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Nonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model

Alexander Dobrinevski,* Pierre Le Doussal, and Kay Jörg Wiese
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We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force
landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasistatic driving
of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter)
exhibit the same universal behavior as this model. It also appears as a limit in the field theory of elastic manifolds.
Here we discuss predictions of the ABBM model for monotonous, but otherwise arbitrary, time-dependent
driving. Our main result is an explicit formula for the generating functional of particle velocities and positions.
We apply this to derive the particle-velocity distribution following a quench in the driving velocity. We also
obtain the joint avalanche size and duration distribution and the mean avalanche shape following a jump in the
position of the confining spring. Such nonstationary driving is easy to realize in experiments, and provides a
way to test the ABBM model beyond the stationary, quasistatic regime. We study extensions to two elastically
coupled layers, and to an elastic interface of internal dimension d , in the Brownian force landscape. The effective
action of the field theory is equal to the action, up to one-loop corrections obtained exactly from a functional
determinant. This provides a connection to renormalization-group methods.
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I. INTRODUCTION

The motion of domain walls in soft magnets [1–3], fluid
contact lines on a rough surface [4–6], or strike-slip faults in
geophysics [7–9] can all be described on a mesoscopic level
as motion of elastic interfaces driven through a disordered
environment. Their response to external driving is not smooth,
but exhibits discontinuous jumps or avalanches. Physically,
these are seen, e.g., as pulses of Barkhausen noise in
magnets [10,11], or slip instabilities leading to earthquakes
on geological faults [12–14]. While the microscopic details
of the dynamics are specific to each system, some large-scale
features are universal [15]. The most prominent example are
the exponents of the power-law distributions of avalanche
sizes (for earthquakes, the well-known Gutenberg-Richter
distribution [16–18]) and durations.

The Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model [1] is a mean-field model for the dynamics of
an interface in a disordered medium. It approximates a
d-dimensional interface in a (d + 1)-dimensional system,
defined by a height function u(x,t), by a single degree of
freedom, its average height u(t) = 1

Ld

∫
ddx u(x,t). It satisfies

the equation of motion

∂tu(t) = F (u(t)) − m2[u(t) − w(t)]. (1)

w(t) is the external driving and F (u) is an effective random
force, sum of the local pinning forces. In [1], it was postulated
to be a Gaussian with the correlations of a Brownian motion,

[F (u1) − F (u2)]2 = 2σ |u1 − u2| , (2)

where σ > 0 characterizes the disorder strength.
This model has been analyzed in depth for the case of

a constant driving velocity, i.e., w(t) = vt [1,3,19–24]. The
distribution of avalanche sizes and durations was obtained by
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mapping (1) to a Fokker-Planck equation [1,3]. The mean
shape of an avalanche was also computed using this mapping
[22–24]. These results agree well with numerous experiments
on systems with long-range elastic interactions, realized, e.g.,
in certain classes of soft magnets, or in geological faults [3,7,
21,26,27].

However, long-range-correlated disorder as in (2) is a
priori an unphysical assumption for materials where the true
microscopic disorder is, by nature, short ranged. Hence in
realistic systems, it can only arise as a model for the effective
disorder felt by the interface. This guess, originally made by
ABBM based on experiments, turns out to be very judicious.

In [21], it was shown that the effective disorder for an
interface with infinite-range elastic interactions is indeed given
by (2). This led to the wide belief that the ABBM model is
a universal model for the center-of-mass of an interface in
dimension d at or above a certain upper critical dimension
dc depending on the range of the elastic interactions in the
system [28]. Much of the popularity of the ABBM model is
owed to this presumed universality. However, only recently
this assumption was proven for short-ranged microscopic
disorder using the functional renormalization group (FRG)
[23,24], a method well suited to study interfaces (see [29]
for an introduction and a short review). This proof required
quasistatic driving w(t) = vt with v = 0+. Whether this
property also holds for finite driving velocity v > 0, and in
that case up to which scale, requires further investigation.
The same question for nonstationary driving also remains
open.

There are some hints that nonstationary dynamics may
require a different treatment. For example, avalanche size
and duration exponents seem to vary over the hysteresis
loop [30–32].

Related is the question of static avalanches, i.e., jumps
in the order parameter of the ground state upon variation of
an external control parameter, as, e.g., the magnetic field.
This has been studied for elastic manifolds via functional RG
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methods [33–35], and for spin glasses using replica symmetry
breaking [36,37].

In this paper, we discuss the results given by the ABBM
model when the driving w(t) is a monotonous but otherwise
arbitrary function of time. While this misses important and
interesting physics of ac driving and the hysteresis loop [38],
it is much more general than the cases treated so far. We
will give an analytic solution for arbitrary driving, and then
specialize to examples such as the relaxation of the velocity
u̇(t) after the driving is stopped and the response to finite-
size “kicks” in the driving force, ẇ(t) = w0δ(t). This should
allow to clarify the range of the ABBM universality class
by comparing these predictions to experiments and further
theoretical work. Such nonstationary driving can easily be
realized, e.g., in Barkhausen noise experiments, where w(t) is
the external magnetic field, and can be tuned as desired.

This paper is structured as follows. In Sec. II, we review
the approach to the ABBM model through the Martin-Siggia-
Rose (MSR) formalism. The MSR formalism maps disorder
averages over solutions of the stochastic differential equation
(1) to correlation functions in a field theory. In [23,24], this
method was used to compute the Laplace transform of the
p-point probability distribution of the velocity in the ABBM
model, via the solution of a nonlinear “instanton” equation.
From it, the avalanche shape and duration distributions were
obtained for quasistatic driving, in agreement with the results
of [22,25]. Here we extend the method of Refs. [23,24] and
show that it is even more powerful: For any monotonous (but
not necessarily stationary) driving w(t), the resulting field
theory can be solved exactly. We give an explicit formula
for the generating functional of the particle velocity u̇. In
Sec. III, we apply this solution to several examples. In
particular, we derive the law for the decay of the velocity
after the driving is stopped, which may easily be tested in
experiments. In Sec. IV, we extend the method to variants of
the ABBM model with additional spatial degrees of freedom.
This includes the generalization of the ABBM model to a
d-dimensional interface submitted to a quenched random force
with the correlations of the Brownian motion, a model whose
statics was studied in [34]. For this more general model,
under monotonous driving, we show that the action of the
field theory is not renormalized in any spatial dimension
d. In Sec. V, we compute the generating functional for the
particle position u, which is more subtle than the one for
the velocity u̇. In Secs. VI and VII, we summarize the results
and mention possible extensions. In particular, we explain why
nonmonotonous motion requires a separate treatment, and does
not follow from the present results.

II. SOLUTION OF THE NONSTATIONARY ABBM MODEL

To understand the physics of (1), one would like to know
the joint probability distribution for arbitrary sets of velocities
u̇(t1) · · · u̇(tn), averaged over all realizations of the random
force F . This is encoded in the generating functional

G[λ,w] = e
∫
t λ(t)u̇(t), (3)

where · · · denotes disorder averaging. One then recovers, e.g.,
the generating function eλu̇(t0) of the distribution of u̇(t0) by

setting λ(t) = λδ(t − t0), and similarly for n-time correlation
functions.

Our main result is an explicit formula for G in the case of
monotonous but nonstationary motion. Given the distribution
of velocities P0(u̇i) at an initial time ti , we claim that Gti :=
e
∫∞
ti

dtλ(t)u̇(t) is

Gti [λ,w] = e
m2
∫∞
ti

dt ũ(t)ẇ(t)
∫ ∞

0
du̇iP0(u̇i)eũ(ti )u̇i . (4)

Here ũ(t) is the solution of an instanton equation [23,24]:

∂t ũ(t) − m2ũ(t) + σ ũ(t)2 = −λ(t). (5)

Boundary conditions are ũ(∞) = 0; λ(t) is assumed to vanish
at infinity. Note that ũ(t) only depends on λ(t), i.e., the type
of observable one is interested in, but not on the driving w(t).
The latter only enters in (4).

In the following, we are mostly interested in the case when
the initial time ti → −∞. Our observables will be local in
time, so thatλ(t) decays quickly for t → ±∞. Then, ũ(ti) → 0
and (4) becomes independent of initial conditions,

G[λ,w] = em2
∫
t ũ(t)ẇ(t). (6)

To prove (6), we first discuss how a closed equation for the
velocity variable can be formulated. We then use the Martin-
Siggia-Rose formalism to transform it to a field theory, and
evaluate the resulting path integral to obtain (6). Both steps
use crucially the assumption of monotonous motion.

A. Velocity in the ABBM model

The equation of motion for the velocity u̇(t) is obtained by
differentiating (1):

∂t u̇(t) = ∂tF (u(t)) − m2[u̇(t) − ẇ(t)]. (7)

A priori, to determine the probability distribution of u̇(t),
one needs u̇(0) and u(0), since the random force depends on
the trajectory u(t) and not just on u̇. However, under the as-
sumption that all trajectories are monotonous [u̇(t) ! 0 for all
times t], the probability distribution of u̇(t) is independent of
u(0). Indeed, under this assumption, one can replace ∂tF (u(t))
by a multiplicative Gaussian noise which only depends on
u̇(t). More precisely, we can set ∂tF (u(t)) =

√
u̇(t)ξ (t), where

ξ (t)ξ (t ′) = 2σδ(t − t ′). To see this explicitly, consider the
generating functional

H [λ] = e
∫
t λ(t)∂tF (u(t))

= e−
∫
t,t ′ λ(t)λ(t ′) σ

2 ∂t ∂t ′ |u(t)−u(t ′)|. (8)

Since u̇(t) ! 0 at all times, we know that [39]

∂t∂t ′ |u(t) − u(t ′)| = u̇(t)∂t ′sgn[u(t) − u(t ′)]

= u̇(t)∂t ′sgn(t − t ′) = −2u̇(t)δ(t − t ′), (9)

and hence

H [λ] = e
∫
t λ(t)2σ u̇(t) = e

∫
t λ(t)

√
u̇(t)ξ (t). (10)

Note that for monotonous driving, the monotonicity assump-
tion u̇(t) ! 0 is enforced automatically if it is at t = t0 [40]:

u̇(t0) ! 0,ẇ(t) ! 0 for all t ! t0

⇒ u̇(t) ! 0 for all t ! t0. (11)
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In this way, we see that for monotonous motion, (7) is a closed
stochastic differential equation for the velocity u̇(t). Given an
initial velocity distribution P (u̇(0)), it can be solved without
knowledge of the position u(0).

B. MSR field theory for the ABBM velocity

The Martin-Siggia-Rose (MSR) approach allows us to
express (3), averaged over all realizations of F in (7) in a
path-integral formalism, following [19,20,23,24,41,42].

Introducing the Wick-rotated MSR response field ũ(t) and
averaging over the disorder, one gets:

G[λ,w] =
∫

D[u̇,ũ]e−S[u̇,ũ]+
∫
t λ(t)u̇(t),

(12)
S[u̇,ũ] =

∫

t

ũ(t){∂t u̇(t) + m2 [u̇(t) − ẇ(t)]}

+ σ

2

∫

t,t ′
∂t∂t ′ |u(t) − u(t ′)|ũ(t)ũ(t ′).

Since we consider only paths where u̇(t) ! 0 at all times, using
(9) we can rewrite the action as

S[u̇,ũ] =
∫

t

(ũ(t){∂t u̇(t) + m2[u̇(t) − ẇ(t)]}

− σ u̇(t)ũ(t)2). (13)

The key observation which allows us to evaluate this exactly
was first noted in [23,24]: The action is linear in u̇(t). This
means that the path integral over u̇ can be evaluated, giving
a δ-functional. Instead of using this in the limit of v → 0 as
in [23,24], one can write more generally:

G[λ,w] =
∫

D[ũ,u̇]em2
∫
t
ũ(t)ẇ(t)

× e
∫
t u̇(t)[∂t ũ(t)−m2ũ(t)+σ ũ(t)2+λ(t)]

=
∫

D[ũ]em2
∫
t
ũ(t)ẇ(t)

× δ[∂t ũ(t) − m2ũ(t) + σ ũ(t)2 + λ(t)].

This then reduces to (6) with ũ(t) given by (5). Note that the
Jacobian from evaluating the δ-functional is independent of
w(t). We assume in the following that for ẇ(t) = 0 we have
u̇ = 0 and hence G[λ,ẇ = 0] = e

∫
λ(t)u̇(t) = 1 for any λ. Thus

(6) is correctly normalized.
For the more rigorously minded reader, another derivation

of (4) and (5) is presented in Appendix A. It avoids the use of
path integrals with unclear convergence properties and takes
into account the initial condition.

III. EXAMPLES

A. Stationary velocity distribution and propagator

As a first application, let us rederive the well-known
probability distribution for the velocity in the case of stationary
driving, w(t) = vt .

To obtain the generating function of the velocity distribution
at t0, we set λ(t) = λδ(t − t0) in (3). The solution of (5) is [43]

ũ(t) = λ

λ + (1 − λ)e−(t−t0)
θ (t < t0). (14)

As already derived in [23], for ẇ(t) = v one gets
∫

t

ũ(t)ẇ(t) = −v ln(1 − λ), (15)

and hence G(λ) = (1 − λ)−v . This generating function yields
the probability distribution

P (u̇) = e−u̇u̇−1+v

'(v)
, (16)

which is the well-known result for the stationary velocity
distribution [1,3].

Using the same method, we can obtain the two-time velocity
probability distribution. For λ(t) = λ1δ(t − t1) + λ2δ(t − t2),
with t1 < t2, the solution of (5) is

ũ(t) =






0, t > t2,

1
1+ 1−λ2

λ2
et2−t

, t1 < t < t2,

1

1− λ1λ2et1 −(1−λ1)(1−λ2)et2

(1+λ1)λ2et1 +λ1(1−λ2)et2
et1−t

, t < t1.

(17)

As already derived in [23], for ẇ(t) = v one gets
∫

t

ũ(t)ẇ(t) = −v ln{1 − λ1 − λ2 + λ1λ2[1 − e−(t2−t1)]},

and using (6),

G(λ1,λ2) = {1 − λ1 − λ2 + λ1λ2[1 − e−(t2−t1)]}−v. (18)

Taking the inverse Laplace transform, we obtain the two-time
velocity distribution

P (u̇1,u̇2) =
√

u̇1u̇2
−1+v

2'(v) sinh τ
2

I−1+v

(√
u̇1u̇2

sinh τ
2

)
e

v
2 τ− u̇1+u̇2

1−e−τ ,

where u̇1 := u̇(t1), u̇2 := u̇(t2), τ := t2 − t1 > 0, and Iα is
the modified Bessel function. This formula generalizes the
quasistatic result of [23] to arbitrary v. Dividing by the
one-point distribution P (u̇1) given in (16), one obtains a closed
formula for the ABBM propagator for velocity v > 0:

P (u̇2|u̇1) =

√
u̇2
u̇1

−1+v

2 sinh τ
2

I−1+v

(√
u̇1u̇2

sinh τ
2

)
e

v
2 τ− u̇1e−τ +u̇2

1−e−τ . (19)

Using this result and the Markov property of Eq. (7), n-point
correlation functions of the velocity can be expressed in closed
form as products of Bessel functions.

B. Velocity distribution after a quench in the driving speed

Now let us consider a nonstationary situation. Assume that
the domain wall is driven with a constant velocity v1 > 0 for
t < 0, which is changed to v2 ! 0 for t > 0. One expects that
the velocity distribution interpolates between the stationary
distribution for v1 at t = 0 and the stationary distribution for
v2 for t → ∞. In this subsection, we will compute its exact
form for all times.

For the one-time velocity distribution, λ(t) = λδ(t − t0)
and the solution of (5) is unchanged, given by (14).
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Now, using ẇ(t) = (v1 − v2)θ (−t) + v2, one gets
∫

t

ũ(t)ẇ(t)

=
∫ 0

−∞

v1λ dt

λ + (1 − λ)e−(t−t0)
+
∫ t0

0

v2λ dt

λ + (1 − λ)e−(t−t0)

= (v1 − v2) ln
(

1 + λ

1 − λ
e−t0

)
− v2 ln(1 − λ).

Thus, with the help of (6),

G(λ) = eλu̇(t0) = [1 − λ(1 − e−t0 )]v1−v2 (1 − λ)−v1 . (20)

Inverting the Laplace transform, one obtains

P (u̇(t0)) = e−u̇u̇−1+v2 (1 − e−t0 )v1−v2

'(v2)

× 1F1

(
v2 − v1,v2,

u̇

1 − et0

)
. (21)

An interesting special case is when the driving is turned
off at t = 0, i.e., v1 = v and v2 = 0. According to (11), the
particle will continue to move forward until it encounters the
first zero of u̇ = F (u) − m2 [u − w(0)]. Correspondingly, we
expect that the velocity distribution decays from the stationary
probability distribution at t " 0 to a δ distribution at zero at
t → ∞. The explicit calculation for u̇ := u̇(t0) yields

P (u̇) = (1 − e−t0 )vδ(u̇)

+ e−u̇−t0v(et0 − 1)−1+vv 1F1

(
1 − v,2,

u̇

1 − et0

)
.

(22)

The δ(u̇) term gives the probability that the motion has stopped
at time t0,

P [u̇(t0) = 0] = (1 − e−t0 )v. (23)

As expected, this is zero at t0 = 0 and tends to 1 as t0 → ∞.
Correspondingly, the distribution for the relaxation time T ,
i.e., the time for the particle to stop moving from the stationary
driving state at velocity v, is given by

P (T ) = ∂

∂t0

∣∣∣∣
t0=T

P [u̇(t0) = 0] = ve−T (1 − e−T )−1+v.

The term in (22) not proportional to the δ function (once
normalized) gives the conditional distribution of velocities
assuming the particle is still moving. Its form compares well
to simulations; see Fig. 1.

Using (20), one also sees that the mean velocity interpolates
exponentially between the old and the new value of the driving
speed,

u̇t0 = ∂λ|λ=0G(λ) = v2 + (v1 − v2)e−t0 . (24)

These results are valuable since they provide a tool to test the
validity of the ABBM model in different experimental proto-
cols. In application to Barkhausen noise, one could perform
experiments where the driving by the external magnetic field
is stopped at some time. This would allow to verify, e.g., (22)
experimentally, since the velocity in our model is the induced
voltage in a Barkhausen experiment. This would be one of
the first checks on whether the good agreement between the

0 5 10 15 20
0.0
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0.4

u

P
u

FIG. 1. (Color online) Decay of velocity distribution after driving
was stopped. Curves (from right to left): Results for t0 = 0,0.4,1,2
from (22). Bar charts: Corresponding simulation results, averaged
over 104 trajectories. Initial driving velocity (for t < 0) was v = 10.

ABBM theory and experiments persists in the nonstationary
case.

C. Nonstationary avalanches

Using similar techniques, one can treat the case of a finite
jump from 0 to w in the location of the confining harmonic
well in (1), w(t) = wθ (t) equivalent to a “kick” ẇ(t) = wδ(t).
For t < 0 the particle is at rest, and the quench at t = 0 triggers
exactly one avalanche. Its size is given by S =

∫∞
0 u̇(t)dt

and its duration T by the first time when u̇(T ) = 0. Note
that this avalanche occurs as the nonstationary response to a
kick of arbitrary size, a problem a priori different from the
stationary avalanches studied previously [3,23,24] for small
constant drive ẇ(t) = v = 0+. In this section, we will derive
the distribution of avalanche sizes and durations for arbitrary
kick sizes w.

1. Preparation of the initial condition

The assumption G[λ,ẇ = 0] = 1 which we made in
Sec. II B implies that the initial condition at ti , which is
the lower limit of all time integrals in the action and in (6),
is u̇(ti) = 0. This means that the particle is exactly at rest
for t ! ti if ẇ(t) = 0 for t ! ti . Furthermore, to assure that
the particle will not revisit part of the trajectory, we demand
u(t) " u(ti) for all t < ti . One protocol with which this can be
enforced is as follows: Start at some time t1 ( ti at an arbitrary
position u(t1) ( 0, and take w(t) = 0 for all t ∈ [t1,ti]. Then
u̇(0) will be almost surely positive. Thus, between t1 and ti , the
particle will move forward until it reaches the smallest u where
F (u) − m2u = 0. Since t1 ( ti , almost surely it will reach this
point before ti and thus be at rest at ti . This choice of initial
condition is equivalent to choosing a random configuration
from the steady state for quasistatic driving at v = 0+.

2. Duration distribution

First, let us derive the exact distribution of avalanche
durations following a kick. The generating function for
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P (u̇(t0)) at time t0 > 0 is obtained as in the previous section
as

G(λ) = eλu̇(t0) = exp
(

wλ

λ + (1 − λ)et0

)
. (25)

Laplace inversion gives, denoting u̇ := u̇(t0),

P (u̇) = e
− w+et0 u̇

et0 −1

[
δ(u̇) + 1

2 sinh t0
2

√
w

u̇
I1

( √
u̇w

sinh t0
2

)]
. (26)

The mean velocity

u̇(t0) = ∂λ|λ=0G(λ) = we−t0 (27)

decays in the same way as in (24) for stopped driving. However,
the probability distributions of u̇(t0) are different, as can be
seen by comparing (26) and (22). The probability that u̇(t0) =
0, i.e., that the avalanche has terminated at time T < t0, is
obtained by taking the limit λ → −∞ in (25), which gives the
δ-function piece in (26),

P [u̇(t0) = 0] = P (T " t0) = exp
(

− w

et0 − 1

)
. (28)

Note that this procedure requires P (u̇ < 0) = 0, which is the
case here.

Correspondingly, the probability density for the avalanche
duration T is given by

P (T ) = ∂

∂t0

∣∣∣∣
t0=T

P [u̇(t0) = 0] =
w exp

(
− w

eT −1

)

(
2 sinh T

2

)2 . (29)

We observe that for infinitesimally small quenches w, one
recovers—up to a normalization factor—the distribution ob-
tained in [23,24] for avalanches at stationary, quasistatic
driving, with the universal power law T −2 for small times [3]:

ρ(T ) := ∂w|w=0P (T ) = 1
(
2 sinh T

2

)2 . (30)

Hence, the nonstationary character is not important in that
limit.

For finite w > 0, the mean avalanche duration is obtained
from (28),

T (w) = γE − ewEi(−w) + log(w)
w→∞∼ log w.

It behaves as T (w) ∼ w ln(1/w) at small w and diverges
logarithmically for large w. In the latter limit, the distribution
of T̃ := T − ln w approaches a Gumbel distribution

P (T̃ ) ≈ e−T̃ e−e−T̃

on the interval T̃ ∈ [−∞,∞], as if the duration were given by
the maximum of w independent random variables.

3. Joint size and duration distribution

One can now proceed to a more general case, and compute
the joint distribution of avalanche durations and sizes. We
again calculate the generating function

G(λ1,λ2) = eλ1S+λ2u̇(t0),

where S :=
∫∞

0 u̇(t)dt is the avalanche size. The solution of
(5) for λ(t) = λ1 + λ2δ(t − t0) is given by

ũ(t) = 1
2

(1 −
√

1 − 4λ1)

+ e
√

1−4λ1(t−t0)√1 − 4λ1λ2θ (t0 − t)
√

1 − 4λ1 − λ2[1 − e
√

1−4λ1(t−t0)]
.

Since the driving is ẇ(t) = wδ(t), we obtain from (6)

G(λ1,λ2) = ewZ(λ1,λ2), (31)

Z(λ1,λ2) = 1
2

(1 −
√

1 − 4λ1)

+ e−
√

1−4λ1t0
√

1 − 4λ1λ2√
1 − 4λ1 − λ2(1 − e−

√
1−4λ1t0 )

. (32)

For λ2 = 0, this gives the distribution of avalanche sizes S for
arbitrary kick size w,

P (S) = w

2
√
πS

3
2

exp
(

−w2

4S
− S

4
+ w

2

)
. (33)

As it should, this coincides with the distribution obtained for
quasistatic driving, v = 0+ [44].

In the case of a nonstationary kick, we can obtain more
information on the avalanche dynamics by considering the
joint distribution of avalanche sizes S and durations T . As
above, the probability that u̇(t0) = 0 and hence the probability
that the duration T of the avalanche lies in the interval ]0; t0[,
is given by the limit λ2 → −∞. Thus, the joint probability
density P (S,T ) of sizes S and durations T satisfies
∫ ∞

0
dS

∫ t0

0
dT eλ1SP (S,T )

= exp

(
w

2
(1 −

√
1 − 4λ1) − w

√
1 − 4λ1e

−
√

1−4λ1t0

1 − e−
√

1−4λ1t0

)

.

Deriving with respect to t0, we obtain
∫ ∞

0
dS eλSP (S,T ) = w(1 − 4λ)e

w
2 (1−

√
1−4λ coth T

2

√
1−4λ)

(
2 sinh T

2

√
1 − 4λ

)2 ,

(34)

which for λ = 0 reproduces (29). This implies the scaling
form [45]:

P (S,T ) = e− S
4 f (S/T 2), (35)

f (x) = LT−1
s→x

we
w
2 se− w

T 2
√

s coth
√

s

T 4(sinh
√

s)2
. (36)

Although no formula to invert the Laplace transform in a closed
form is evident, one can, for example, calculate the mean
avalanche size for a fixed value of the avalanche duration,

S(T ) =
∫∞

0 dS S P (S,T )
∫∞

0 dS P (S,T )

= 4 − wT − 4 cosh T + (2T + w) sinh T

cosh T − 1
. (37)

As w → 0, this has a well-defined limit

S(T ) = 2T coth
T

2
− 4. (38)
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Equation (38) reproduces the expected scaling behavior [3,21],
S(T ) ∼ T 2, for small avalanches. This is apparent in (35),
since the e− S

4 factor can be neglected for small S. The new
result in Eq. (38) predicts the deviations of large avalanches
from this scaling, and shows that they obey S ∼ T instead. This
is in qualitative agreement with experimental observations on
Barkhausen noise in polycrystalline FeSi materials [3,11,25].
It would be interesting to test the quantitative agreement of
(38) with experiments as well.

We can also obtain the large-T behavior at fixed S (fixed λ)
since in that limit
∫ ∞

0
dS eλSP (S,T ) ≈ w(1 − 4λ)ew/2e− 1

2 (w+2T )
√

1−4λ. (39)

This implies

P (S,T ) ≈ w(2T + w)[(2T + w)2 − 6S]e
w
2 − (2T +w)2

4S
− S

4

2
√
πS7/2

. (40)

Note that (39) is also valid at fixed T and large negative λ,
hence (40) also gives the behavior for S ( T 2 at fixed T . One
notes some resemblance with (33).

We now consider the limit of a small kick w → 0. Equation
(34) gives

P (S,T ) = wρ(S,T ) + O(w2), (41)

where ρ(S,T ) can be interpreted as an avalanche size and
duration “density,” satisfying

∫ ∞

0
dS eλSρ(S,T ) = (1 − 4λ)

(
2 sinh T

2

√
1 − 4λ

)2 . (42)

This Laplace transform can be inverted:

ρ(S,T ) = e−S/4 1
T 4

g(S/T 2), (43)

g(x) = LT−1
s→x

s

(sinh
√

s)2
= d

dx
h(x),

h(x) =
+∞∑

n=−∞
(1 − 2π2n2x)e−n2π2x =

∞∑

m=−∞

2m2e− m2
x

√
πx3/2

.

(44)

We have used
∑∞

n=−∞
s−n2π2

(s+n2π2)2 = 1/(sinh
√

s)2. Note that
ρ(S,T ), as a size density, is normalized to

∫∞
0 dS ρ(S,T ) =

ρ(T ), given in (30), since a fixed duration T acts as a
small avalanche-size cutoff. The total size density ρ(S) =∫

dT ρ(S,T ) = 1
2
√
πS3/2 exp(− S

4 ) is not normalized, since w,

which acts as a small-scale cutoff in (33), has been set to 0.
Finally, note that (34) allows one to go further and compute

any moment as well as, by numerical Laplace inversion, the
full joint distribution P (S,T ). This is shown in Fig. 2.

4. Avalanche shape following a pulse

We consider now the joint probability of velocities at two
times 0 < t1 < t2 following a pulse at time t = 0. By (6), its
generating function is

eλ1u̇(t1)+λ2u̇(t2) = ewũ(0),

FIG. 2. (Color online) Joint density ρ(S,T ) of avalanche sizes S

and durations T in the ABBM model, obtained by numerical Laplace
inversion of (42)–(44). The red line is the mean size S̄(T ) for a fixed
duration T given in (38).

where ũ(0) is the two-time solution (17). We are interested in
P (u̇(t1),u̇(t2) = 0) obtained by taking λ2 → −∞:

∫
du̇1e

λ1u̇1P (u̇1,0) = exp

(
w

1 − λ1e
t1 +(1−λ1)et2

(1+λ1)et1 −λ1e
t2 et1

)

.

We use that LT−1
s→ue

d+ a
b+s = ed [

√
a
u
I1(2

√
au)e−bu + δ(u)]

with d = − w
et1 −1 , a = wet1/(et1 − 1)2, and b = 1

et2−t1 −1 +
1

1−e−t1 . Taking ∂t2 and setting t2 = T , we find the joint
probability distribution of the avalanche duration T and the
velocity u̇(t1) = u̇1,

P (u̇1,T ) = −∂t2bed
√

au̇1I1(2
√

au̇1)e−bu̇1 |t2=T

= 1
[
2 sinh

(
T −t1

2

)]2

√
wu̇1

2 sinh t1
2

I1

(√
wu̇1

sinh t1
2

)

× e
− w

et1 −1
−( 1

eT −t1 −1
+ 1

1−e−t1
)u̇1 . (45)

Dividing by P (T ) given in (29), we find the conditional
probability for the velocity distribution at t1 for an avalanche of
duration T . In particular, we get the average avalanche shape,

u̇(t1)T =
4 sinh( t1

2 ) sinh( T −t1
2 )

sinh( T
2 )

+ w

[
sinh( T −t1

2 )

sinh( T
2 )

]2

. (46)

For w → 0, one recovers the stationary avalanche shape
obtained in [22,23]. On the other hand, avalanches following
a pulse of size w > 0 have an asymmetric shape, since u̇(t =
0+) = w. This should provide an elegant way to discriminate
between the two situations experimentally.
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D. Power spectral density and distribution of Fourier modes

In signal analysis, an important observable used to charac-
terize a time series is the power spectral density P (ω) defined
as

P (ω) := lim
T →∞

1
T

∣∣∣∣

∫ T/2

−T/2
eiωt [u̇(t) − u̇(t)]dt

∣∣∣∣
2

. (47)

This gives a measure for the abundance of the frequency
component ω in the time series u̇(t). For a stationary signal
where the two-time velocity correlation function only depends
on the time difference, (47) is equal to its Fourier transform:

P (ω) =
∫ ∞

−∞
eiωt u̇(0)u̇(t)

c
dt. (48)

For driving with constant velocity w(t) = vt , one knows
[3,46] u̇(0)u̇(t)

c = ve−|t |, and hence the power spectrum for
the velocity in the ABBM model is

P (ω) = 2v

1 + ω2
. (49)

We can now proceed further and obtain the probability density
of each Fourier component. We consider (6) with λ(t) =
λ cosωt θ (T − t)θ (t), where T is a large-time cutoff. To solve
(5) with this choice of λ, we substitute ũ(t) = 1

2 + φ′(t)
φ(t) giving

Mathieu’s equation,

φ′′(t) −
(

1
4

− λ cosωt

)
φ(t) = 0.

This is to be solved with the boundary condition ũ(T ) = 0,
i.e., φ′(T ) = − 1

2φ(T ).
The general solution is a linear combination of two Floquet

solutions

φ(t) = eµtP1(t) + e−µtP2(t), (50)

where P1,2(t) are periodic functions. µ = µ(λ,ω) is related
to the conventionally defined Mathieu characteristic exponent
ν(a,q) (in the notation of [47]) by

µ = ω

2i
ν

(
− 1

ω2
,
2λ
ω2

)
.

When λ is real and close to 0, µ is real, has the same sign as λ,
and is odd in λ. Thus, for 0 < t ( T , the solution φ(t) given
in (50) is dominated by the exponentially decaying term

φ(t) ≈ e−µ(|λ|,ω)tP (t),

with P (t) = P1,2(t), depending on the sign of λ. Thus, for
0 < t ( T we have

ũ(t) = 1
2

− µ(|λ|,ω) + P ′(t)
P (t)

. (51)

In order to evaluate (6), one needs to integrate ũ(t) over t from
0 to T . Since P (t) is periodic, its contribution vanishes for
each period,
∫ s+ 2π

ω

s

ũ(t) dt = 2π
ω

[
1
2

− µ(|λ|,ω)
]
, 0 < s ( T . (52)

For constant driving, w(t) = vt and T , 2π
ω

, one thus obtains
using (6)

eλ
∫ T

0 u̇(t) cosωt = ev
∫ T

0 ũ(t) = evT [ 1
2 +i ω

2 ν(− 1
ω2 , 2|λ|

ω2 )]+o(T ). (53)

As expected by symmetry, this is an even function in λ. It
remains real as long as the Mathieu exponent ν is purely
imaginary, which is the case for |λ| < λc(ω). One can interpret
the corresponding Mathieu functions as Schrödinger wave
functions in the periodic potential,

V (x) = 1
4 − λ cos(ωx).

The region |λ| < λc(ω) is the region where the energy E = 0
is outside the energy band(s) of this potential, and all wave
functions are evanescent. At λ = ±λc, one has ν = 0, and for
|λ| > λc, i.e., outside the “band gap,” the expectation value on
the left-hand side of (53) does not exist. This indicates that
the distribution of

∫ T

0 u̇(t) cosωt has exponential tails for any
ω > 0. The exponent of this tail can be computed in terms of
the so-called Mathieu characteristic values ar and br [47].

Furthermore, from (53) one observes the scaling behavior
of the cumulants,

(∫ T

0
u̇(t) cosωt

)nc

∼ T , (54)

which is reminiscent of the central limit theorem.
Taking two derivatives of (53) with respect to λ, and

using ∂2
q

∣∣
q=0+ν(−b2,q) = −i

2b(b2+1) , one verifies once more
(49). However, (53) goes beyond that and gives the full
probability distribution of each frequency component of the
time series u̇(t).

With this, we conclude our examples on the “classical”
ABBM model and move to generalizations which can be
treated by our method as well.

IV. ABBM MODEL WITH SPATIAL DEGREES
OF FREEDOM

An interesting generalization of the ABBM model (1) is
a model with spatial degrees of freedom (e.g., an extended
elastic interface in dimension d > 0), but subject to the same
kind of disorder as in the ABBM model, i.e., a pinning force
correlated as a random walk.

An interface was studied in [23] for quasistatic driving and
it was found that the global motion (i.e., the motion of the
center of mass of the interface) is unchanged by the elastic
interaction. An instanton equation for the other Fourier modes
was derived, but solving it remained a challenge.

Here we extend these results to arbitrary driving velocity.
We first study the simpler case of only two elastically coupled
particles, and present a direct argument to show that the center
of mass is not affected by the elastic interaction and is the same
as for a single particle, i.e., model (1) in a rescaled disorder.
For two particles, the instanton equation is simpler and more
amenable to analytic studies, which allows us to see how local
properties (such as the velocity distribution of a single particle)
are modified. In the last part, we come back to the interface
and show a nonrenormalization property of the theory valid
for any driving velocity.
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A. Two elastically coupled particles in an ABBM-like
pinning-force field

The model we analyze in this section is a two-particle
version of (1):

∂tu1(t) = F1(u1(t)) − m2[u1(t) − w(t)]

+ k[u2(t) − u1(t)],

∂tu2(t) = F2(u2(t)) − m2[u2(t) − w(t)]

+ k [u1(t) − u2(t)] . (55)

We assume F1(u1), F2(u2) to be independent Gaussian
processes with correlations as in (2), i.e.,

[F1(u) − F1(u′)]2 = [F2(u) − F2(u′)]2 = 2σ |u − u′|.

1. Center-of-mass motion

From (55), we obtain the equation of motion for the center-
of-mass velocity ṡ(t) = 1

2 [u̇1(t) + u̇2(t)]:

∂t ṡ(t) = 1
2∂t [F1(u1(t)) + F2(u2(t))] − m2[ṡ(t) − ẇ(t)].

(56)

To better understand the effective noise term ∂t [F1(u1(t)) +
F2(u2(t))], let us compute its generating functional,

G[λ] = e
∫
t
λ(t) 1

2 ∂t [F1(u1)+F2(u2)]

= e−
∫
t,t ′ λ(t)λ(t ′) σ

8 ∂t ∂t ′ [|u1(t)−u1(t ′)|+|u2(t)−u2(t ′)|].

Using monotonicity [48,49] of the trajectories (9), we obtain

G[λ] = e
∫
t λ(t)2 σ

4 [u̇1(t)+u̇2(t)] = e
∫
t λ(t)2 σ

2 ṡ(t).

Note that this is the same generating function as for a random
pinning force F (s(t)) with correlations

[F (s) − F (s ′)]2 = σ |s − s ′|. (57)

Thus, we can rewrite (56) as

∂t ṡ(t) = ∂tF (s) − m2 [ṡ(t) − ẇ(t)] , (58)

with a rescaled disorder amplitude σ ′ = σ
2 , reducing it to the

same form as (7).
This argument extends straightforwardly to any number of

elastically coupled particles, and to the continuum limit. Thus,
we observe that the dynamics of the center of mass of an
extended interface in a pinning-force field, which is correlated
as a random walk, is equivalent to the one-particle ABBM
model (1).

2. Single-particle velocity distribution

On the other hand, observables that cannot be described
solely in terms of the center of mass are more complicated. In
order to obtain the joint distribution of the particle velocities
u̇1(t),u̇2(t), one may follow the same route as in Sec. II B. We
start from

G[λ1,λ2,w] = e
∫
t λ1(t)u̇1(t)+λ2(t)u̇2(t)

= em2
∫
t [ũ1(t)+ũ2(t)]ẇ(t), (59)

where ũ1, ũ2 are solutions of the coupled nonlinear differential
equations

−∂t ũ1(t) + m2ũ1(t) + k[ũ1(t) − ũ2(t)] − σ ũ1(t)2 = λ1(t),

−∂t ũ2(t) + m2ũ2(t) + k[ũ2(t) − ũ1(t)] − σ ũ2(t)2 = λ2(t).

In contrast to (5), these cannot be solved in a closed form
even for simple choices of λ1,2. However, one can obtain a
perturbative solution for small k around k = 0. To give a simple
example, one obtains for monotonous driving w(t) = vt and
one-time velocity measurements λ1,2(t) = λ1,2δ(t):

G(λ1,λ2) = [(1 − λ1)(1 − λ2)]−v

×
{

1+vk(λ1−λ2)
[
− ln(1 − λ1)

λ1(1 − λ2)
+ ln(1 − λ2)

λ2(1 − λ1)

]

+O(k2)
}
, (60)

where we use rescaled units where k denotes k/m2 in the
original units. As one expects from the preceding section, the
correction of order k vanishes if one considers the center-of-
mass motion, λ1 = λ2. If, on the other hand, one considers the
one-particle velocity distribution, i.e., takes λ2 = 0, one gets

G(λ1,0) = (1 − λ1)−v(1+k)
[

1 − vk
λ1

1 − λ1
+ O(k2)

]
. (61)

The Laplace transform can be inverted, giving

P (u̇1) = e−u̇1 u̇−1+v
1

'(v)

×{1 + k
[
v − u̇1 + v ln u̇1 − vψ(v)] + O(k2)

}
,

(62)

where ψ(x) = '′(x)
'(x) is the digamma function. Simulations for

small k confirm this result (see Fig. 3). The next order in k can
likewise be calculated, however the resulting expressions are
complicated and not very enlightening.

A nontrivial consequence of (62) is that the power-law
exponent of the distribution P (u̇1) for small velocities changes
from u̇−1+v to u̇−1+v(1+k).

0 5 10 15 20
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FIG. 3. (Color online) Single-particle velocity distribution P (u̇)
in the two-particle toy model for weak elasticity. Histogram: Nu-
merical results from simulations for k = 0.2. Dashed line: Stationary
distribution in the absence of elastic coupling (k = 0). Solid (red)
line: O(k) result from (62).
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B. Continuum limit and nonrenormalization property

Let us now consider a d-dimensional interface in a (d + 1)-
dimensional medium with a generic elastic kernel gxy , such
that in Fourier space g−1

q=0 = m2. Local elasticity corresponds
to g−1

q = q2 + m2. The corresponding generalization of (1) is

∂tuxt = F (uxt ,x) −
∫

y

g−1
xy uyt + λ̃xt . (63)

For the remainder of this section, we write function arguments
as subscripts in order to simplify notations [i.e., uxt := u(x,t)].
The source λ̃xt ! 0 for the field ũ is a positive driving, and is
related to the velocity of the center of the quadratic well ẇ by
λ̃xt = g−1

xx ′ẇx ′t .
The pinning force is chosen Gaussian and uncorrelated

in x,

F (u,x)F (u′,x ′) = δd (x − x ′)1(u,u′). (64)

In the u direction, analogously to (2), we assume Brownian
correlations, i.e., uncorrelated increments: ∂u∂u′1(u,u′) =
δ(u − u′). This does not fix F uniquely, with, e.g., two possible
explicit choices in (74) and (75) below. However, differences
only arise for the position u but not for the velocity u̇, as will
be discussed below.

Let us write the MSR partition sum in the presence of
sources,

G[λ,λ̃] =
∫

D[u̇]D[ũ]e−S[u̇,ũ]+
∫
xt λxt u̇xt+

∫
xt λ̃xt ũxt .

The generalization of the MSR action (13) to this situation is

S[u̇,ũ] =
∫

xt

ũxt

(
∂t u̇xt +

∫

y

g−1
xy u̇yt − σ u̇xt ũxt

)
. (65)

To arrive at (65), we have again assumed forward-only
trajectories u̇xt ! 0, guaranteed if λ̃xt ! 0 and u̇xti ! 0 at
some large negative initial time ti .

The solution in Sec. II B generalizes straightforwardly to

G[λ,w] = e
∫
xt λxt u̇xt = e

∫
xt ũ

(s)
xt [λ]λ̃xt , (66)

where ũ(s)[λ] is defined as the solution of

∂t ũ
(s)
xt −

∫

y

g−1
xy ũ

(s)
yt + σ

(
ũ

(s)
xt

)2 = −λxt . (67)

In principle, this can be used to compute any observable of
the d-dimensional theory. In practice, Eq. (67) for ũ is hard to
solve analytically for most cases.

In the remainder of this section, instead of discussing
specific examples, we show a conceptual consequence of (66):
The action (65) does not renormalize. The effective action '
is equal to the microscopic action S in any dimension d.

According to (66), the generating functional for connected
graphs W [λ,λ̃] evaluates to

W [λ,λ̃] = ln G[λ,λ̃] =
∫

xt

ũ
(s)
xt [λ]λ̃xt .

To perform the Legendre transform from W to the effective
action ' [50], we introduce new fields u̇xt [λ,λ̃], and ũxt [λ,λ̃],
defined by

ũxt = δW [λ,λ̃]
δλ̃xt

= ũ
(s)
xt [λ], (68)

u̇xt = δW [λ,λ̃]
δλxt

=
∫

x ′t ′

δũ
(s)
x ′t ′[λ]
δλxt

λ̃x ′t ′ . (69)

Here and below we drop the functional dependence on the
sources when no ambiguity arises. Equation (68) shows that
ũ

(s)
xt [λ] is really the field ũxt appearing in the effective action,

hence (67) allows to express the field λxt (on which W
depends) in terms of ũxt (on which ' depends).

We can now write down the effective action '[u,ũ]:

'[u̇,ũ] =
∫

xt

u̇xtλxt +
∫

xt

ũxt λ̃xt − W

=
∫

xt

u̇xtλxt since W =
∫

xt

ũxt λ̃xt

= −
∫

xt

u̇xt

(
∂t ũxt −

∫

y

g−1
xy ũyt + σ ũ2

xt

)

=
∫

xt

ũxt

(
∂t u̇xt +

∫

y

g−1
xy u̇yt − σ u̇xt ũxt

)

= S[u̇,ũ]. (70)

This is exactly the same as the bare action S in (65). This
nonrenormalization of the action for the particle velocity
in ABBM-like disorder is also consistent with a one-loop
calculation using functional RG methods (see Appendix B).
It is a very nontrivial statement, and shows that, in some
sense, the MSR field theory for monotonous motion in
ABBM-like disorder is exactly solvable in any dimension. The
monotonicity assumption implies that the derivatives arising in
the formulas above must be performed in the neighborhood of a
strictly positive driving source λ̃xt > 0. Using the relationship,

u̇xt [λ,λ̃] =
u̇xt exp[

∫
x ′t ′ λx ′t ′ u̇x ′t ′]

exp[
∫
x ′t ′ λx ′t ′ u̇x ′t ′ ]

(71)

(where the average is performed in the presence of ẇ = λ̃),
one sees that (69) maps positive λ̃ onto positive u̇. On the other
hand, the condition λ̃ ! 0 can be expressed using λ̃xt = δ'

δũxt

as

ũxt "
∂t u̇xt +

∫
y
g−1

xy u̇yt

2σ u̇xt

. (72)

We conclude that the effective action '[u̇,ũ] is given by the
bare action S in the sector of the theory where u̇ ! 0 and
(72) holds as a necessary condition. This in no way implies
that ' = S for values of the fields where this monotonicity
assumption does not hold. The case of nonmonotonous motion
and/or nonmonotonous driving is highly nontrivial and will be
studied elsewhere.

In the following section, we shall see how this result
generalizes to the field theory of the position u(t), where the
relationship between S and ' is slightly more complicated.
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V. FIELD THEORY FOR THE POSITION VARIABLE

So far, we have considered observables that can be
expressed in terms of the ABBM velocity u̇(t), or in the case of
a manifold u̇(x,t). Here we consider the position u(x,t) itself.
One can then formulate the MSR path integral in terms of u
and û, analogous to (12). This was done for a d-dimensional
interface in short-ranged disorder in [24], as a starting point for
a dc − d expansion. Here we focus on the simpler and solvable
case of the ABBM model, where the MSR path integral reads

G[λ,w] = e
∫
t λ(t)u(t) =

∫
D[u,û]e−S[u,û]+

∫
t λ(t)u(t),

S[u,û] =
∫

t

û(t){∂tu(t) + m2[u(t) − w(t)]}

− 1
2

∫

t,t ′
1(u(t),u(t ′))û(t)û(t ′). (73)

Here, 1(u,u′) = F (u)F (u′) is the disorder correlation func-
tion. One mathematically simple choice is to assume the
random force F (u) to be a one-sided Brownian motion and
restrict to u > 0:

1(u,u′) = 2σ min(u,u′) = σ (u + u′ − |u − u′|). (74)

Another common choice is the two-sided version, i.e., a
Brownian motion on the full real u axis pinned at F (u = 0) =
0. With either choice, however, the random force is nonsta-
tionary and one loses statistical translation invariance. This is
unnatural for certain applications, for example approximating
extended elastic interfaces above the critical dimension. In this
context, one chooses a stationary variant of (74),

1(u,u′) = 1(u − u′) = 1(0) − σ |u − u′|. (75)

Since a stochastic process F (u) can only satisfy (75) for all
u in some limit, we always assume (75) to be regularized at
large |u − u′|.

For observables that can be expressed in terms of the
velocity u̇, only ∂t∂t ′1(u(t),u(t ′)) enters the MSR action (cf.
Sec. II B). Hence, choosing (74) or (75) yields the same result
(13). However, the choice does matter if one is interested in
observables depending on the position, like the mean pinning
force fp := m2[u(t) − w(t)].

In contrast to the velocity theory discussed in the preceding
sections, fixing a distribution of positions u(ti) as the initial
condition is problematic. Indeed, in general one cannot exclude
that this initial condition leads to backward motion u̇(ti) < 0
for some realizations of the disorder. Hence for the stationary
Brownian landscape (75) we will choose ti = −∞ and assume
that the driving ẇ(t) ! 0 is such that at fixed times the initial
condition is forgotten, as discussed in Sec. III C 1. We claim
that then

G[λ,w] = e
∫
t λ(t)u(t)

= em2
∫
t û(t)w(t)+ 1(0)

2m4 [
∫
t λ(t)]2

[
1 − σ

m4

∫

t

λ(t)
]
, (76)

where all time integrals are over ] − ∞,∞[. The function
û(t) = −∂t ũ(t), where ũ(t) is a solution of

∂t ũ(t) − m2ũ(t) + σ ũ(t)2 − σ ũ(t)ũ(−∞) = −
∫

t ′>t

λ(t ′).

(77)

In the particular case of the one-sided Brownian landscape
(74), we only consider the initial condition u(ti) = 0. Since
F (0) = 0 in that case, for w(ti) ! 0 and ẇ(t) ! 0 the motion
will be forward. Then the generating function G[λ,w] in (73)
takes a form analogous to (6),

G[λ,w] = e
∫
t>ti

λ(t)u(t) = e
m2
∫
t>ti

û(t)w(t)
, (78)

where û(t) = −∂t ũ(t) and ũ(t) is a solution of (5). In the
remainder of this section, we shall prove the above statements
and then apply these formulas to determine the distribution of
the single-time particle position u(t).

A. Generating functional for stationary Brownian potential

Using the assumption of monotonous motion, the disorder
term in the action (73) can be rewritten as

1
2

∫

t,t ′
1(u(t),u(t ′))û(t)û(t ′)

= 1(0)
2

[ ∫

t

û(t)
]2

− σ

∫

t,t ′
u(t)û(t)û(t ′)sgn(t − t ′).

Following the same approach as in Sec. II B, evaluating the
path integral over u(t) in (73) yields

∫
D[û]em2

∫
t
û(t)w(t)+ 1(0)

2 [
∫
t
û(t)]2

δ

(
∂t û(t) − m2û(t)

+ σ û(t)
∫

t ′
û(t ′)sgn(t ′−t) + λ(t)

)
. (79)

Thus

G[λ,w] = N em2
∫
t û(t)w(t)+ 1(0)

2 [
∫
t û(t)]2

, (80)

where û(t) is a solution to the equation

∂t û(t) − m2û(t) + σ û(t)
∫

t ′
û(t ′)sgn(t ′ − t) = −λ(t). (81)

Substituting ũ(t) :=
∫∞
t

û(t)dt , one recovers (77). ũ(−∞) is
obtained from

−m2
∫ ∞

−∞
û(t) = −m2ũ(−∞) = −

∫ ∞

−∞
λ(t ′) dt ′. (82)

Note that ũ(−∞) vanishes for λ such that
∫
t ′ λ(t ′) = 0. These

are exactly those observables which can be expressed in terms
of the velocity (or, equivalently, position differences).

As in Sec. II, N in (80) is the normalization of the path
integral and the Jacobian of the operator inside the δ functional
in (79). It is independent of w(t), but we cannot fix its value at
w(t) = const as we did for the velocity theory in Sec. II: Even
if one keeps w = const for a long time, the distribution of u
will remain nontrivial [unlike the distribution of u̇, which will
become δ(u̇)]. Here, to fix N we compare to the disorder-free
solution (σ = 0) for which the trajectory u(t) is deterministic
and satisfies (80) with N = 1. Hence, we can write N as a
ratio of functional determinants arising from the δ-functional,

N−1 = det(∂t − m2 − 2T )
det(∂t − m2)

= det(1 + R2). (83)
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Here, R is the disorder-free propagator

R := (∂t + m2)−1 ⇒ Rt1,t2 = θ (t1 − t2)e−m2(t1−t2), (84)

and 2 is the disorder “interaction” term, or “self-energy”

2T
t2,t1

= 2t1,t2 = σδ(t1 − t2)
∫

t ′
û(t ′)sgn(t1 − t ′)

+ σ û(t2)sgn(t2 − t1). (85)

By explicit computation (see Appendix B), one verifies that

tr (R2)n = −
[

− σ

m2

∫

t

û(t)
]n

,

and hence

det(1 + R2) = exp tr ln(1 + R2) =
(

1 − σ

m2

∫

t

û(t)
)−1

.

From (81), one further knows that
∫
t
û(t) = 1

m2

∫
t
λ(t).

In total, this proves the expression (76) for the stationary
case,

G[λ,w] = em2
∫
t
û(t)w(t)+ 1(0)

2m4 [
∫
t
λ(t)]2

[
1 − σ

m4

∫

t

λ(t)
]
. (86)

One sees again that for observables expressed in terms of
the velocity, where

∫
t
λ(t) = 0, the simpler expression (6) is

recovered.
In the language of perturbative field theory, the nontriv-

ial functional determinant signifies nonvanishing one-loop
diagrams [51]. This is in contrast to the theory for the
velocity (Sec. II B), where all observables were given by
tree-level diagrams. These loop corrections mean that the
nonrenormalization property discussed in Sec. IV B has to be
amended when considering the particle position in a stationary
potential. After renaming the driving w to λ̂ = m2w, the
source for the field û, the generating functional for connected
correlation functions becomes

W [λ,λ̂] =
∫

t

ût [λ]λ̂t + 1(0)
2m4

(∫

t

λt

)2

+ ln
(

1− σ

m4

∫

t

λt

)
,

where ût [λ] is a solution of (81). Following the same procedure
as in Sec. IV B, one obtains the effective action

'[u,û]

=
∫

t

ut

[
−∂t û(t) + m2û(t) − σ û(t)

∫

t ′
û(t ′)sgn(t ′−t)

]

− 1(0)
2

[∫

t

û(t)
]2

− ln
[

1 − σ

m2

∫

t

û(t)
]

= S[u,û] − ln
[

1 − σ

m2

∫

t

û(t)
]

. (87)

We thus see that the property' = S seen for the velocity theory
is only changed by a simple contribution from the one-loop
corrections. The equal-time part of the ûn term of these loop
corrections coincides with a previous result in [52].

In fact, this calculation can be extended to the d-
dimensional interface with elastic kernel gq of Sec. IV B. There
too it ensures that for the position theory, and monotonous
driving, ' differs from S only via the logarithm of a (one-loop)
functional determinant. Thus, two- and higher-loop corrections

to correlation functions and the effective action vanish. Its
expression is particularly simple in the case of a uniform
λxt = λ(t) leading to a uniform saddle point ûxt = û(t):

Wone-loop = Ld

∫
ddq

(2π )d
ln
[

1 − σgq

m2

∫

t

λ(t)
]
,

' − S|uniform û = Ld

∫
ddq

(2π )d
ln
[

1 − σgq

∫

t

û(t)
]
. (88)

Ld is the volume of the system. Details and a more general
discussion are given in Appendix B, Appendix C, and [24].

B. One-sided Brownian potential

It is instructive to give for comparison the solution for the
simpler case of the correlator (74). Using the assumption of
monotonous motion, the disorder term in the action (73) can
be rewritten as

σ

∫

t,t ′
min(u(t),u(t ′))û(t)û(t ′) = 2σ

∫

t

u(t)û(t)
∫

t ′>t

û(t ′).

(89)

Following the same approach as in Sec. II B, evaluating the
path integral over u(t) with initial condition u(ti) = 0 in (73)
yields Eq. (78), where û(t) is a solution to the equation

∂t û(t) − m2û(t) + 2σ û(t)
∫

t ′>t

û(t ′) = −λ(t). (90)

Note that as in Sec. II B, the initial condition u(ti) = 0 ensures
that G[λ,w = 0] = 1. Hence the functional determinant anal-
ogous to (83) is equal to 1 in this case. This is also checked by
a direct calculation in Appendix B. For λ(t) nonvanishing only
around t , ti and w(t) , w(ti), we expect that the influence
of the initial condition is negligible. In this particular limit,
(78) should hold independently of the initial condition.

Introducing ũ(t) :=
∫
t ′>t

û(t ′), (90) gives the following
equation for ũ(t):

∂t ũ(t) − m2ũ(t) + σ ũ(t)2 = −
∫

t ′>t

λ(t ′), (91)

where we used that ũ(t) → 0 for t → +∞ [we recall that û(t)
must vanish at both ±∞].

C. Example: Single-time position distribution

To give a simple application of (76), we compute the
distribution of the position u(t) at a single time. To do this, set
λ(t) = λδ(t − t0) in (73). For the Brownian case, one obtains

û(t) = λ(1 − 4λ)θ (t0 − t)
{

sinh
[√

1−4λ(t−t0)
2

]
−

√
1 − 4λ cosh

[√
1−4λ(t−t0)

2

]}2 .

For the stationary case (77), û(t) reads

û(t) = λ (1 − λ)2 e−(t−t0)(1−λ)θ (t0 − t)
[e−(t−t0)(1−λ) − λ]2

.

In both cases, the θ functions come from causality, since
the driving w(t) for t > t0 cannot influence the measured
position u(t0). Hence both ũ(t) and û(t) = −∂t ũ(t) must both
be identically zero for t > t0.
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Let us assume a constant driving velocity, and write w(t) =
v(t − ti) + wi . Then, for the one-sided Brownian with u(ti) =
0 and wi ! 0, we have

G(λ) = eλut0 = e
∫ t0
ti

dt ′û(t ′)vt ′
.

This leads to a complicated formula that simplifies in the limit
ti → −∞ at fixed w(t0),

G(λ) =
( −2λ

1 − 4λ −
√

1 − 4λ

)−v

e
w(t0)

2 (1−
√

1−4λ). (92)

For the stationary case (restoring units), this is

G(λ) = em2
∫
t ′ û(t ′)vt ′ dt ′+ 1(0)

2m4 λ2
(

1 − σ

m4
λ
)

=
(

1 − σ

m4
λ
) m2v

σ
+1

eλvt0+ 1(0)
2m4 λ2

.

Inverting gives a valid distribution only for |ut0 − vt0| (
σ/1(0), which coincides with the cutoff, which should be
used to regularize the stationary Brownian landscape (75).

VI. GENERALIZATIONS

In light of the interesting results obtained for (1), it is natural
to ask whether our approach can be extended. In particular, one
might want to replace the response function in (1) by a more
general response kernel. For example, in order to model eddy
currents which change the avalanche shape in real magnets
[3,53], one may want to include second-order derivatives in
time.

For this, it is useful to view the calculation in Sec. II B
from another perspective. Equation (5) for ũ is identical to
the saddle-point equation obtained from the action (13) in the
presence of the source λ by taking a functional derivative with
respect to u̇(t). The result (6) is then the value of Z at the
saddle point obtained by solving (5) for the given choice of λ.
The other “coordinate” of the saddle point (which happens not
to influence the value of Z in this case, however) is the field
u̇(t), fixed by the equation obtained by a functional derivative
of (13) with respect to ũ(t),

∂t u̇(t) + m2 [u̇(t) − ẇ(t)] − 2σ u̇(t)ũ(t) = 0. (93)

This is the trajectory giving the dominant contribution to Z for
a given choice of λ. For example, for λ(t) = λδ(t − t0), ũ(t) is
given by (14); for w(t) = vt , the solution of (93) converging
to v at infinity then reads

u̇(t) = v

(
1 + λ

1 − λ
e−|t−t0|

)
.

Note that it can also be obtained from the two-time gener-
ating function (18), e.g., for t > t0 as u̇(t) = ∂λ2 ln G(λ1 =
λ,λ2)|λ2=0,t2=t,t1=t0 . Indeed, since S = ' for monotonous
motion, the solution of (93) identifies with (71), i.e., the
saddle-point approximation is exact. We thus see, as expected,
that if we concentrate on small velocities (λ → −∞), the
velocity on the dominant trajectory u̇(t) gets closer and closer
to 0 at t0, but never becomes negative.

Now, the action S generalizing (13) with an arbitrary
response kernel Rtt ′ is

S[u̇,ũ] =
∫

t

{
ũ(t)

[∫

t ′
R−1

t t ′ u̇(t ′) − m2ẇ(t)
]

− σ u̇(t)ũ(t)2
}

.

(94)

The saddle-point equations read
∫

t ′
R−1,T

tt ′ ũ(t ′) − σ ũ(t)2 − λ(t) = 0,

∫

t ′
R−1

t t ′ u̇(t ′) − 2σ u̇(t)ũ(t) − m2ẇ(t) = 0. (95)

For a general (bare) response function R, the last term
in the action (94) is not exact, since we cannot assume
monotonicity of each individual trajectory. However, as long
as the saddle-point trajectory defined by (95) for some choice
of λ is monotonous [i.e., satisfies u̇(t) ! 0 for all t], it
gives a well-defined approximation to the value of Z for this
particular λ. Investigating the quality of this approximation is
an interesting avenue for further research.

VII. SUMMARY AND OUTLOOK

In this paper, we have considered the ABBM model with
a monotonous, but nonstationary driving force. Using the
Martin-Siggia-Rose formalism, we obtained the generating
functional for the velocity from a field theory that can be
solved exactly. This was illustrated on several paradigmatic
examples (e.g., a quench in the driving velocity). Using our
formalism, we also succinctly recovered previous results on
the stationary case.

An interesting direction for further research is trying to
generalize these results to nonstationary dynamics of models
which are not mean-field in nature, like d-dimensional elastic
interfaces. Although some work has been done in that direction
[54–57], many questions remain open. Another complication
arises when adding nonlinear terms to the equation of motion
(1) or (63). The effects of the KPZ term [∇u(x)]2 have
been discussed in [58–60]. An analogous term but with a
time instead of a space derivative, i.e., a term u̇2, is related
to dissipation of energy [61] and yields a toy model with
velocity-dependent friction. This is important as a step toward
realistic earthquake models, where it is known that instead
of a constant friction coefficient, one has a complicated
rate-and-state friction law [12–14]. For the hysteresis loop in
the ABBM model, it would be interesting to extend our results
to the case of nonmonotonous driving. Unfortunately, this is
not an easy task: We crucially used both the monotonicity
of the particle velocity, u̇(t) ! 0, and the one of the driving,
ẇ(t) ! 0, to simplify the action and compute the path integral
in Sec. II B. Without this assumption, neither the result (6) nor
the nonrenormalization property in Sec. IV B holds. Assuming
the nonrenormalization property, the mean velocity u̇(t) would
be equal to its value in the system without disorder at all times.
This can be seen, e.g., by taking ∂λ at λ = 0 in formula (3)
and using (6) and (14). However, in numerical simulations one
observes that this property breaks down as soon as the driving
is nonmonotonous, hence at least the term proportional to ũ in
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the effective action is renormalized. We thus leave questions
in this direction for future studies.
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APPENDIX A: DERIVATION OF THE NONSTATIONARY
SOLUTION IN DISCRETIZED TIME

The path-integral derivation of (6) in Sec. II is, to some
extent, formal and neglects subtleties like convergence issues
and boundary conditions. To complement it, we provide here
a rigorous first-principles derivation of (6) by discretizing the
time axis. For a small time step δt , we write (7) as follows:

u̇j+1 − u̇j

δt
= F (uj + δtu̇j+1) − F (uj )

δt
+ m2(ẇj+1 − u̇j+1)

⇒ u̇j+1 = X(u̇j+1) + km2δtẇj+1 + ku̇j , (A1)

with k−1 := 1 + m2δt .
X(u̇j+1) := k[F (uj + δtu̇j+1) − F (uj )] is, by the Markov

property of Brownian motion, a new Brownian motion
with X(0) = 0 and variance X(u̇)X(u̇′) = 2σk2δt min(u̇,u̇′).
Equation (A1) is an implicit equation for u̇j+1, which has, in
general, several solutions u̇j+1 > 0. In fact, its solutions are
the intersections of the Brownian motion X(u̇j+1) with the
line km2δtẇj+1 + ku̇j − u̇j+1. The true u̇j+1 describing the
motion of the particle is the smallest of these solutions.

Hence, the conditional probability distribution for u̇j+1
given u̇j is the first-passage distribution of Brownian motion,
given by

P (u̇j+1|u̇j ) = km2δtẇj+1 + ku̇j
√

4πσk2δtu̇
3
2
j+1

e
− (u̇j+1−km2δtẇj+1−ku̇j )2

4σk2δtu̇j+1 . (A2)

The Laplace transform of this expression, which is the
conditional expectation value for eũu̇j+1 , is given by

E(eũu̇j+1 |u̇j ) :=
∫ ∞

0
eũu̇j+1P (u̇j+1|u̇j )du̇j+1

= e
ẇj+1m2δt+u̇j

2σkδt
(1−

√
1−4ũσ k2δt). (A3)

This can be rewritten as

E(eũu̇j+1 |u̇j ) = em2ũ′ẇj+1δt eũ′u̇j , (A4)

with ũ′ = 1
2σkδt

(1 −
√

1 − 4ũσk2δt). Hence, iterating (A4),
one obtains

e
∑N

j=1 λj u̇j δt = em2 ∑N
j=1 ũj ẇj δt eũ1u̇0 , (A5)

where ũj is defined via the (backward) recursion

ũN+1 = 0,

ũj =
1 −

√
1 − 4(ũj+1δt + λjδt2)σk2

2σkδt
, 0 < j " N.

(A6)

This is the exact solution for the discrete problem with δt >
0. In the continuum limit, we can take the leading order as
δt → 0. (A5) then reduces to the form (4). The recursion for
ũ becomes

ũj − ũj+1

δt
= −m2ũj+1 + λj + σ ũ2

j+1 + O(δt), (A7)

which is the discrete version of (5).
Let us now show the connection with the MSR path integral

discussed in Sec. II B. We discretize the action (13) with time
step δt using the Itô prescription. Keeping u̇j fixed, the path-
integral formula (12) for the generating function (3) gives us
the generating function for u̇j+1 as

E(eλu̇j+1 |u̇j ) =
∫ ∞

−∞
du̇j+1

∫ i∞

−i∞

dũj+1

2π

× e−ũj+1[
u̇j+1−u̇j

δt
+m2(u̇j −ẇj )]δt+ũ2

j+1σ u̇j δt+λu̇j+1 .

(A8)

The integrals over ũj+1 and u̇j+1 can be performed explicitly,
and yield (taking into account δt>0,σ>0,ẇ!0, and u̇j > 0)

E(eλu̇j+1 |u̇j ) = exp[(λ − m2δt + σλ2δt)u̇j + λm2δtẇj ].

(A9)

To leading order for δt → 0 and substituting λ → ũ, this
becomes identical to the generating function (A3). Note
that while the first-passage prescription used to obtain (A3)
assumed u̇j+1 ! 0, in (A8) we formally allow the velocity
u̇j+1 to take any value between −∞ and ∞. Surprisingly,
this yields the same result to leading order in δt . It would be
interesting to understand how a more rigorous MSR approach
could be developed directly on the discrete version for finite
δt using first-passage times.

Analogously, one can derive a discretized path integral for
the position variable u for the one-sided Brownian potential
discussed in Sec. V B.

APPENDIX B: FUNCTIONAL DETERMINANTS AND
ONE-LOOP DIAGRAMS

Here we compute tr(R2)n, where R is given in (84) and 2
in (85). For simplicity, we set σ = m = 1. Let us recall that in
Ito discretization, θ (0) = 0. First, note that

(RT 2T )t1,t2 =
∫

t ′
û(t ′)sgn(t ′ − t2)

× [θ (t ′ − t1)e−(t ′−t1) − θ (t2 − t1)e−(t2−t1)].

Applying this to tr(R2)n = tr(RT 2T )n, one gets

tr(R2)n =
∫

t ′1···t ′n
û(t ′1) · · · û(t ′n)

∫

t1···tn

n∏

j=1

sgn(t ′j − tj )

× [θ (t ′j+1 − tj )e−(t ′j+1−tj ) − θ (tj+1 − tj )e−(tj+1−tj )].

The convention is that tn+1 = t1 and t ′n+1 = t ′1. Now, we
conjecture that for any t ′1 · · · t ′n,

∫

t1···tn

n∏

j=1

sgn(t ′j − tj )[θ (t ′j+1 − tj )e−(t ′j+1−tj )

− θ (tj+1 − tj )e−(tj+1−tj )] = (−1)n+1. (B1)
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We were unable to find an analytic proof, but verified this
conjecture for n " 5. Assuming it for any n, one obtains as
claimed

tr(R2)n = −
[

−
∫

t

û(t)
]n

.

For the one-sided Brownian correlator (74), we find the self-
energy analogous to (85) as

2t1,t2 = −2δ(t1 − t2)
∫

t ′
û(t ′)θ (t ′ − t2) − 2û(t2)θ (t1 − t2).

(B2)

This implies

(RT 2T )t1,t2 = −2
∫

t ′
û(t ′)[θ (t2 − t ′)θ (t ′ − t1)e−(t ′−t1)

+ θ (t ′ − t2)θ (t2 − t1)e−(t2−t1)].

One then finds tr(R2)n = 0 for n ! 1, hence a unit functional
determinant as claimed in the text.

This can be generalized to the d-dimensional interface. We
need to compute the functional determinant det(1 + R2) with

R−1
x1t1,x2t2

= δt1t2 (∂t2δx1x2 + gx1x2 ), (B3)

2x1t1,x2t2 = δx1x2

[
σδt1t2

∫

t ′
ûxt ′sgn(t1−t ′)+σ ûxt2 sgn(t2−t1)

]
.

(B4)

We conjecture that this yields

ln det(1 + R2) = tr ln
(
δxx ′ − σgxx ′

∫

t

ûx ′t

)

= tr ln
[
δxx ′ − σgxx ′

∫

y

gx ′y

∫

t

λyt

]
. (B5)

For the last equality, we used
∫
t
ûxt = gxx ′

∫
t
λx ′t . For a

uniform source, one recovers the expression in the text of
Sec. V A.

APPENDIX C: ONE-LOOP FUNCTIONAL RG
AT FINITE VELOCITY

In [62], the one-loop functional RG equations for a d-
dimensional elastic interface at nonzero driving velocity v > 0
were derived in the Wilson RG scheme. These equations
have resisted analytical (or numerical) solution since then.
Here, instead of using Wilson RG with a hard cutoff in
momentum space, we regularize our model by a parabolic
well with curvature m2. We point out that the stationary ABBM
disorder correlator (64) and (75) yields a simple solution of
the corresponding functional RG equations. This also provides
an independent check of the nonrenormalization property for

ABBM disorder discussed in Sec. IV B using a different
method.

For a d-dimensional interface driven by a parabolic well of
curvature m2 centered at w = vt , one can derive the functional
RG flow equation by computing −m∂m' and reexpressing it
as a function of '. This is done order by order in 1, which
in this appendix denotes the renormalized second cumulant of
the disorder (the local part of the term ûû in '). The resulting
functional RG flow of 1 at finite driving velocity v is [63]

−m∂m1̃(u)

= (ε − 2ζ )1̃(u) + ζu1̃′(u) +
∫ ∞

0
ds1

∫ ∞

0
ds2

e−(s1+s2)

s1 + s2

×{1̃′′(u)[1̃[ṽ(s2 − s1)] − 1̃[u + ṽ(s2 − s1)]]

− 1̃′(u + ṽs1)1̃′(u − ṽs2) + 1̃′[ṽ(s1 + s2)]

× [1̃′(u − ṽs1) − 1̃′(u + ṽs2)]}. (C1)

Here ε = 4 − d, the rescaled correlator is defined via 1(u) =
Adm

ε−2ζ 1̃(umζ ) with A−1
d = ε

∫
ddk

(2π)d (1 + k2)−2, and ṽ =
ηmv/m2−ζ flows as

−m∂m ln ṽ = z − ζ = 2 − ζ −
∫

s>0
e−s1̃′′(sṽ). (C2)

The flow of ṽ arises because the friction is corrected by
disorder. In general, this leads to a nontrivial dynamical
exponent z defined by the relation above. For v → 0, one
recovers the flow at the depinning threshold obtained in [42].
These equations are sufficient [64] for an expansion in ε with
1̃ = O(ε).

Plugging in the correlator for ABBM-type disorder, 1̃(u) =
1̃(0) − σ̃ |u|, and ζ = ε into (C1), one finds

−m∂m1(u) = −σ̃ 2, (C3)

−m∂mṽ = z − ζ = 2 − ε. (C4)

We see that the dynamical exponent z for ABBM-type disorder
takes the value z = 2 in any dimension d. The ABBM form
of the disorder is preserved with −m∂mσ̃ = 0 and only
1̃(0) flowing as −m∂m1̃(0) = −σ̃ 2. This is consistent (for
d = 0) with Eq. (76). In addition, as discussed in Sec. V
and Appendix B, two- and higher-loop corrections vanish in
any d for monotonous motion in ABBM-type disorder. More
precisely, ' − S is the logarithm of a functional determinant
computed in Sec. V. This shows that for ABBM-type disorder,
(C1) is exact to all orders in ε = 4 − d.

We note that for ABBM disorder the correlator remains
nonanalytic for any v [65]. This is, presumably, a peculiarity
of ABBM disorder. For short-ranged disorder this may only
hold until some scale, the nonanalyticity being rounded at
larger scales (small m). However, further studies are needed to
clarify the validity of this hypothesis.
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