
PHYSICAL REVIEW E 93, 042105 (2016)

Dynamical selection of critical exponents

Kay Jörg Wiese
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In renormalized field theories there are in general one or few fixed points that are accessible by the
renormalization-group flow. They can be identified from the fixed-point equations. Exceptionally, an infinite
family of fixed points exists, parameterized by a scaling exponent ζ , itself a function of a nonrenormalizing
parameter. Here we report a different scenario with an infinite family of fixed points of which seemingly only one
is chosen by the renormalization-group flow. This dynamical selection takes place in systems with an attractive
interaction V(φ), as in standard φ4 theory, but where the potential V at large φ goes to zero, as, e.g., the attraction
by a defect.
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I. INTRODUCTION

The renormalzation group (RG) is a powerful tool to study
critical phenomena of all sorts, be it liquid-gas transitions, the
para to ferro transition in magnets, or disordered systems. In
many cases one can identify a single or few relevant couplings
and study the RG-flow projected onto this space. An example
is the famous φ4 theory, whose coupling constant g evolves
under a change of an infrared scale m. This framework is well
understood. Originally introduced by Wilson [1], it has been
treated in many excellent monographs [2–5].

Under more general circumstances, a functional RG ap-
proach is necessary. Let us start from a microscopic theory with
action (energy), in the presence of a source (or background
field) u,

Su[φ] =
∫

ddx
1

2
[∇φ(x)]2 + m2

2
[φ(x) − u]2 + V0(φ). (1)

The partition function,

Z[u] :=
∫

D[φ]e−Su[φ], (2)

explicitly depends on the source u. To one-loop order, the
partition function, evaluated at constant background field u,
and normalized with its counterpart at V = 0, reads

ln

( Z[u]

Z0[u]

)
= −

∫ � ddk

(2π )d
ln

(
1 + V ′′

0 (u)

k2 + m2

)
. (3)

We have explicitly written an UV cutoff �. This equation
is at the origin of nonperturbative renormalization group
schemes [6–9], (confusingly) also referred to as exact RG. To
leading order, the effective action is �(u) = − ln(Z[u]/Z0[u]),
and denoting its local part by V(u), we arrive at the following
functional flow equation for the renormalized potential V(u):

−m∂mV(u) = −m∂m

∫ � ddk

(2π )d
ln

(
1 + V ′′

0 (u)

k2 + m2

)
. (4)

To simplify the treatment, we restrict ourselves to perturbative
RG, retaining only terms local in space. These are the terms

of order V ′′(u), and [V ′′(u)]2, leading to

−m∂mV(u)

=−m∂m

∫ � ddk

(2π )d

[ V ′′(u)

k2 + m2
− 1

2

V ′′(u)2

(k2 + m2)2
+ · · ·

]
. (5)

Taking the limit of � → ∞, and dropping geometric prefac-
tors, the flow equation becomes

−m∂mV(u) = md−2V ′′(u) − md−4 1
2V

′′(u)2 + · · · . (6)

In the infrared (massless) limit we are interested in, the
parameter m becomes small, and the first term can be neglected
as compared to the second one, leading to the simple flow
equation

−m∂mV(u) = −md−4 1
2V

′′(u)2 + · · · . (7)

This equation reproduces the standard RG equation for the φ4

theory; indeed, setting

V(u) = m4−d u4

72
g, (8)

we arrive with ε := 4 − d at

−m∂m g = εg − g2 + · · · . (9)

This is the standard flow equation of φ4 theory, with fixed
point g∗ = ε. One knows that the potential Eq. (8) at g = g∗
is attractive, i.e., perturbing it with a perturbation φ2n, n > 2,
the flow will bring it back to its fixed-point form.

This fixed point, and its treatment with the projected
simplified flow Eq. (9) is relevant in many situations, the most
famous being the Ising model. The form of its microscopic
potential, which is plotted in Fig. 1 (red dashed curve), grows
unboundedly for large φ. This is indeed expected for the Ising
model, for which the spin, of which φ is the coarse-grained
version, is bounded.

There are, however, situations, where this is not the case.
An example is the attraction of a domain wall by a defect. In
this situation, one expects that the potential at large φ vanishes,
as plotted on Fig. 1 (solid blue line). The question to be asked
is then: Where does the RG flow lead? This is the question
addressed in this article.

As one sees from Fig. 1, the bounded potential V0 is
negative. In order to deal only with positive quantities, we
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FIG. 1. The function V0(φ), for φ4 theory (top, red, dashed), and
a bounded potential (bottom, blue, solid).

set V(u) ≡ −R(u). The flow equation to be studied is

−m∂mR(u) = m−ε 1
2R

′′(u)2 + · · · . (10)

The potential R(u) appearing in this equation is not dimen-
sionless. Similar to Eq. (8), we define a dimensionless function

R(u) := m−ε+4ζR(um−ζ ). (11)

Note that we have allowed for a nontrivial scaling dimension
ζ of the field u. The factor of m4ζ is necessary to compensate
for the dimension of the derivatives. With these definitions, the
flow equation reads

− m∂mR(u) = (ε − 4ζ )R(u) + ζuR′(u) + 1
2R′′(u)2 + · · · .

(12)

Note that the RG parameter m appearing in this equation has
an intuitive physical interpretation: It is the curvature of the
confining parabolic potential, which renders the problem well-
defined.

In the remainder of this article, we will show that for generic
smooth initial conditions as plotted on Fig. 1:

(i) The flow Eqs. (10) and (12) develop a cusp at u = 0
and a cubic singularity at u = uc > 0.

(ii) Eq. (12) has an infinity of solutions, indexed by ζ ∈
[ ε

4 ,∞].
(iii) The solution chosen dynamically when starting from

smooth initial conditions is ζ = ε
3 .

II. SOME REMARKS ON THE LITERATURE

The problem considered here is far from new, and many
articles have been written on the subject, under the denomi-
nation of “wetting.” The latter can be defined as preferential
absorption of one component of a binary liquid by a wall. Let
us summarize the situation:

(i) Brezin, Halperin, and Leibler [10,11] identified d = 3
as the critical dimension for wetting. They considered mean-
field theory and perturbations around it. This analysis, as
several following ones [12,13], is based on the linear term
in the functional RG flow equation.

FIG. 2. The function Q(u) = R′′(u2 − 1)e−u2/2, and its flow at
the maxima, minima, and zeros.

(ii) Lipowsky and Fisher [14], reviewed in Ref. [15], write
down a functional RG equation similar1 to our Eq. (4). While
the analysis in the linear regime follows the same line of
reasoning as Refs. [10–13], they also analyze the full nonlinear
flow equations. The fixed points found all contain a power-law
tail, and diverge with a power law at small u, or are repulsive.
They are thus very different from the fixed points that we will
discuss below, and to which a short-ranged initial condition
will flow.

(iii) Another possibility is to consider short-ranged po-
tentials V(u) 	 δ(u) from the start. This leads to a renor-
malizable field theory, pioneered by David, Duplantier,
and Guitter [16,17], and further studied by several authors
[18–22]. It is this approach that has been successful to tackle
the renormalization of self-avoiding manifolds [23–32]. As
the potential V(u) has been reduced to a δ function, any
information contained in the shape of V(u) is lost. While
this approach is fully nonlinear, its domain of applicability
is restricted to repulsive potentials. (We consider attractive
potentials.)

III. CUSP FORMATION

Define


 := 1

ε
(m−ε − m−ε

0 ), (13)

where m0 is the mass at which we start to integrate the RG
equation. This leads to

∂
R(u) = 1
2R

′′(u)2. (14)

Note that in the limit of ε → 0 Eq. (13) becomes 
 =
ln(m0/m), and thus Eq. (14) and the results obtained below

1The flow Eqs. (4.14) of Ref. [14] and (3.147) of Ref. [15] contain
a log, and not its derivative as our Eq. (4). The reason is that the flow
with respect to the UV cutoff � is considered. Starting from Eq. (3)
this yields instead of Eq. (4), and up to a multiplicative constant,

�∂�V(u) = �d ln

(
1 + V ′′

0 (u)

�2 + m2

)
.
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are equivalently valid in the critical dimension d = 4. Further
define the curvature function

Q(u) := R′′(u). (15)

It has flow equation

∂
Q(u) = Q(u)Q′′(u) + Q′(u)2. (16)

Let us integrate this flow equation from a microscopic (poten-
tially already coarse-grained) potential R
=0(u) = e−u2/2, i.e.,
Q
=0(u) = (u2 − 1)e−u2/2. This function, plotted on Fig. 2, is
negative for 0 < u < u0 = 1, and positive for u > u0. It has a
zero with linear slope at u0 = ±1. According to Eq. (16),

∂
Q(u0) = Q′(u0)2 > 0, (17)

and the point u0 will move toward 0.
Q(u) further has a minimum at umin = 0 and maxima at

umax = ±√
3. Again according to Eq. (16), for u = umin or

u = umax,

∂
Q(u) = Q(u)Q′′(u) < 0. (18)

Thus, both the minimum and the maxima will decrease.
Since Q(u) is a second derivative of an asymptotically

vanishing function, it integrates to 0,∫ ∞

−∞
duQ(u) = 0. (19)

These observations combined imply that u0 → 0, and that
Q(u) must develop a δ-function singularity at u = 0. Denoting

Q0 := lim
u0→0

∫ u0

−u0

duQ(u), (20)

we can decompose the function Q(u) into a regular and a
singular part,

Q(u) = Q0δ(u) + Qreg(u). (21)

For the functionR(u) it implies a cusp at u = 0, withR′(0+) =
Q0/2.

IV. A FAMILY OF FIXED POINTS

We now search fixed points of Eq. (12). We are looking for
solutions of

(ε − 4ζ )R(u) + ζuR′(u) + 1
2R′′(u)2 = 0. (22)

We found an infinite family of fixed points, parameterized by
the exponent ζ . Some examples are given on Fig. 3. They all
have a linear cusp at u = 0; their Taylor-expansion around
uc = 1 starts with a cubic term,

R(u) = ζ

6
(1 − u)3 + ζ − ε

48
(1 − u)4

+ (ε − ζ )(3ζ − ε)

1440ζ
(1 − u)5

+ (ζ − ε)(3ζ − 2ε)(3ζ − ε)

17280ζ 2
(1 − u)6 + · · · (23)

For u > 1, it vanishes, R(u) = 0. For u < 0, it satisfies R(u) =
R(|u|). We found the following analytic solutions, valid for

FIG. 3. From bottom to top: Solutions for R(u) (divided by ε,
or setting ε = 1) for uc = 1 and ζ = ε

4 (blue), ε

3 (red, dashed), ε

2
(orange), 3ε

4 (green), and ε (purple).

0 � u � 1:

Rζ= ε
4
(u) = ε

[
2u5/2

45
− u4

72
− u

18
+ 1

40

]
, (24)

Rζ= ε
3
(u) = ε

[
1

18
(1 − u)3 − 1

72
(1 − u)4

]
, (25)

Rζ=ε(u) = ε

6
(1 − u)3. (26)

The Taylor expansion around uc = 1, for which the first terms
are displayed in Eq. (23), converges for ζ > ε

4 . At ζ = ε
4 the

function R(u) develops an additional singularity at u = 0, and
there seems to be no solution2 for ζ < ε

4 .

V. NUMERICAL INTEGRATION OF THE
FLOW-EQUATIONS AND FIXED-POINT SELECTION

We now integrate numerically the flow Eq. (14). We solve
this equation by discretization in space u and “time” 
. Several
technical problems need to be considered: First of all, after
developing a cusp, the derivative R′′(0) no longer exists. To
integrate the flow equations, we define

R′′(0) := lim
u→0

R′′(u). (27)

This limit is obtained by evaluating the discrete second
derivative,

R′′(u) = R(u + δu) + R(u − δu) − 2R(u)

(δu)2
, (28)

on grid points 2 to 10, and then extrapolating to the first point
with the help of a cubic extrapolation.

As this procedure seems to be slightly arbitrary, the
following reflection is useful: Instead of making the analysis
on the functionR(u), we can perform it on the functionR(|u|),
defined on the interval u ∈ [0,∞]. Derivatives are defined
for u ∈ ]0,∞]. The natural boundary conditions at u = 0 are

2The convergence radius of the Taylor expansion around 1 is finite
but smaller than 1 for ζ < ε

4 .
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FIG. 4. Early stages in the development of R(u), starting from
the initial configuration R(u) = e−u2/8 (black solid line); subsequent
configurations have a larger value of R(0). The first seven (dotted)
configurations are almost at the same time, for the remaining
configurations t

1/3
i grows linearly. Curves are drawn after 1/δt

iterations, for a total of 21/δt iterations. The last configuration is
close to the fixed point with ζ = ε/3.

Neumann boundary conditions. This parametrization is natural
at large N , see Sec. VIII A.

Second, in order to accelerate the calculations and ensure
numerical stability, we iterate

R
+δ
(u) = R
(u) + δ


2
R′′(u)2, (29)

δ
 = δt

maxu{R′′(u)2} . (30)

The parameters chosen were δu = 0.2 and δt = 10−4. The
result, plotted as a function of u
−1/3, is shown on Fig. 4. The
last curve, properly rescaled, is very close to the analytically
obtained solution for ζ = ε

3 ; this is even better seen on the
derivatives plotted on Fig. 5. That this solution is attained can
be checked with several indicators:

First, making the ansatz R
(u) = f (
) Rζ (g(
)u), inserting
into the flow Eq. (14) and using the fixed point condition

FIG. 6. Approach to the fixed point for ζ = ε

3 , using different in-
dicators, i.e., ζ extracted from R(0)/R′′′(uc)u−3

c (red), R(0)/R′(0)u−1
c

(blue), R′′(0)/R(0)u2
c (green), and Eq. (31) (cyan). The index i

is the number of iterations in units of 105, and the RG-time is

 	 77.4 (i − 1)3.

Eq. (12) yields

ε

ζ
= 4 + f ′(
)g(
)

f (
)g′(
)
. (31)

Both f (
) and g(
) can be measured with high precision, the
first from the value of R(0), the second from an estimation of
the singular point uc.

Three other functions depending on ζ can be calculated
from the fixed-point solution obtained above, and inverted to
give ζ :

e1(ζ ) = R(0)

R′′′(uc)u3
c

, (32)

e2(ζ ) = R(0)

R′(0)uc
, (33)

e3(ζ ) = R′′(0)u2
c

R(0)
. (34)

The results from all four indicators are plotted on Fig. 6.
They consistently show that the numerically obtained solution
converges toward the solution with ζ = ε

3 .

FIG. 5. Q(u) and Q′(u) as obtained from the numerical integration of the flow equation, rescaled with ζ/ε = 1/3. (Thus, the axes are
u
−1/3, as well as Q
1/3 and Q′
2/3.) The initial condition is in black, followed by 21 temporal snapshots, from yellow dashed (the rightmost
curves on both plots) to solid red (left-most curve). One sees how Q converges to an inverted parabola, and Q′ to a straight line with Q′(0+) = 0.
The overshoot in the plots for Q′(u) are numerical artifacts.
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All fixed-point solutions found above have, for u close to
uc, the form

R
(u) 	 A [uc(
) − u]α�
[
u < uc(
)

]
, (35)

with α = 3. This is understood as follows: Making the ansatz

Eq. (35), and imposing the flow equation ∂
R(u,uc(
)) !=
1
2 [∂2

uR(u,uc(
))]2
implies

Aα[uc(
)−u]α−1∂
uc(
)
!= 1

2 [Aα(α−1)]2[uc(
)−u]2α−4.

(36)

The same power-law on both sides is achieved for α = 3,
which also gives the front velocity as

∂
 uc(
) = 6A. (37)

We also remark that given uc, the amplitude R(0) is not fixed
by the flow Eq. (14), even though it is fixed for the solutions
of Eq. (22). Indeed, changing R(u) → κR(u), this can be
absorbed into a change of 
 → κ
. This is the reason why in
Eqs. (32) to (34) all ratios are invariant under both a rescaling
of R and u.

VI. STABILITY ANALYSIS

A. General setting

Consider perturbations of Eq. (12) around a fixed point Rζ

with exponent ζ , setting R(u) = Rζ (u) + ηf (u) + · · · . Then,
to linear order in η, the flow for the perturbation f (u) is

−m∂mf (u) = (ε − 4ζ )f (u) + ζuf ′(u) + f ′′(u)R′′
ζ (u). (38)

In general, we look for eigenmodes fλ of the form

−m∂mfλ(u) = λfλ(u). (39)

If we find fλ(u) with Re(λ) > 0, then the fixed-point solution
Rζ (u) is linearly unstable. Absence of such a solution does not
necessarily allow us to conclude linear stability; the stability
matrix may, e.g., be nondiagonalizable.

B. Stability of the solution with ζ = ε/3

We first establish the stability of the numerically chosen
solution ζ = ε

3 with respect to higher-order polynomials.
Setting f (u) = (1 − u)n, the right-hand side of Eq. (38)
becomes

−m∂m(1 − u)n

= ε

[
− (n − 2)(n − 1)

6
(1 − u)n − (n − 2)n

3
(1 − u)n−1

]
.

(40)

This proves that the highest-order term, proportional to
(1 − u)n in the Taylor-expansion around 1 decays, and a
subdominant one proportional to (1 − u)n−1 is generated.
Finally, all terms with Taylor-coefficients larger than 2 are
eliminated. Hence, the solution with ζ = ε

3 is linearly stable
with respect to polynomial perturbations.

C. Two exact eigenmodes

If Rζ (u) is a solution of the flow-equation, then η4Rζ (u/η)
also is a solution, implying that there is a marginal eigenmode,

f0(u) = ∂η

∣∣
η=1η

4Rζ (u/η) = 4Rζ (u) − uR′
ζ (u). (41)

Another eigenvector exists for λ = −ε, as can be verified
directly,3

f−ε(u) = (ε − 4ζ )R(u) + ζuR′(u). (42)

D. Stability analysis for generic values of ζ

Now consider ζ �= ε
3 . The flow of a perturbation propor-

tional to (1−u)n then becomes

− m∂m(1−u)n = (ζ−ε)(3ζ−2ε)(3ζ−ε)(n−1)n

576ζ 2
(1−u)n+2

+ (ζ−ε)(3ζ−ε)(1−n)n

72ζ
(1−u)n+1

+
(

1

4
(ζ−ε)(n−1)n+ζn+ε−4ζ

)
(1−u)n

+ (n−2)nζ (1−u)n−1

]
. (43)

First note that the space spanned by {1,1 − u} has no nonlinear
terms, hence the rescaling terms lead to λ0 = ε − 4ζ < 0
and λ1 = ε − 3ζ . The latter is positive for ζ < ε

3 . It is,
however, questionable whether these solutions are allowed
by the boundary conditions.

Higher-order terms are generated for all values of ζ other
than ζ = ε

3 or ζ = ε, and these solutions are potentially
unstable. The solution ζ = ε does not produce terms of order
(1 − u)n+2 or (1 − u)n+1, but the coefficient of the term
(1 − u)n becomes ε(n − 3), i.e., these terms grow for n > 3,
contrary to the solution ζ = ε

3 , for which they decay. We can
thus conclude that ζ = ε is unstable.

The situation for generic values of ζ is delicate, as we will
see in a moment: The strategy we followed was to construct
for fixed ζ a Taylor expansion of Rζ (u) around uc = 1 up to
order n, starting at n = 2 (the space n � 1 discussed above
decouples). We then solved the eigenvalue problem, Eq. (38),
in the space of polynomials up to degree n in (1 − u). For
n = 15 the result is plotted on Fig. 7 (left), along with a
blow-up for n = 24 (right). (These are the maximal values
of n to not induce significant numerical errors in the chosen
range of ζ ). As Fig. 7 shows, solutions with ζ > ε

3 are unstable.
The domain with ε

4 � ζ � ε
3 is seemingly stable. Our analysis

is, however, bugged with a truncation problem that does not
disappear for larger n: The exact eigenmodes λ = 0 and
λ = −ε can only be found approximatively in Fig. 7 (right),
where they are indicated by red dashed lines. We interpret
these findings in the sense that there is a strong level-repulsion
between the eigenvalues, induced by the truncation. One can
indeed check that the exact eigenfunctions (41) and (42) are
close to eigenfunctions in the spectrum of eigen-perturbations,
even though their eigenvalues are off.

3It can be constructed from a superposition of the RG-fixed point
and the marginal eigenvector; see Sec. VII B of Ref. [33], where the
twice-derived form is given.
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FIG. 7. Left: The real part Re(λ) of the eigenvalues of Eq. (38) in the space of polynomials up to degree 15. Real eigenvalues are shown
in blue, complex pairs in green. Right: ibid, for n = 24 for the five largest eigenvalues. The red points mark ζ = ε

4 and ζ = ε

3 . Note that the
approximation for Rζ (u) is exact for ζ = ε

3 and ζ = ε. The eigenmodes λ = 0 and λ = −ε are given only approximately. Indeed, one can check
that among the eigenfunctions of those eigenvalues close to 0 and −1 there is one each which strongly resembles the eigenfunction Eqs. (41)
and (42). We interpret the errors as an effective level-repulsion induced by the truncation scheme. This error reduces only very slowly when
going to higher orders.

E. Perturbing the solution ζ = ε
4

The solution ζ = ε
4 is special. It has a continuous spectrum of eigenfunctions, given with λ̄ := λ/ε by

fλ(u) = �
(

7
6 − 1

6

√
25 − 16λ̄

)
�

(
1
6

√
25 − 16λ̄ + 7

6

)
2F1

( − 1
6

√
25 − 16λ̄ − 5

6 , 1
6

√
25 − 16λ̄ − 5

6 ; 1
3 ; u3/2

)
�

(
1
3

)

−u�
(

11
6 − 1

6

√
25 − 16λ̄

)
�

(
1
6

√
25 − 16λ̄ + 11

6

)
2F1

( − 1
6

√
25 − 16λ̄ − 1

6 , 1
6

√
25 − 16λ − 1

6 ; 5
3 ; u3/2

)
�

(
5
3

) . (44)

A similar continuous spectrum is seemingly found when numerically solving the eigenvalue problem around a numerically
obtained solution Rζ (u). We suspect that this analysis is invalid, since we do not impose appropriate boundary conditions at
u = 0.

F. Numerical stability analysis

Our numerical simulation seems to chose the fastest
available stable solution, in accordance to general “wisdom” of
nonlinear systems; however, the latter has never been proven.

FIG. 8. Estimation of ζ from the relation R
(0)u
ε
ζ −4
c

!= Rζ (0),
starting from Rζ (u) with ζ = 0.36ε (top) and ζ = 0.3ε (bottom).
The two fits are ζ (
)/ε = 0.325118 + 5.04594

(l+2.78605×106)0.33522 (top), and

ζ (
)/ε = 0.305428 − 5561.08
l+1.02487×106 (bottom).

We tried to start from another fixed point in our family, and
study whether it is stable when inserted into the flow equations
and solved numerically. On Fig. 8 we show how starting from
fixed-point solutions with ζ = 0.3ε (bottom) and ζ = 0.36ε

(top) the RG flow evolves. While the solution with ζ > ε
3

seemingly converges toward the solution with ζ = ε
3 , this is

not the case for the solution with ζ < ε
3 , in agreement with the

stability analysis presented above. Note, however, that even
for ζ > ε

3 this convergence is on timescales that are orders of
magnitude larger than the convergence from an analytic initial
condition (see Fig. 6).

VII. HIGHER-LOOP ORDER

A. The flow equations

At three-loop order, we obtain the following functional
renormalization group equation for the function R(u),

− m∂mR(u) = (ε − 4ζ )R(u) + ζuR′(u) + 1
2R′′(u)2

+ (
1
2 + ε C1

)
R′′(u)R′′′(u)2

+ C2R
′′′(u)4 + C3 R′′(u)2R′′′′(u)2

+ C4 R′′(u)R′′′(u)2
R′′′′(u), (45)
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with

C1 = 1

4
+ π2

9
− ψ ′( 1

3

)
6

= −0.3359768096723647 . . . (46)

C2 = 3

4
ζ (3) +π2

18
−ψ ′( 1

3

)
12

= 0.6085542725335131 . . . (47)

C3 = ψ ′( 1
3

)
6

− π2

9
= 0.5859768096723648 . . . (48)

C4 = 2 + π2

9
− ψ ′( 1

3

)
6

= 1.4140231903276352 . . . . (49)

The first line contains the rescaling and one-loop terms, the
second line the two-loop terms, and the last two lines the
three-loop terms. The constants are related by C1 = 1

4 − C3

and C4 = 2 − C3 = √
2 − 0.000190372 . . .

B. Problems with the ε expansion, and a consistent series
for the two-loop fixed point

Note that at two-loop order, we get a term
1
2R′′(u)R′′′(u)2 ∼ (1 − u) + · · · , (50)

close to the singularity when inserting any of our one-loop
solutions. Thus, there is no proper ε-expansion for the fixed
point at higher order.

Valuable information is gained by studying the shock front
generated by the flow equation at n-loop order. Without even
calculating the Feynman diagrams, we conclude that

∂
R(u,uc(
))
!	 ∂4n

u [R(u,uc(
))]n+1. (51)

Supposing that

R(u,uc(
)) 	 A[uc(
)−u]α, (52)

the latter equation implies for the shock front

[uc(
)−u]α−1∂tuc(
)
!	 An[uc(
)−u](n+1)α−4n. (53)

This yields

α = 4 − 1

n
. (54)

At two-loop order, we should thus try an ansatz, starting at
(1 − u)7/2 instead of (1 − u)3. Indeed, such an ansatz is
possible, resulting into the series expansion

R(u) = 16
√

ζ (1 − u)7/2

105
√

5
− 2

153
(1 − u)4

+ 4(1 − u)9/2(2601
√

5ζ − 5202
√

5ε + 1540
√

5)

15566985
√

ζ

− 2(1 − u)5(−223686ζ + 200277ε − 45800)

1323193725ζ
+ · · ·

(55)

This series converges for all 0 � u � 1 as long as ε � 0.2. It
is singular as a function of ε. This is shown on Fig. 9.

If we use the same selection criterion as at one-loop order,
namely that Q′(0+) = R′′′(0+) = 0, then this series expansion
yields the exponents presented on Fig. 10. Curiously, when

FIG. 9. The two-loop fixed point for ζ = ε

3 ; at one-
loop order (blue dashed line), and two-loop order for ε =
0.25, 0.5, 0.75, 1, 2, 3, 4 (from top to bottom). The expansion is
rather nonuniform.

ε � 0.4, the exponent ζ/ε does not change; it then increases
slightly, before decreasing for larger values of ε.

C. Numerical integration of the flow equations

We tried to confirm the above findings by a numerical
integration of the flow equations. Again we use discrete
derivatives,

R′′(u) 	 R(u+δu) + R(u−δu) − 2R(u)

(δu)2
, (56)

R′′′(u) 	 R(u+2δu) − 3R(u+δu) + 3R(u) − R(u+δu)

(δu)3
.

(57)

Note that the third derivative involves two points to the right
and only one to the left. For the point u = 0, we take (as
at one-loop order) the first four points except the very first

FIG. 10. The exponent ζ as obtained from the criterion Q′(0)
!=

0, using the series expansion for the two-loop fixed point up to order
(1 − u)15. Points between ε = 0 and ε = 0.25 have been replaced by
a straight line, which continues on the numerically obtained plateau
of unknown origin up to about ε = 0.4.
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FIG. 11. The two-loop fixed point R(u) at ε = 1, as obtained from
a numerical integration of the flow equations (solid red), compared to
the one-loop fixed point (dashed, black). Both solutions were rescaled
to have uc = 1 and R(0) = 1/24.

(i = 2, 3, 4, 5) of the discrete derivative, and interpolate with
a cubic polynomial, which is then extrapolated to i = 1.

Our initial condition is the one-loop solution for ζ = ε
3 ,

at ε = 1. We tried to use a smooth function to start with but
did not succeed to stabilize the system of equations. We have
plotted the shape of the large-time solution on Fig. 11. It shows
significant deviations from its one-loop counterpart. We were
not able to conclude on the asymptotic value of the exponent ζ .
A stability analysis around the fixed-point solutions for ε = 1
yields results compatible with our one-loop findings.

VIII. RELATED MODELS

A. Large N and relation to the KPZ equation

We now consider the generalizsation of our RG equations
to N components, with the aim of taking the limit N → ∞.
To this aim, we replace

R(u) → N R
( u2

2N

)
. (58)

Taking into account the proper index structure, we arrive at the
following (unrescaled) RG equations:

∂
R
( u2

2N

)
= N

2

[
∇i∇j R

( u2

2N

)]2

= N

2

[
δij

N
R′

( u2

2N

)
+ uiuj

N2
R′′

( u2

2N

)]2

. (59)

Noting x := u2

2N
, this yields the flow equations for a generic

number N of components,

∂
R(x) = 1

2
R′(x)2 + 2x

N
R′(x)R′′(x) + 2x2

N
R′′(x)2. (60)

In the limit of N → ∞, this reduces to

∂
R(x) = 1
2R

′(x)2. (61)

FIG. 12. Evolution of Eq. (61): Initial condition at 
 = 0 (black),
followed by 
 = 1 (blue, dashed), 
 = 2 (green dashed), 
 = 3 (purple
dashed), 
 = 4 (red dashed), and 
 = 5 (orange, dashed).

This is the celebrated KPZ equation [34] in the limit of
vanishing viscosity. Its solution is known analytically,

R(x,
) = max
y

[
R(y,0) − 2(x − y)2




]
. (62)

As an example, start with R(x,0) = e−x2
. The result is shown

on Fig. 12. For large times the maxima are either for y = 0 or
y = x, i.e.,

R(x,
) 	
⎧⎨
⎩

1 − 2x2



for 0 � x �

√


2

0 for x >

√


2

. (63)

Note that x2 ∼ u4, yielding the standard φ4-fixed point in the
domain x <

√
l/2.

The rescaled equation reads4

−m∂mR(x) = (ε − 4ζ )R(x) + 2ζxR′(x) + 1
2R′(x)2. (64)

Since in our solution, Eq. (63), the function R(0,
) is constant,
this implies that ε − 4ζ = 0, thus

ζlargeN = ε

4
. (65)

There is a shock-front at xc = √

/2, and the solution R(x,
)

grows linearly for x < xc, i.e., R(x,
) ∼ (xc − x)�(x � xc).
This is similar to what we observed in the preceding sections,
but with a different exponent. There is no ambiguity about
the scaling. That does not mean that there are no solutions for
other values of ζ : Indeed, we found a family of fixed points
with xc = 1, R(xc) = 0, R′(xc) = −4ζ , and series expansion

R(x) = −4ζ (x − 1) + (2ζ − ε)(x − 1)2

+ 1

6

(
8ζ + ε2

ζ
− 6ε

)
(x − 1)3

+ (2ζ − ε)(4ζ − ε)(14ζ − 5ε)(x − 1)4

48ζ 2

+O(x − 1)5

]
. (66)

4Since x ∼ u2, the rescaling term is 2ζxR′(x) instead of ζuR′(u).
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FIG. 13. Fixed points of Eq. (64), for ζ = ε

4 (black solid lines),
and ζ = 0.3ε, 0.35ε . . . 0.6ε (dashed lines, from bottom to top). Only
the solution with ζ = ε

4 is stable.

As for the earlier fixed-point Eq. (22), the series Eq. (66)
converges only for

ζlargeN � ε

4
. (67)

Integrating the fixed-point Eq. (64) numerically, starting at x ≈
1, we also find that only when condition Eq. (67) is fulfilled,
a solution exists from x = 1 down to x = 0. These solutions
are shown on Fig. 13.

All solutions for ζ > ε
4 are unstable and flow to the fixed

point with ζ = ε
4 , as can bee seen from the explicit solution

Eq. (62). The latter conclusion is confirmed from a numerical
stability analysis, presented on Fig. 14. Its flaws are discussed
in the legend of the figure; they may serve as a guideline for the
stability analysis presented in Sec. VI, and which conclusions
are robust, and which should be discarded.

B. Disordered elastic manifolds

For disordered elastic manifolds, the central object of
interest is the disorder correlator R, defined as the disorder
average of the potential-potential correlation function (for an
introduction, see Ref. [35]),

V (x,u)V (x ′,u′) = R(u − u′) δd (x − x ′). (68)

This correlator R has at one-loop order an RG-equation very
similar to Eq. (14) [36–38],

∂
R(u) = 1
2R

′′(u)2 − R′′(u)R′′(0). (69)

The presence of the term −R′′(u)R′′(0) is crucial. For the fixed
point the equation to be solved is

− m∂mR(u) = (ε − 4ζ )R(u) + ζuR′(u)

+ 1
2R′′(u)2 − R′′(u)R′′(0). (70)

Starting from a Gaussian initial condition for R(u), Eq. (69)
flows to a fixed point RRB(u), solution of Eq. (70), and
displayed on Fig. 15, with

ζRB 	 0.2082981ε + · · · . (71)

FIG. 14. Numerical stability analysis of the fixed-point solutions
of Eq. (64), at truncation order 12. All solutions with ζ > ε

4 are
unstable. Real eigenvalues in blue, complex in green; the latter may
be a result of the truncation. Several artifacts due to the truncation can
be observed: First, the two exact eigenvalues λ = 0 and λ = ε are not
correctly reproduced. Second, the largest eigenvalue for ζ = ε

4 is not
zero, but negative, leading to a small domain of stability for ζ/ε up to
0.2523; this effect goes away for larger orders, for which, however,
the rounding errors render the plot unreadable. We might only trust
the information given for the largest eigenvalue. Finally, the domain
for ζ < ε/4 does not contain a fixed point, as the function R(x) is not
defined down to x = 0. This notwithstanding, we can study stability
of the fixed point on a reduced domain for which the Taylor series
would still converge; here the plot is instructive in telling us that
ζ = ε

4 is at the boundary of an island of stability.

This fixed point is relevant for disordered elastic manifolds
subject to random-bond, i.e., short-ranged disorder.

The fixed point has the following properties [37,38]:
(i) RRB(0) > 0, R′

RB(0+) = 0, −R′′
RB(0+) > 0, R′′′

RB(0+) >

0. Thus, RRB(u) is nonanalytic at u = 0, with a nonanalyticity
starting at order |u|3.

(ii) The fixed point has a Gaussian tail, i.e., there exists a
constant c, s.t. RRB(u) < e−cu2

.
(iii) The solution is unique and attractive. The largest two

eigenvalues are λ = 0 and λ = −ε.

FIG. 15. The fixed-point function RRB(u), and its second deriva-
tive −R′′

RB(u) for the fixed-point Eq. (70). This fixed point is relevant
for disordered elastic manifolds with random-bond disorder.
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Thus, this fixed point has a singularity at u = 0, and
no singularity at finite u = uc < ∞. It can be identified
and measured in a numerical simulation [39]. Let us also
mention that for elastic manifolds driven through a disordered
environment, a different fixed point is relevant with ζ = ε

3 .
It can be measured in numerical simulations [40] and in
experiments [41].

IX. CONCLUSIONS

In this article, we considered the seemingly familiar setting
of scalar field theories; the difference being that, contrary to the
standard φ4 potential, ours is bounded and quickly decays to 0.
We found that under RG the effective potential develops a cusp
at the origin, and a cubic singularity ∼ (uc − u)3�(u � uc) at
a shock front uc increasing under RG. While there is an infinity
of such solutions, our evidence suggests that a specific one is
chosen dynamically, when starting from generic smooth initial
conditions; this solution has a roughness exponent (dimension
of the field) ζ = ε

3 .
To put our findings into context, we discussed two similar

equations: The first is as above, but at large number of
components N , which maps onto the KPZ equation. Its
analysis is much easier, leading to a roughness exponent
ζ = ε

4 . The solution also contains a shock front, with a linear
instead of a cubic singularity.

In contrast, for disordered elastic manifolds, a similar
flow equation pertains to the renormalization of the disorder
correlator. For short-ranged initial conditions, it has a single
fixed-point solution with well-defined roughness exponent
ζ 	 0.2083ε, to which the flow naturally tends. It does not
develop a shock singularity at finite uc < ∞.

We finally solved a toy model presented in the Appendix.
Here, singularities appear only after passing via a Legendre
transform from the potential W = lnZ to the action �. Since
at one-loop order both objects have the same RG-equation, we
do not know how to interpret our findings.

Several problems remain a challenge for future research:
(i) What is the proper regularization of the RG equation?
(ii) Are there regularizations that lead to distinct critical

exponents?
(iii) What is the physical interpretation of this new fixed

point? Is it relevant for wetting?
(iv) What is the physical interpretation of the cusp, and of

the cubic shock front?
(v) What is the proper protocol for a simulation?
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FIG. 16. W (w) for the toy model Eq. (A1) ff, with α = −1. From
top to bottom: m = 0.4 (blue solid), m = 0.25 (red dashed), m = 0.1
(green, dot-dashed), m = 10−5 (orange, dotted), and the limit of m →
0 (black, solid). Both axes are rescaled so that the limit of m → 0
exists. (This resealing is a factor of 1/ ln(1/m) for the W axes, and a
factor of 1/

√
ln(1/m) for the w axis.)

APPENDIX: SINGLE DEGREE OF FREEDOM:
A TOY MODEL

We consider the following toy model:

V0(u) = −e−u2
, (A1)

Vm(u,w) = m2

2
(u − w)2. (A2)

We define

Wtoy(w) := ln

(
mα

√
2π

∫ ∞

−∞
du e−V0(u)−Vm(u,w)

)
. (A3)

We can rewrite Eq. (A3) as

Wtoy(w) = ln

(
1+ mα

√
2π

∫ ∞

−∞
du

(
e−V0(u)−1

)
e−Vm(u,w)

)
.

(A4)
Note that we added a factor of mα to mimic for the factor of
m2−d present in Eq. (6). Equation (A4) can more precisely be
evaluated numerically, since the integral can be cut off at, say
u = ±10. This implies the asymptotic behavior for small m,

Wtoy(w) 	 ln

(
1 + mα

√
2π

e−Vm(0,w)
∫ ∞

−∞
(ee−u2 − 1) du

)

= ln
(
1 + 1.043 mα e−Vm(0,w))

≈ 1.043 mα e−Vm(0,w) − 0.5528m2α e−2Vm(0,w) + · · · .

(A5)

If α is positive, the linear term dominates for small m, corre-
sponding to the first term in Eq. (6); a linear approximation of
the flow equations is appropriate. On the other hand, if α < 0,
the limit is nontrivial, and W develops a cusp for m → 0. This
is presented on Fig. 16.

On the other hand, for large m and α = 1, we recover the
initial condition,

Wtoy(w) 	 −V0(w). (A6)
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FIG. 17. R(u) for the toy model Eq. (A1) ff, with m = 1, starting
from Eq. (A5), and using Eq. (A7).

We confirmed both limits numerically. Let us now perform the
Legendre transform (for m = 1),

Wtoy(w) + Rtoy(u) − Rtoy(0) = −uw. (A7)

We have added a constant Rtoy(0), s.t. we can put Rtoy(∞) →
0. This transformation is most easily performed numerically,
plotting u(w) = −W ′

toy(w) versus Rtoy(u(w)) − Rtoy(0) =
W ′

toy(w)w − Wtoy(w). Graphically, this amounts to drawing
the tangent to Wtoy(w), and tracking the intersection of this
tangent with the vertical axis. The outcome of this construction
is shown on Fig. 17. It has three branches: Rtoy(u) starts with
a linear slope at u = 0, resulting from Wtoy(w) with w > 1
(blue curve). It terminates at uc > 0, with a term proportional
to (u − uc)θ (u < uc). The red branch is from w < −1. The
green branch is the image of −1 < w < 1.

It remains to be clarified what this toy model teaches us
about the problem at hand; especially, shall we compare W or
R with the results discussed in the main text?
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