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Distribution of joint local and total size and of extension for avalanches in the Brownian force model
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The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces
of internal space dimension d , driven in a random medium. It is exactly solvable via a nonlinear differential
equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of
the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude.
We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit
of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ0 = 5/3 and
τ = 7/4, depending on whether the force or the displacement is imposed. We show that the extension of a “single
avalanche” along one internal direction (i.e., the total length in d = 1) is finite, and we calculate its distribution
following either a local or a global kick. In all cases, it exhibits a divergence P (�) ∼ �−3 at small �. Most of our
results are tested in a numerical simulation in dimension d = 1.
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I. INTRODUCTION

In many physical systems, motion is in the form of
avalanches rather than smooth. This jerky motion is correlated
over a broad range of space and time scales. Examples
include magnetic interfaces, fluid contact lines, crack fronts
in fracture, strike-slip faults in geophysics, and many more
[1–3]. These systems have been described using the model of
an elastic interface slowly driven in a random medium. This
model is important for avalanches, both conceptually and in
applications [4–6]. The full model of an interface of internal
dimension d, in the presence of realistic short-ranged disorder,
is difficult to treat analytically, and it requires methods such as
the functional renormalization group (FRG) [7–14].

A simpler version of the model, the so-called Brownian
force model (BFM) introduced in [10–13], is very interesting
in several respects. First it is exactly solvable, and several
avalanche observables have been calculated, as discussed
below. Second, it was shown [11,13] to be the appropriate
mean-field theory for the space-time statistics of the velocity
field in a single avalanche for d-dimensional interfaces close
to the depinning transition for d � duc, with duc = 4 for
short ranged elasticity and duc = 2 for long-ranged elasticity.
Remarkably, when considering the dynamics of the center of
mass of the interface, it reproduces the results of the simpler
Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model, a toy
model for a single degree of freedom (particle), introduced
long ago on a phenomenological basis to describe Barkhausen
experiments (magnetic noise) [15,16] and much studied since
[1,12,17]. Last but not least, the BFM is an exact fixed point
of the flow equations of the FRG [12], and it is stable, even for
d < duc. On the other hand, it is also the starting point for a
calculation of avalanche observables beyond mean field, i.e.,
for short-ranged correlated disorder forces, using the FRG in
a systematic expansion in duc − d [11,13].

The key property that makes the BFM (and the ABBM)
model solvable is that the disorder is taken to be a Brownian
random force landscape. Since it can be shown that under
monotonous forward driving the interface always moves
forward (Middleton’s theorem [18]), the resulting equation
of motion for the velocity field is Markovian, and amenable to
exact methods.

Despite being exactly solvable, the explicit calculation of
avalanche observables in the BFM requires solving a nonlinear
instanton equation and performing Laplace inversions, which
is not always an easy task. Global avalanche properties, such
as the probability distribution function (PDF) of global size S,
of duration, and of velocity, have been obtained for arbitrary
driving. Detailed space-time properties, however, are more
difficult. In Ref. [13], a finite wave-vector observable was
calculated, demonstrating an asymmetry in the temporal shape.
Although the distribution of local avalanche sizes Sr has
been obtained in some instances, this is not the case for the
distribution of the spatial extension � of an avalanche, i.e., the
range of points that move during an avalanche, an important
observable accessible in experiments. Note that even the fact
that an avalanche has a finite extent, instead of an exponentially
decaying tail in its spatial extension, is a nontrivial result,
which up to now was only proven for very large avalanches in
the BFM [19].

The aim of this paper is to calculate further observables
for the BFM that contain information about local properties,
such as the joint density of global and local avalanches and
the distribution of extensions. We consider various protocols,
where the interface is either driven uniformly in space or
at a single point; in the latter case, we identify new critical
exponents. We study avalanches following a kick, i.e., a step
in the driving force.

The article is structured as follows: In Sec. II, we recall
the definition of the BFM and of the main avalanche ob-
servables together with the general method to obtain them
from the instanton equation. Section III starts by recalling
the calculation of the distributions of the global size (total
swept area) S and of the local jump size Sr of an avalanche
for an arbitrary kick amplitude. In Sec. III C, we extend this
calculation to the joint density ρ(Sr,S) of local and global
size for single avalanches, i.e., in the limit of an infinitesimal
kick. In Sec. IV, we study the case of an interface driven at a
single point. When the force at this point is imposed, we find
a new exponent τ0 = 5/3 for the PDF of the local jump S0 at
that point. When the local displacement is imposed, we find
a new exponent τ = 7/4 for the PDF of the global size S. In
Sec. V, we show that the extension � of a single avalanche
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TABLE I. Summary of small-scale exponents for different distri-
butions in the Brownian-force model, depending on the observable
and the driving protocol.

Driving protocol Observable Exponent

any force kick global size S τ = 3/2
uniform force kick local size S0 τ0 = 4/3
uniform force kick S0 at fixed S τ0 = 2/3
localized force kick local size S0 τ0 = 5/3
local displacement imposed global size S τ = 7/4
any force kick extension � κ = 3

along one internal direction (i.e., the total length in d = 1) is
finite; we calculate its distribution, following either a local or
a global kick. In all cases, it exhibits a divergence P (�) ∼ �−3

at small �, with the same prefactor. All these exponents can
be found in Table I. Finally, in Sec. VI we study the position
of the interface, which is a nonstationary process. We explain
how the Larkin and BFM roughness exponents emerge from
the dynamics. Most of our results are tested in a numerical
simulation of the equation of motion in d = 1.

The technical parts of the calculations are presented in
Appendixes A–J, together with general material about Airy,
Weierstrass, and elliptic functions. A short presentation of the
numerical methods is also included.

Finally, note a complementary recent study of the BFM,
where the joint PDF of the local avalanche size at all points
was obtained. From that, the spatial shape of an avalanche in
the limit of large aspect ratio S/�4 was derived [19].

II. AVALANCHE OBSERVABLES OF THE BFM

A. The Brownian force model

In this paper, we study the Brownian force model (BFM)
in space dimension d, defined as the stochastic differential
equation (in the Ito sense):

η∂t u̇xt = ∇2
x u̇xt +

√
2σ u̇xt ξxt + m2(ẇxt − u̇xt ). (1)

This equation models the overdamped time evolution, with
friction η, of the velocity field u̇xt � 0 of an interface with
internal coordinate x ∈ Rd ; the space-time dependence is
denoted by indices u̇(x,t) ≡ u̇xt . It is the sum of three
contributions:

(i) Short-ranged elastic interactions.
(ii) Stochastic contributions from a disordered medium,

where ξ is a unit Gaussian white noise (both in x and t):

ξxt ξx ′t ′ = δd(x − x ′) δ(t − t ′). (2)

(iii) A confining quadratic potential of curvature m2, centered
at wxt , acts as a driving. By analogy with field theory, we refer
to m as a mass.

The driving velocity is chosen positive, ẇxt � 0, a neces-
sary condition for the model to be well defined, as it implies
that u̇xt � 0 at all t > 0 if u̇xt=0 � 0.

Equation (1), taken here as a definition, can also be
derived from the equation of motion of an elastic interface,
parametrized by a position field (displacement field) uxt in a

quenched random force field F (u,x),

η∂tuxt = ∇2
xuxt + F(uxt ,x) + m2(wxt − uxt ). (3)

The random force field is a collection of independent one-sided
Brownian motions in the u direction with correlator

F (u,x)F (u′,x ′) = 2σδd (x − x ′) min(u,u′). (4)

Taking the temporal derivative ∂t of Eq. (3), and assuming
forward motion of the interface, one obtains Eq. (1) for the
velocity variable ∂tuxt ≡ u̇xt (we use indifferently ∂t or a
dot to denote time derivatives). The fact that the equation
for the velocity is Markovian even for a quenched disorder is
remarkable and results from the properties of the Brownian
motion.

Details of the correspondence are given in [12,13], where
subtle aspects of the position theory, and its links to the mean-
field theory of realistic models of interfaces in short-ranged
disorder via the functional renormalization group (FRG), are
discussed. In the final section of this paper, we will mention
some properties of the position theory of the Brownian force
model.

B. Avalanche observables and scaling

The BFM (1) allows us to study the statistics of avalanches
as the dynamical response of the interface to a change in the
driving. We consider solutions of (1) as a response to a driving
of the form

ẇxt = δwxδ(t), δwx � 0, δw = L−d

∫
x

δwx > 0. (5)

The initial condition is

u̇xt=0 = 0. (6)

This solution describes an avalanche that starts at time t =
0 and ends when u̇xt = 0 for all x. The time at which the
avalanche ends, also called avalanche duration, was studied in
[20], and its distribution was given in various situations.

Within the description (3), i.e., in the position theory,
it corresponds to an interface pinned. That is, at rest in a
metastable state at t < 0, it is submitted at t = 0 to a jump
in the total applied force m2δw. More precisely, the center
of the confining potential jumps at t = 0 from wx (where it
was for t < 0) to wxt=0+ = wx + δwx (where it stays for all
t > 0). As a consequence, the interface moves forward (since
δwx � 0) up to a new metastable state. This is represented in
Fig. 1, where uxt=0 is the initial metastable state and uxt=∞ is
the new metastable state at the end of the avalanche. In fact,
as we will see from the distribution of avalanche durations,
the new metastable state is reached almost surely in a finite
time. For details on these metastable states and the system’s
preparation, see [12,13].

We now discuss the avalanche observables at the center of
this paper. They can be computed from the solution of (1)
given (5) and (6); they are represented in Fig. 1 for a more
visual definition in the case d = 1.

(i) Global size of the avalanche:

S =
∫

x∈Rd

∫ ∞

0
u̇tx dt. (7)
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FIG. 1. An avalanche in d = 1.

This is the total area swept by the interface during the
avalanche.

(ii) Local size of the avalanche:

Sr = m−1
∫

x∈{r}×Rd−1

∫ ∞

0
u̇txdt. (8)

This is the size of the avalanche localized on a hyperplane,
where one of the internal coordinates is r; the factor m−1

allows us to express S and Sr using the same units (see below).
In d = 1, this yields Sr = m−1

∫ ∞
0 u̇trdt , i.e., the transversal

jump at the point r of the interface. For d > 1, the variable r

is still one-dimensional, and Sr is the total displacement in a
hyperplane of the interface.

(iii) Avalanche extension: For d = 1, the extension (denoted
�) of an avalanche is the length of the part of the interface
that (strictly) moves during the avalanche. The generalization
to avalanches of a d-dimensional interface is done with the
definition

� =
∫ ∞

−∞
dr θ (Sr > 0), (9)

where θ is the Heaviside function. Note that even for a
d-dimensional interface, the extension � is a unidimensional
observable (cf. Fig. 2).

Note that

Sr > 0 ⇔ Supp
⋂

{r} × Rd−1 	= ∅, (10)

where Supp denotes all the points of the interface moving
during an avalanche (i.e., its support).

We use natural scales (or units) to switch to dimensionless
expressions, both for the (local and global) avalanche size Sm,
as for the time τm expressed as

Sm = σ

m4
, τm = η

m2
. (11)

x

yu

l

S   = 0

Supp

r1 r1

r2 S   > 0r2

FIG. 2. An avalanche in d = 2; the transverse direction is
orthogonal to the plane of the figure, and the colored zone corresponds
to the support of the avalanche.

The extension, a length in the internal direction of the interface,
is expressed in units of m−1. This is equivalent to setting m =
σ = η = 1. All expressions below, unless explicitly mentioned
otherwise, are expressed in these units.

While Sm is the large-size cutoff for avalanches, there is
generically also a small-scale cutoff. As in the BFM, the
disorder is scale-invariant (in contrast with more realistic
models with short-ranged smooth disorder). It is the increment
in the driving δw that sets the small-scale cutoff for the local
and global size of avalanches. They scale as min(S) ∼ δw2

(global size) and min(Sr ) ∼ δw3 (local size).

1. Massless limit

There are cases of interest in which the limit m → 0 is
taken. Recalling that the driving force is fxt = m2wxt , in this
limit wxt disappears from the equation of motion. We can,
however, drive with a fixed increase in the applied force (kick)
by replacing in the equations of motion (1) and (3),

m2(wxt − uxt ) → fxt , m2(ẇxt − u̇xt ) → ḟxt . (12)

Note that the small-scale properties of avalanches are un-
changed as they are independent of m. The definition of the
observables is the same except that the factor of m−1 is not
added in the definition (8). To bring σ and η to unity, we then
define time in units of η and displacements u in units of σ . The
results will still have an unfixed dimension of length. In some
of them, the system size L leads to dimensionless quantities
(it also acts as a cutoff for large sizes, although we will not use
this explicitly).

C. Generating functions and instanton equation

To compute the distribution of the observables presented
above, we use a result from [12,13] that allows us to express
the average over the disorder of generating functions (Laplace
transforms) of u̇xt , a solution of (1). In dimensionless units,
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this result reads

G[λxt ] =
〈
exp

(∫
xt

λxt u̇xt

)〉
= e

∫
xt

ẇxt ũxt . (13)

Here 〈· · · 〉 denotes the average over disorder, and
∫
xt

denotes
integration over x ∈ Rd and t ∈ [0,∞[. ũ is a solution of the
differential equation (called instanton equation)

∂2
x ũ + ∂t ũ − ũ + ũ2 = −λxt . (14)

Since avalanche observables that we consider are integrals
of the velocity field over all times (cf. observable definitions
above), the sources λxt we need in (13) are time-independent.
Thus we only need to solve the space-dependent, but time-
independent, instanton equation

ũ′′
x − ũx + ũ2

x = −λx. (15)

The prime denotes derivative with respect to x. In the massless
case discussed above, the term −ũx is absent; all other terms
are identical.

The global avalanche size implies a uniform source in
the instanton equation: λx = λ, while the local size implies
a localized source λx = λδ1(x). To obtain information on the
extension of avalanches, we need to consider a source localized
at two different points in space, λx = λ1δ(x − r1) + λ2δ(x −
r2).

This instanton approach, which derives from the Martin-
Siggia-Rose formulation of (1), allows us to compute exactly
disorder-averaged observables for any form of driving by
solving a “simple” ordinary differential equation, which
depends on the observable we want to compute, i.e., on λxt ,
but not on the form of the driving ẇxt . For a derivation of (13)
and (14), we refer the reader to [13].

III. DISTRIBUTION OF AVALANCHE SIZE

A. Global size

As defined in (7), the global size of an avalanche is the total
area swept by the interface. Its PDF was calculated in [11–13]
and reads, in dimensionless units,

Pδw(S) = δŵ

2
√

πS
3
2

e− (S−δŵ)2

4S . (16)

Here δŵ = Ldδw. This result does not depend on the spatial
form of the driving (it can be localized, uniform, or anything
in between) as long as it is applied as a force on the interface.
Driving by imposing a specific displacement at one point of
the interface is another interesting case that leads to a different
behavior; see Sec. IV B.

We can test this against a direct numerical simulation of the
equation of motion (1). There is excellent agreement over five
decades, with no fitting parameter; see Fig. 3.

Avalanches have the property of infinite divisibility, i.e.,
they are a Levy process. Details on this can be found in
Sec. V of [10] (and references therein) and Sec. 4 of [19]
(and references therein). This can be written as an equality in
distribution, i.e., for probabilities

Pδw1 ∗ Pδw2

d= Pδw1+δw2 . (17)

FIG. 3. Green histogram : global avalanche-size distribution from
a direct numerical simulation of a discretized version of Eq. (1) with
the following parameters: N = 1024, m = 0.01, df = m2δw = 1,
and dt = 0.05. Red line: theoretical result given in Eq. (16). For
details about the simulation, see Appendix H.

It implies that we can extract from the probability distribution
(16) the single avalanche density per unit δw that we denote
ρ(S) and which is defined as

Pδw(S) �
δŵ�1

δw ρ(S). (18)

This avalanche density contains the same information as the
full distribution (16); its expression is

ρ(S) = Ld

2
√

πS
3
2

e− S
4 ∼ S−τ . (19)

It is proportional to the system volume since avalanches occur
anywhere along the interface. It defines the avalanche exponent
τ = 3

2 for the BFM. Due to the divergence when S → 0, it
is not normalizable (it is not a PDF), but as the interface
follows on average the confining parabola, it has the following
property: ∫ ∞

0
dS Sρ(S) = Ld. (20)

In this picture, typical avalanches, i.e., almost all of them,
are of vanishing size, S ≈ 0, or more precisely S � δŵ2, but
moments of avalanches are dominated by nontypical large
avalanches (of order Sm).

B. Local size

We now investigate the distribution of local size Sr as
defined in Eq. (8). We have to specify the form of the kick; we
start with one uniform (in x): δwx = δw for all x ∈ R. In this
case, the system is translationally invariant, and we can choose
r = 0, as any local size will have the same distribution.

The distribution of S0 is obtained by solving Eq. (15) with
the source λx = λδ(x) and then computing the inverse Laplace
transform with respect to λ of G(λ) = exp(δw

∫
x
ũλ), where

ũλ is the instanton solution (depending on λ). This has been
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FIG. 4. Green histogram: Local avalanche-size distribution from
a direct numerical simulation of a discretized version of (1) with
parameters N = 1024, m = 0.01, df = m2δw = 1, and dt = 0.05.
Red line: the theoretical result given in Eq. (21). For details about the
simulation, see Appendix H.

done in [13]; the final result is

Pδw(S0) = 2 × 3
1
3

S
4
3

0

e6δŵδŵ Ai

[(
3

S0

) 1
3

(S0 + 2δŵ)

]

� δŵ�1δw
2Ld−1

πS0
K 1

3

(
2S0√

3

)
. (21)

Here δŵ = Ld−1δw, Ai is the Airy function, and K is the
Bessel function. We use that Ai(x) = 1

π

√
x
3 K1/3( 2

3x3/2) for
x > 0. This distribution has again the property of infinite
divisibility, which is far from obvious in the final results but
can be checked numerically.

The small-δw limit defines the density per unit δw of the
local sizes of a “single avalanche,” which is given by

ρ(S0) = 2Ld−1

πS0
K 1

3

(
2S0√

3

)
�S0�1 Ld−1

6
√

3 �(1/3)

πS0
4/3 ∼ S

−τφ

0 .

(22)

Its small-size behavior defines the local size exponent τφ = 4
3

for the BFM.
The distribution (21), or the density (22), can be compared

to the results of direct numerical simulations of the BFM, and
the agreement is very good over seven decades, without any
fitting parameter; cf. Fig. 4.

Another interesting property is that the tail of large local
sizes behaves as ρ(S0) �S0�1 S

−3/2
0 e−2S0/

√
3, i.e., with the

same power-law exponent in the preexponential factor as the
global size.

C. Joint global and local size

We now extend these results with a new calculation of
the joint density of local and global sizes. This observable is
readily accessible in experiments in which the spatial structure
can be recorded (cf. fracture experiments [4]); this gives a good
test of the mean-field nature of the avalanches, or deviations

thereof. Consider Pδw(S0,S), the joint PDF of local size S0 and
global size S, following a uniform kick δw. For arbitrary δw,
it does not admit a simple explicit form (see Appendix D).
Therefore, We consider again the “single avalanche” limit
δw → 0. It defines the joint density ρ(S,S0), via Pδw(S0,S) �
δw ρ(S0,S), which we now calculate. Equivalently, one can
consider the conditional probability Pδw(S0|S) of the local
size, given that the global size is S. In the limit δw → 0, these
two objects are related by

P0+(S0|S) = ρ(S0,S)

ρ(S)
, (23)

where ρ(S) is given in Eq. (19); the two factors of δw cancel.
For simplicity, we discuss the result for P0+(S0|S), which is
easily possible for experimental data, as one usually bins the
avalanches by their size. While both ρ(S) and ρ(S0,S) are not
probabilities, i.e., they cannot be normalized to 1, we will show
that the conditional probability P0+(S0|S) is well-defined, and
normalized to unity.

A natural decomposition of this conditional PDF is

P0+(S0|S) = P̂0+(S0|S) + δ(S0)

(
1 −

∫
u>0

P̂0+(u|S)

)
. (24)

The first term is the smooth part defined for S0 > 0, which
comes from the avalanches containing the point r = 0. The
second term arises from all avalanches that do not contain
the point r = 0. This term contains a substraction so that the
total probability is normalized to unity,

∫
S0

P0+ (S0|S) = 1, as
it should be.

The smooth part is calculated using the instanton-equation
approach. The details are given in Appendix D. The final result
takes the scaling form

P̂0+(S0|S) = 1

L

4 × 3
2
3

S
2
3

0

e− 2
3 α3

[α Ai(α2) − Ai′(α2)] (25)

with

α := 3
2
3 S

4
3

0

S
. (26)

The factor 1/L is natural since only a fraction of order 1/L of
avalanches contains the point r = 0. As written, this smooth
part is not normalized. Its integral is equal to the probability p

that the point S0 has moved (i.e., S0 > 0) during an avalanche,
for which we find

p :=
∫ ∞

0
dS0P̂0+ (S0|S) = S

1
4

L

3�
(

1
4

)
√

π
. (27)

The scaling of this probability with size shows that in a single
avalanche, only a finite portion of the interface is moving. If
we assume statistical translational invariance, we deduce that

p = 〈�〉S/L, (28)

where � is the extension defined in (9), and 〈�〉S is its mean
value conditioned to the global size S. Hence we deduce that

〈�〉S = 3�
(

1
4

)
√

π
S

1
4 . (29)

In the following sections, we will in fact calculate the PDF of
the extension �.
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By dividing by p, we can now define a genuine normalized
PDF for S0, P̃0+(S0|S), conditioned to both S and S0 > 0, so
that the decomposition (24) becomes

P0+(S0|S) = p P̃0+(S0|S) + δ(S0)(1 − p). (30)

Explicitly,

P̃0+(S0|S) = 4
√

πe− 2
3 α3

3
1
3 �

(
1
4

)
S

2
3

0 S
1
4

[α Ai(α2) − Ai′(α2)], (31)

with α defined in Eq. (26). It is now normalized to unity,∫
S0>0 P̃0+ (S0|S) = 1. One sees that the typical local size

scales as S0 ∼ S3/4. Computing the first moment, we find its
conditional average to be 〈S0〉S,S0>0 =

√
π

3�(1/4)S
3/4. Its PDF has

two limiting behaviors,

P̃0+(S0|S) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
− 12S4

0
S3

�
(

5
4

)
S

3
4

for S0 � S
3
4 ,

√
π

3
2
3 �

(
1
3

)
�

(
5
4

)
S

2
3

0 S
1
4

for S0 � S
3
4 .

(32)

The first one shows that the probability of avalanches that
are “peaked” at r = 0 decays very fast. The second shows
an integrable divergence at small S0 with an exponent 2/3.
Comparing, for instance, with the behavior of the local size
density (22), we see that conditioning on S yields a rather
different behavior and exponent.

It is interesting to note that changing variables in Eq. (31)
from S0 to α, defined in (26), gives

P̃0+(α|S) =
√

3πe− 2
3 α3

�
(

1
4

)
α

3
4

[α Ai(α2) − Ai′(α2)], (33)

which is now independent of S and thus easier to test
numerically as it does not require any conditioning. Figure 5
shows the agreement of these predictions with numerical
simulations in the limit of large S, which is equivalent to
δw = 0+ as used in the theoretical derivation.

D. Scaling exponents

Let us now discuss the various exponents obtained up to
now. They are consistent with the usual scaling arguments
for interfaces. If an avalanche has an extension of order � (in
the codirection of the hyperplane over which the local size
is calculated), the transverse displacement scales as u ∼ �ζ .
Here the roughness exponent ζ for the BFM with short-range
elasticity is

ζBFM = 4 − d. (34)

The avalanche exponent for the global size follows the
Narayan-Fisher (NF) prediction [8]

τ = 2 − 2

d + ζ

BFM−−→ 3

2
. (35)

The global size then scales as S ∼ �d+ζ , since all d internal
directions are equivalent, and the transverse response scales
with the roughness exponent ζ . In turn this gives � ∼ S

1
d+ζ . In

FIG. 5. Distribution of α, defined in Eq. (26), from numerical
simulations. This is compared to the theoretical prediction (33).
Keeping only large-size avalanches, this converges (without any
adjustable parameter) to the δw = 0+ result. Numerical parameters
used here are N = 1024, m = 0.02, δw = 10, dt = 0.01, different
from the one used in Figs. 3 and 4 as we want to be close to the
δw = 0+ limit.

the BFM with short-range elasticity, this leads to � ∼ S1/4, as
found above.

Similarly, the local size, defined here as the avalanche
size inside a dφ-dimensional subspace, is S0 ∼ �dφ+ζ , leading
to a generalized NF value τφ = 2 − 2

dφ+ζ
. In the BFM, we

have focused on the case dφ = d − 1 (i.e., the subspace is a
hyperplane), hence dφ + ζ = 3 and the local size exponent
becomes τφ = 4/3. It also implies S0 ∼ �3, hence S0 ∼ S3/4

as found above.

IV. DRIVING AT A POINT: AVALANCHE SIZES

Here we briefly study avalanche sizes for an interface driven
only in a small region of space, e.g., at a point. There are two
main cases:

(i) The local force on the point is imposed, which in our
framework means to consider a local kick δwx = δw δ(x). In
the massless setting, this amounts to using fx = δf δ(x).

(ii) The displacement ux=0,t of one point of the interface is
imposed.

As we now see, this leads to different universality classes
and exponents.

A. Imposed local force

Consider an avalanche following a local kick at x = 0, i.e.,
δwx = δw0δ(x). In the BFM, the distribution of the global size
of an avalanche does not depend on whether the kick is local in
space or not. One still obtains [13] the global-size distribution
as given in Eq. (16) with δŵ = ∫

x
δwx = δw0.

The distribution of the local size at the point of the
kick is more interesting. The calculation is performed in
Appendix C 2. For simplicity, we restrict to d = 1; the general
case can be obtained as above by inserting factors of Ld−1. The
full result for the PDF, Pδw0(S0), is given in (C7) and is bulky. In
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the limit δw0 → 0, it simplifies. Noting Pδw0(S0) � δw0ρ(S0),
the corresponding local-size density becomes

ρ(S0) = − 1

31/3S
5/3
0

Ai′
(
31/3S

2/3
0

)
. (36)

At small S0, or equivalently in the massless limit at fixed
δf0 = m2δw0, it diverges as

ρ(S0) �
S0�1

S
−5/3
0

32/3�(1/3)
∼ S

−τ0,loc.driv.

0 . (37)

This leads to a new avalanche exponent

τ0,loc.driv. = 5

3
. (38)

The cutoff at small size is given by the driving, S0 ∼ δw
3/2
0 .

At large S0, the PDF is cut by the scale Sm ≡ 1 and decays as

ρ(S0) �
S0�1

S
−3/2
0

2
√

π31/4
e−2S0/

√
3. (39)

B. Imposed displacement at a point

We analyze the problem in the massless case. To impose the
displacement at point x = 0, we replace in the equation of
motion (1) and (3) m2 → m2δ(x). Hence there is no global
mass, but a local one to drive the interface at a point. To
impose the displacement, we consider the limit m2 → ∞. In
that limit, ux=0,t = w0,t , and the local size of the avalanche S0

is equal to δw0.
While the local size S0 is fixed by the driving, we can

calculate the distribution of global sizes. It is obtained in
Appendix E using an instanton equation with a Dirac mass
term. It can be mapped onto the same instanton equation as
studied for the joint PDF of local and global sizes. The Laplace
transform of the result for the PDF is given in Eq. (E6). Its
small-driving limit, i.e., the density, is

ρ(S) =
√

3

�(1/4)S7/4
∼ S−τloc.driv. (40)

with a distinct exponent

τloc.driv. = 7

4
. (41)

V. DISTRIBUTION OF AVALANCHE EXTENSIONS

In this section, we study the distribution of avalanche exten-
sions. In the BFM they can be calculated analytically. We start
by recalling standard scaling arguments.

A. Scaling arguments for the distribution of extensions

As mentioned in the preceding section, we expect that the
global size S and the extension � of avalanches are related by
the scaling relation

S ∼ �d+ζ (42)

in the region of small avalanches S � Sm (in dimensionful
units). From the definition of the avalanche-size exponent

P (S) ∼ S−τ (43)

and using the change of variables P (S)dS = P (�)d�, we find

P (�) ∼ �−κ with κ = 1 + (τ − 1)(d + ζ ). (44)

Using the value for τ from the NF relation (35), we obtain

τ = 2 − 2

d + ζ
. (45)

For short-range elasticity, this yields

κ = d + ζ − 1. (46)

The prediction for the BFM is that ζBFM = 4 − d and τBFM =
3/2, which leads to

κBFM = 3 (47)

in all dimensions. We will now check this prediction from the
scaling relations with exact calculations on the BFM model in
d = 1.

B. Instanton equation for two local sizes

If we want to investigate the joint distribution of two local
sizes at points r1 and r2, we need to solve the instanton equation
with two local sources,

ũ′′
x − ũx + ũ2

x = −λ1δ(x − r1) − λ2δ(x − r2). (48)

This solution is difficult to obtain for general values of λ1 and
λ2. Nevertheless, λ1,2 → −∞ is an interesting solvable limit,
and sufficient to compute the extension distribution. Let us
denote by ũr1,r2 (x) a solution of Eq. (48) with r1 < r2 in the
limit λ1,2 → −∞. It allows us to express the probability that
two local sizes in an avalanche following an arbitrary kick δwx

are equal to 0,

Pδwx
(Sr1 = 0 ,Sr2 = 0) = exp

(∫
x∈Rd δwx ũr1,r2 (x)

)
. (49)

We further restrict for simplicity to the massless case, i.e.,
without the linear term ũx in Eq. (48). One easily sees from
the latter equation that ũr1,r2 takes the scaling form

ũr1,r2 (x) = 1

(r1 − r2)2
f

(
2x − r1 − r2

2(r2 − r1)

)
. (50)

The function f (x) is a solution of

f ′′(x) + f (x)2 = 0. (51)

It diverges at x = ± 1
2 , vanishes at x → ±∞, and is negative

everywhere: f (x) � 0. As δwx � 0, the latter is a necessary
condition such that the probability (49) is bounded by 1.

In the interval x ∈] − 1
2 , 1

2 [, the scaling function f (x) can
be expressed in terms of the WeierstrassP function [see (I15)],

f (x) = −6P
(

x + 1

2
; g2 = 0; g3 = �(1/3)18

(2π )6

)
. (52)

The value of g3 > 0 is consistent with the required period
2� = 1; see (I12). Note from Appendix I that there is another

solution of the form (52) with g3 = −(2
√

π
�(1/3)

4
1
3 �(5/6)

)
6

< 0,

which violates the condition f (x) � 0, hence it is discarded.
For |x| � 1/2, the function f (x) reads

f (x) = − 6

(|x| − 1/2)2
. (53)
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One property of the solution ũr1,r2 (x) is that it diverges as
∼ (x − r1,2)−2 when x ≈ r1,2. There are thus two cases:

(i) The driving δwx is nonzero at one of these points, or
it vanishes too slowly near this point (e.g., only linearly or
slower). Then the integral in (49) is not convergent, equal to
−∞, which implies

Pδwx
(Sr1 = 0,Sr2 = 0) = 0.

This means that the avalanche definitely contains at least one
of the points r1 or r2.

(ii) If δwx vanishes fast enough, for example if δwx is
localized away from x = ±r1,2 [e.g., δwx = δwδ(x − y) for
some y ∈ R\{r1,r2}], the probability (49) becomes nontrivial.

C. Avalanche extension with a local kick

We now consider a local kick centered at x = 0, i.e., wx =
δw0 δ(x). If further 0 < r1 < r2, then

Pδw0

(
Sr1 = 0,Sr2 = 0

) = Pδw0

(
Sr1 = 0

)
. (54)

This comes from the fact that in the interval x ∈ [−∞,r1],
the solution ũr1,r2 (x) is identical to the instanton solution with
only one infinite source at r1 (in other words, it does not “feel”
the source in r2). This shows, for instance, that the support of
the avalanche is larger than or equal to the set of points where
the driving is nonzero.

This property also shows that avalanches are connected,
i.e., it is impossible to draw a plane where the interface did
not move between two moving parts of the interface. As a
function of r (which is one-dimensional), the support (i.e.,
the set of points where Sr > 0) of an avalanche following a
local kick at x = 0 must be an interval. Since this interval
contains x = 0, we will write it as [−�1,�2] with �1 > 0 and
�2 > 0. This allows us to define the extension of an avalanche
as � = �1 + �2.

To calculate the joint PDF of �1 and �2 for a kick at x =
0, we consider (49) with r1 = −x1 < 0 < r2 = x2. Using the
previous results about the instanton equation with two sources,
and the fact that the interface model is translationally invariant,
we obtain the joint cumulative distribution for �1 > 0 and
�2 > 0:

Fδw0 (x1,x2) := Pδw0 (�1 < x1,�2 < x2). (55)

It can, for any x1,x2 > 0, be expressed in terms of the function
f obtained in the preceding section,

Fδw0 (x1,x2) = Pδw0(Sr1 = 0,Sr2 = 0)

= exp

(∫
x

δw0δ(x) ũ−x1,x2 (x)

)

= e
δw0

1
(x1+x2)2

f (− x2−x1
2(x1+x2) )

. (56)

Since the argument of f is within the interval ] − 1
2 , 1

2 [, we
must use the expression (52).

From this one can obtain several results. First taking x2 →
∞, one obtains the PDF of �1 alone,

Pδw(�1) = 12δw

�3
1

e
−δw 6

�2
1 . (57)

A similar result holds for �2.

� 0.4 � 0.2 0.2 0.4

20

40

60

80

100

FIG. 6. Decay amplitude R(k) as a function of the aspect ratio k

involved in the joint density of � and k, and defined in Eqs. (60) and
(61).

In principle, one can now obtain the distribution of
avalanches extensions,

Pδw0 (�) =
∫ ∞

0
d�1

∫ ∞

0
d�2 δ(� − �1 − �2)∂�1∂�2Fδw0 (�1,�2).

(58)
It has a rather complicated expression. In addition to the total
length, let us define the aspect ratio

k = �1 − �2

2(�1 + �2)
, − 1

2
< k <

1

2
. (59)

Using a change of variables, we obtain the joint density of total
extension and aspect ratio in the limit δw0 → 0,

ρ(�,k) := lim
δw0→0

1

δw0
Pδw0 (�,k) = R(k)

�3
, (60)

R(k) := 6f (k) + 6kf ′(k) +
(

k2 − 1

4

)
f ′′(k). (61)

The function f (x) was defined in Eq. (52). While the
probability as a function of � decays as �−3, the dependence
on the aspect ratio is more complicated and is plotted in
Fig. 6. Note that in this expression f (k) can be replaced by
freg(k) := f (k) + 6

(k+ 1
2 )2 + 6

(k− 1
2 )2 , which is a regular function

of k, vanishing at k = ± 1
2 .

Integration over k gives

ρ(�) = B

�3
with (62)

B = 24 + 2
∫ 1/2

−1/2
freg(k) = 8

√
3π. (63)

D. Avalanche extension with a uniform kick

If a kick extends over the whole system, as, e.g., a uniform kick
δwx = δw, the avalanche will almost surely have an infinite
extension as the local size is nonzero everywhere,

Pδw(Sr = 0) = 0 for any r ∈ R. (64)

However, in the limit of a small δw, which is also the limit
of a “single avalanche,” we can recover the result for the
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distribution of extensions. This is consistent with the idea
that “single avalanches” do not depend on the way they are
triggered. These calculations allow us to obtain the extension
distribution without solving explicitly the instanton equation.
(The use of elliptic integrals is in fact equivalent to the use of
Weierstrass functions as solutions of the instanton equation;
cf. Appendix I.)

We now focus on the following ratio of generating func-
tions:

〈eλ1s0+λ2sr 〉
〈eλ1s0〉〈eλ2sr 〉 (65)

in the limit λ1,λ2 → −∞. It compares the probability that
both local sizes s0 := S0 and sr := Sr are simultaneously 0 to
the product of the two probabilities that each one is 0.

We can express this ratio, using the instanton-equation
approach, as

lim
λ1,λ2→−∞

〈eλ1s0+λ2sr 〉
〈eλ1s0〉〈eλ2sr 〉

= exp

(∫
x

δwx[ũr (x) − ũ∞(x) − ũ∞(x − r)]

)
, (66)

where ũr := ũr1=0,r2=r . We denote by ũ∞ := ũr1=0,r2=∞ the
solution of the instanton equation with one source at r = 0
and the other one at infinity. It is the same as the solution for
only one source in r = 0. The above expression is valid for
any form of driving δwx .

We can now specify the case of small and uniform driving
δwx = δw; the quantity of interest is then

Z(r) =
∫

x

ũr (x) − ũ∞(x) − ũ∞(x − r). (67)

While ũr (x) is not integrable, Z(r) is well defined as the two
ũ∞ terms cancel precisely the two nonintegrable poles located
at x = 0 and x = r .

Using the fact that ũr is a solution of Eq. (48), we can obtain
an expression of Z(r) as an elliptic integral; see Appendix F
for details of the calculation. The formulas written there are for
the massive case, but they only allow us to obtain an implicit
expression for Z(r). However, they allow us to extract the
small-scale behavior of the avalanche-extension distribution
(equivalently the massless limit). For small r , the behavior of
Z(r) is

Z(r) � 4
√

3π

r
. (68)

To understand the connection with the avalanche extension,
we need to get back to the interpretation of (65). Now that
we have specified the kick to be uniform, the two averages
of the denominator are independent of r , and they act only as
normalization constants. The numerator, in the limit of λ1,2 →
−∞, is the probability that both s0 and sr are simultaneously
equal to 0. Deriving this two times with respect to r (which
lets the denominator be invariant) gives the probability that the
avalanche starts in x = 0 and ends in x = r . Dividing by δw

and taking the limit1 δw → 0, we obtain the extension density

1Note that the denominators can then be set to unity. There is no
ambiguity since the calculation could be performed first at finite but

FIG. 7. The distribution of extensions ρ(�), as obtained from the
elliptic integrals (F7) and (F8) (black line). The (straight) green dotted
line is the small-� asymptotics (69), whereas the (curved) red dotted
line is the large-� asymptotics (71). The numerical simulation (green
histogram) is cut at small scale due to discretization effects. Numerical
parameters are N = 210, m = 0.05, dw = 100, and dt = 0.01.

in the limit of a single avalanche as

ρ(�) = 1

δw
∂2
r eδwZ(r)|δw=0+,r=�

= ∂2
r Z̃(r)

∣∣∣∣
r=�

� B̃�−3 when � → 0 (69)

with

B̃ = 8
√

3π . (70)

We recover here the �−3 divergence for small � of the extension
of avalanches. Note that this calculation gives exactly the same
prefactor as in Eq. (62), which confirms that we are studying
the same object, namely a “single avalanche.”

Finally, in the massive case, one can also compute the tail
of the extension distribution, resulting in (see Appendix F)

ρ(�) � 72 �e−� when � → ∞ . (71)

We checked the predictions (69) and (71) with numerical
simulations, c.f. Fig. 7.

VI. NONSTATIONARY DYNAMICS IN THE BFM

The easiest way to construct a position theory equivalent to the
BFM model defined in Eq. (1) is to consider the nonstationary
evolution of an elastic line in some specific quenched disorder,
given in Eq. (3). We refer to Ref. [10] for a more general
introduction to the position, or displacement theory of elastic
interfaces. The disorder considered here has the correlations of
independent one-sided Brownian motions, as given in Eq. (4).

large λi , and setting δw to zero after taking the derivative and dividing
by δw, and only at the end taking the limit of infinite λi .
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Consider the initial condition uxt=0 = 0. We can then
compute the correlation function of the position

uxt =
∫ t

0
u̇xs ds

for a uniform driving wt = vt θ (t), starting at t = 0. The
calculation is sketched in Appendix J. In dimensionless units
and in Fourier space, the result reads

〈uqtu−qt 〉c = v

[
2q2(t − 1) + 2t − 5

(q2 + 1)3
− 4e−(q2+1)t

q2(q2 + 1)3

+ 4e−t

q2(2q2 + 1)
+ e−2(q2+1)t

(q2 + 1)3(2q2 + 1)

]
. (72)

At large times, the displacement correlations behave as
(restoring units)

〈uqtu−qt 〉c �
t→∞

2σvt

(q2 + m2)2
. (73)

The q dependence is similar to the so-called Larkin random-
force model [21], but with a time-dependent amplitude, i.e.,
the effective disorder is growing with time, which is natural
given the correlations of the disorder (4). The correlation of
the position thus remains nonstationary at all times.2

From Eq. (73) one obtains the correlations of the displace-
ment in real space, still in the large-t limit

(uxt − u0t )2 � 2vt

∫
ddq

(2π )d
1

(q2 + m2)2
(1 − cos qx)

∼ vt × x2ζL (74)

with ζL = (4 − d)/2 the Larkin roughness exponent. Note

that the average displacement is uxt = vt − 1−e−m2 t

m2 (see
Appendix J). Hence we see that the BFM roughness scaling
u ∼ x4−d is dimensionally consistent with the correlation at
large times,

(uxt − u0t )2 � 2uxtx
4−d . (75)

This result, ζ = 4 − d = ε, is in agreement with the FRG
approach: the position theory of the BFM model is an exact
fixed point for the flow equation of the FRG with a roughness
exponent ζ = ε, as discussed in [10,12].

VII. CONCLUSION

We presented a general investigation of the Brownian
force model, using its exact solvability via the instanton
equation in various settings. After reviewing the results and
the calculations of [9,11–13], we extended the study in several
directions.

First, we computed observables containing information
about the spatial structure of avalanches in the BFM: the joint
density of S and S0 (or equivalently, the distribution of the
local size S0 at fixed total global size S) and the distribution
of the extension � of an avalanche. These distributions display
power laws in their small-scale regime, which we recovered
using scaling arguments, together with universal amplitudes.

2Note that there are stationary versions of the BFM, which we will
not discuss here; see discussions in, e.g., [11–13].

We also extended the method to study new driving protocols
relevant to distinct experimental setups. The derived results
show new exponents for the small-scale behavior of the
global avalanche-size distribution following a locally imposed
displacement, and for the small-scale behavior of the local-size
distribution following a localized kick.

Finally, we presented results for the nonstationary dynamics
of the BFM, focusing on observables that exist only in the
position theory, such as the roughness exponent. This explains
why both the Larkin roughness and the BFM roughness
(emerging from the FRG approach) play a role in this model,
depending on whether the driving is stationary or not.
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APPENDIX A: AIRY FUNCTIONS

We recall the definition of the Airy function:

Ai(z) :=
∫ ∞

−∞

dt

2π
ei t3

3 +izt . (A1)

The following formula is useful for a ∈ R∗:

�(a,b,c) =
∫

C

dz

2iπ
ea z3

3 +bz2+cz

= |a|−1/3e
2b3

3a2 − bc
a Ai

(
b2

|a|4/3
− csgn(a)

|a|1/3

)
. (A2)

It can be obtained from (A1), deforming the contour C, e.g.,
to z = − b

a
+ iR.

APPENDIX B: GENERAL CONSIDERATIONS ON THE
INSTANTON EQUATION

1. Sourceless equation

a. Massive case

It is useful to start with the simpler sourceless instanton
equation

y ′′ = y − y2. (B1)

Here we denote by a prime the derivative with respect to
x. It can be interpreted as the classical equation of motion
of a particle (of mass 2) in a potential V (y) = −y2 + 2y3

3 ,
represented in Fig. 8. Multiplying by y ′ and integrating once,
we obtain y ′ = ±√

E − V (y), where E is a real integration
constant equivalent to the total “energy” of the particle. Its
phase-space diagram (y,y ′) is represented in Fig. 9.

From Figs. 8 and 9, we see the following:
(i) There is exactly one positive E = 0 solution y+(x)

defined for all x ∈ R, up to a shift x → x + x0. It reads∫ 3/2

y+(x)

dy√
y2 − 2

3y3
= |x| ⇔ y+(x) = 3

1 + cosh x
(B2)

= 3

2

[
1 − tanh2

(
x

2

)]
.
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FIG. 8. Representation of the potential energy V (y) as a function
of y, and lines of constant total energy, with E = 0 in red, E > 0 in
blue, and E < 0 in green.

(ii) There is exactly one negative E = 0 (zero energy) solution
y−(x) defined for all x ∈ R∗, namely

∫ y−(x)

−∞

dy√
y2 − 2

3y3
= |x| ⇔ y−(x) = 3

1 − cosh x
(B3)

= 3

2

[
1 − coth2

(
x

2

)]
.

The functions y−(x) and y+(x) are plotted on Fig. 10.
(iii) There are two classes of solutions with E 	= 0. The first
class is defined on an interval of finite length r(E) with

r(E) = 2
∫ t

−∞

dy√
E + y2 − 2

3y3
, (B4)

where t 	= 0 denotes the smallest real root of E = −t2 + 2
3 t3.

This integral is convergent at large negative y due to the cubic
term, and also near the root y = t (for E → 0 it diverges
logarithmically). If one chooses x = 0 as the center of the

� 0.5 0.5 1.0 1.5

� 1.0

� 0.5

0.5

1.0

FIG. 9. Phase-space diagram, i.e., trajectories represented with
y ′ as a function of y. The case E = 0 is in red, E > 0 is in blue,
and E < 0 is in green. We can see that the properties of the solution
(periodicity, divergences, etc.) depend strongly on the value of E.

interval, the solution y(x) satisfies∫ t

y(x)

dy√
E + y2 − 2

3y3
= |x|. (B5)

It diverges at both ends, x = ±r(E)/2. It is sometimes more
convenient to choose x = 0 as the end point of the interval
]0,r(E)[. Then, for x ∈]0,r(E)[ one has∫ y(x)

−∞

dy√
E + y2 − 2

3y3
= x. (B6)

Setting y = 1
2 − z, this can be rewritten as

√
6

∫ ∞

1
2 −y(x)

dz√
4z3 − 3z + (1 + 6E)

= x. (B7)

This gives, in terms of the Weierstrass elliptic function P ,

y(x) = 1

2
− P

(
x√
6

; g2 = 3,g3 = −1 − 6E

)
. (B8)

It diverges at x = 0 and x = r(E), and it is the proper solution
on the interval ]0,r(E)[; see Appendix I.

The second class of solutions with E 	= 0 exists only for
− 1

3 < E < 0; these solutions are periodic on the whole real
line. As can be seen from Figs. 8 and 9, y(x) varies in a
bounded and strictly positive interval. We will not discuss
these solutions as they will not be needed below.

b. Massless case

Consider now the massless sourceless equation,

y ′′ = −y2. (B9)

The analysis is similar to the massive case discussed above with
V (y) = − 2

3y3. Its solutions have the following properties:
(i) There is no positive E = 0 solution.
(ii) There is only one negative E = 0 solution y−(x) defined

for all x ∈ R∗,∫ y−(x)

−∞

dy√
− 2

3y3
= |x| ⇔ y−(x) = − 6

x2
. (B10)

It can be obtained by considering the limit x � 1 in the
solution (B3).

(iii) There is now only one class of solutions with E 	= 0
(the periodic ones have disappeared). They are defined on
an interval of length r(E). They have E = 2

3 t3, hence t =
(3E/2)1/3 and

r(E) = 2
∫ t

−∞

dy√
2
3 t3 − 2

3y3

=
{√

6π
(

2
3|E|

)1/6 �(1/3)
�(5/6) , E > 0,√

6π
(

2
3|E|

)1/6 2�(7/6)
�(2/3) , E < 0.

(B11)

The solution y(x) satisfies for x ∈]0,r(E)[∫ y(x)

−∞

dy√
E − 2

3y3
= x. (B12)
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FIG. 10. Solutions with energy 0 of Eq. (B1); left: y+(x), right: y−(x).

It can be expressed in terms of the Weierstrass function,

y(x) = −P
(

x√
6

; g2 = 0,g3 = −6E

)
. (B13)

It diverges at x = 0 and x = r(E). The periods are consistent
with

√
6 × 2� (see Appendix I) using the relation �(7/6)

�(2/3) =
�(1/3)3

4×21/3π3/2 . Note also the relation �(1/3)
�(5/6) = 2×22/3π3/2

3�(2/3)3 .

2. Instanton solution with a single δ source

We now use these results to construct the solutions in the
presence of sources. For a single δ source this was done in
[9] and [13]. We first recall and then extend this analysis, as a
more general approach is needed here.

a. Massive case

Consider the instanton equation

ũ′′(x) − ũ(x) + ũ(x)2 = −λδ(x). (B14)

We are looking for a solution defined for all x ∈ R. Other
physical requirements3 (e.g., from the derivation of the
dynamical action) are that ũ(x) vanishes as x → ±∞, and
that the solution is analytic around λ = 0 (obtainable in a
power series in λ). We need a function that is a piecewise
solution of Eq. (B1) for x ∈] − ∞,0[ and for x ∈]0,∞[, with
a discontinuity in its derivative,

ũ′(0+) − ũ′(0−) = −λ. (B15)

As we have seen in the previous appendix, in order to be defined
on an infinite interval, it must be constructed from the zero-
energy E = 0 solutions y±(x) of (B1) up to a shift x → x +
x0. By symmetry, it reads ũ(x) = y±(|x| + x0), where x0 ≡
x0(λ) is chosen to satisfy the condition (B15). The procedure
is illustrated in Fig. 11. Note that the sign of λ dictates which
of the branches ± must be chosen. To summarize,

ũλ(x) = 3

1 + sλ cosh(|x| + x0)
= 3

2
[1 − hλ(|x| + x0)2].

(B16)

3Because of finite range elasticity, the effect at x = 0 of a kick at x

must decay at large x. Because of the cutoff Sm, the positive integer
moments of avalanche sizes must exist.

The function x0(λ) is determined from

λ = 6sλ sinh(x0)

[1 + sλ cosh(x0)]2
= 3

2
hλ(x0)[1 − hλ(x0)2] (B17)

with sλ = sgn(λ), hλ(x) = tanh( x
2 ) for λ > 0, and hλ(x) =

coth( x
2 ) for λ < 0.4

This form does not make it explicit that ũλ(x) is analytic in
λ near λ = 0. We will thus use the following equivalent form.
Introduce z = hλ(x0). Equation (B17) can then be rewritten as
a cubic equation for z ≡ z(λ),

λ = 3z(1 − z2). (B18)

The trigonometric addition rules allow us to rewrite

ũλ(x) = 3(1 − z2)

2
[

cosh
(

x
2

) + z sinh
( |x|

2

)]2

= 6(1 − z2)e−|x|

[1 + z + (1 − z)e−|x|]2
. (B19)

The appropriate branch for (B18) is the one for which z →
1 as λ → 0 (corresponding to x0 → ∞). As can be seen in

4Note that formally x0 → x0 + iπ is equivalent to λ → −λ.

y+

y-

λ>0λ<0

x→-∞

x→+∞

x=0
y'

y

FIG. 11. Graphical representation of the construction of solutions
of the instanton equation for λ > 0 (blue) and λ < 0 (green). The
dotted part of the curve represents the discontinuity in the derivative.
The red line represents the E = 0 solution of (B1), the only one
needed to solve the instanton equation with one local source.
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x0= -x*

x0= x*

x0= -∞

x0= +∞

x0= 0
y= y+

y= y-

FIG. 12. The generating function Z(λ) = 6(1 − z) is represented
here with some indications of the link with the construction of the
instanton solution; the green and blue dots correspond to the solutions
represented in Fig. 11.

Fig. 12, this branch is defined for λ ∈] − ∞,λc = 2√
3
[, while

z(λ) decreases from z(−∞) = ∞ to zc = z(λc) = 1/
√

3. The
other branches are solutions of (B14), but they do not satisfy
the physical requirements mentioned above.

Equations (B18) and (B19) thus define the solution to the
instanton equation for λ ∈] − ∞,λc[, in a way that is explicitly
analytic around λ = 0. For instance, one can check that the
small-λ expansion

ũλ(x) = λ

2
e−|x| + λ2

6

(
e−|x| − 1

2
e−2|x|

)
+ O(λ3), (B20)

obtained by iteratively solving Eq. (B14) at small λ, is
reproduced by Eqs. (B18) and (B19).

Finally, the partition sum corresponding to a homogeneous
kick is expressed as

Z(λ) =
∫ ∞

−∞
dx ũλ(x) = 6(1 − z). (B21)

Hence, from Eq. (B18), it satisfies

λ = 1

72
Z(Z − 6)(Z − 12), (B22)

recovering the result obtained in [9].

b. Massless case

The massless instanton equation

ũ′′(x) + ũ(x)2 = −λδ(x) (B23)

is solved similarly. For λ < 0, there is a solution defined for
all x ∈ R,

ũλ(x) = − 6

(|x| + x0)2
, x3

0 = −24

λ
. (B24)

Note that for the massless case, the physical solution is not
required to be analytic in λ at λ = 0 (i.e., integer moments of
avalanche sizes diverge). This solution can be obtained from
(B19) in the (formal) double limit of small x and large z, with
x0 = 2/z. The equation determining z now is λ = −3z3. The
generating function for a uniform kick becomes Z = −6z =
(72λ)1/3.

APPENDIX C: CALCULATION OF PROBABILITIES AND
DENSITIES OF S0

For an arbitrary kick δwx , in the massive case, the Laplace
transform of the distribution of local size is∫

dS0e
λS0Pδwx

(S0) = exp

(
Ld−1

∫
dx δwxũ

λ(x)

)
. (C1)

Here ũλ(x) is given in Eq. (B19). Performing the Laplace
inversion in general is difficult, but there are some tractable
cases.

1. Uniform kick

Let us start with a uniform kick δwx = δw and δŵ =
Ldδw. It is more efficient to take a derivative of Eq. (C1)
with respect to λ and write the Laplace inversion for
S0Pw(S0),

S0Pδw(S0) =
∫

C

dλ

2iπ
e−λS0∂λe

6δŵ[1−z(λ)]. (C2)

Here C is an appropriate contour parallel to the imaginary axis,
and we used the fact that

∫
dx ũ(x) = 6(1 − z). The function

z(λ) is a solution of λ = 3z(1 − z2). One can now use z as an
integration variable and rewrite

S0Pδw(S0) = 6δŵe6δŵ

∫
C

dz

2iπ
e−3z(1−z2)S0e−6δŵz, (C3)

using dλ∂λ = dz∂z. We will be sloppy here about the integra-
tion contour, as this procedure is heuristic to guess the result,
which will then be tested (see below). As the exponential
contains a cubic term, we use the Airy integral formula of
Appendix A leading to

S0Pw(S0) = 6δŵe6δŵ�(a,b,c). (C4)

Here � is defined in Eq. (A2), with a = 9S0, b = 0,
and c = −(3S0 + 6δŵ). This immediately leads to for-
mula (21) in the main text. We have checked numerically
that it reproduces the correct Laplace transform (C1) for
λ < λc.

2. Local kick

For a local kick, it is possible to calculate the PDF of
the local jump at the position of the kick. Consider a local
kick at x = 0, i.e., δwx = δw0δ(x). For simplicity, in this
subsection we set d = 1. Inserting this value in (C1), we find
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that the LT of the PDF of the local size at the same point S0

reads ∫
dS0 eλS0Pδw0 (S0) = e

3
2 (1−z2)δw0 (C5)

using ũλ(0) = 3
2 (1 − z2). The same manipulations as above

lead to

S0P (S0) = −
∫

C

dz

2iπ
e−3z(1−z2)S0∂ze

3
2 (1−z2)δw0

= 3δw0e
3δw0

2

∫
C

dz

2iπ
ze−3z(1−z2)S0− 3

2 z2δw0

= 3δw0e
3δw0

2 ∂c�(a,b,c)|
a=9S0,b=− 3δw0

2 ,c=−3S0
. (C6)

Using Eq. (A2) leads to

Pδw0 (S0) = δw0e
δw0− δw3

0
36S2

0

31/3S
5/3
0

[
δw0

2 × 31/3S
2/3
0

Ai(u) − Ai′(u)

]

u = 31/3S
2/3
0 + δw2

0

4 × 32/3S
4/3
0

. (C7)

We can check normalization, and that 〈S0〉 = 1
2δw0, consistent

with the small-λ expansion of (C5). The asymptotics are

Pδw0 (S0) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δw
3/2
0 e

δw0
2 − δw3

0
18S2

0√
6πS2

0

for S0 � 1,

δw0e
δw0− 2√

3
S0

2 4
√

3
√

πS
3/2
0

for S0 � 1.

(C8)

This result, and the new exponent τ = 5/3 of the divergence
at small S0, which appear when δw0 → 0, is discussed in the
main text.

APPENDIX D: CALCULATION OF THE JOINT DENSITY
OF S AND S0

We will obtain the joint density from the generating function
of S0 and S,

〈eλS0+μS〉 = e
∫
x
δwx ũx (D1)

in terms of the solution of the instanton equation. Let us
consider a uniform kick δwx = δw.

1. Instanton equation and its solution

a. Massive case

Here ũ (that we will also denote ũλ,μ to make the
dependence on the sources explicit) is the solution, in the
variable x, of the instanton equation

ũ′′ − ũ + ũ2 = −λδ(x) − μ. (D2)

We must solve this equation with similar requirements as
discussed below for Eq. (B14), except that now the instanton
goes to a constant at infinity (since the source acts everywhere).
Clearly, the new uniform source can be removed by a shift
ũ → ũ + c, where the constant c verifies μ = c − c2. This
results in the mass term −ũ → −(1 − 2c)ũ, which can be

brought back to Eq. (D2) with μ = 0, i.e., Eq. (B14), by
a simple scale transformation. At the end one can check
that given ũλ(x) [the solution of Eq. (B14)], the solution of
Eq. (D2), denoted ũλ,μ(x), is given by

ũλ,μ(x) = 1 − β2

2
+ β2ũλ/β3

(βx). (D3)

The constant β > 0 such that

β2 = β2
μ :=

√
1 − 4μ. (D4)

In summary, the instanton solution is

ũλ,μ(x) = 1 − β2

2
+ 6β2(1 − z2)e−β|x|

[1 + z + (1 − z)e−β|x|]2
, (D5)

where z is the solution of

λ

β3
= 3z(1 − z2). (D6)

It is connected to z = 1 at λ = 0.

b. Massless case

It is useful to also give the solution in the massless case, for
which one needs to solve

ũ′′ + ũ2 = −λδ(x) − μ (D7)

for μ � 0. Using a shift and a rescaling, we can check that the
solution now is

ũλ,μ(x) = −β2

2
+ β2ũλ/β3

(βx). (D8)

The parameter β > 0 such that β2 = √−4μ, and ũλ(x) is the
massive instanton solution. In summary, this gives

ũλ,μ(x) = −β2

2
+ 6β2(1 − z2)e−β|x|

[1 + z + (1 − z)e−β|x|]2
, (D9)

where z is again the solution (D6). If μ → 0, hence β → 0,
we recover the massless instanton (B24).

2. Joint distribution

Let us again consider the massive case. To obtain the joint
probability distribution Pδw(S,S0), we need to calculate the
generating function Z(λ,μ),

〈eλS0+μS〉 =
∫ ∞

0

∫ ∞

0
Pδw(S0,S)eλS0+μSdS dS0

= eδwZ(λ,μ). (D10)

Integrating (D5), we obtain

Z(λ,μ) =
∫

x

ũλ,μ(x) = Ld 1 − β2

2
+ Ld−16βz(1 − z)

= : LdZ1(μ) + Ld−1Z2(λ,μ). (D11)

Z1(μ) is the generating function for the distribution of the
total size of avalanches, and Z2(λ,μ) is a new term defined by
(D11). The volume factors come from the coordinates along
which the instanton solution is constant.
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From Eqs. (D6) and (D11), we can express λ as a function
of Z2 and β,

λ = 3β3

(
1 − Z2

6β

)[
1 −

(
1 − Z2

6β

)2]
. (D12)

This is equivalent to Z2(λ,μ) = βZ (λ
β3) , where Z ≡ Z(λ) is

the generating function of the local size, which was implicitly
defined as a solution of Eq. (B22).

Considering the limit of small δw, we obtain Pδw(S,S0) ≈
δw ρ(S,S0), which defines the joint density ρ(S,S0) of total
and local sizes in the limit of a single avalanche. To simplify
the computation, we decompose the distribution ρ(S,S0) as

ρ(S,S0) = ρ(S,S0) + δ(S0)[ρ(S) − ρ̄(S)]

ρ̄(S) =
∫

S0>0
ρ(S,S0). (D13)

Here ρ(S,S0) is the smooth part of the joint density for S

and S0, and it is also the joint density of single avalanches
containing 0 (i.e., S0 > 0). The second term takes into account
all avalanches that occur away from 0: the δ(S0) ensures that

the avalanche does not contain 0, and the subtraction ensures
that

∫
S0

ρ(S,S0) = ρ(S), where ρ(S) is the global size density.
As we will check at the end of the calculation, the correct
generating function for ρ is Z2(λ,μ)Ld−1 + 6(1 − βμ)Ld−1.

As ρ(S) is already known, we only want to compute
ρ(S,S0). To eliminate the term δ(S0), we multiply (D13) by
S0 and use that S0ρ(S,S0) = S0ρ(S,S0). Multiplication by S0

is equivalent to taking a derivative with respect to λ in the
generating function,

S0 ρ(S0,S) = Ld−1
∫ i∞

−i∞

dμ

2πi
e−μS

∫ i∞

−i∞

dλ

2πi
e−λS0∂λZ2(λ,μ)

= Ld−1
∫ i∞

−i∞

dμ

2πi
e−μS

×
∫ i∞

−i∞

dZ

2πi
e
− β3

72
Z
β

(6− Z
β

)(12− Z
β

)S0 . (D14)

Here we changed variables from λ to Z2 (and dropped the
index) using (D12). To simplify the calculations, we introduce
a new variable x, such that Z = 2 × 3

1
3 x + 6β, with β defined

in Eq. (D4),

ρ(S0,S) = Ld−1 × 2 × 3
1
3

S0

∫ i∞

−i∞

dμ

2πi
e−μS

∫ i∞

−i∞

dx

2πi
e− x3

3 S0+31/3β2xS0

= Ld−1 × 2 × 3
1
3
e−S/4

S0

∫ i∞

−i∞

dx

2πi
e− x3

3 S0
1

4

∫ i∞

−i∞

dy

2πi
e− yS

4 +(−y)1/231/3xS0

= Ld−1 × 2 × 3
1
3
e−S/4

S0

∫ i∞

−i∞

dx

2πi
e− x3

3 S0

∫ ∞

0

dy

4π
e− yS

4 sin(
√

y3
1
3 xS0)

= Ld−1 × 2 × 3
2
3

e−S/4

√
πS

3
2 S0

∫ i∞

−i∞

dx

2πi
e− x3

3 S0xS0e
− (31/3xS0)2

S . (D15)

The steps of this calculations are as follows: first a linear
change of variable 4μ − 1 → y, such that β = (−y)

1
2 , then a

deformation of the contour of integration to integrate on both
sides of the branch cut R+. Finally, the last integration can be
performed in terms of Airy functions (e.g., using Appendix A),

ρ(S,S0) = 6Ld−1

√
πS2

e− S
4 F

(√
3S0/S

3
4
)

F (u) = 1

u
2
3

e− 2
3 u4[

u
4
3 Ai

(
u

8
3
) − Ai′

(
u

8
3
)]

. (D16)

The density of avalanches with global size S and which contain
0, i.e., with S0 > 0, is

ρ(S) =
∫ ∞

0
dS0 ρ(S,S0) = Ld−1 × 2

√
3

π

[∫ ∞

0
duF (u)

]
e− S

4

S
5
4

= Ld−1 3 �
(

1
4

)
2π

e− S
4

S
5
4

, (D17)

where

3 �
(

1
4

)
2π

= 2

√
3

π

∫ ∞

0
duF (u) ≈ 1.731 101 215 8. (D18)

To test our solution, one can check that∫ ∞

0
ds

3 �
(

1
4

)
2π

e− S
4

S
5
4

(eμS − 1) = 6
[
1 − (1 − 4μ)

1
4
]
. (D19)

We have checked numerically several other requirements,
originating from the definitions, namely∫ ∞

0
dS ρ̄(S,S0) = ρ0(S0) = 2Ld−1

πS0
K1/3(2S0/

√
3),

∫ ∞

0
dS

∫ ∞

0
dS0 S0ρ̄(S,S0) = Ld−1,

∫ ∞

0
dS

∫ ∞

0
dS0 Sρ̄(S,S0) = 6Ld−1,

∫ ∞

0
dS

∫ ∞

0
dS0 ρ̄(S,S0)eμS(eλS0 − 1) = Z2(λ,μ)Ld−1.
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APPENDIX E: IMPOSED LOCAL DISPLACEMENT

For simplicity, we set d = 1 in this appendix. The PDF of
the global size in the presence of imposed position driving is
obtained from

eμS = em2ũx=0δw, (E1)

where ũx is the solution of a slightly modified instanton
equation:

ũ′′
x − m2δ(x)ũx + ũ2

x = −μ, (E2)

and we have kept explicit the local mass. This equation is the
same as the massless Eq. (D7), with λ = −m2ũx=0, a self-
consistency condition. Using its solution given in Eqs. (D9)
and (D6), we eliminate λ and z in the system,

λ = −m2ũx=0 = −m2β2

(
1 − 3

2
z2

)
,

(E3)
λ

β3
= 3z(1 − z2),

with β = (−4μ)1/4. It is then easy to see that there is a solution
such that m2ũx=0 remains finite when m2 → ∞, in which case

z →
√

2
3 and

lim
m2→∞

m2ũx=0 = −
√

2

3
β3. (E4)

Hence, we find

Pδw0 (S) = LT−1
−μ→S e−δw

√
2
3 (−4μ)3/4

. (E5)

The result for the density is simpler,

Sρ(S) = −LT−1
−μ→S ∂μ

√
2

3
(−4μ)3/4, (E6)

leading to

ρ(S) =
√

3

�(1/4)S7/4
(E7)

and a new exponent 7/4 discussed in the main text.

APPENDIX F: SOME ELLIPTIC INTEGRALS FOR THE
EXTENSION DISTRIBUTION

Here we make explicit the calculation for the density of
extensions sketched in the main text. The relevant generating
function, defined in the main text in Eq. (67), is

Z(r) =
∫

x

ũr (x) − ũ∞(x) − ũ∞(x − r). (F1)

Here ũr (x) is the solution of the instanton equation with two
local sources, one at x = 0 and one at x = r . The solution ũ∞
with one source at x = 0 and one at infinity is equivalent to
the solution with only one source at x = 0. The integrand of
Eq. (F1) is represented on Fig. 13.

The first simplification in the calculation of this integral
is the symmetry around r/2. Another is that, for x ∈] − ∞,

0[, ũr (x) − ũ∞(x) cancels exactly. Then, the idea is to express
the integral for Z(r) without explicitly solving the instanton

� 1.0 � 0.5 0.5 1.0 1.5 2.0

� 200

� 150

� 100

� 50

FIG. 13. Instanton solutions involved in the computation of Z(r)
for r = 1: in blue, ũ1(x), in red, ũ∞(x), and in purple, ũ∞(x − 1).

equation, using the change of variables∫
ũ dx =

∫
ũ

du

ũ′ . (F2)

This requires us to express the derivative of ũ with respect to
x as a function of ũ, which is easy because ũ is a solution
of a differential equation, and to decompose the integral into
two parts such that the change of variables is well defined:
from x = −∞ to x = 0 and from x = 0 to x = r/2. The rest
is deduced by symmetry.

In these two intervals, ũ∞(x − r) does not contain a pole,
and can safely be computed separately. Moreover, as we said,
ũr (x) − ũ∞(x) vanishes in the first interval, i.e., for x ∈] −
∞,0]. This leaves only the integral of ũr (x) − ũ∞(x) over
x running from x = 0 to x = r/2. To simplify notations, we
introduce the variable t < 0,

t := ũr (r/2), (F3)

which is in one-to-one correspondence with r , and it is a nice
parameter to express Z. Indeed, after the change of variables
(F2), the integral now runs from u = −∞ to u = t , and for
0 < x < r/2, with ũ ≡ ũr , we have

ũ′
r =

√
−t2 + 2

3
t3 + ũ2 − 2

3
ũ3. (F4)

Further, with ũ ≡ ũ∞,

ũ′
∞ =

√
ũ2 − 2

3
ũ3. (F5)

This comes from the results of Appendix B and the relation
E = −t2 + 2

3 t3. To express r in terms of t , we use the same
idea as in the derivation of Eq. (F2),

r = 2
∫ r/2

0
dx = 2

∫ t

−∞

dũr

ũ′
r

. (F6)

Putting these ingredients together, we obtain Z(r) as a function
of t , which we call Z̃(t), in terms of an elliptic integral, as well
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as the expression of r as a function of t ,

Z̃(t) = 2
∫ t

−∞

⎛
⎝ u√

−t2 + 2
3 t3 + u2 − 2

3u3
− u√

u2 − 2
3u3

⎞
⎠du − 2

∫ 0

t

u√
u2 − 2

3u3
du

= 2t

∫ ∞

1

⎛
⎝ y√

y2 − 1 − 2
3 t(y3 − 1)

− 1√
1 − 2

3 ty

⎞
⎠dy − 6 + 2

√
9 − 6t, (F7)

r(t) = 2
∫ t

−∞

du√
−t2 + 2

3 t3 + u2 − 2
3u3

= 2
∫ ∞

1

dy√
y2 − 1 − 2

3 t(y3 − 1)
. (F8)

We now use this to characterise the small-size divergence of the
extension distribution. This is encoded in the small-r behavior
of Z(r), which corresponds to the large-t behavior of Z̃(t). For
the latter, we have

Z(t) � −2

√
3

2

[∫ ∞

1
du

(
u√

u3 − 1
− 1√

u

)
− 2

]
|t | 1

2

� 2
√

6π
�(5/6)

�(1/3)
|t | 1

2 , (F9)

which is also the exact result in the massless limit. We next
need to invert Eq. (F8) in the large-t limit,

|t | � A2r−2, A = 2
√

6π
�(7/6)

�(2/3)
=

√
6
�(1/3)3

42/3π
. (F10)

The small-r behavior of Z(r) is then given by

Z(r) � 4
√

3π r−1. (F11)

For small |t |, we find

r(t) � 2 ln(12/|t |) (F12)

and

Z̃(t) � t2 ln(1/|t |), (F13)

which leads to

Z̃(r) = 72re−r + O(e−r ). (F14)

This leads to the tail of the extension density,

ρ(�) = ∂2
r Z̃(r)

∣∣
r=�

� 72 � e−� when � → ∞. (F15)

APPENDIX G: JOINT DISTRIBUTION FOR EXTENSION
AND TOTAL SIZE

For simplicity, we consider only m = 0 (massless limit). To
obtain the joint distribution of extension and total size, we
have to add a global source μ to the instanton equation,
in addition to the two local sources, whose parameters are
sent to infinity. With the same tricks as used previously, cf.
Appendix D and notably Eq. (D8), we change this problem
to a new one with a mass β = (−4μ)

1
4 , but no global source.

The generating function is now a function of r , the distance
between the two local sources and β, the new mass. As in
Appendix F, we can change the variable r to the new parameter
t defined in Eq. (F3) and express everything in terms of elliptic
integrals:

r(t,β) = 2
∫ ∞

t

dy√
−β2t2 − 2

3 t3 + β2y2 + 2
3y3

= β−1f

(
t

β2

)
,

Z(t,β) = −2
∫ ∞

t

⎛
⎝ y√

−β2t2 − 2
3 t3 + β2y2 + 2

3y3
− 1√

2
3y

⎞
⎠ + 2

√
6t = β g

(
t

β2

)
. (G1)

The functions f and g are

f (x) = 2
∫ ∞

x

du√
−x2 − 2

3x3 + u2 + 2
3u3

= 2
∫ ∞

1

du√
u2 − 1 + 2

3x(u3 − 1)
,

g(x) = −2x

∫ ∞

1

⎛
⎝ u√

u2 − 1 + 2
3x(u3 − 1)

− 1√
2
3xu

⎞
⎠ + 2

√
6x. (G2)
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From that, we have Z(r,β) = β(g ◦ f −1)(βr) and then
∂2
r Z(r,β) = β3(g ◦ f −1)

′′
(βr), which gives

ρ(l,s) = 1

4l7
F

(
sl−4

4

)
, (G3)

where F is the inverse LT of x �→ (−x)
3
4 (g ◦ f −1)′′((−x)

1
4 )

with g and f the functions previously defined. Giving an
analytic expression for this scaling function F seems not to be
possible.

APPENDIX H: NUMERICS

We test most of our results with a direct numerical
simulation of the equation of motion (1). This is done by
discretizing both time and space. To avoid the

√
dt term from

a naive Euler time discretization, we use the method of [22],
which allows us to express the exact propagator of the d = 0
version of (1) in terms of random distributions (Poisson and �

distribution). We review this result herein.
Let us start with the d = 0 stochastic equation,

∂t u̇t = α − βu̇t +
√

2σ u̇t η(t), (H1)

where η is a Gaussian white noise and α is positive (so that u̇

remains non-negative at all times). It can be integrated exactly
using Bessel functions (cf. [12] for a derivation of this using
the instanton equation for the ABBM model):

P (u̇t |u̇0) = β

σ

√
u̇t

u̇0

−1+α

2 sinh
(

βt

2

)I−1+α

(
β

σ

√
u̇t u̇0

sinh
(

βt

2

))

× (
e

βt

2
)α

e
− β

σ

u̇0e−βt +u̇t

1−e−βt . (H2)

To use this representation efficiently in a numerical algorithm,
the trick is to expand it in a series and then express it as a
combination of two distributions,

P (u̇t |u̇0) =
∞∑

n=0

u̇n−1+α
t u̇n

0

n!�(n + α)

(
β

2σ sinh
(

βt

2

))2n+α

× (
e

βt

2
)α

e
− β

σ

u̇0
eβt −1 e

− β

σ

u̇t

1−e−βt

=
∞∑

n=0

Poisson

[
β

σ

u̇0

eβt − 1

]
(n)

× Gamma

[
n + α,

1 − e−βt

β
σ

]
(u̇t ). (H3)

The Poisson and Gamma distributions used above are

Poisson[λ](n) = e−λ λn

n!
for n ∈ N, (H4)

Gamma[k,θ ](x) = 1

θ (k − 1)!

(
x

θ

)k−1

e− x
θ for x ∈ R. (H5)

This means that we can generate u̇t at time t from u̇0 by
choosing first n according to the Poisson distribution and
then choosing u̇t from a Gamma distribution with a shape
depending on n. This can be summed up as a nice equality

between random variables,

u̇t = Gamma

[
Poisson

[
β

σ

u̇0

eβt − 1

]
+ α,

1 − e−βt

β
σ

]
. (H6)

To use this in a numerical simulation of Eq. (1), we first write
a discretized (in space) version of the latter,

∂t u̇i,t = (u̇i+1,t + u̇i−1,t ) − (m2 + 2)u̇i,t + √
2σ u̇i,t ξi,t

+m2δwi,t . (H7)

Choosing α = u̇i+1,t + u̇i−1,t , which is assumed to be constant
on the time interval [t,t + dt], and β = m2 + 2 in Eq. (H5)
allows us to generate u̇i,t+dt , knowing all u̇i,t , with a correct
probability distribution at order dt .

APPENDIX I: WEIERSTRASS AND ELLIPTIC FUNCTIONS

Here we recall some properties of Weierstrass’s elliptic
function P (source [23], Chap. 18, and WOLFRAM MATH-
WORLD). It appears in complex analysis as the only doubly
periodic function on the complex plane with a double pole
1/z2 at zero.5 Denoting ω1,ω2 the two (a priori complex)
primitive half-periods, every point of the lattice � = {2mω1 +
2nω2|(n,m) ∈ Z2} is a pole of order 2 for P . It can be
constructed for z ∈ C − � as

P(z|ω1,ω2) : = 1

z2
+

∑
m,n	=(0,0)

1

(z − 2mω1 − 2nω2)2

− 1

(2mω1 + 2nω2)2
. (I1)

It is an even function of the complex variable z, with P(z) =
P(−z). Note that the choice of primitive vectors (2ω1,2ω2)
is not unique, since one can alternatively choose any linear
combination. The conventional choice of roots g2 and g3 is
defined from its expansion around z = 0,

P(z|ω1,ω2) = 1

z2
+ g2

20
z2 + g3

28
z4 + O(z6). (I2)

The function P is alternatively denoted

P(z|ω1,ω2) = P(z; g2,g3), (I3)

the latter being defined in MATHEMATICA as
WeierstrassP[z,{g2,g3}]. More explicitly, the parameters
g2,g3 are expressed from the half-periods as

g2 = 60
∑

m,n	=(0,0)

1

(2mω1 + 2nω2)4
, (I4)

g3 = 140
∑

m,n	=(0,0)

1

(2mω1 + 2nω2)6
. (I5)

The Weierstrass elliptic function verifies an interesting homo-
geneity property,

P(λz; λ−4g2,λ
−6g3) = λ−2P(z; g2,g3), (I6)

5It also appears as the second derivative of the Green function of
the free field on a torus.
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and the nonlinear differential equation

P ′(z)2 = 4P(z)3 − g2P(z) − g3. (I7)

It is thus linked to elliptic integrals. Restricting now to g2,g3 ∈
R and focusing on z ∈ R, one can choose one half-period to be
real, which we denote �.6 The function P(z) is then periodic
in R of period 2� and diverges at all points 2m�, m ∈ Z.
It is defined in the fundamental interval ]0,2�[, repeated by
periodicity. In this interval, it satisfies the symmetry P(2� −
z; g2,g3) = P(z; g2,g3). Its values in the first half-interval, i.e.,
for z ∈ [0,�], are such that (with y ∈ [e1,∞])

z =
∫ ∞

y

dt√
4t3 − g2t − g3

⇔ y = P(z; g2,g3), (I8)

where e1 is the largest real root of the polynomial in t ,

4t3 − g2t − g3 = 4(t − e1)(t − e2)(t − e3). (I9)

The roots ei are all real if � = g3
2 − 27g2

3 > 0, and only one,
namely e1, is real if � < 0. Hence the period is given by

� =
∫ ∞

e1

dt√
4t3 − g2t − g3

, P(�) = e1, P ′(�) = 0. (I10)

It is always finite, except when e1 is a double root, in which
case � = 0 and the period is infinite � = ∞.

For g2 = 0, the integral (I10) can be calculated explicitly
using ∫ ∞

1

du√
u3 − 1

= �(1/3)3

4
2
3 π

= −√
π �(1/6)

�(−1/3)
,

∫ ∞

−1

du√
u3 + 1

= √
π

�(1/3)

�(5/6)
. (I11)

The half-periods are

� =

⎧⎪⎨
⎪⎩

1

4π
�(1/3)3g

−1/6
3 when g3 > 0,

√
π

�(1/3)

4
1
3 �(5/6)

|g3|−1/6 when g3 < 0,
(I12)

and the other period can be chosen as 1
2�(1 + i

√
3).

Finally, taking another derivative of (I7), we see that the
Weierstrass function also satisfies

P ′′(z) = 6P(z)2 − g2

2
, (I13)

andP(z; g2,g3) is the only solution of this differential equation
that satisfies (I2).

From this we can find solutions of the instanton equation

ũ′′
x − Aũx + ũ2

x = 0, (I14)

where A = 1 is the massive case and A = 0 is the massless
case. Comparing with Eq. (I13), we see that a family of
solutions is

ũx = A

2
− 6b2P

(
c + bx;

A2

12b4
,g3

)
. (I15)

6The conventions are such that if � < 0, � = ω1 is real and ω2

is imaginary (for g3 > 0 and the reverse for g3 < 0), and if � < 0,
� = ω1 ± ω2.

Because of the homogeneity relation (I6), this is a two-
parameter family. These solutions are periodic. In the massless
case A = 0, the period of (I15) is �/b, where � is given by
(I12).

APPENDIX J: NONSTATIONARY DYNAMICS

In the velocity theory, the observables of the BFM are
calculated from the dynamical action

S[u̇,ũ] =
∫

t,q

ũ−q,t (∂t + q2 + m2)ũq,t − σ

∫
t,x

ũ2
xt u̇xt ,

where ũ is the response field. The quadratic part of the action,
S0, defines the free response function,

〈u̇q,t ũq,t ′ 〉S0 := Rq,t−t ′ = θ (t − t ′)e−(q2+m2)(t−t ′). (J1)

Standard perturbation theory in the disorder σ is then per-
formed, and it has the peculiarity to contain only tree diagrams.
It is easy to see that the average velocity is not corrected by
the disorder, hence its value is the same as in the free theory.
In the presence of a uniform driving w = vt , and taking into
account the initial condition u̇xt=0 = 0, one has

u̇x,t = 〈u̇xt 〉S = v(1 − e−m2t ). (J2)

This implies

uxt = vt − 1 − e−m2t

m2
. (J3)

Next we compute the connected correlations, where q means
Fourier space and x real space,

u̇q,t1 u̇−q,t2

c = 〈u̇q,t1 u̇−q,t2〉S = σ

∫
s,x

〈u̇q,t1 u̇−q,t2 ũ
2
x,s u̇x,s〉S0

= 2σ

∫
s

〈u̇xs〉S0Rq,t1−sRq,t2−s . (J4)

Calculating this integral, and further integrating over t1 and t2,
we obtain

uq,tu−q,t
c =

∫ t

0
dt1

∫ t

0
dt2 u̇q,t1 u̇−q,t2

c
. (J5)

This is the final result given in the main text; see Eq. (72).
Alternatively, we can obtain the correlations of uxt using

eμxuxt1 =
∫

x

μxUxt1 + 1

2

∫
x1x2

μx1μx2Ux1t1Ux2t2

c + · · ·

= exp

(
vm2

∫
x,t>0

ũλ
xt

)
, (J6)

where ũλ
xt is the solution of the space-time-dependent instanton

equation with a source λxt = μxθ (t)θ (t1 − t). Using the
perturbation method in the source of Sec. III.H of [13],
specializing to that source in (261), we obtain at the end the
same result as above.
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