on which it relies. Only recently, an
exact relation has been derived to relate the disorder cor-
relator to an experimentally observable quantity, namely the
center of mass fluctuations of the elastic object, in our case
the contact line �17,18�. This concept has been verified nu-
merically �19,20�, and finally experimentally for the contact-
line dynamics near depinning �6�. The latter experiment was
an important confirmation of the theory, but questions re-
mained. Especially, it was concluded that the precise form of
the elastic energy of the contact line matters, not only for the
disorder correlator encoded in the center-of-mass fluctuation,
but even more sensibly for the avalanche-size distribution.
Thus, a detailed prediction for the former is needed. Surpris-
ingly, a review of the literature reveals that this problem
appears to have been treated only neglecting gravity �21�
�34�, or in presence of gravity only in the case where the
equilibrium configuration of the interface is flat and horizon-
tal, as for a vertical wall and a contact angle � of 90° �22,23�,
see Figs. 1 and 2. In the latter case, the elastic energy as a
function of the Fourier-transformed height profile hq takes
the form:

E�h� =
1

2
� dq

2�
�q�hq�2, �q = ��q2 + �2, �1�

with � the inverse capillary length, and up to terms of order
h3. In other cases, interpolation formulas have been proposed
�24�.

There is numerical evidence �25� that the contact-line en-
ergy Eq. �1� does not correctly describe the shape of the
contact line depinning from a single defect. Surprisingly, the
form of �q as given by Eq. �1� seems not to have been ques-
tioned, rather the discrepancies were attributed to higher-
order terms in h. The latter are indeed present �26–28�, even
for �=90° and a vertical wall ��=0�, but for small perturba-
tions they are subdominant with respect to the dominant term
Eq. �1�.

In the first part of the present article �Sec. III� we show
that for contact-angles leading to a nonflat profile as plotted
in Fig. 1, or for an inclined wall in Fig. 2, the elastic energy
Eq. �1� cannot be used, but must be replaced by the more
general form
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FIG. 1. The coordinate system for a vertical wall. The air/liquid
interface becomes flat for x�Lc.
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t =�sin�� + �� + 1

2
, r =�1 +

q2

�2 . �2�

This is plotted on Fig. 3. Then we discuss how this form can
be measured from the contact line profile in presence of a
single defect. This section is pedagogical and self-contained
and can be read with no prior knowledge in either wetting or
disordered systems.

In the second part of the paper �Sec. IV� we examine the
consequences of the form Eq. �2� of the elastic kernel �q for
the avalanche statistics of a contact-line at depinning, i.e., a
contact-line advancing on a disordered substrate, when the
fluid level is adiabatically increased. We calculate the local
�i.e., at a given point� as well as global avalanche-size dis-
tribution, including the scaling functions. We work at quasi-
static depinning using an over-damped equation of motion.
The point of the present work is to study the effects arising
from the precise form of the elastic kernel. We, therefore,

assume that details of the dynamics as well as nonlinearities
can be neglected in comparison. We use the methods intro-
duced in �29� to compute the avalanche-size distribution
from the functional renormalization group �FRG� theory of
pinned elastic systems �see also Refs. �16� for a pedagogical
introduction and �19,20� for early numerical tests of this
theory�. We recall and analyze the formula given in these
references, hence this section can be read with no prior
knowledge of disordered systems; however, understanding
its foundations requires the knowledge of the above men-
tioned literature. Then we derive a general formula for the
size distribution for an arbitrary elastic kernel, not given pri-
orly, and compute universal ratios of local-avalanche-size
moments versus global ones. Finally, we apply our general
result to the contact line with the elasticity Eq. �2�.

II. MODEL

Consider a fluid in a semi-infinite reservoir, bounded by a
planar plate, in presence of gravity. The plate is inclined by
an angle −� /2���� /2 with respect to the vertical, see
Fig. 2. We consider the coordinate system X ,y ,Z where Z is
along the vertical direction, and the equation of the plate is
Z=−X cot �. The contact line of the fluid is parameterized by
�h�y� ,y� along the plate, hence it is at �X=−h�y�sin � ,y ,Z
=h�y�cos �� in our coordinate system. The fluid occupies
the space Z�Z�X ,y� and X	−Z tan �, hence also X
	−h�y�sin �, where Z�X ,y� is the height of the fluid-air sur-
face. We choose the coordinate Z so that the reservoir level is
Z=0 hence Z�X→
 ,y�=0.

The energy E is the sum of the fluid-air interface energy,
proportional to the area, and the gravitational energy. It is a
functional of Z�X ,y�, with explicit dependence on h�y�. Its
full expression reads:

E�Z,h� ª
E�Z,h�

�

=� dy�
X	−h�y�sin �

dX��1 + ��XZ�2 + ��yZ�2 +
1

2
�2Z2	

−
1

2
�2� dy�

−h�y�sin �

0

dX X2 cot2 �

−� dy �
X	0

dX 1 − cos �� dy h�y� . �3�

� is the surface tension, and

� =
1

Lc
=��g

�
�4�

defines the capillary length Lc. We call E the reduced energy.
The first term is the area of the fluid surface; the second is
the gravitational cost in potential energy for bringing a fluid
element from infinity at level Z=0, filling the reservoir up to
height Z�X ,y�. The second line takes into account that for
�	0 and h�y�	0 �resp. ��0 and h�y��0� the volume el-
ement 0�Z�−X cot � �respectively, −X cot ��Z�0� is
actually not filled by the liquid; this is the gray shaded region

X

Z

ϕ

θ
h

0

FIG. 2. �Color online� The coordinate system for a wall inclined
by � with respect to the vertical: the coordinate y, not shown, is
perpendicular to the plane of the figure. The gray shaded volume is
not filled by the liquid, leading to the gravity subtraction �second
term in second-to-last line of Eq. �3��.
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FIG. 3. �Color online� The height profile z�x�, in units of the
capillary length Lc, for �=30° and �=0. Different contact-angles
0���� /2 are obtained by moving the graph left/right. The case
� /2���� is obtained by the reflection z→−z.
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on Fig. 2. Similarly for �	0 and h�y��0 �respectively, �
�0 and h�y�	0� there is a corresponding missing volume
element which must be added. The third line is the subtrac-
tion of the surface energy of the flat profile h�y�=0 �i.e., Z
=0 and X	0�, necessary to make the problem well-defined.
The last term comes from the difference between solid-fluid
�SF and solid-air �SA surface energies which defines the equi-
librium contact angle, denoted �, via the usual relation
� cos �=�SA−�SF. The definition of the contact line implies
the additional boundary condition

Z�− h�y�sin �,y� = h�y�cos � . �5�

The energy of a given configuration h�y� of the contact line
is obtained as E�h�ªE�Zh ,h� where Zh�X ,y� minimizes
E�Z ,h� at fixed h�y� under the constraint Eq. �5�. By transla-
tional invariance, the minimum-energy configuration of the
contact-line itself, i.e., the minimum of E�h�, is attained for a
straight line h�y�=h0 where h0 denotes the equilibrium
height.

In the next Section we compute the elastic energy of the
contact line, i.e., E�h� to second order in its deformations,
i.e., E�h�−E�h0�=Eel�h�+O�h3� with

Eel�h� =
1

2
�

q

�qh−qhq. �6�

Here h�y�=
qhqeiqy and we denote 
qª
 dq
2� . For a uniform

deformation h�y�=h it takes the form:

Eel�h� =
1

2
m2�h − h0�2Ly, m2 = �q=0, �7�

which defines what we call the mass m, i.e., m2 is the curva-
ture of the parabolic well in which the contact line sits be-
cause of gravity �35�. We then calculate �q, already an-
nounced in Eq. �2�.

III. CONTACT-LINE ELASTICITY

A. Model in shifted coordinates

We start by introducing a more convenient expression for
the energy of the system. The constraint X	−h�y�sin � in
the domain of integration is tedious to handle, so we intro-
duce the function z�x ,y� as

z�x,y� ª Z„X = x − h̃�y�sin �,y… . �8�

It satisfies the same boundary condition z�
 ,0�=0. We have
also defined

h̃�y� ª h�y� − h0, �9�

i.e., z is still the height along the vertical axis, but we have
shifted the X coordinate so that the integration domain is

x 	 x0 ª − h0 sin � . �10�

Using that the derivatives, evaluated at X=x− h̃�y�sin �, sat-
isfy

�XZ�X,y� = �xz�x,y� �11�

�yZ�X,y� = �yz�x,y� + h̃��y�sin � �xz�x,y� , �12�

one finds that the energy is now a functional noted E�z ,h�
=�E�z ,h� of z�x ,y� and h�y� with

E�z,h� =� dy�
x	x0

dx��2

2
z�x,y�2 − 1 + �1 + ��xz�x,y��2 + ��yz�x,y� + h̃��y�sin ��xz�x,y��2	

−
�2

6
cos2 � sin �� dy h�y�3 + �sin � − cos ��� dy h�y� . �13�

To derive this result, we have used the relation

�
X	−h�y�sin �

dX�1 + ��XZ�2 + ��yZ�2 − �
X	0

dX 1

= h�y�sin � + �
X	−h�y�sin �

dX�1 + ��XZ�2 + ��yZ�2 − 1,

which was then rewritten in terms of x.
The new height function obeys the constraint

z�x0,y� = h�y�cos � , �14�

i.e., it is specified on the edge x=x0.

B. Zero mode and calculation of the mass

Let us first consider a uniform displacement of the line
h�y�=h. We can then restrict to y-independent height func-
tions z�x ,y�=z�x�, and the reduced energy takes the form

Ly
−1E�z,h� = �

x	x0

��1 + z��x�2 − 1 +
�2

2
z�x�2	

−
�2

6
h3 cos2 � sin � + h�sin � − cos �� .

�15�

There are additional constraints at the boundary,
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z�x = x0� = h cos � , �16�

and z=0 at infinity. h is arbitrary and not necessarily the
preferred value at equilibrium noted h0.

The linear variation of the reduced functional E�z ,h�
around an arbitrary configuration (z�x� ,h), by (�z�x� ,�h) can
be written upon integration by part as

�E�z,h�/Ly = �
x	x0

�z�x���2z�x� − �x
z��x�

�1 + z��x�2	
+ �z�x0�cos���x0� + �� −

�2

2
cos2 � sin �h2�h

+ �h�sin � − cos �� . �17�

We have defined

cos���x� + �� = −
z��x�

�1 + z��x�2
�18�

sin���x� + �� =
1

�1 + z��x�2
; �19�

Hence, ��x0� is the contact angle at the wall and ��x�+� is
the local angle with respect to the vertical. Note that, because
of �2	0, the profile decays and the boundary term at infinity
does not contribute. The constraint on the boundary implies
the additional relation

�z�x0� = �h cos � . �20�

Consider now the function z�x�=zh�x� which minimizes the
energy at fixed h, i.e., �h=0 and �z�x0�=0. This leaves the
variations in the bulk, given in the first line of Eq. �17�,
leading to the stationarity condition

�2z�x� =
z��x�

�1 + z��x�2�3/2 . �21�

It can be integrated once,

�2

2
z�x�2 = 1 −

1
�1 + z��x�2

, �22�

where the integration constant was fixed by considering the
limit of x→
. This yields at x=x0,

�2

2
h2 cos2 � = 1 − sin„��x0� + �…

= 2 sin2���x0�
2

+
�

2
− �/4� , �23�

using that 1−sin x=2 sin2�x /2−� /4�. The sign of the root
h cos � must be opposite to the sign of ��x0�+�−� /2, and
similarly when solving for z in Eq. �22�. This yields

h cos � = − 2Lc sin�1

2
���x0� + � −

�

2
	� . �24�

Integrating once more, we obtain the height profile z=zh�x�
in the inverse form, plotted on Fig. 4

x�z� = x0 + Lc�arcosh2Lc

z
� − arcosh 2Lc

h cos �
�	

− Lc�4 −
z2

Lc
2 −�4 −

h2 cos2 �

Lc
2 � . �25�

The integration constant was chosen to satisfy the constraint
Eq. �16�.

The reduced energy of the uniform deformation h�y�=h is
thus a simple function E�h�=E�zh ,h�, whose derivative, E��h�
is easy to obtain. Indeed we can use the general variational
formula �17� around �zh�x� ,h� setting �z�x�=�h�hzh�x� with
�hzh�x0�=1 from the constraint Eq. �16�. The bulk contribu-
tion is zero, due to the “equation of motion” Eq. �21� satis-
fied by zh�x�. The boundary contributions, i.e., the second
and third lines in Eq. �17�, give

E��h�/Ly = cos � cos„��x0� + �…

−
�2

2
h2 cos2 � sin � + sin � − cos � . �26�

Using Eq. �23� this simplifies to

E��h�/Ly = cos ��x0� − cos � , �27�

where ��x0� is an implicit function of h, using Eq. �24�. We
first note that this allows to recover the usual condition for
equilibrium, E��h0�=0, namely, that the local contact angle
��x0�=�, the equilibrium contact angle. The equation deter-
mining h0 is thus �24�, with ��x0�=�,

h0 cos � = − 2Lc sin�1

2
� + � −

�

2
�� . �28�

Inverting Eq. �28� one finds from Eq. �27� away from equi-
librium

E��h�
Ly

= h� cos2 ��1 −
1

4
�2h2 cos2 �

+ 1 −
1

2
h2�2 cos2 ��sin � − cos � . �29�

The mass for the zero mode is thus, after various simplifica-
tions

�1 0 1 2 3 4
x�Lc

0.5

1.0

1.5

2.0
z�Lc

FIG. 4. �Color online� �� /�q as a function of qLc, for �=40°,
�=0° ,10° , . . . ,90° �from bottom to top�.
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m2 =
�E��h0�

Ly
=

���2 cos � sin �

�1 + sin�� + ��
. �30�

An interesting special case is that of a flat interface, �+�
= �

2 . Then

m2 = �� sin2��� . �31�

C. Elastic energy for arbitrary deformations

We now go back to the general case for h�y�. The reduced
energy functional E�z ,h� given in Eq. �13� explicitly depends
on h�y�. In addition h�y� also enters in the boundary condi-
tion Eq. �14�. It is important to distinguish these two depen-
dences, which render the calculation a little tedious. The
reader only interested in the results can proceed directly to
Eq. �61�.

We call zh�x ,y� the profile which minimizes the reduced
energy functional E�z ,h� with fixed h�y�, hence with respect
to bulk variations �z�x ,y� only,

�E
�z�x,y��bulk

�zh,h� = 0, �32�

i.e., a partial �functional� derivative with respect to z only.
We now expand around the equilibrium solution as fol-

lows:

h�y� = h0 + h̃�y�

zh�x,y� = z0�x� + z̃�x,y� , �33�

where z0�x�ªzh0
�x� is the equilibrium profile determined in

the previous section. Since z̃ is of order O�h̃�, to compute the
elastic energy we need to expand the minimum energy to

second order in h̃ and z̃. Expanding Eq. �13� to second order

in the explicit dependence on z̃ and h̃ we have

E�zh,h� − E�z0,h0� = ��1�E + ��2�E + O�h̃3�

��2�E = ��2,1�E + ��2,2�E + ��2,3�E . �34�

The first term is the linear variation,

��1�E =
�E

�z
�z0,h0� · z̃ +

�E

�h
�z0,h0� · h̃ , �35�

whereas ��2,p�E are second order variations computed below.
Let us start with ��1�E:

��1�E = �
y
�

x	x0

z̃�x,y���2z0�x� − �x

z0��x�
�1 + z0��x�2	

+ �
y

�z�x0,y�cos„��x0� + �…

−
�2

2
cos2 � sin �h0

2�
y

h̃�y�

+ �
y

h̃�y��sin � − cos �� . �36�

The first line is the bulk variation which vanishes since z0�x�
satisfies the stationarity condition Eq. �21�. The rest is the
sum of the boundary variation in z and the variation in h.
Thanks to the exact constraint

z̃�x0,y� = h̃�y�cos � , �37�

one can check, using the results of the previous section, that
this sum vanishes identically if h0 is the equilibrium value.
Hence, we have ��1�E=0. Since z̃ also contains subdominant

h̃2 contributions, this is a quite useful observation, as we do
not need to worry about them in computing the elastic en-
ergy. They drop out by virtue of the equilibrium condition.

Let us now study the three second variations. The first one
is

��2,1�E =
1

2
z̃ ·

�2E

�z�z
�z0,0� · z̃

=
1

2
�

y,x	x0

�2z̃�x,y�2 +
��xz̃�x,y��2

�1 + z0��x�2�3/2

+
��yz̃�x,y��2

�1 + z0��x�2�1/2 . �38�

The second one is

��2,2�E = h̃ ·
�2E

�h�z
�z0,h0� · z̃

= sin ��
y,x	x0

h��y�
z0��x�

�1 + z0��x�2
�yz̃�x,y� , �39�

where we have used h̃��y�=h��y� to alleviate the notation.
The third contribution is

��2,3�E =
1

2
h̃ ·

�2E

�h�h
�z0,h0� · h̃

= ��2,3a�E + ��2,3b�E , �40�

where we write separately the second derivative with respect

to the explicit dependence on h̃�y� of the surface energy,
namely,

��2,3a�E =
1

2
sin2 ��

y
�

x	x0

h��y�2 z0��x�2

�1 + z0��x�2
, �41�

and of the gravitational one,

��2,3b�E = −
1

2
�2 cos2 � sin �h0�

y

h̃�y�2. �42�

To compute the first two contributions one needs to specify
the properties of z̃�x ,y� which follow from its definition Eq.
�33�. The function zh�x ,y� must obey Eq. �32�, for any h.
Hence we can expand this equation order by order in h. For
h=0 it yields again the stationarity condition Eq. �21� for
z0�x�; to first order it yields
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z̃ ·
�E

�z�z�x,y��bulk
�z0,h0� + h̃ ·

�E
�h�z�x,y��bulk

�z0,h0� = 0,

which, in explicit form, yields the equation obeyed by z̃�x ,y�
�to linear order in h which is all we need here�:

��2 − �x
1

�1 + z0��x�2�3/2�x −
1

�1 + z0��x�2�1/2�y
2�z̃�x,y�

= sin � h��y�
z0��x�

�1 + z0��x�2�1/2 . �43�

It must be solved with the boundary condition Eq. �37� and
z̃�x=
 ,y�=0.

Remarkably, this complicated looking equation, which de-
pends on the profile z0�x� known only in the implicit form
Eq. �25�, can be solved analytically. First of all, using the
stationarity Eq. �21� satisfied by z0�x�, one notes that

z̃�x,y� = z̃1�x,y� ª − sin �h�y�z0��x� �44�

is a particular solution of �43� which vanishes at x=
 and
takes the value

z̃1�x0,y� = sin � cot�� + ��h�y� �45�

at the boundary. The full solution can thus be written as

z̃�x,y� = z̃1�x,y� + z̃2�x,y� , �46�

where z̃2�x ,y� satisfies the homogeneous equation, i.e., Eq.
�43� setting the r.h.s. to zero. The boundary condition Eq.
�14� implies

z̃2�x0,y� =
sin �

sin�� + ��
h�y� . �47�

Both z̃1 and z̃2 vanish at x=
.
To solve the homogeneous equation, we go to Fourier

space in y direction, and introduce a new variable in x direc-
tion. We thus look for the solution in the form

z̃2�x,y� =
sin �

sin�� + ���q

eiqyh̃�q�Fq̃„S�x�… , �48�

S�x� = sin„��x� + �… =
1

�1 + z0��x�2,
�49�

q̃ = q/� �50�

with S�x0�=sin��+��. Deriving Eq. �49� with respect to x,
and using Eqs. �21� and �22� to express the result in terms of
S�x�, we obtain the rule for changing the derivatives,

�x = �
�2�1 − S��S + 1

S
�S. �51�

The resulting equation for the function Fq̃�S� reads

�q̃2S + 1�Fq̃�S� + �1 − S��7S2 + S − 4�Fq̃��S�

− 2�S − 1�2S�S + 1�Fq̃��S� = 0, �52�

where sin��+���S�1. The constraint Eq. �47� implies the

boundary conditions Fq̃(sin��+��)=1 and Fq̃�1�=0. After
some search, the general solution of Eq. �52� which satisfies
Fq̃�1�=0 is found to be

Fq̃�S� =
gr�S�

gr„sin�� + ��…
�53�

gr�S� =
�1 − S�r/2

S
1 +

�S + 1
�2

�−r

 �2r2 + 3�2r�S + 1 + 3S + 1� , �54�

where we denoted

r ª �1 + q̃2. �55�

We now evaluate the second variation. Consider first the
sum of Eqs. �38� and �39�. Using the equation of motion Eq.
�43� for z̃, the combination ��2,1�E+ 1

2��2,2�E can be integrated
by part. Therefore, we obtain for the combination ���2,1�E
+ 1

2��2,2�E�+ 1
2��2,2�E

��2,1�E + ��2,2�E = −
1

2��y

z̃�x0,y�
�1 + z0��x�2�3/2�xz̃�x,y��

x=x0

−
1

2
sin ��

y,x	x0

h��y�
z0��x�

�1 + z0��x�2
z̃�x,y� .

�56�

The last term has been integrated by part with respect to y
�36�. To continue, we note the useful equality

− ��
y

z̃1�x0,y�
�1 + z0��x�2�3/2�xz̃2�x,y��

x=x0

= − ��
y

z̃2�x0,y�
�1 + z0��x�2�3/2�xz̃1�x,y��

x=x0

+ sin ��
y,x	x0

h��y�
z0��x�

�1 + z0��x�2
z̃2�x,y� , �57�

which is a consequence of the two different ways to integrate
by part

�
y,x	x0

��2z̃1�x,y�z̃2�x,y� +
��xz̃2�x,y����xz̃1�x,y��

�1 + z0��x�2�3/2

+
��yz̃1�x,y����yz̃2�x,y��

�1 + z0��x�2�1/2 	 ,

and to use the equation of motion for z̃1 �inhomogeneous�
and z̃2 �homogeneous�.

Inserting z̃= z̃1+ z̃2 into Eq. �56� and using the equality Eq.
�57� we get
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��2,1�E + ��2,2�E = −
1

2��y

z̃2�x0,y�
�1 + z0��x�2�3/2�xz̃2�x,y��

x=x0

−
1

2��y

z̃1�x0,y�
�1 + z0��x�2�3/2�xz̃1�x,y��

x=x0

− ��
y

z̃2�x0,y�
�1 + z0��x�2�3/2�xz̃1�x,y��

x=x0

−
1

2
sin ��

y,x	x0

h��y�
z0��x�

�1 + z0��x�2
z̃1�x,y� .

�58�

We now discuss simplifications. First, the last term in Eq.
�58� exactly cancels �E�2,3a�; this is shown using Eq. �44�.

Second, from Eqs. �44�, �21�, and �14�, we obtain

� �xz̃1�x,y�
�1 + z0��x�2�3/2�

x=x0

= − sin � cos ��2h�y�h0. �59�

This shows that the second line, half the third line and
��2,3b�E cancel; the remaining half of the third line gives the
first term reported in Eq. �60� below. The second term comes
from the first line of Eq. �58�, using Eq. �48�, so we get
finally:

��2�E =
sin � cos � sin �

2 sin�� + ��
�2h0�

y

h�y�2

−
1

2
sin2 � sin�� + ����

q

hqh−qFq̃�S�x���xFq̃�S�x���x=x0
.

�60�

To compute the second term we use Eq. �51�, where at the
end S must be evaluated on the boundary S=sin��+��. To
compute the first term we use the value Eq. �23� for h0.

This yields our final result for the elastic energy,

Eel�h� =
1

2
�

q

�qhqh−q, �61�

with

�q

��
=

sin���cos���
t

+
�r2 − 1��t�r + t� + 1�sin2���

t�r2 + 3rt + 3t2 − 1�

t =�sin�� + �� + 1

2
, r =�1 +

q2

�2 . �62�

One finds that �q is a scaling function of q /� which repro-
duces formula �30� for the energy of a uniform mode �q=0
=m2 as computed in the previous section, and which behaves
as �q��� sin2 ��q� for large �q�.

When �+�=� /2, the equilibrium shape of the interface is
flat. Thus the elastic energy is expected to simplify. Indeed, it
becomes

�q

��
= sin2����1 +

q2

�2 . �63�

D. Contact-line profile as a means of measuring �q

Suppose the contact line is in force-free equilibrium. Then
pull on it with a force per unit length:

F�y� =
f

2�
���y� � �� . �64�

This leads in linear response �i.e., for the quadratic in h elas-
tic energy we are using� to the following profile

h�y� = f�
0


 dq

�

cos�qy�
�q

sin�q��
q�

. �65�

The limit of a �-like force is recovered in the limit of �
→0, which eliminates the last factor of sin�q�� / �q��. How-
ever the latter makes the integral convergent at large q. We
have plotted for �=40° and �=0.3 two solutions on Fig. 5,
one for �=0° �bottom� and the other for �=45° �top�. We
note that �q can be reconstructed from the profile as follows

�q = f
sin�q��

q� �2�
0




dy cos�qy�h�y�	−1

. �66�

A reconstruction of �q starting from the blue points on the
top of Fig. 5 is given in Fig. 6.

IV. AVALANCHE-SIZE DISTRIBUTIONS

A. Model

We now study the case of a disordered plate, which is
immersed with velocity v into the liquid reservoir. This is the
geometry of the experiment described in Ref. �6�. We use
some of the notations defined there: x denotes the coordinate
along the contact line �denoted y in the previous section� and
u�x� the height of the contact line along the plate, in the
frame of the plate �Fig. 7�. We reserve the notation h�x� to
the contact-line height measured in the laboratory frame,
with the relation �37�:

1 2 3 4 5
y�Lc

0.5

1.0

1.5

hΚΓ � f

FIG. 5. �Color online� Sample profiles h�y�, in units of f / ����,
plotted as a function of y /Lc, for �=40°, �=0° �bottom� and �
=45° �top�. The profiles are the response to a force inside the green
box �y���=0.3Lc. The profile has to be continued symmetrically to
the left.
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h�x,t� = u�x,t� − w, w = vt . �67�

Even though it is a dynamical problem, it is useful to intro-
duce the energy

H�u� = �
0

L

dx
m2

2
�u�x� − w�2 + V�x,u�x�� + �E�u� . �68�

Here m2 is the mass of the zero mode q=0, and �E�u�
ª

1
2
q��q−�0�uqu−q the remaining part of the elastic energy

at nonzero wave vector q�0. For the contact line, m2=�0
and �E�u� are both given in Eq. �62�. We neglect possible
nonlinear elastic terms �27,28�. The function V�x ,u� is a ran-
dom potential, whose derivative �uV�x ,u� is short-ranged
correlated, modeling the disordered substrate.

The contact line is pinned by the disorder, but also
trapped in the quadratic well with curvature m2. Advancing
the well-position w by immersing the plate with velocity v
leads to a motion of the contact line, which we now study in
the quasistatic limit, i.e., the limit of small v. From the en-
ergy form Eq. �68� one can derive, upon various assumptions
about the fluid, equations of motion �see e.g., �23,26� and
references therein�. Our assumption here is that in the quasi-
static limit, they lead to the same statistics as the simplest
over-damped model studied in Ref. �29�, at least to the level
of approximation that we use here �i.e., lowest order, i.e.,
one-loop FRG�. Furthermore, although quasistatic dynamics
and pure statics �38� are different, they lead, in the same
order of approximation, to identical rescaled avalanche-size
distributions. Deviations are expected only at the next, i.e.,
two-loop order. This justifies our studying of the energy form
Eq. �68�, and, as we will see, our point is that noticeable
effects already arise from the precise form of the elastic ker-
nel.

B. Global statistics of avalanches

1. Definitions

As can be seen on Fig. 8, the experiment �6� shows, as
predicted by the theory �19,29�, that the motion of the con-
tact line proceeds by sudden jumps, i.e., avalanche motion.

2 4 6 8 10 12
q Lc

2

4

6

8

Εq��Κ Γ�

0.5 1.0 1.5 2.0 2.5 3.0
q Lc

0.2

0.4

0.6

0.8

1.0

1.2

Εq��Κ Γ�

FIG. 6. �Color online� Top: Blue points: Reconstruction of �q, in
units of ��, as a function of q /�, using �66� from the points of the
bottom curve of Fig. 5, i.e., a vertical plate geometry �=0. Solid
red line: the analytical result. One sees a numerical problem appear-
ing at large q, at q=� /�, where � is the box-size in Fig. 5. How-
ever, this is already far in the linear asymptotic regime �dashed
line�. Bottom: The same plot for smaller q. One sees that �q is well
reconstructed.

�

�

�

�

FIG. 7. Sketch of the experimental setup used in �6�. The size of
the image in the inset is 1.5 mm.
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50
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85 170 255 340

 (µm)




(µ
m
)

FIG. 8. Data from �6�: Height of the contact line h̄�w� averaged
over 2Lc, as a function of the position w of the plate �system:
iso/Si�. The fast depinning events �upwards� are clearly visible. Be-
tween them, the contact line moves downwards at the plate velocity
v �here 1 �m /s�. The straight line is the reference level h0.
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For an avalanche occurring at a given position w of the cen-
ter of the quadratic well, one defines uw

−�x� the contact-line
position just before the avalanche and uw

+�x� its position just
after. The size of the avalanche is defined as

S ª �
0

L

dx�uw
+�x� − uw

−�x�� = �
0

L

dx�hw
+�x� − hw

−�x�� .

�69�

Hence one can measure the avalanche size S as the area
swiped both in the u or in the h coordinate system.

We now recall the main results of Refs. �19,29� and apply
the general formulation to various cases, including the con-
tact line for which we have computed the elasticity in Sec.

III. The characteristic rescaled function Z̃��� is defined as:

Z̃��� ª
Sm

�S�
�e�S/Sm − 1� �70�

Sm ª

�S2�
2�S�

=
− ���0+�

m4 . �71�

All averages �¯ � are over the normalized probability den-

sity P�S� of avalanches. By definition Z̃���=�+�2+O��3�.
The function ��w� is the renormalized correlator of the dis-
order defined and studied in �19,29� and measured in Ref.
�6�. It is m dependent: at large m it is equal to the bare
disorder correlator, while as m is decreased it develops a
linear cusp at u=0, whose value, ���0+�, is related to the
second moment of the size distribution as displayed above in
Eq. �71�.

The scale Sm is the large-scale cutoff for avalanche sizes,
originating from the quadratic well which suppresses the
largest avalanches. It is an important scale as it allows to
define universal functions in the limit where it becomes
large, i.e., Sm�Smin, where Smin is the typical size of the
smallest avalanches. In the variable sªS /Sm the avalanche-
size distribution becomes universal, especially the small-S
behavior is expected to take a power-law form P�S�
�� S

Sm
�−�, with � the avalanche-size exponent. Universal

means independent of small-scale details, but not of the
large-scale setting, e.g., it will depend on the precise form of
the elastic kernel. Indeed, one of the predictions of the FRG
theory is that if the exponent � satisfies 2	�	1 which will
turn out to be the case here, then the distribution of ava-
lanche sizes for S�Smin takes the form as m→0, i.e., Sm
�Smin,

P�S�dS ª

�S�
Sm

p S

Sm
�dS

Sm
. �72�

The function p�s� is universal in the above sense. For a fixed
elastic kernel it depends only on the space dimension d. Note
that the normalized probability P�S� depends on the cutoff
Smin via the first moment �S� which cannot be predicted by
the theory, hence is an input from experiment. It is important
to stress that while the function p�s� is universal and conve-
nient for data analysis, it is not a probability distribution and
is not normalized to unity. Rather, it satisfies from its defini-

tion Eq. �72� and using Eq. �71� the two normalization con-
ditions

�s�p =� ds sp�s� = 1, �73�

�s2�p =� ds s2p�s� = 2. �74�

Here and below we use the notation �s�p to denote an inte-
gration over p�s� and distinguish it from a true expectation

value over P�S�, denoted � . . . �. Note that Z̃��� and p�s� are
related by the Laplace transform

Z̃��� = �
0




ds p�s��e�s − 1� . �75�

Note finally that the limit m→0 means that Lc is large com-
pared to the microscopic cutoff a along the line, which may
be of nanometer scale, or for strong disorder the size of the
defects.

2. Results from one-loop FRG

We now summarize the results obtained in �29� for a gen-
eral form of the elastic kernel �k. One defines:

�̃k ª �k/�0, �0 = m2. �76�

The general result of �29� is that Z̃��� satisfies, in an expan-
sion in powers of the renormalized disorder ��w� and up to
terms of O��2�,

Z̃ = � + Z̃2 + �J�Z̃�, � = − ��
k

�k
−2���0+� , �77�

J�z� ª
1

��
k

�̃k
−2
�

k
� z2

��̃k − 2z�2 +
z

�̃k − 2z
−

z

�̃k

− 3
z2

�̃k
2	 .

�78�

Note that the parameter

� ª dc − d , �79�

the distance to the upper critical dimension, introduced here
for later purpose, cancels and is thus immaterial in this for-
mula. As such, this equation is formally exact for any m, any
�k and any dimension, up to O��2� terms.

Furthermore, consider now an elastic kernel such that:

�k�k→
Kk� �80�

with elasticity range ��2 �i.e., long ranged for ��2 and
short-ranged for �=2� and K the elastic constant. Assume
that it takes the form

�̃k = e�K1/�k/��, ��
ª m2, �81�

where the elastic scaling function e�p� is constructed as the
unique dimensionless function of the dimensionless argu-
ment p which satisfies e�0�=1, and e�p�= p� for p→
.
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Then, the result of �29� is that the formula �77� can be con-
trolled, in the limit m→0 as an expansion in powers of �
=dc−d, where dc=2� is the upper critical dimension. For
this one uses that

�
k

�k
−2 = �d−2�K−d/��

p

e�p�−2

= �−�K−2+�/�C�

�
+ O�1� �82�

in the limit �=dc−d→0, where C�=2�4��−dc/2 /���� is in-
dependent of the shape of the function e�p�. Since the one-
loop FRG flow for � has the schematic form −����=
−����
k�k

−2��2= ��
k�k
−2��2, it is convenient to introduce

the rescaled disorder,

�̃��0+� ª ��
k

�k
−2����0+� = K−2C��−����0+� , �83�

where the second equality holds to leading order in �. This is

precisely the parameter � defined above, i.e., �=−�̃��0�. The
one-loop FRG flow for the rescaled disorder admits a fixed
point, from which one obtains, as m→0, that � flows to �

=−�̃��0�=− 1
3��1−�1�. Here �1 is the O��� correction to the

roughness exponent of the elastic object. For the type of
disorder relevant for the contact line �i.e., random-field dis-
order� one has �1=1 /3, hence

� = −
2

9
� . �84�

This value will be used from now on in Eq. �77�, which is
thus valid up to terms of order O��2�. Using the above defi-
nitions one finds that to lowest order in �, J�z� depends only
on the dimensionless scaling function e�p�, and not on the
stiffness K:

J�z� = C�
−1�

p
� z2

�e�p� − 2z�2 +
z

e�p� − 2z
−

z

e�p�
− 3

z2

e�p�2� ,

�85�

valid for short range �SR� elasticity as well as LR elasticity.
Of course, since we work to lowest order in �, the above
integral should be computed in the critical dimension d=dc.

Note that the mean-field singularity of this equation cor-
responds to p=0, e�p=0�=1, i.e., z=1 /2.

C. From Z̃(�) to p(s)

In Refs. �19,29� we examined various choices for the elas-

tic kernel �k, computed Z̃��� for each choice, and extracted
the scaled avalanche distribution p�s�. Here we show that
p�s� can directly be written as a function of �k, or e�p�.

1. General formalism

The definition Eq. �75� implies

�
0




ds sp�s�e�s = Z̃���� . �86�

While p�s� does not admit a Laplace transform, the function
sp�s� does. Laplace inversion then yields

sp�s� =
1

2i�
�

−i


i


d� e−�sZ̃����

=
1

2i�
�

−i


i


dZ e−s�Z−Z2−�J�Z��, �87�

up to terms of order �2. At this stage there is a heuristic step,
to go from the � to the Z contour. We assume that the con-
tour Z= ix with x�R is the correct one, as it is for the mean-
field case ��=0� around which we perturb. We will check
this result on known cases below. Then one has

sp�s� =
1

2�
�

−





dx e−isx−sx2+s�J�ix�

= spMF�s� +
�s

2�
�

−





dx J�ix�e−isx−sx2
�88�

to lowest order in �. We have introduced the scaled mean-
field avalanche-size distribution, i.e., Eq. �87� at �=0,

pMF�s� =
1

2��
s−3/2e−s/4. �89�

For the elastic manifold, it holds for d�dc. We want to com-
pute the correction to sp�s� of order �, i.e., of order �=dc
−d:

s

2�
�

−





dx J�ix�e−isx−sx2

=
1

��
k

�̃k
−2

s

2�
�

0




dt�
k
�

−





dx�te−t��̃k−2ix��y
2

+ e−t��̃k−2ix��y − e−t�̃k�y − 3te−t�̃k�y
2�e−isx−sx2+iyx�y=0

=
1

��
k

�̃k
−2

s

2�
�

0




dt�
k
�

−





dx xe−�̃kt−isx−sx2

 �e2itx�i − tx� + 3tx − i� . �90�

The integrand behaves �before integration over x and k� as t2

at small t as a result of the counterterms. It is useful to
introduce the elastic generating function,

C�t� ª
1

��
k

�̃k
−2
�

k

e−t�̃k =
1

C�
�

p

e−te�p�, �91�

in terms of which we get, integrating Eq. �90� over x:

p�s�
pMF�s�

= 1 + �
1

4s
�

0




dt C�t�X�t,s� �92�
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X�t,s� = et−t2/s�4t3 + s2�2 + t� − 2st�3 + 2t��

− s�2s + 3t�s − 2�� . �93�

This is our final and most general formula, valid for any
elasticity �k and to first order in �, i.e., in �. By performing
the integral over s, one checks that it satisfies automatically
the two normalization conditions for p�s� �to order ��.

2. Special cases

We now check that this formula recovers previous known
results.

a. Standard local elasticity. For �k=Kk2+m2 one has �

=2 and e�p�= p2+1. Using that 
ke
−tk2

= �4��−d/2t−d/2 and
computing the momentum integral in d=dc=4, one finds

C�t� =
1

2t2e−t. �94�

Inserting into Eq. �92� and performing the t integral yields

p�s�
pMF�s�

= 1 +
�

16
��ln s + �E��s − 6� + 4s − 8���s + 4� ,

�95�

which recovers the result �169� of �29� �to lowest order in ��.
b. Elasticity of flat contact line and generalization. From

Eq. �63� the elasticity of a flat contact line �+�=� /2 is �k

=� sin2 ��k2+�2. This gives:

� = 1, K = � sin2 �, m2 = � = K/� �96�

e�p� = �p2 + 1. �97�

It is instructive to slightly generalize this, and study

e�p� = �p2 + �1 − a�2 + a �98�

with 0�a�1, which interpolates between the flat contact
line for a=0 and e�p�= �p�+1 for a=1, two cases studied in
Ref. �29�. From the definition Eq. �91�, computing the inte-
gral in d=dc=2, we obtain

C�t� =
e−t

t2 �1 + �1 − a�t� . �99�

Inserting into Eq. �92� and performing the t integral yields

p�s�
pMF�s�

= 1 +
�

8
�16 − 12a − 6�E + �1 − a���s3/2

+ ��3 − 2a�s − 6�ln s − 4�3 − a����s

+ s�2a�5 − �E�� + 3��E − 2�� . �100�

For a=0, this is the same as �E14� of �29�, and for a=1 has
the same form as Eq. �95� upon a rescaling of � by a factor
of 2, as noted in Ref. �29�.

To obtain nicer forms for p�s�, and more convenient for
extrapolations in physical dimension, one needs to re-
exponentiate these direct � expansion results, as done in Ref.
�29�. We will not attempt to do this here for the general case.

D. More on the generating function Z̃(�)

Z̃��� is easier to compare with numerical and experimen-
tal data than the disorder distribution p�s�, since even if their
statistics is mediocre averages over all data are taken, thus
the statistical fluctuations are less pronounced. Therefore, we
come back to the general formula and some examples.

1. Generating function in the general case

Since we work to the first order in �, i.e., in �=dc−d we
can write:

Z̃��� =
1

2
�1 − �1 − 4�� +��

J1

2
�1 − �1 − 4���
�1 − 4�

�
z=ZMF���

.

�101�

up to higher order terms, hence we only need to compute the
function J�z� in Eq. �78� at the point of the mean field solu-
tion z=ZMF���= 1

2 �1−�1−4��.
The integral J�z� can be rewritten using the elastic gener-

ating function C�t� defined in Eq. �91� for an arbitrary elastic
kernel �k as

J�z� = �
0




dt C�t��e2tz�tz2 + z� − z − 3tz2� . �102�

2. Standard elasticity

Standard elasticity has the form e�p�= p2+1 and using Eq.
�94� one finds:

J�z� =
1

2
z�2z + �1 − 3z�log�1 − 2z�� . �103�

This result is in agreement with Eq. �150� of �29�. The value
of � to be used in Eq. �101� for extrapolation to d=1 �i.e.,
�=3� is �=−2 /3.

3. Flat contact line and generalization

From the form e�p�=�p2+ �1−a�2+a and using Eq. �99�
one finds

J�z� = z�2z�a + z − 3az�
1 − 2z

+ �a − 3z�log�1 − 2z�	 .

�104�

This agrees with �E10� of �29� for a=0 and with Eq. �103� up
to a global factor of 2, as predicted in �29�. The value of � to
be used in Eq. �101� for extrapolation to d=1 �i.e., �=1� is
�=−2 /9.

4. Contact line for arbitrary angles � and �

Having tested our general formula on the known cases we
can now apply them to the case of the elastic kernel Eq. �62�.
Let us specify the relevant parameters and functions. For the
contact line �=1, dc=2, and
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m2 = � = �q=0 =
��

t
sin � cos � , �105�

K = � sin2 � , �106�

� =
1

Lc
=��g

�
, t =�sin�� + �� + 1

2
, �107�

�̃q = e�p� = ẽ�r� = 1 +
�r2 − 1��t�r + t� + 1�sin �

�r2 + 3rt + 3t2 − 1�cos � ,
�108�

r =�1 +
q2

�2 =�1 +
cos2 �

t2 sin2 �
p2, p =

K

�
q . �109�

We have defined for convenience a new function ẽ�r� since r
is the implicit variable in the final formula. Note that for the
flat interface �+�=� /2, one recovers ẽ�r�=r.

The generating function Z̃��� for the contact line can,
thus, be computed from Eq. �101� using Eq. �85� and per-
forming the integral in dimension dc=2. Upon a change of
variable we get:

J�z� =
t2 sin2 �

cos2 �

 �
1




drr� z2

�ẽ�r� − 2z�2 +
z

ẽ�r� − 2z
−

z

ẽ�r�
− 3

z2

ẽ�r�2	 .

�110�

Performing this integral analytically, or even the one in-
volved in computing C�t�, is rather awkward, and we have
preferred to use numerical integration.

To relate to the experiment of �6�, we have computed J�z�
numerically for �=40°, �=0°. We give some explicit values:
J�−1 /2�=−0.493277, J�−1�=−3.10539, J�−3 /2�=−8.79405,
and J�−2�=−18.1329. From this, we have computed and

plotted Z̃��� in Fig. 9, using the extrapolation to �=1 in the
one-loop result, i.e., using Eq. �101� with �=−2 /9. This is
compared to the result of the scaled kernel e�p�=�p2+1. The
experimental data are also plotted on Fig. 9. Note that using
the correct elasticity allows to get closer to the experimental
data than using e�p�=�p2+1, which is the kernel for the flat
interface, and the only one previously available in the litera-
ture. Clearly, some discrepancy remains, which may be over-
come by adding two-loop corrections, if the problem does
not lay on the experimental side. However, what the plot
shows unambiguously is that the results are very sensitive to
the precise form of the elastic kernal, and using an approxi-
mation as �̃q=�1+q2 /�2 will never lead to agreement with
experiment.

E. Local statistics of avalanches

1. Basic definitions

It is also possible to study in experiments the statistics of
the avalanches occurring within a given portion of the elastic
object, e.g., of the contact line. One thus defines the size of a

local avalanche, weighted by a characteristic function ��x�,
e.g., a �-distribution localized at x=0, as �39�:

S�
ª �

0

L

ddx��x��uw
+�x� − uw

−�x��

= �
0

L

ddx��x��hw
+�x� − hw

−�x�� . �111�

In �29�, we have shown how the characteristic function

Z���� ª
1

�S��
�e�S�

− 1� �112�

as well as the distribution of sizes can be computed within
mean-field theory, valid at and above the upper critical di-
mension dc. Since it already required some quite involved
instanton calculus, we did not attempt to perform the � ex-
pansion. Here we will perform the � expansion, to one loop
O���, not on the full distribution, but on a simpler quantity,
the second moment. More precisely, we will compute the
universal amplitude ratio between the second global and lo-
cal moments, quantities easily accessible in experiments and
numerics. In fact, it was already measured in �20� in the case
of standard local elasticity and the present analytical result
was quoted. Here, we provide the details of the calculation
and predict this ratio for the contact line which has not yet
been measured.

2. Universal amplitude ratios between global and local
avalanches: general formulation

Analogous to Eq. �71�, we can define the scale of local
avalanches as

Sm
�
ª

��S��2�
2�S��

. �113�

From Eq. �F12� and �196� in �29� one has the general exact
relation:

�10 �8 �6 �4 �2
Λ

�2.5

�2.0

�1.5

�1.0

�0.5

0.5

1.0

Z
�
�Λ�

FIG. 9. �Color online� The generating function Z̃��� of ava-
lanche sizes as defined in Eq. �75�. The curves are from bottom to
top: Red/solid: mean-field result. Black dots: The experimental data
of �6�. Dashed/green: Eq. �110� integrated numerically with the cor-
rect elasticity kernel �109� for �=40°, �=0°. Dot-Dashed/orange:
The same with the elastic kernel for �=90°, �=0°, �̃q=�1+q2 /�2.
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Sm
� = −

1

�
x

��x�
�w��

xyzz�
��y���x�gxzgyz��zz��w��w=0+,

where gxy =
qeiq�x−y��q
−1 and �zz��w�=−Rzz�

� �w� is the func-
tional derivative taken at a uniform wt=w of the functional
R�w� �see e.g., �17,29� for its definition�, the limit w=0+

being taken at the end. For ��x�=1, using 
zz��zz��w�
=Ld���w� one recovers

Sm =
�S2�
2�S�

= − m−4���0+� . �114�

Here we use the notations of Sec. II so that m2=�k=0.
We can now use the results of the �-expansion �30–32�, or

its first-principle derivation in formula �463� of �33�:

�zz��w� = �zz���w� − gzz�
2 − �zz��

t

gt
2����w�2 + O��3� .

Hence one obtains the ratio

a� ª

Sm
�

Sm

=
m4

�
x

��x�
�

xyz

��y���x�gxzgyz

− 2m4���0+�
1

�
x

��x�

 �
xyzz�

��y���x�gxzgxz�gzz�
2 − �zz��

t

gt
2� + O��2� ,

�115�

a formula valid for any function ��x�.
We know study avalanches which occur on a given sub-

space of co-dimension d�, defined by x�=0, i.e., of dimen-
sion d�=d−d�, of the d-dimensional manifold, i.e., we
choose

��x� = ��d��x�� . �116�

� will be specified later. The above formula leads to

a� = m4�I2�d�� + 2m4��I2�d�I2�d�� − IA�d,d������0� + ¯

= m4�I2�d���1 +
2�̃��0�

�
�1 −

IA�d,d��
I2�d�I2�d��

	� + ¯

�117�

using the definition Eq. �83� of the rescaled disorder, �̃��0�
=���0��I2�d�, and defining the integrals

I2�d� ª =� ddq

�2��d

1

�q
2

�118�

IA�d,d�� ª =� dd�k

�2��d�

ddq

�2��d

1

�k
2

1

�q

1

�k+q
.

�119�

Note that in the last integral the momentum in the upper
bubble runs over a space of dimension d��d.

To perform the � expansion we now use the scaling form
Eq. �81� of the elastic kernel. This yields to zeroth and first
order in �=dc−d:

a� = ��d�K−d�/�Ĩ2�d���1 +
2�̃��0�

� �1 −
ĨA�d,d��

Ĩ2�d�Ĩ2�d��
	� + ¯

�120�

in terms of the dimensionless integrals

Ĩ2�d� ª =� ddq

�2��d

1

e�q�2
,

�121�

ĨA�d,d�� ª =� dd�k

�2��d�

ddq

�2��d

1

e�k�2

1

e�q�
1

e�k + q�
.

�122�

To obtain a meaningful amplitude we now make the choice

� = K1/�

�
�d�

. �123�

Note that comparing with experiments then requires a pre-
cise knowledge of the internal length scale K1/� /� defined
by the �renormalized� mass m2=�� and elastic constant K
=limq�� �q /q�. Alternatively, it may be used as a method to
measure this length.

3. Standard local elasticity

We now specify to standard elasticity �k=Kk2+m2, i.e.,
�=2, dc=4 and e�p�= p2+1. We study d�=1.

We need the integrals:

Ĩ2�d� = �2 −
d

2
��4��−d/2 �124�

Ĩ2�d� = 1� =� dq

2�

1

�q2 + 1�2 =
1

4
�125�

ĨA�d,d��

Ĩ2�d�Ĩ2�d��
− 1 =

I

Ĩ2�d�Ĩ2�d��
�126�

This involves the integral

I =� dk

2�

1

�k2 + 1�2� dq

2�

dd−1p

�2��d

 � 1

��k + q�2 + p2 + 1��q2 + p2 + 1�
−

1

�q2 + p2 + 1�2	
�127�

The calculation of this integral is performed in Appendix. To
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the order � we are working, we only need to compute it in
d=dc=4. We find

I = �4��−5/2�3

2
��4 +

2

9
�7�3 − 18��	 . �128�

Putting all these results together we obtain

a� =
1

4
+ �1 − � +

7�

6�3
� + O��2�

= 0.25 − 0.025 493 4� + O��2� �129�

with �=− �
3 �1−�1�. This is the expansion for a manifold with

co-dimension one in �=4−d.
For the one-dimensional string, simulated in �20�, we

need to extrapolate to �=3 which yields �=−2 /3. The two
possible Padé expansions are

1

a�

=
1

1

4
+ 0.016 995 6

= 3.74538, �130�

1

a�

= 4 − 16��1 +  7

6�3
− 1��	 = 3.72807. �131�

Hence, an estimate of the ratio is

1

a�

= 3.74 � 0.01. �132�

Another expansion is the expansion in fixed dimension in

powers of �̃. It is likely to be less precise than the � expan-
sion, but being simpler in spirit we indicate here its predic-
tion. One evaluates directly the integrals in d=d�=1. Using
the results from the Appendix, this yields

a� =
1

4
�1 +

2

9

�̃��0+�
�

+ ¯	 , �133�

and inserting the one-loop value �̃��0+�=−�= 2
9� we find the

estimate 1 /a��3.81, slightly larger than Eq. �132�.

4. Contact-line elasticity

For the contact-line elasticity, the �=2−d expansion can
be done as indicated above. As it requires performing two-
dimensional integrals we will only give here the fixed-
dimension estimate for d=d�=1, which requires only a one-
dimensional integral on each momentum. We further perform
them numerically using the form Eq. �109�. We give two
examples:

�i� flat interface �+�=� /2.
Then e�p�=�p2+1 and we obtain

Ĩ2�1� =
1

2
, �134�

2�1 −
ĨA�1,1�

Ĩ2�1�Ĩ2�1�
	 � 0.312 811 . . . . �135�

This yields

a� =
1

2
1 + 0.312 811

2

9
+ ¯� �136�

and 1 /a��1.87.
�ii� experiments of Ref. �6�, i.e., �=0°, �=40°:
We find

Ĩ2�1� � 0.41867, �137�

2�1 −
ĨA�1,1�

Ĩ2�1�Ĩ2�1�
	 � 0.333 101. . . �138�

This yields

a� = 0.418671 + 0.333 101
2

9
+ ¯� �139�

and 1 /a��2.22, whereas the mean-field approximation is
1 /a�

MF�2.39.
It is interesting to note that the “elastic length” �=K /�

which enters the definition Eqs. �111� and �116� of S� and a�

reads:

� =
K

�
= Lc

sin �

cos �
�sin�� + �� + 1

2
, �140�

i.e., it only involves the capillary length and geometric pref-
actors, thus, is well-known experimentally. In addition, one
can measure the dependence of a� on the plate angle �.

V. CONCLUSIONS

In this paper, we have reconsidered the problem of
contact-line depinning. We have shown, that the usual
DeGennes-Joanny form of the elastic energy E�h�
= 1

2
 dq
2��q�hq�2, �q=��q2+�2 is only an approximation for the

case of a nonflat minimal energy surface, but has to be re-
placed by the more general expression Eq. �2�.

In the second part of this paper, we have studied the con-
sequences of a more general form of the elastic energy for
the avalanche-size distribution at depinning, giving explicitly
the results of a contact line. While the calculations are rather
involved, the consequences can be summarized in a plot for

the parameter-free generating function Z̃���, see Fig. 9.
While agreement with experiments is certainly improved,

differences remain. Part of these differences are due to ex-
perimental shortcomings, e.g., the size of defects may be
reduced. On the theoretical side, improvements can come
from higher-loop corrections, or from taking into account
nonlinear elastic terms. While the latter have for some time
been deemed necessary to account for the large roughness
exponent �27�, the latest experiments, i.e., those on which
our comparison is based, suggest that this conclusion might
be premature.

We have further discussed “local avalanches,” i.e., the
jump-size distribution at a given point, which is different
from the “global” avalanche-size distribution �distribution of
swiped areas�. These are further experimentally accessible
observables, on which not much was known previously apart
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from the tree-level results given in one special case in �29�.
We have given here the results for the universal ratio a�

=
Sm

�

Sm
, where the typical scales of the local avalanche Sm

�, and
of the global avalanche Sm have been defined in Eqs. �113�
and �114�.

We hope that our results stimulate further experimental
studies.
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APPENDIX: STANDARD ELASTICITY: CALCULATION
OF AN INTEGRAL

The integral defined in the text can be written as

I =� dk

2�
� dq

2�

dd−1p

�2��d�
t,t1,t2	0

te−t�k2+1�

�e−t1��k + q�2+p2+1�+t2�q2+p2+1� − e−�t1+t2��q2+p2+1��

= �4��−�d+1�/2�
t,t1,t2	0

t�t1 + t2�−�d−1�/2��tt1 + tt2 + t1t2�−1/2

− �t�t1 + t2��−1/2�e−t−t1−t2, �A1�

using the general formula 
qe−q·C·q= �4��−d/2�det C�−1/2. Per-
forming the changes of variables t1→ tt1 and t2→ tt2 yields

I = �4��−�d+1�/2�
0




dt�
0




dt1�
0




dt2e−t�t1+t2+1�

t5/2−d/2�t1 + t2�1/2−d/2� 1
�t2t1 + t1 + t2

−
1

�t1 + t2
	 .

�A2�

Integration over t yields

I = �4��−�d+1�/2�
0




dt1�
0




dt2�t1 + t2�1/2−d/2�t1 + t2 + 1��d−7�/2

�7

2
−

d

2�� 1
�t2t1 + t1 + t2

−
1

�t1 + t2
	 . �A3�

Setting t1=st, t2= �1−s�t, one obtains

I = �4��−�d+1�/2�
0




dt�
0

1

dst1−d/2�t + 1��d−7�/2�7

2
−

d

2�
� 1

�1 + �1 − s�st
− 1	

= �4��−�d+1�/2�
0




dtt1−d/2�t + 1��d−7�/2�7

2
−

d

2�
� 2

�t
arccot 2

�t
� − 1	 . �A4�

One can perform the integral directly in d=1, with the result

I = −
1

144
. �A5�

Thanks to the counterterm it also admits a limit for d=4:

I =
1

8�2�1

2
+

�

36
�− 18 + 7�3�	 . �A6�

Finally the expression for any d is

I =

9�32d�2 −
d

2
� 3F21

2
,1,2 −

d

2
;−

1

2
,
3

2
;
1

4
� + 2���9�32d − 4 3d/2�d + 3���3

2
−

d

2
�

4d+1�d/29�3
− 2−2−d�−d/2�2 −

d

2
� . �A7�

The combination 2�1−
ĨA�d,1�

Ĩ2�1�Ĩ2�d�
� is plotted on Fig. 10.
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FIG. 10. �Color online� The combination 2�1−
ĨA�d,1�

Ĩ2�1�Ĩ2�d�
� as a

function of d, for standard elasticity.
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