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The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation of
external parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface
to a parabolic potential centered at w, we study the avalanches which occur as w is varied. We are interested in
the correlations between the avalanche sizes S1 and S2 occurring at positions w1 and w2. Using the functional
renormalization group (FRG), we show that correlations exist for realistic interface models below their upper
critical dimension. Notably, the connected moment 〈S1S2〉c is up to a prefactor exactly the renormalized disorder
correlator, itself a function of |w2 − w1|. The latter is the universal function at the center of the FRG; hence, corre-
lations between shocks are universal as well. All moments and the full joint probability distribution are computed
to first nontrivial order in an ε expansion below the upper critical dimension. To quantify the local nature of the
coupling between avalanches, we calculate the correlations of their local jumps. We finally test our predictions
against simulations of a particle in random-bond and random-force disorder, with surprisingly good agreement.
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I. INTRODUCTION

The model of an elastic interface in a disordered medium
has been put forward as a relevant description for a large
number of systems [1–4]. Examples include domain walls in
soft magnets [5,6], fluid contact lines on a rough surface [7,8],
strike-slip faults in geophysics [9,10], fracture in brittle
materials [11–13], and imbibition fronts [14]. An important
common property of these systems is that their response to
an applied field is not smooth but rather proceeds via jumps
extending over a broad range of space and time scales. As a
consequence, understanding the properties and the universality
of avalanche processes has received a lot of attention in the
past years [15–17].

A problem of outstanding interest is to quantify the
correlations between successive avalanches. In the context
of earthquakes those are linked to the notion of aftershocks,
whose statistics is characterized through phenomenological
laws such as the Omori law [18]. Several mechanisms
have been advanced to explain these strong correlations, all
involving an additional dynamical variable [19,20]. For elastic
interfaces, correlations between avalanches were yet only
studied as a result of such additional degrees of freedom in the
interface dynamics, as relaxation processes [21,22] or memory
effects [23]. In this work, we show that, even in the absence
of such mechanisms, avalanches in elastic interfaces are
generically correlated below their upper critical dimension.
These correlations are universal.

Let us emphasize that the goal of this paper is not to
understand or explain the aftershock statistics observed in
earthquakes, for which additional mechanisms such as those
discussed above are necessary. Rather, it is to emphasize
that for disordered elastic systems, except for mean-field
models, correlations between avalanches always exist. A
precise quantitative understanding of these correlations is
necessary to correctly quantify correlations induced by ad-
ditional mechanisms. In systems where the description by the
standard elastic-interface model is accurate (without additional

mechanisms) our results quantify the correlations between
avalanches. It would thus be interesting to quantify them
better, in order to access universality, or lack thereof, in various
avalanche processes.

In this article we study the correlations between the sizes
and locations of shocks in the ground state (also called
“static avalanches”) of elastic interfaces in disordered media.
These static avalanches are close cousins of the (dynamic)
avalanches observed in the interface dynamics at depinning.
As we discuss below, we expect most of our results to hold
for both classes. Our study is conducted using the functional
renormalization group (FRG). Originally introduced as a
powerful tool to study the universal properties of the statics
and dynamics (at the depinning transition) of elastic interfaces
in disordered media [24–30], the FRG has been recently
adapted to the study of avalanches [31–36]. It has notably
led to a rigorous identification of the relevant mean-field
theory for the statistics of single avalanches: the Brownian-
force model (BFM), a multidimensional generalization of the
celebrated Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model [37,38]. Interestingly, the FRG makes it possible to
go beyond mean-field theory and to compute in a controlled
way avalanche observables in an expansion in ε = duc − d,
where d is the interface dimension and duc the upper critical
dimension of the problem. The latter depends on the range
of the elastic interactions, with duc = 4 for short-ranged (SR)
elasticity and duc = 2 for the usual long-ranged (LR) elasticity.

The outline of this article is as follows. In Sec. II we
summarize our results, preceded by a definition of the relevant
observables. In Sec. III we introduce the model and the
observables we are interested in. Section IV contains the
derivation of the main results presented above. Section V gives
an analysis of the correlations between the local shock sizes.
Section VI presents the results of our numerical analysis of
these correlations for a toy model with a single degree of
freedom, i.e., d = 0. Finally, a series of appendices contains
technical derivations.
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II. MAIN RESULTS

Let us now state our main results for interfaces with
a short-ranged elastic kernel (a more general case will be
treated in the paper, with little changes to the formulas). To
this aim, we parametrize the position of the interface by the
(real, one-component) displacement field u(x), where x ∈ Rd

is the internal coordinate of the interface. For notational
convenience we denote u(x) ≡ ux . The interface is submitted
to a quenched random potential V (ux,x) and to an external
parabolic confining field m2

2 (ux − w)2 centered at w. In a
given disorder realization V , upon variation of the external
field w, the ground-state (i.e., lowest-energy) configuration of
the interface, denoted ux(w), changes discontinuously at a set
of discrete locations wi , according to

ux(w−
i ) → ux(w+

i ) = ux(w−
i ) + S(i)

x . (1)

The event (wi,S
(i)
x ) is the ith shock of the interface, wi is the

location of the shock, S(i)
x is its local size at x, and S(i) =∫

ddx S(i)
x its total size. The statistical properties associated to

one shock were thoroughly analyzed using FRG in [31,32].
Such properties are encoded in the shock density ρ0, defined
as

ρ0 :=
∑

i

δ(w − wi), (2)

and in the avalanche-size density,

ρ(S) :=
∑

i

δ(w − wi)δ(S − S(i)). (3)

The shock-size density ρ(S) is linked to ρ0 through ρ0 =∫
dS ρ(S). Note that these quantities do not depend on w

due to the statistical translational invariance (STS) of the
disorder. Considering two points w < w′ and sizes S1 < S2,∫ w′

w
dw̃

∫ S2

S1
dSρ(S) is the mean number of shocks occurring

between w and w′ with size S ∈ [S1,S2], while (w′ − w)ρ0 is
the mean number of shocks (irrespective of their size). Note
that throughout the rest of this section we discuss our results
in terms of densities but they can be translated into results for
normalized probabilities as we discuss in Sec. III E.

These observables alone do not determine the statistical
properties of the sequence {(wi,S

(i))}i∈Z of shocks experi-
enced by the interface in a given environment. In particular,
they do not contain any information about the correlations
between the shocks. For a given distance W > 0, let us
therefore introduce the two-shock density at distance W,

ρ2(W ) :=
∑
i �=j

δ(w − wi)δ(w + W − wj ). (4)

This observable scales as the square of a density. Thus,∫ w′
1

w1
dw

∫ w′
2

w2
dw′ρ2(w′ − w) counts the mean number of pairs

of shocks such that the first shock occurs between w1 and w′
1

and the second one occurs between w2 and w′
2. Equivalently,

ρ̃2(W ) := ρ2(W )
ρ0

is the density of shocks at a distance W from a
given shock. These observables contain information about the
correlations between shocks. Indeed, an uncorrelated sequence
of shocks implies ρ2(W ) = ρ2

0 [and thus ρ̃2(W ) = ρ0]. A
central question addressed in this work is whether the presence

of a shock at a given point decreases [ρ2(W ) < ρ2
0 ] or increases

[ρ2(W ) > ρ2
0 ] the density of shocks at a distance W .

To measure the correlations between the size of the shocks
(and not only their positions), we introduce the two-shock size
density at distance W ,

ρW (S1,S2)

:=
∑
i �=j

δ(w −wi)δ(S1 − S(i))δ(w + W − wj )δ(S2 − S(j )).

(5)

It is linked to ρ2(W ) via

ρ2(W ) =
∫

dS1dS2ρW (S1,S2). (6)

Here
∫ w′

1
w1

dw
∫ w′

2
w2

dw′ ∫ S ′
1

S1
dS

∫ S ′
2

S2
dS ′ρw′−w(S,S ′) counts the

mean number of pairs of shocks such that the first shock
occurred between w1 and w′

1 and the second occurred between
w2 and w′

2, with sizes between S1 and S ′
1 (respectively, S2

and S ′
2). For this observable, an absence of correlations in

the sequence of shocks implies ρW (S1,S2) = ρ(S1)ρ(S2). To
investigate the presence of correlations, we thus study the
connected two-shock size density ρc

W (S1,S2), defined as

ρc
W (S1,S2) := ρW (S1,S2) − ρ(S1)ρ(S2). (7)

At the level of mean-field theory, i.e., in the BFM model,
it is known [32,35] that the shocks are independent and the
process w → ux(w) is a Levy jump process. As a consequence,
ρc

W (S1,S2) = 0. On the other hand, for realistic interface
models below their upper critical dimension, the shocks are
correlated, demanding to go beyond the BFM. This can be
seen from the second moment for which we show below the
exact relation

〈S1S2〉ρc
W

[〈S〉ρ]2
= −�′′(W )

Ldm4
. (8)

On the left-hand-side, 〈· · · 〉ρc
W

denotes the average with respect
to ρc

W as defined in Eq. (7). On the right-hand-side, L is the
lateral extension of the system, and m2 the curvature of the
confining potential, which sets the correlation length Lm :=
1/m for avalanches in the lateral direction. Finally, �(W ) is
the renormalized disorder-force correlator, the central object
in the FRG treatment of disordered elastic systems: Denoting
u(w) the center-of-mass position of the interface, given well
position w, the correlator �(W ) is defined as the connected
correlation function of the center-of-mass fluctuations of the
interface position [39],

�(W ) := Ldm4[u(w) − w][u(w + W ) − (w + W )]
c
. (9)

Up to a universal scaling factor and a single nonuniversal
scale, the function �(W ) only depends on the universality
class of the problem. It was computed up to two-loop accuracy
in Ref. [30] and measured numerically in Ref. [40]. For our
purpose it is important that the function �(W ) is uniformly
of order ε and that its second derivative is nonzero. Thus,
the correlations (8) increase when going away from the upper
critical dimension, where mean-field theory, or equivalently
the BFM, is relevant. Indeed, for the BFM �′′(W ) = 0,
and the effective disorder force is distributed as a Brownian
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FIG. 1. Illustrations of the typical shape of the renormalized
disorder correlator �(W ) (black dashed line) and of its second-order
derivative �′′(W ) (red line) for the random-field (left) and random-
bond (right) universality classes (not to scale). Our results predict
that the shock sizes are always negatively correlated in the random-
field universality class, whereas the random-bond universality class
exhibits a richer structure with negatively (positively) correlated
shock sizes at small (large) distances.

motion. Beyond mean-field theory, the sequence of shocks
is correlated, thus the effective disorder force at large scales
has a different statistics than Brownian motion. The sign of
these correlations depends on the sign of �′′(W ), which,
in turn, depends on the universality class of the problem.
As detailed in Sec. III C, our results predict qualitatively
different correlations depending on the universality class.
The most important static universality classes of nonperiodic,
short-ranged disorder are the random-bond (RB) universal-
ity class, which at the microscopic level has short-ranged
potential-potential correlations, and the random-field (RF)
universality class, for which the force-force correlations, but
not the potential-potential correlations, are short-ranged at the
microscopic level. As is summarized in Fig. 1, for RF disorder
�′′(W ) > 0, and thus avalanches are always anticorrelated. On
the other hand, for RB disorder, avalanches are anticorrelated
at short distances W , but positively correlated at larger ones.

To obtain results for higher avalanche-size moments, we
use the FRG and the ε = (duc − d) expansion to show that, to
lowest nontrivial order in the expansion,

ρc
W (S1,S2) = −�′′(W )

Ldm4

S1S2

4S2
m

ρ(S1)ρ(S2) + O(ε2). (10)

Here

Sm := 〈S2〉ρ
2〈S〉ρ , (11)

where 〈· · · 〉ρ denotes the average with respect to ρ as defined
in Eq. (3), is the characteristic size of avalanches, which acts
as a large-scale cutoff for the avalanche-size density ρ(S), and
�′′(W ) introduced above is O(ε). Integrating Eq. (10) times
S1S2 over S1 and S2, we recover Eq. (8). Contrary to the latter
equation which is exact, relation (10) is correct only to order ε.

As a consequence of Eq. (10) and its generalizations
to higher order, the correlations between avalanches are
universal. To make this more transparent, we rewrite Eq. (10) as

ρc
W (S1,S2) = 1

(Lm)d
L2d

S4
m

Fd

(
W

Wm

,
S1

Sm

,
S2

Sm

)
. (12)

The function Fd is universal and, apart from its three
arguments, depends only on the spatial dimension. To first
order in d = duc − ε, and in the limit of large L and small m,

it is given by

F(w,s1,s2) 	 Ad�̃
∗′′(w)

16π
√

s1s2
e−(s1+s2)/4 + O(ε2). (13)

Here Ad is an explicit constant, with Ad=4 = 8π2 for SR
elasticity; the scale Wm ∼ m−ζ , with ζ the roughness exponent
contains a nonuniversal amplitude. The range of validity of
this result is discussed in the main text. The presence of the
factor of 1/(Lm)d highlights the fact that the correlations
between shocks are local [indeed, N := (Lm)d counts the
number of elastically independent regions of the interface].
We analyze this local structure by studying the correlations
between the local sizes of the shocks.

To summarize, let us emphasize again our main message,
namely that for realistic models (beyond mean field) the
sequence of shocks is always correlated.

III. MODEL, SHOCK OBSERVABLES, AND METHOD

A. Model

Consider the Hamiltonian for a d-dimensional elastic
interface with position u(x) ≡ ux ∈ R (x ∈ Rd ), elastic kernel
g−1

xx ′ , subjected to a harmonic well centered at w, and to a
disorder potential V (u,x):

H[u; w] = 1

2

∫
xx ′

g−1
xx ′ (ux − w)(ux ′ − w) +

∫
x

V (ux,x).

(14)

Here
∫
x

= ∫
ddx and we assume everywhere that the system

is confined in a box of length L with, e.g., periodic boundary
conditions (the boundary conditions will not play a role in
the following). We also assume the existence of a short-scale
length cutoff a. The elastic kernel is translationally invariant
(g−1

xx ′ = g−1
x−x ′ ) and defines a convex elastic-energy functional

(i.e., g−1
xx ′ > 0 for x �= x ′). We denote g−1

q = 1/gq its Fourier

transform defined as g−1
q = ∫

q
eiqxg−1

x , where
∫
q

= ∫
ddq

(2π)d . A
possible choice is the standard short-ranged elasticity defined
by

g−1
xx ′ = δxx ′

(−∇2
x ′ + m2

)
, g−1

q = q2 + m2. (15)

Here δxx ′ is the Dirac δ distribution, and the elastic coefficient
has been set to one using an appropriate choice of units.
Another kernel we consider is

g−1
q = (q2 + μ2)

γ

2 , (16)

where γ = 2 corresponds to the previous case and γ = 1 is
relevant for long-ranged elasticity, as encountered in fracture
and contact-line experiments. For a kernel of the form (16) we
define the mass term as

m2 := g−1
q=0 = μγ . (17)

It is the strength of the harmonic well. For short-ranged
elasticity we have

Hel[u; w] := 1

2

∫
xx ′

g−1
xx ′ (ux − w)(u′

x − w)

= 1

2

∫
x

(∇xux)2 + m2(ux − w)2. (18)
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Thus, Lm := m−1 defines a length scale beyond which differ-
ent parts of the interface are elastically independent. It also
provides a large-scale cutoff in loop integrals encountered in
the field theory. For more general kernels (16) this length
scale is Lμ := μ−1, and we suppose Lμ � L, ensuring that
boundary conditions do not play a role. The number of
elastically independent parts of the interface is N = (L/Lμ)d .
The disordered potential V (u,x) is assumed to be short ranged
in internal space x and statistically translationally invariant,
with a second cumulant

V (u,x)V (u′,x ′)
c = δxx ′R0(u − u′). (19)

The overline (· · · ) denotes the average over the disorder,
and superscript c stands for connected averages. The detailed
form of R0 is, apart from global features that determine the
universality class of the problem (see Sec. III C), unimportant.
We also consider the force-force cumulant �0(u) = −R′′

0 (u)
such that ∂uV (u,x)∂u′V (u′,x ′)

c = δxx ′�0(u − u′). Introducing
a (finite) temperature T , disorder and thermal averages in this
model can efficiently be computed using a replicated field
theory. Introducing n replicated fields uax , a = 1, . . . ,n, the
replicated action reads

S[u] = 1

2T

∑
a

∫
xx ′

g−1
xx ′ (uax − w)(uax ′ − w)

− 1

2T 2

∑
a,b

∫
x

R0(uax − ubx) + · · · , (20)

where · · · indicates eventual higher cumulants of the disorder.

B. The ground state and the scaling limit

As discussed in the Introduction, we are interested in the
minimal energy configuration of the interface for a given
parabolic well position w and disorder realization V (i.e., the
T = 0 problem). It is defined as the configuration ux(w), which
minimizes the energy,

ux(w) := argmin
ux

H[u; w]. (21)

We denote

u(w) := 1

Ld

∫
x

ux(w) (22)

the center of mass of the ground state of the interface. The
statistical properties of ux(w) have been extensively studied
in the literature. In particular, it is known that the interface
is self-affine with a (static) roughness exponent ζ , defined by
[ux(w) − ux ′ (w)]2 ∼ |x − x ′|2ζ . This scaling form generally
holds in the scaling regime Lc � |x − x ′| � Lμ, where Lc

is the Larkin length. The scaling limit is thus obtained for
Lμ → ∞ or equivalently for μ → 0, also equivalent to m → 0
[see (17)], a regime which is implicit throughout this work. In
the FRG treatment of this problem, the ground-state statistics
is studied using the replicated field theory (20). The mass
term m (or μ = m2/γ ) can be conveniently used as a control
parameter to study the flow of the effective action. As m → 0
and through a proper rescaling, the effective action approaches
a RG fixed point. This fixed point is perturbative in ε = duc −
d > 0, where duc is the upper critical dimension of the model

(for kernels of the form (16) it is given by duc = 2γ ; thus,
duc = 4 for short-ranged elasticity and duc = 2 for long-ranged
elasticity). The central object of the theory is the effective
disorder correlator R(u), a renormalized version of R0(u). It
appears in the effective action of the theory 
[u], as R0(u)
appears in the bare action S[u] of Eq. (20) [see the action (57)
below]. Remarkably, as shown in Ref. [41], it is related to
a physical observable, the renormalized disorder force-force
correlator �(u) defined as

�(w − w′) := Ldm4[u(w) − w][u(w′) − w′]
c
, (23)

through the relation �′′(u) = −R(u). This is the function that
appears in the results (8) and (10) of the introduction. The
RG flow can be equivalently studied on R or �. For m → ∞,
the correlator �(w) is equal to the bare force-force correlator:
�(w) →m→∞ �0(w). In the limit m → 0 it admits a scaling
form

�(w) = Adμ
ε−2ζ �̃(μζ w), (24)

where Ad is a dimensionless constant, and we recall μ =
m2/γ . For kernels of the form (16), a convenient choice is
to take Ad as Ad = 1

εĨ2
with the dimensionless loop integral

Ĩ2 := ∫
q

1
(1+q2)γ . Note that the combination εĨ2 stays finite as

ε → 0. In general,

A−1
d = εĨ2 = 2

(2
√

π )d

(γ + 1 − d/2)


(γ )
, (25)

and, for example, εĨ2 =γ=2;d=4 1/(8π2) and εĨ2 =γ=1;d=2

1/(2π ). As m → 0, the rescaled disorder correlator �̃ con-
verges to the fixed point of the FRG flow equation �̃∗(u),
which depends only on the universality class.

Let us now recall some important properties of these fixed-
point functions.

C. Properties of �̃∗(u) and static universality classes

Depending on the properties of the bare disorder correlator
R0(u), the FRG predicts that �̃(u) converges as m → 0 to
one of the fixed points of the FRG equation. A property of
the (zero-temperature) FRG equation is that, for nonperiodic
disorder, if �̃∗(u) is a fixed point, κ2�̃∗(u/κ) also is a fixed
point. Hence, the fixed point towards which the system flows
contains one nonuniversal scale whose value depends on
microscopic properties of the disorder. The known fixed points
can be regrouped into four main classes.1 Analytic properties
of these fixed-point functions are known up to two-loop order,
i.e., O(ε2); see Ref. [30], to which we refer the reader for
quantitative results. An important property is that all fixed
points exhibit a cusp around 0, �(u) 	 �(0) + �′(0+)|u| +
O(u2), related to the presence of avalanches [31,33]. For our
analysis the sign of (�∗)′′(u) is crucial as it determines the sign
of the correlations. From the exact result (8) (shown below)
we see that for (�̃∗)′′(W ) > 0 shock sizes at distance W are
anticorrelated, whereas for (�̃∗)′′(W ) < 0 they are positively
correlated.

1There are other classes with different long-range correlations, but
we do not study them.
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Random bond. This class has a bare disorder potential
V (x,u) distributed with short-ranged correlations in the u

direction: The bare disorder correlator R0(u) decays quickly
to 0 as u → ∞. The most important property for our analysis
of the fixed-point function �̃∗

RB(u) (its typical form is plotted
on the right of Fig. 1) is that (�̃∗

RB)′′(u) > 0 at small u and
(�̃∗

RB)′′(u) < 0 at large u.
Random field. This class has the bare disorder force

F (x,u) = −∂uV (x,u) distributed with short-ranged correla-
tions. Then the bare force-force correlator �0(u) is short-
ranged and R0(u) 	u�1 −σ |u|, where σ is called the ampli-
tude of the random field. The most important property for our
analysis of the fixed-point function �̃∗

RF(u) (its typical form is
plotted on the left of Fig. 1) is that (�̃∗

RF)′′(u) > 0 for all x.
Random periodic. This class corresponds to periodic

disorder V (u + 1) = V (u). As a consequence, �̃∗(u) is also
periodic and (�̃∗)′′(u) = (�̃∗)′′(0) > 0 is constant. Though our
analysis still applies to this universality class and our results are
correct to O(ε), we do not discuss it here. As the shock process
is periodic in any dimension, correlations naturally arise from
this periodicity (in particular in d = 0 in the m → 0 limit only
one shock survives per interval).

The Brownian-force-model universality class. Finally, the
Brownian-force model defined as �0(u) = −σ |u| is also a
fixed point of the FRG flow equation and attracts all bare
disorder such that �0(u) 	 −σ ′|u| at large u. It models
avalanches at the mean-field level. (It resums tree diagrams.)
In this model shocks are uncorrelated.

Hence, from the perspective of practical applications, the
qualitative behavior of the correlations between shocks as a
function of the distance strongly depends on the universality
class of the model (see Fig. 1).

D. Shocks observables: Densities

As recalled in the Introduction, it is well known that in the
limit of small m the (rescaled) ground state ux(w) is piecewise
constant as a function of w. In terms of the sequence of shocks
{(wi,S

(i)
x )}i∈Z one can write ux(w) and u(w) as

ux(w) =
∑

i

θ (w − wi)S
(i)
x ,

(26)
u(w) = 1

Ld

∑
i

θ (w − wi)S
(i),

where θ (x) is the Heaviside θ function. We recall the definition
of the one- and two-shock size density:

ρ(S) =
∑

i

δ(w − wi)δ(S − S(i)), (27)

ρW (S1,S2)

=
∑
i �=j

δ(w − wi)δ(S1 − S(i))δ(w + W − wj )δ(S2 − S(j )).

(28)

These distributions possess a large-scale cutoff which we
denote Sm; the latter diverges for m to 0 as Sm ∼ m−d−ζ .
Additionally, we suppose that they have a small-scale cutoff
S0. In the scaling regime, ρ(S) behaves as a power law with a

characteristic exponent τ : ρ(S) ∼ S−τ for S0 � S � Sm. We
us also define the connected density

ρc
W (S1,S2) = ρW (S1,S2) − ρ(S1)ρ(S2). (29)

In the first part of this work our goal is to compute ρc
W (S1,S2)

up to first order in ε using the FRG.

E. Shocks observables: Probabilities

One can normalize the above densities to define proper
probability distributions as follows:

ρ0 :=
∫

ρ(S)dS, (30)

ρ2(W ) :=
∫

ρW (S1,S2)dS1dS2, (31)

P (S) := ρ(S)

ρ0
, (32)

PW (S1,S2) := ρW (S1,S2)

ρ2(W )
. (33)

With this definition, ρ0dw is the mean number of avalanches
occurring in an interval dw and

∫ w2

w1
dw

∫ w4

w3
dw′ρ2(w′ − w)

counts the number of pairs of shocks where the first one
occurs between w1 and w2 and the second between w3

and w4, irrespective of their sizes. Given these definitions,
P (S) and PW (S) are normalized probability distribution
functions (PDFs).

∫ S ′

S
dS̃P (S̃) is the probability, given that

a shock has occurred, that its size is between S and S ′.∫ S ′
1

S1
dS

∫ S ′
2

S2
dS ′PW (S,S ′) is the probability, given that two

shocks occurred at a distance W , that their sizes are between
S1 and S ′

1, and S2 and S ′
2. Note that a priori the marginal

distribution
∫

dS1PW (S1,S2) is different from P (S2) since it
contains the additional information that a shock occurred at
a distance W . At the level of these PDFs, the absence of
correlations would imply PW (S1,S2) = P (S1,S2) and, though
in the remaining of the text we favor the use of densities, our
results can be translated to probabilities using Eq. (33). As
discussed in Ref. [31], for an avalanche-size distribution ρ(S)
with exponent τ > 1 (which is relevant here), the value of ρ0

is dominated by the small-scale cutoff S0 for avalanche sizes
and diverges as S0 → 0,

ρ0 =
∫ ∞

S0

ρ(S)dS ∼S0→0 S1−τ
0 . (34)

Hence, ρ0 is nonuniversal. In the same way ρ2(W ) is nonuni-
versal, even though its relation with ρ0 has some universal
features as we show below. We denote by 〈· · · 〉ρ , 〈· · · 〉ρW

,
〈· · · 〉ρc

W
, 〈· · · 〉P , and 〈· · · 〉PW

the averages with respect to ρ,
ρW , ρc

W , P , and PW .

F. Relation between avalanche-size moments and renormalized
force cumulants: First moment

The nth cumulant of the renormalized pinning force is
defined as

m2n[u(w1) − w1] · · · [u(wn) − wn]
c

= (−1)nL−(n−1)dĈ(n)(w1, . . . ,wn). (35)
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By definition, Ĉ(2)(w1,w2) = �(w1 − w2) as introduced
above. By parity invariance of the disorder m2[u(w) − w] = 0,

and thus Ĉ(1)(w) = 0.
First cumulant. One immediately gets by inserting Eq. (26)

into m2[u(w) − w] = 0 the exact relation

〈S〉ρ = ρ0〈S〉P = Ld. (36)

Second cumulant. Differentiating with respect to w1 and w2 the
definition L−d�(w1 − w2) = m4[u(w1) − w1][u(w2) − w2]
with Eq. (26) inserted, one obtains the relation (33) of [31]
(with a corrected misprint 1 → −1). It can be written in the
form

−�′′(w1 − w2)

Ldm4
=L−2d〈S2〉ρδ(w1 − w2)

+ L−2d〈S1S2〉ρw2−w1
− 1. (37)

Hence, as pointed out in Ref. [31], the singular part of the
second derivative of �′′(w1 − w2) around w2 = w1 gives an
exact relation between the cusp in the renormalized disorder
correlator,

σ := −�′(0+) = R′′′(0+), (38)

and the second avalanche-size moment,

Sm := 〈S2〉ρ
2〈S〉ρ = 〈S2〉P

2〈S〉P = σ

m4
. (39)

The avalanche size Sm plays the role of a large-scale cutoff for
ρ(S). On the other hand, the regular part of Eq. (37) gives the
exact relation

L−2d〈S1S2〉ρW
= 1 − �′′(W )

Ldm4
. (40)

For uncorrelated shocks we would have obtained
L−2d〈S1S2〉ρW

= 1. The correlations thus come from the
nonzero value of �′′(W ) �= 0, a property which is generally
expected from the FRG. It is a simple signature of the fact
that the effective disordered force felt by the interface at large
scale is not Brownian. Note that in terms of the moments of
the connected density, the exact relation (40) reads

L−2d〈S1S2〉ρc
W

= −�′′(W )

Ldm4
. (41)

Let us also write the exact relation (40) in terms of the
probabilities defined in Sec. III E:

ρ2(W )

ρ2
0

〈S1S2〉PW

(〈S〉P )2
= 1 − �′′(W )

Ldm4
. (42)

G. Generating functions

We now introduce the generating functions which encode
all the moments of the density ρW (S1,S2). Let us first recall
the generating functions used in the one-shock case:

Z(λ) = L−d〈eλS − 1〉ρ,
Ẑ(λ) = L−d〈eλS − λS − 1〉ρ = Z(λ) − λ. (43)

They are related to observables associated with the position as

Z(λ) = L−d lim
δ→0+

∂δeLd [u(w+δ)−u(w)],

Ẑ(λ) = L−d lim
δ→0+

∂δeLd [û(w+δ)−û(w)], (44)

where û(w) := u(w) − w is the translated position field. Note
that due to STS they are independent of w. These relations
were proven in Ref. [32]. For two shocks we introduce

ZW (λ1,λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρW
. (45)

We show in Appendix A that it can be computed as

ZW (λ1,λ2) = ẐW (λ1,λ2) + λ2Ẑ(λ1) + λ1 hatZ(λ2) + λ1λ2

= ẐW (λ1,λ2) + λ2Z(λ1) + λ1Z(λ2) − λ1λ2. (46)

We used the definition

Ẑw2−w1 (λ1,λ2) := L−2d lim
δ1,δ2→0+

∂δ1,δ2

×eLdλ1[û(w1+δ1)−û(w1)]eLdλ2[û(w2+δ2)−û(w2)].

(47)

In the following we compute ẐW (λ1,λ2) using the FRG
through formula (47). Let us also define the connected
generating functions

Zc
W (λ1,λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρc

W

= ZW (λ1,λ2) − Z(λ1)Z(λ2),

Ẑc
W (λ1,λ2) := ẐW (λ1,λ2) − Ẑ(λ1)Ẑ(λ2). (48)

These functions are actually equal: Zc
W (λ1,λ2) = Ẑc

W (λ1,λ2),
as is easily seen using (46).

H. Relation between avalanche-size moments and renormalized
force cumulants: Kolmogorov cumulants and chain rule

Using Eq. (47) and the fact that û(w) = 0, the generating
function ẐW (λ1,λ2) can be written as

ẐW (λ1,λ2) =
∞∑

n,m=1

λn
1λ

m
2

n!m!
lim

δ1,δ2→0+

L(n+m−2)d

δ1δ2

× [û(δ1) − û(0)]n[û(W + δ2) − û(W )]m. (49)

In the limit of δi → 0 we encounter for each (n,m) two types
of terms:

[û(δ1) − û(0)]n[û(W + δ2) − û(W )]m

= [û(δ1) − û(0)]n
c × [û(W + δ2) − û(W )]m

c

+ [û(δ1) − û(0)]n[û(W + δ2) − û(W )]m
c + O

(
δ3
i

)
.

(50)

The term in the second line of Eq. (50) produces the
disconnected part of the avalanche moment 〈Sn

1 〉〈Sm
2 〉 and thus

the disconnected part of the generating function ẐW (λ1,λ2),
that is, Ẑ(λ1)Ẑ(λ2). The last term on the other hand contributes
to 〈Sn

1 Sm
2 〉ρc

W
and to the connected part of the generating

function, Ẑc
W (λ1,λ2) = Zc

W (λ1,λ2), which is the true unknown.
Introducing the Kolmogorov cumulants

K
(n,m)
W (δ1,δ2)

:= L(n+m−2)d [û(δ1) − û(0)]n[û(W + δ2) − û(0)]m
c
, (51)
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we can write

Zc
W (λ1,λ2) =

∞∑
n,m=1

λn
1λ

m
2

n!m!
lim

δ1,δ2→0+

1

δ1δ2
K

(n,m)
W (δ1,δ2), (52)

or, equivalently,

〈
Sn

1 Sm
2

〉
ρc

W

= lim
δ1,δ2→0+

1

δ1δ2
K

(n,m)
W (δ1,δ2). (53)

The Kolmogorov cumulants (51) can be generally extracted
from the renormalized force cumulants (35), as we now
explain. Let us introduce2

C(n,m)(w1, . . . ,wn,wn+1, . . . ,wn+m)

= L(n+m−2)d û(w1) · · · û(wn)û(wn+1) · · · û(wn+m)
c
. (54)

They are trivially linked to the renormalized force
cumulants (35): C(n,m)(w1, . . . ,wn,wn+1, . . . ,wn+m) =

1
Ld (−1/m2)n+mĈ(n+m)(w1, . . . wn+m). Explicit expressions
for the lowest cumulants with n + m � 4 are displayed in
Ref. [31]; see, e.g., Eq. (61) there. In the notation for C(n,m),
though the expression is symmetric in wi , we have highlighted
the facts that in the end the n first wi will be taken around
w = 0, whereas the last m will be around W . Indeed, to obtain
K

(n,m)
W (δ1,δ2) from the moments C(n,m), we must successively

evaluate C(n,m) with wi → δ1 minus C(n,m) with wi → 0
for each i = 1, . . . ,n, then set wi → W + δ2 minus C(n,m)

with wi → W for each i = n + 1, . . . ,n + m. Ambiguities
associated with the possible presence of terms such as �′(0±)
are lifted by taking the limit of coinciding points with a given
specific ordering of the wi . Consistency requires that the end
result does not depend on the chosen ordering, a property
linked to the assumption that all singularities of the field û(w)
can be modeled by a finite density of dilute shocks (which
guarantees, e.g., the continuity of Ĉ). This iterative procedure
was called the K operation in [31].

I. Strategy of the calculation and validity of the results

In order to compute ẐW (λ1,λ2), we must be able to perform
disorder averages of moments of the position field at various
positions wi for i = 1, . . . ,r . For example r = 4 is sufficient
in the formulation (47) and used in Appendix D . In the main
part of this work we report a calculation of ẐW (λ1,λ2) from
the study of the moments (54) and we thus need to keep r

arbitrary. We therefore consider the theory for r position fields
ui

x coupled to different parabolic wells centered at positions
wi in the same disordered environment. The Hamiltonian of
the problem is

H[{u},{w}] =
r∑

i=1

Hel[u
i,wi] +

r∑
i=1

∫
x

V (ui
x,x). (55)

2Note that those differ from C introduced in [31] by an additional
factor of L−d .

This leads to a replicated action of the form

S[u] = 1

2T

∑
a,i

∫
xx ′

g−1
xx ′ (ui

ax − wi)(u
i
ax ′ − wi)

− 1

2T 2

∑
a,i;b,j

∫
x

R0(ui
ax − u

j

bx) + · · · . (56)

The effective action of the theory is [31,32,41]


[u] = 1

2T

∑
a,i

∫
xx ′

g−1
xx ′

(
ui

ax − wi

)(
ui

ax ′ − wi

)

− 1

2T 2

∑
a,i;b,j

∫
x

R
(
ui

ax − u
j

bx

) + O(ε2). (57)

Here R(u) = O(ε) is the renormalized disorder correlator
already introduced in the previous section, while the neglected
terms are higher-order terms in ε that can be expressed as
loop integrals with higher powers of R. The calculation of
observables using the effective action (57) has been called
the improved-tree approximation [31,32]. Here we do not
specify the number of replicas a = 1, . . . ,nr . As is usual in
replica calculations, the nr → 0 limit will be implicit in the
following. Since (57) is the effective action, observables will
be computed using a saddle-point calculation or, equivalently
in a diagrammatic language, by resuming all tree diagrams
generated by the action (57). This calculation makes it possible
to get the lowest order in ε for any observable. Let us recall
the known results at the improved-tree level for ρ(S) and Z(λ)
as obtained in Refs. [31,32]:

ρ(S) = Ld

2
√

πS
3
2 (Sm)

1
2

e− S
4Sm , (58)

Z(λ) = λ + SmZ(λ)2 = 1

2Sm

(1 −
√

1 − 4λSm). (59)

J. Connected versus nonconnected averages and the ε expansion

Before going further, let us now mention a subtle point. As
becomes clear in the following, the improved-tree calculation
leads to a result of order O(ε) for ρc

W , in contrast to ρ(S)
for which it leads to a result of order O(1).3 Hence, if one
computes ρW (S1,S2) = ρ(S1)ρ(S2) + ρc

W (S1,S2) to O(ε), one
must pay attention to the fact that ρc

W (S1,S2) can be computed
using the improved-tree theory, but ρ(S) has then to be
computed to one-loop accuracy. In the same way, the connected
generating function

Zc
W (λ1,λ2) = ZW (λ1,λ2) − Z(λ1)Z(λ2) (60)

can be computed exactly up to order O(ε) using the improved-
tree theory, but to compute ZW (λ1,λ2) up to order ε one must
add one-loop corrections to Z(λ). The same remark holds for
the moments 〈Sn1

1 S
n2
2 〉ρc

W
= 〈Sn1

1 S
n2
2 〉ρW

− 〈Sn1
1 〉ρ〈Sn2

2 〉ρ .

3To be rigorous, this is only true of the dimensionless density ρ̃(S̃) =
S2

mρ(SmS̃) since Sm = O(ε); we neglect this subtlety in the following.
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IV. CORRELATIONS BETWEEN TOTAL SHOCK SIZES

A. Reminder of the diagrammatic rules and extraction
of shock moments

Let us now explain how the moments

C(n,m)(w1, . . . ,wn,wn+1, . . . ,wn+m)

= L(n+m−2)d û(w1) . . . û(wn)û(wn+1) . . . û(wn+m)

= L−2d

∫
y1,...,yn+m

ûy1 (w1) . . . ûyn+m
(wn+m) (61)

are obtained using the diagrammatic rules developed in
Ref. [31], which can also be read off from the action (57). In
the calculation of the correlator (54), the terms of the form
Ldû(wi) = ∫

yi
ûyi

(wi) are diagrammatically represented as
external legs at the top of the diagrams. Fields at different
position wi and wj can be contracted through an interaction
vertex

∫
z

1
T 2 R[ûz(wi) − ûz(wj ) + wi − wj ], represented

as a dashed line (each contraction bringing an additional
derivative to R with the appropriate sign). The propagators
are represented as plain lines. When forming tree diagrams,
one produces n + m − 1 interaction vertices 1

T 2 R and
2(n + m − 1) propagators, which each carries a factor of T .
For trees, all factors of T cancel, and the diagrams survive in
the 0 temperature limit. The factors of T can thus be omitted in
the diagrammatic rules. As for the integrals over the positions
of the external legs yi , i = 1, . . . ,n + m and the disorder
vertices zk , k = 1, . . . ,n + m − 1, since the interaction is local
in space and

∫
x
gx = 1

m2 , all 2(n + m − 1) propagators can be
taken as static propagators and thus this integration produces an
additional factor of Ld . This procedure results in expressions
for the C(n,m)(w1, . . . ,wn,wn+1, . . . ,wn+m) as sums of
products of terms involving derivatives �(p)(wi − wj ).4 In
calculating the Kolmogorov cumulants K (n,m)(δ1,δ2) to order
O(δ1δ2) one must use the even but nonanalytic form of �(u)
around the origin,

�(u) = �(0) + �′(0+)|u| + �′′(0)

2
u2 + O(u3). (62)

We checked that if one takes all limits of coinciding
points with a fixed order of the wi in the calculation,

one obtains a nonambiguous result, independent of the
ordering.

B. Lowest moments

First moment. We fist consider the computation of 〈S1S2〉ρc
W

.
To this aim we compute C(1,1)(w1,w2), which is given by a
single diagram:

C(1,1)(w1, w2) =

Δ(w1 − w2)

1
m2

1
m2

w1 ≈ 0 w2 ≈ W

=
1

Ldm4
Δ(w1 − w2).

(63)

We have introduced a new diagrammatic notation: A double-
dashed line represents an interaction vertex between position
fields at a finite distance ≈W ; we reserve the single dashed line
for interaction vertices between nearby position fields. Hence,

K
(1,1)
W (δ1,δ2) = 1

Ldm4
[�(−δ1 + W + δ2) − �(W + δ2)

−�(−δ1 + W ) + �(W )]

= −�′′(W )

Ldm4
δ1δ2 + O

(
δ2
i

)
. (64)

Using (53) we conclude that

L−2d〈S1S2〉ρc
W

= −�′′(W )

Ldm4
. (65)

This is the exact result (40), here retrieved diagrammatically
within the improved-tree approximation. A priori there could
be higher-order corrections O(ε2) on the right-hand side
of (65), coming from loop diagrams. However, the defini-
tion (23) of �(u) as a physical observable effectively resums
an infinite number of loop diagrams. The same diagrams then
arise on both sides of Eq. (65), and the result (40) is exact.

Second moment. Let us now consider the computation
of 〈S2

1S2〉ρc
W

. We first need to compute C(2,1)(w1,w2,w3).
Diagrammatically, it is given by

C(2,1)(w1, w2, w3)

= 2 Symw1↔w2

w2 ≈ 0 w1 ≈ 0 w3 ≈ W

+

w3 ≈ W w1 ≈ 0 w2 ≈ 0

+

w2 ≈ 0 w3 ≈ W w1 ≈ 0

=
2

Ldm8
Symw1↔w2

Δ(w1 − w2)Δ (w1 − w3) + Δ(w1 − w3)Δ (w1 − w2) + Δ(w3 − w2)Δ (w3 − w1) .
(66)

In doing the K operation to go from C(2,1) to K
(2,1)
W , these

diagrams are not equivalent. At order δ1δ2, which we are

4Each R vertex must be contracted at least twice or there would be
one free-replica sum left in the replicated theory, leading to 0 in the
limit of a vanishing number of replicas.

interested in, the first term leads to 4�′(0+)
m4

�′′(W )
Ldm4 δ1δ2, the

second to 2�′(0+)
m4

�′′(W )
Ldm4 δ1δ2, whereas the third one is of order

O(δ2
1δ2) and does not contribute. Using Eq. (53) we conclude

that

L−2d
〈
S2

1S2
〉
ρc

W

= 6
�′(0+)

m4

�′′(W )

Ldm4
+ O(ε2). (67)
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General rules for diagrams. The last example is rather
instructive for the following three general rules.

(i) The only diagrams that contribute to the Kolmogorov
cumulant K

(n,m)
W (δ1,δ2) at order δ1δ2 contain a single double-

dashed vertex (that is a single disorder interaction vertex
connecting the two disjoint sets of points at w ≈ 0 and
w ≈ W ).

(ii) This vertex becomes a �′′(W ) at order δ1δ2.
(iii) The other interaction vertices are between (almost)

coinciding points and produce a factor of �′(0+) at order δ1δ2.
These rules are discussed in Appendix B. As a result,

diagrams contributing to the two-shock moments consist of
diagrams reminiscent of the one-shock case [i.e., they contain
only �′(0+) vertices] linked together by an interaction vertex
−�′′(W )

Ldm4 .

C. Generating function for all moments

Let us now use the above rules and give a diagrammatic
computation of Zc

W (λ1,λ2) = Ẑc
W (λ1,λ2) defined in Eq. (48).

To this aim, let us first introduce a diagrammatic notation for
Z(λ) defined in Eq. (43):

Z(λ) = . (68)

We have emphasized using dots that there is an arbitrary
number of external legs at the top of the diagrams summed
in Eq. (68). Using the expansion (49) and following the rules
explained in the previous section, the diagrams entering in
Ẑc

W (λ1,λ2) are made of two trees linked by a single doubled
dashed line. It is the sum of all tree diagrams for avalanches
at w = 0, times all tree diagrams for avalanches at w = W ,
linked together by a single −�′′(W )

Ldm4 inserted between any pair
of points belonging to each tree. This can be represented as

Zc
W (λ1,λ2) = Ẑc

W (λ1,λ2)

=

w ≈ 0 w ≈ W

w ≈ 0 w ≈ W

.

(69)

The diagrams above the point of insertion of �′′(W ) on the
left are given by Z(λ1). The terms below are all the diagrams
in Z(λ1) with an arbitrary external leg selected, that is, dZ(λ1)

dλ1
.

A similar contribution arises on the right-hand side. Hence, we
arrive at the result

Zc
W (λ1,λ2) = −�′′(W )

Ldm4
Z(λ1)

dZ(λ1)

dλ1
Z(λ2)

dZ(λ2)

dλ2
+ O(ε2).

(70)

In terms of ZW (λ1,λ2) this result reads

ZW (λ1,λ2) = Z(λ1)Z(λ2) − �′′(W )

Ldm4
Z(λ1)

× dZ(λ1)

dλ1
Z(λ2)

dZ(λ2)

dλ2
. (71)

It is correct to O(ε) if one takes into account the O(ε)
corrections to Z(λ). Expanding the result (70), one obtains
the moments 〈Sn

1 Sm
2 〉ρc

W
:

〈
Sn

1 Sm
2

〉
ρc

W

= −�′′(W )

L3dm4
n!m!

n−1∑
p=0

m−1∑
q=0

× 〈Sn−p〉ρ〈Sp+1〉ρ〈Sm−q〉ρ〈Sq+1〉ρ
(n − p)!p!(m − q)!q!

+ O(ε2).

(72)

The diagrammatic interpretation of this result is straight-
forward: To construct an arbitrary diagram contributing to
〈Sn

1 Sm
2 〉ρc

W
, one must first choose p � n − 1 external legs on

the left that will be below the point of insertion of −�′′(W )
Ldm4

(there must be at least one leg above this point of insertion). In
the K operation, all those points lead to a term that contributes
to 〈Sp〉ρ . The combinatorial term accounts for the Cn

p possible
choices. Note that this result was derived using the heuristic
diagrammatic rules developed in the preceding section. We
observe the following.

(i) It correctly reproduces the results for the small-order
moments (65) and (67). We checked that it leads to 〈S3

1S2〉ρc
W

=
−60�′′(W )

Ldm4 S2
m and 〈S2

1S
2
2 〉ρc

W
= −27�′′(W )

Ldm4 S2
m, which can also be

derived from the expression for Ĉ(4)(w1,w2,w3,w4) given, e.g.,
in formula (61) of Ref. [31].

(ii) We give in Appendix C an alternative derivation of
Eq. (71) that uses the Carraro-Duchon formalism [32,42].

(iii) We give in Appendix D a derivation using a saddle-
point calculation within the effective action (57). This also
yields the local structure of correlations studied in Sec. V.

D. Results for the densities

To infer ρW from Eq. (71), we first note the
identity Z(λ) dZ(λ)

dλ
= 1

2Sm

d
dλ

[Z(λ) − λ], derived from the
self-consistent equation (58) for Z(λ). Differentiating
L−d

∫
dS(eλS − 1)ρ(S) = Z(λ) with respect to λ and using

〈S〉ρ = Ld yields

L−d

∫
dS(eλS − 1)Sρ(S) = d

dλ
[Z(λ) − λ]. (73)

Finally, using Eqs. (45) and (71), we obtain

ρW (S1,S2) = ρ(S1)ρ(S2)

[
1 − �′′(W )

Ldm4

S1S2

4S2
m

]
. (74)

This is our main result for the two-shock density, already
announced in Eq. (10) of the Introduction. It can be used to
extract a variety of physical observables.

Mean number of pairs of shocks. Integrating over S1 and
S2, we obtain two equivalent formulas for ρ2(W ):

ρ2(W ) = ρ2
0 − �′′(W )

Ldm4

L2d

4S2
m

= ρ2
0

[
1 − �′′(W )

Ldm4

( 〈S〉P
2Sm

)2
]
. (75)

Hence, although both ρ0 and ρ2(W ) are nonuniversal and
dominated by the nonuniversal small avalanche size cutoff
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S0 discussed in Sec. III E, the connected density ρ2(W ) − ρ2
0

does not depend on S0 and is universal.
Normalized probability distribution. The above results

allow us to express the probability distribution PW (S1,S2) =
ρW (S1,S2)

ρ2(W ) to O(ε) accuracy as

PW (S1,S2)

= P (S1)P (S2)

[
1 − �′′(W )

4S2
mLdm4

(
S1S2 − 〈S〉2

P

)]
. (76)

Conditional probability distribution. Another PDF of inter-
est is the conditional probability to have a shock with amplitude
S2, given that there was a shock of amplitude S1 at a distance
W before. To O(ε) accuracy,

PW (S2|S1) = PW (S1,S2)∫
dS2PW (S1,S2)

= P (S2)

[
1 − �′′(W )S1

4S2
mLdm4

(S2 − 〈S〉P )

]
. (77)

Its mean value, normalized by 〈S〉P , is

〈S2|S1〉
〈S〉P = 1 − �′′(W )S1

4S2
mLdm4

(2Sm − 〈S〉P ). (78)

Second shock marginal.The probability for the size S2 of a
second shock at W , given that there was a shock at 0, is

PW (S2) =
∫

dS1PW (S1,S2)

= P (S2)

[
1 − �′′(W )〈S〉P

4S2
mLdm4

(S2 − 〈S〉P )

]
. (79)

The normalized mean value of the second shock is

〈S2〉W
〈S〉P = 1 − �′′(W )〈S〉P

4S2
mLdm4

(2Sm − 〈S〉P ). (80)

E. Analysis of the results

Sign of the correlations. As discussed in Sec. III C, the sign
of the correlations (positively or negatively correlated shock
sizes) solely depends on the sign of �′′(W ), which depends on
the distance W and on the universality class of the problem.
The above results thus unveil a rich phenomenology for the
correlations as pictured in Fig. 1.

Range of validity. The result (70) was obtained in the
framework of the ε expansion. The results for the connected
part of the correlations are by definition the first nonzero
terms in this expansion, since they were obtained within the
improved-tree approximation, and they appear at O(ε). As a
perturbative result, it is by definition controlled for ε → 0.
For finite ε, the predictions should be accurate as long as
the corrections to the mean-field behavior are small. This is
worth emphasizing, since the moments 〈Sn

1 Sm
2 〉ρW

predicted by
the formula (72) become negative for large (n,m), signaling
a breakdown of the improved-tree approximation. This is
also the case of the two-shock density computed at the
improved-tree level in Eq. (74), which becomes negative at
large Si . There the approximation is not controlled anymore
since O(ε) corrections are larger than the mean-field result.
Let us see when this occurs: Using the simple estimate
�′′(W ) ≈ |�′(0+)|/Wμ, where Wμ is the length of order μ−ζ

on which �(W ) decays (see below), and |�′(0+)| = m4Sm,
the bound ρ(S1,S2) > 0 is violated if

1 � Sm

Wμμ−d
× 1

(μL)d
× S1S2

4S2
m

. (81)

The first factor is a dimensionless number of order O(ε) near
d = duc. The second vanishes in the thermodynamic limit of
L → ∞. Thus, the bound can only be violated if S1S2/S

2
m

compensates for this factor. This can only be achieved if at
least one of the avalanches is either system spanning or far out
in the tail of the distribution, i.e., the bound is only violated
for very unlikely events.

Note, however, that the exact result (40) is protected from
being negative since

L−2d〈S1S2〉ρW
= 1 − �′′(W )

Ldm4
= ∂wu(w)∂wu(W + w), (82)

and ∂wu(w) is always positive since u(w) is monotonically
increasing as a function of w. The latter can be shown
rigorously using a stability argument: Writing that ux(w) is a
stable minimum of the Hamiltonian (14) implies for all x two
equations, namely δH[u,w]

δu(x) = 0 and δ2H[u,w]
δu(x)δu(y) � 0. Specifying

the second equation to x = y, we obtain

m2[ux(w) − w] + ∂uV (ux(w),x) = 0, (83)

m2 + ∂2
uV (ux(w),x) � 0. (84)

Taking a derivative of Eq. (83) with respect to w, solving for
∂wux(w), and using Eq. (84) implies

∂wux(w) = 1

1 + m−2∂2
uV (ux(w),x)

� 0 . (85)

Comparison with experiments and numerics. Though our
predictions rely on the analysis of the model (14), they were
obtained using FRG and thus we expect Eqs. (70) and (72)
to be valid for all models in the same universality class. All
our results, namely Eq. (72) and Eqs. (74)–(80), contain the
combination �′′(W )

Ldm4 . On one hand, it can be used to give a result
to order O(ε) in the form of a universal function (see below).
On the other hand, all quantities entering the right-hand side
of these equations can be measured directly in an experiment
or in a numerical simulation. Indeed, we recall that

Sm := 〈S2〉P
2〈S〉P ≡ 〈S2〉ρ

2〈S〉ρ (86)

and the combination

�′′(W )

Ldm4
= ∂2

W [u(w) − w][u(w + W ) − w − W ]
c

(87)

can both be measured and do not require to know the mass
m, which might be hard to identify. The computation of this
second derivative then gives a precise characterization of the
amplitude of the correlations through the exact formula (41).
The accuracy of the ε expansion and universality can then be
tested against the formulas given in the previous section.

Universal function. Using rescaled quantities we can
rewrite our main result as [see Eq. (24) and Sec. III C]

ρc
W (S1,S2) = 1

(Lμ)d
L2d

S4
m

Fd

(
W

Wμ

,
S1

Sm

,
S2

Sm

)
, (88)
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where the function Fd is universal and depends only on the
space dimension. To first order in d = duc − ε, it is given by

F(w,s1,s2) 	 Ad�
∗′′(w)

16π
√

s1s2
e−(s1+s2)/4 + O(ε2) (89)

in the limit of large L and small μ and Ad was given in
Eq. (25). Here �∗′′(w) is the universal fixed point of the FRG
equation, normalized to �∗(0) = ε. Indeed, for small m the
rescaled renormalized disorder correlator of the system �̃(w),
appearing in Eq. (24), is close to one of the fixed points of
the FRG equation: �̃(w) 	 �̃∗(w). For nonperiodic disorder,
the latter can be expressed using one constant κ as �̃∗(w) =
κ2�∗(w/κ) (see Sec. III C). The parameter κ is thus the single
nonuniversal constant in our formula. The scales in Eq. (88)
are then given by

Wμ 	 κμ−ζ , Sm 	 Adκ�∗′(0+)μ−(d+ζ ), (90)

for small μ. We remind that m = μγ/2. We have defined all
quantities such that their expressions are the most simple ones,
independent of γ . With the above normalization, to order ε,
�∗′(0+) = √

ε(ε − 2ζ ) and �∗′′(0) = 2ε
9 .

Locality. Note that in the result (88) the amplitude of the
correlation is inversely proportional to N = (Lμ)d , the number
of elastically independent degrees of freedom of the interface.
This is a signature of the local nature of the correlations.
For two shocks a distance W apart, there is a probability of
order 1/N that they occur in the same region of space. To
go further into this locality property and to remove this bias,
we investigate in the next section the correlations between the
local shock sizes.

V. LOCAL STRUCTURE OF CORRELATIONS

In this section we analyze the correlations between the
local shock sizes. We start by deriving a general formula for
the correlations between the local shock sizes measured on an
arbitrary subset of the internal space of the interface. To this
aim we define

S
φ1
1 =

∫
x

S1xφ1x, S
φ2
2 =

∫
x

S2xφ2x, (91)

where φ1 and φ2 are two arbitrary test functions. Two extreme
cases are φ1x = 1, in which S

φ1
1 = S1 and the observable is the

total size studied in the precedent section, and φ1x = δd (x −
x1), for which S

φ1
1 = S1x1 is the local size at x = x1.

A. Reminder: One-shock case

Here we briefly recall the essential definitions and results
given in Refs. [31,32] on the density and generating function
associated with the local one-shock size statistics. For a general
test function φ we introduce

ρφ(Sφ) :=
∑

i

δ(S(i),φ − Sφ)δ(wi − w),

Zφ(λ) := 1∫
x
φx

〈eλSφ − 1〉ρφ , (92)

Ẑφ(λ) := Zφ(λ) − λ,

where 〈· · · 〉ρφ denotes the average with respect to ρφ . Note
that Ẑφ has no linear term, since the first moment of ρφ is due
to STS,

〈Sφ〉ρφ =
∫

x

φx. (93)

The generating function Ẑφ(λ) is obtained from the replica
field theory using the exact relation

Ẑφ(λ) = 1∫
x
φx

∂δe
∫
x
φx [ux (w+δ)−ux (w)−δ]|δ=0+ . (94)

It was shown in Refs. [31,32] that Zφ(λ) can be written as

Zφ(λ) =
∫
x
Z

φ
x (λ)∫

x
φx

, (95)

where, at the improved-tree-theory level, Z
φ
x (λ) satisfies the

following self-consistent equation:

Zφ
x (λ) = λφx + σ

∫
yy ′

gx−ygx−y ′Zφ
y (λ)Zφ

y ′(λ). (96)

The quantity σ = −�′(0+) was defined in Eq. (38).

B. Two-shock case: Notation and diagrammatic result

Densities and generating functions. Consider

ρ
φ1φ2

W

(
S

φ1

1 ,S
φ2

2

)
:=

∑
i �=j

δ(w − wi)δ
(
S

φ1

1 − S(i),φ1
)
δ(w + W − wj )δ

(
S

φ2

2 − S(j ),φ2
)
.

The generating functions are

Z
φ1φ2

W := 1∫
x
φ1

x

∫
x
φ2

x

〈(
eλ1S

φ1

1 − 1
)(

eλ2S
φ2

2 − 1
)〉

ρ
φ1φ2

W

, (97)

Ẑ
φ1φ2

w2−w1
(λ1,λ2) := 1∫

x
φ1

x

∫
x
φ2

x

lim
δ1,δ2→0+

∂δ1,δ2e
∫
x
φ1

xλ1[ûx (w1+δ1)−ûx (w1)]e
∫
x
φ2

xλ2[ûx (w2+δ2)−ûx (w2)], (98)

where 〈· · · 〉
ρ

φ1φ2

W

denotes the average with respect to ρ
φ1φ2

W . The following relation holds:

Z
φ1φ2

W (λ1,λ2) = Ẑ
φ1φ2

W (λ1,λ2) + Zφ1
(λ1)λ2 + λ1Z

φ2
(λ2) − λ1λ2. (99)
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(These relations are a consequence of Appendix A.) The con-
nected equivalents of the previous definitions are constructed
as in the previous section for the correlations between the total
sizes; for example,

ρ
c;φ1φ2

W

(
S

φ1

1 ,S
φ2

2

) = ρ
φ1φ2

W

(
S

φ1

1 ,S
φ2

2

) − ρφ1(
S

φ1

1

)
ρφ2(

S
φ2

2

)
,

(100)

and we note 〈· · · 〉
ρ

c;φ1φ2

W

the average with respect to ρ
c;φ1φ2

W .

Simplified notation for averages. In order that these some-
what complicated notations do not obscure our results, we
introduce simplified notations for averages. We first note that

ρ
φ1φ2

W

(
S

φ1

1 ,S
φ2

2

) = ρ2(W )P
(
S

φ1

1 ,S
φ2

2

)
, (101)

where ρ2(W ) is as before the density of a pair of shocks

and P(Sφ1

1 ,S
φ2

2 ) denotes the probability, given that two shocks
occurred at a distance W , that their local sizes measured with
respect to φ1 and φ2 are S

φ1

1 and S
φ2

2 . We have dropped the
dependence of P on φ1 and φ2 to alleviate our notations. We
also note arbitrary moments as〈〈(

S
φ1
1

)n(
S

φ2

2

)m〉〉
ρW

:= 〈(
S

φ1
1

)n(
S

φ2

2

)m〉
ρ

φ1φ2

W

, (102)〈〈(
S

φ1
1

)n(
S

φ2

2

)m〉〉
ρc

W

:= 〈(
S

φ1
1

)n(
S

φ2

2

)m〉
ρ

c;φ1φ2

W

. (103)

We indicate the dependence on the choice of φ1 and φ2 only
inside the average and not in the measure. A moment of the

form 〈〈(Sφ1
1 )n(Sφ2

2 )m〉〉ρW
is thus equal to the product of ρ2(W )

and of the mean value of (Sφ1
1 )n(Sφ2

2 )m for shocks at a distance
W , given that two such shocks occurred.

Diagrammatic result. In Appendix D we compute these
generating functions by a direct evaluation of Eq. (97),
using a saddle-point calculation on the effective action (57).
Alternatively, from a diagrammatic point of view, the result
can be adapted from the reasoning that led to ZW (λ1,λ2) by
keeping track of the space dependence in the different vertices,
propagators, and sources in the diagram (69). Following
Eq. (68), we represent Z

φ
x (λ) as

Zφ
x (λ) =

φ

x

. (104)

The same diagram without the marked point x is also used
to represent

∫
x
Z

φ
x (λ), itself equal to

∫
x
φx × Zφ(λ). Then,

as before, Ẑ
φ1φ2

W (λ1,λ2) is the sum of a connected and a
disconnected part:

Ẑ
φ1φ2

W (λ1,λ2) = Ẑφ1
(λ1)Ẑφ2

(λ2) + Ẑ
c,φ1φ2

W (λ1,λ2). (105)

The connected part Ẑ
c;φ1φ2

W (λ1,λ2) is

Ẑc;φ1φ2

W (λ1, λ2)

=
1

x φ1
x x φ2

x

×

φ1; w ≈ 0 φ2; w ≈ W

φ1; w ≈ 0 φ2; w ≈ W.
x1

x2

z z

(106)

It can be written as

Ẑ
c,φ1φ2

W (λ1,λ2) = − �′′(W )∫
x
φ1

x

∫
x
φ2

x

∫
zx1x2y1y2

gzx1Z
φ1

x1
(λ1)

× δZ
φ1

y1 (λ1)

λ1δφ1
z

gzx2Z
φ2

x2
(λ2)

δZ
φ2

y2 (λ2)

λ2δφ2
z

+ O(ε2).

(107)

We note that it is possible to obtain a more explicit formula
for avalanches measured on parallel hyperplanes; see Ap-
pendix D 2. In the next section we focus on the first moments,
which already contain valuable information.

C. First moments: Arbitrary sources and kernels

The first moments of ρ
c;φ1φ2

W are obtained from the com-
bination of Eqs. (97), (99), (105), and (107). One first needs
the series expansion for Z

φ
x (λ). It is obtained from Eq. (96) at

arbitrary order in λ; here we give it up to order 3:

Zφ
x (λ) = λφx + λ2σ

∫
yy ′

gx−ygx−y ′φyφy ′ + 2λ3σ 2

×
∫

yy ′zz′
gx−ygx−y ′gy−zgy−z′φzφz′φy ′ + O(λ4).

(108)

Hence,

δZ
φ
x

λδφu

= δ(x − u) + 2λσ

∫
y

gx−ygx−uφy

+ 2λ2σ 2

(
2
∫

yy ′z
gx−ygx−y ′gy−zgy−uφzφy ′

+
∫

yzz′
gx−ygx−ugy−zgy−z′φzφz′

)
+ O(λ3). (109)

We then obtain from Eq. (107) the local version of the exact
result (8), namely5

〈〈
S

φ1

1 S
φ2

2

〉〉
ρc

W∫
x
φ1

x

∫
x
φ2

x

= − �′′(W )∫
x
φ1

x

∫
x
φ2

x

∫
zx1x2

gz−x1gz−x2φ
1
x1

φ2
x2

+ O(ε2). (110)

5The result (110) can simply be turned into an exact one if one introduces the bilocal part of the renormalized disorder correlator �x2−x1 (w1 −
w2) = m4[ux1 (w1) − w1][ux2 (w2) − w2] (see also [41]) and proceeds as in Sec. III F. The result (110) can then be understood as the lowest-order
approximation of �x2−x1 (w) in terms of �(w).
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Let us also give the result for the third-order moment:〈〈(
S

φ1

1

)2
S

φ2

2

〉〉c
ρc

W∫
x
φ1

x

∫
x
φ2

x

= − �′′(W )∫
x
φ1

x

∫
x
φ2

x

σ

(
4
∫

zx1x2y1t1

gz−x1gz−x2gy1−t1gy1−zφ
1
x1

φ1
t1
φ2

x2

+2
∫

zx1x2t1t
′
1

gz−x1gz−x2gx1−t1gx1−t ′1φ
1
t1
φ1

t ′1
φ2

x2

)
+ O(ε2). (111)

D. First moment: Correlations between the local shock sizes
for short-ranged elasticity

Let us now give the precise form of the first connected
moment for an interface with the short-ranged elasticity (15)
and for correlations between the local avalanche sizes at two
points, x1 and x2. We choose φ1

x = δd (x − x1) and φ2
x =

δd (x − x2) and note x = |x1 − x2| the distance between the
two points. Thus, S

φ1

1 = S1x1 and S
φ2

2 = S2x2 . We obtain〈〈
S1x1S2x2

〉〉
ρc

W

= −�′′(W )
∫

q

eiq(x1−x2)gqg−q

= −�′′(W )md−42− d
2 −1π− d

2 (mx)2− d
2 K2− d

2
(mx)

=x=0 − �′′(W )2−dπ− d
2 md−4


(
2 − d

2

)

	x�1/m − �′′(W )2− d
2 − 3

2 π
1
2 − d

2 m
d−5

2 x
3
2 − d

2 e−mx, (112)

where Kn(x) denotes a modified Bessel function of the second
kind. Note that integrating this formula yields an exact result,∫

x1,x2

〈〈S1x1S2x2〉〉ρc
W

= 〈S1S2〉ρc
W

= −Ld �′′(W )

m4
. (113)

This is equivalent to Eq. (41), which is exact. We thus expect
Eq. (112) to be quite accurate even for large values of ε.

As expected, we observe that the amplitude of the correla-
tions decays exponentially beyond the length Lm = 1/m. For
smaller distances they decay algebraically with an exponent
that depends on the dimension:〈〈

S1x1S2x1+x

〉〉
ρc

W

− 〈〈
S1x1S2x1

〉〉
ρc

W

	d=1
�′′(W )

8m
x2 + O(x3)

	d=2 −�′′(W )

16π
[2γE − 1 + 2 ln(mx/2)]x2

	d=3
�′′(W )

8π
x + O(x2). (114)

Finally, to emphasize the universal nature of Eq. (112), we
note that it can be rewritten, using the notations of Sec. IV E
and introducing a new universal scaling function F11

d (w,x), as

〈〈
S1x1S2x2

〉〉
ρc

W

= F11
d

(
W

Wμ

,m|x1 − x2|
)

, (115)

F11
d (w,x) = −2− d

2 −1π− d
2 Ad�

∗′′(w)x2− d
2 K2− d

2
(x) + O(ε2).

(116)

E. First moment: Correlations between the local shock sizes
for long-ranged elasticity

Let us now study the correlations between local avalanche
sizes [we choose again φ1

x = δd (x − x1) and φ2
x = δd (x − x2)

with |x1 − x2| = x] for the case of long-ranged elasticity
using the kernel (16) with γ = 1. Then the result for the first
connected moment is

〈〈
S1x1S2x2

〉〉
ρc

W

= −�′′(W )
μd−2

(2π )
d
2

(μx)1− d
2 K1− d

2
(xμ)

=d=1
e−μx

2μ
. (117)

As the previous formula for short-ranged elasticity, this
formula should be rather accurate for the experimentally
relevant case of d = 1 (in this case ε = 1). We again observe
an exponential decay of the correlations beyond the length
Lμ = 1/μ. However, here the correlations are constant at small
distances, a signature of the long-range nature of the elasticity.
As before, the universal nature of this result can be emphasized
by introducing a universal scaling function F11

d,LR(w,y),

〈〈
S1x1S2x2

〉〉
ρc

W

=F11
d,LR

(
W

Wμ

,μ|x1 − x2|
)

,

F11
d (w,x) = − (2π )−

d
2 Ad�

∗′′(w)x1− d
2 (118)

× K1− d
2
(x) + O(ε2),

where we used the same notations as in Sec. IV E.

FIG. 2. Renormalized disorder �(u) measured in the d = 0 RB
toy model. (Inset) Its second derivative �′′(u), computed using a
numerical fit of the measured �(u).
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FIG. 3. Comparison between the measurement of the normalized

moment
〈S1S2〉ρc

W

〈S〉2
ρ

(blue dots) and the prediction from the exact

result (40) using the measurement of �(u) (red curve) in the RB
toy model. The agreement is perfect, as expected.

VI. MEASUREMENT OF CORRELATIONS IN
SIMULATIONS OF d = 0 TOY MODELS

A. Models and goals

In this section we compare our results with numerical
simulations of toy models of a particle in a discrete random
potential. The position of the particle can only take integer
values u ∈ N and its Hamiltonian is

HV [u; w] = V (u) + 1
2m2(u − w)2, (119)

where V is a random potential. We consider two distributions
for the random potential mimicking the two nonperiodic static
universality classes of interfaces models.

RB model. The first model is a toy model for the random-
bond universality class with short-ranged correlated disorder
where the random potentials V (i) at each site i ∈ N are chosen
as independent, centered, and normalized Gaussian random
variables.

RF model. The second model is a toy model for the
random-field universality class where V (0) = 0 and for i � 1,
V (i) = −∑i

j=1 F (j ); the random forces F (i) at each site
i ∈ N are chosen as independent, centered, and normalized

FIG. 4. Comparison between the measurement of ρ2(W ) (blue
dots) and the prediction from the O(ε) result (75) using the
measurement of �(u) (red curve) in the RB toy model. We obtain a
surprisingly good agreement.

FIG. 5. Comparison between the measurement of the normalized

moment
〈S2

1 S2〉ρc
W

〈S2〉ρ 〈S〉ρ (blue dots) and the prediction from the exact
result (40) using the measurement of �(u) (red curve) in the RB
toy model.

random variables. Thus, V (i) is a random walk with Gaussian
increments.

In the RB model we choose the mass as mRB = 0.01
and in the RF model as mRF = 0.02. With these parameters,
the probability ρ0 to trigger a shock when moving w →
w + 1 is ρRF

0 = (6.959 ± 0.001) × 10−3 and ρRB
0 = (9.471 ±

0.001) × 10−3. These small values of the masses ensure that
the models efficiently approximate our continuum model in
d = 0 and that the particle optimizes its energy over a large
number of random variables. We perform averages over ten
simulations of environments of size N = 5 × 108 sites. We
obtain excellent statistics for various observables studied in
this work, including ρ2(W ), �(W ) measured using Eq. (23),
〈S1S2〉ρW

, and 〈S2
1S2〉ρW

.
Let us emphasize that these simulations are more a proof

of principle to motivate simulations on higher-dimensional
models and measurements in experiments than a full test of
the results obtained in this article. This said, our simulations
allow us to verify the exact result (40) to a very high accuracy.
Second, although d = 0 is at a large value of ε in the d = 4 − ε

expansion, the FRG equation and the associated fixed-point
functions for random-field disorder are known to behave quite
similarly [30,43]. For random-bond disorder we expect less
universality since �(u) is nonuniversal in d = 0; nevertheless,
the relations between the correlation and �(u) are interesting
to investigate, in particular the sign of the correlations.

FIG. 6. Renormalized disorder �(u) measured in the d = 0 RF
toy model. (Inset) Its second derivative �′′(u), computed using a
numerical fit of the measured �(u).
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FIG. 7. Comparison between the measurement of the normalized

moment
〈S1S2〉ρc

W

〈S〉2
ρ

(blue dots) and the prediction from the exact

result (40) using the measurement of �(u) (red curve) in the RF
toy model. The agreement is perfect, as expected.

B. Numerical results: RB model

Using the definition (23), we measure the renormalized
disorder correlator. The result is shown in Fig. 2. Using an
interpolation of the result with a polynomial of degree 10,
we obtain a smooth version that is later used to compute its
second derivative �′′(u), which appears in our analysis as the
central object controlling the amplitude of the correlations.
Some measured properties are �(0) ≈ 3.34 × 10−5, �′′(0) ≈
6.78 × 10−9; �(76.2) ≈ 0, �′′(215) ≈ 0; and the position of
the minimum and the value at the minimum, �(148.2) ≈
−7.3 × 10−6 and �′′(274,4) ≈ −5.1 × 10−10. This is com-
pared with the measurement of 〈S1S2〉ρW

using the exact
result (40); see Fig. 3. We obtain a perfect agreement.

From a qualitative perspective, we note the following.
(i) We observe the predicted crossover from anticorrelated

shocks at small distances (W < 215) to positively correlated
shocks at large distances.

(ii) The correlations are far from being negligible: By

definition,
〈S1S2〉ρc

W

〈S〉
ρ2

> −1, while we observe
〈S1S2〉ρc

W≈0
〈S〉2

ρ
≈ −0.6,

an indication that the shocks in this toy model are strongly
correlated.

FIG. 8. Comparison between the measurement of ρ2(W ) (blue
dots) and the prediction from the O(ε) result (75) using the
measurement of �(u) (red curve) in the RF toy model. The agreement
is surprisingly good.

FIG. 9. Comparison between the measurement of the normalized

moment
〈S2

1 S2〉ρc
W

〈S2〉ρ 〈S〉ρ (blue dots) and the prediction from the O(ε)
result (40) using the measurement of �(u) (red curve) in the RF
toy model.

We now check the predictions obtained using the ε

expansion. We first measure ρ2(W ) and compare it with the
result (75); see Fig. 4. We obtain a surprisingly good agreement
between the two curves, considering that ε = 4. We also
measure 〈S2

1S2〉ρW
and compare it with the result (67); see

Fig. 5. Here the discrepancy is large for smaller values of W , a

fact that can be anticipated since our result predicts
〈S2

1 S2〉ρc
W

〈S2〉ρ 〈S〉ρ <

−1 at small W , which is unphysical. This discrepancy keeps
increasing with higher-order moments. However, the sign of
the correlation and its value for large W is quite well predicted.

C. Numerical results: RF model

In Figs. 6 to 9 we show the corresponding results for the
RF toy model. They are similar, except that, as predicted in
this type of model, the shocks are always anticorrelated. The
value at the origin of the renormalized disorder correlator
and of its second derivative are measured as �(0) ≈ 3.4 ×
10−3, �′′(0) ≈ 9.4 × 10−8. Once again we observe that these

correlations are large,
〈S1S2〉ρc

W≈0
〈S〉2

ρ
≈ −0.6. We obtain a perfect

agreement for the exact result 〈S1S2〉ρW
; see Fig. 7. The

agreement for the O(ε) result for ρ2(W ) (75) is surprisingly
good (see Fig. 8), whereas the O(ε) approximation breaks
down for higher moments at small W such as 〈S2

1S2〉ρc
W

; see
Fig. 9.

VII. CONCLUSION

In this paper we shed light on the fact that, for realistic mod-
els of elastic interfaces in a random medium below their upper
critical dimension, correlations between (static) avalanches
should always be expected. To do so we have studied the
correlations between the size and location of shocks in the
ground state of elastic interfaces in a random potential. We
found the exact relation (8) for the first connected moment that
characterizes these correlations in terms of the renormalized
disorder correlator, a universal quantity at the center of the
FRG treatment of disordered elastic systems. Beyond the first
cumulant, higher-order moments (70) and (72) and the full
joint density of shocks (74) were computed using the FRG at
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first nontrivial order in the ε expansion. The local structure
of these correlations was made precise through a study of
local shock sizes. The qualitative phenomenology associated
with these correlations clearly distinguishes between the bond
and random-field universality classes. This was highlighted
through a numerical simulation of d = 0 toy models.

We expect our results to broadly apply to models in the
universality class of the statics of disordered elastic systems.
Concerning the dynamics, and avalanches at the depinning
transition of elastic interfaces, we expect our results to be
equivalently applicable and accurate. The derivation of the
exact relation (8) can easily be adapted to the dynamics by
considering the quasistatic steady-state process of the position
field of the interface instead of the position of its ground state,
as was done in Ref. [33]. For the results at the improved-
tree level, it is expected that both theories are equivalent for
those observables [33]. The most important difference is that in
the dynamics the random-bond universality class is unstable,
and thus the observed correlations should always be of the
random-field type (at least as long as the microscopic disorder
is short-ranged).

For physical systems where the usual model of elastic
interfaces is accurate, our results give a precise description

of the correlations. Even if additional mechanisms generating
correlations are present, such as in earthquake problems,
correlations due to the short-ranged nature of the disorder
as described in this work should be included in order to gain
a quantitative understanding of the correlations due to these
additional mechanisms.
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APPENDIX A: PROOF OF THE IDENTITY
ON GENERATING FUNCTIONS

As in the case of one shock (Appendix A of [31]), the
important identity is

(∂δ + λLd )eλLd (u(w+δ)−w−δ) =
∑

i

(eλSi − 1)eλLd [u(w−
i )−w−δ]δ(w + δ − wi). (A1)

By definition, u(w−
i ) = L−d

∑
j<i Sj . Let us consider

Gw1,w2 (δ1,δ2) = (∂δ1 + λ1L
d )(∂δ2 + λ2L

d )eλ1L
d [u(w1+δ1)−u(w1)−δ1]+λ2L

d [u(w2+δ2)−u(w2)−δ2]

=
∑
ij

(eλ1Si − 1)(eλ2Sj − 1)eλ1L
d [u(w−

i )−u(w1)−δ1]eλ2L
d [u(w−

j )−u(w2)−δ2]δ(w1 + δ1 − wi)δ(w2 + δ2 − wj ). (A2)

Taking advantage of the Dirac δ function, we can replace the u(w1) inside the exponential by u(wi − δ1), which unambiguously
gives u(w−

i ) when one takes the limit of δ1 → 0+. We thus obtain

lim
δ1,δ2→0+

Gw1,w2 (δ1,δ2) =
∑
ij

(eλ1Si − 1)(eλ2Sj − 1)δ(w1 − wi)δ(w2 − wj ). (A3)

Taking the average over disorder, we obtain by definition of Zw2−w1 (λ1,λ2)

Zw2−w1 (λ1,λ2) = lim
δ1,δ2→0+

L−2dGw1,w2 (δ1,δ2). (A4)

On the other hand, developing (∂δ1 + λ1L
d )(∂δ2 + λ2L

d ) = ∂δ1∂δ2 + Ldλ1∂δ2 + Ldλ2∂δ1 + L2dλ1λ2 in the expression of
Gw1,w2 (δ1,δ2), one arrives at Eqs. (46) and (47).

APPENDIX B: DIAGRAMMATIC RULES FOR
TWO-SHOCKS MOMENTS

In this appendix we explain the rules (i), (ii), and (iii) that
were stated and used in Sec. IV to obtain diagrammatically the
result (70).

These rules come from the fact that in the K operation each
external leg produces an additional factor of δ1 (for the n legs at
w1, . . . ,wn ≈ 0) or δ2 (for the m legs at wn+1, . . . wn+m ≈ W )
and thus tend to be of higher order in δ1 and δ2. However, from
the study of the one-shock case (see Sec. V C of [31]), we know
the general mechanism to escape this apparent trivialization
and to allow that each part of the diagram that connects
only coinciding points together brings a single δi . In this

case, starting from the top of a diagram, the δi attached to
an external leg can be brought to the bottom of the diagram as
long as the disorder vertex encountered along the way leads to
a �′(0+) when taking the limit of coinciding points. In such
diagrams each vertex linking coinciding points must have two
upgoing propagators and one entering from below (effectively
corresponding to the �′(0+) cubic vertex of the BFM [33]),
except for the vertex at the bottom of the diagram, which has
only two upgoing propagators (see Sec. V D of [31]). This last
vertex is the one carrying the remaining factor of δ1: Being
differentiated in the end, it also leads to an additional factor of
�′(0+). This explains why the disorder only enters as �′(0+)
in the one-shock improved-tree-theory result (58). Rule (iii)
stated above is a generalization of that property.
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In the two-shock case the same mechanism occurs and rule
(i) is obvious: A diagram cannot have more than two sets of
points separated by a double-dashed line (one around w ≈ 0
and one around w ≈ W ) since each set contributes a factor of
δi . For example, in the last diagram of Eq. (66), each leg is
such a set of points, and the diagram is O(δ2

1δ2). To explain rule
(ii), let us consider one end point of a double-dashed line and
distinguish three cases. First, if there is no propagator entering
from below this point, such as the points at w ≈ W in the first
and second diagrams of Eq. (66) and the two points in Eq. (63),
then the δi originating from the set of connected points above it
end at this vertex, and the vertex is differentiated during the K
operation. Second, if there is a propagator entering from below
that point, such as the point at w1 ≈ 0 in the first diagram of
Eq. (66), then the δi originating from above the vertex con-
tinues down the diagram without modifying the vertex. Third,
if there is more than one propagator entering from below the
point, then the diagram will necessarily be of higher order in δi .
Combining these three cases, one concludes that the double-
dashed-line vertex necessarily corresponds to a �′′(W ).

APPENDIX C: A DERIVATION FROM THE
CARRARO-DUCHON FORMULA

Let us recall the results obtained in Ref. [32], generalizing
to arbitrary dimension the result from Ref. [42]. Consider

eLd Ẑt {ωi,wi } := e
−Ld

t

∑p

i=1 ωi [u(wi )−wi ], (C1)

where t := 1
m2 . Then, in the improved-tree theory, Ẑ solves the

differential equation

∂t Ẑt {ωi,wi} = −
p∑

i=1

∂

∂ωi

Ẑt {ωi,wi} ∂

∂wi

Ẑt {ωi,wi},

Ẑt=0{ωi,wi} = 1

2

p∑
i,j=1

ωiωj�(wi − wj ). (C2)

It further satisfies the STS symmetry relation,

Ẑt {ωi,wi+δw}=Ẑt {ωi,wi},
∑

i

∂

∂wi

Ẑt {ωi,wi}=0. (C3)

In order to extract the needed information for the
two-shock statistics, we choose p = 4 and the quad-
ruplets (ω1,ω2,ω3,ω4) = (−ω1 − ω̃,ω1, − ω2 + ω̃,ω2) and
(w1,w2,w3,w4) = (0,δ1,W,W + δ2). We then consider (with
a slight abuse of notations)

Z̃t (ω1,δ1,ω̃,W,ω2,δ2)

= Ẑt (−ω1 − ω̃,0,ω1,δ1, − ω2 + ω̃,W,ω2,W + δ2). (C4)

Because of the STS the p = 4 function, Z̃t depends only on
six variables (and not eight) and satisfies a closed equation.
Indeed, using Eqs. (C2) and (C3), one proves that Z̃t satisfies
the following evolution equation:

∂t Z̃t=−
(

∂

∂ω1
Z̃t

∂

∂δ1
Z̃t + ∂

∂ω̃
Z̃t

∂

∂W
Z̃t+ ∂

∂ω2
Z̃t

∂

∂δ2
Z̃t

)
.

(C5)

We are only interested in a perturbative resolution. Define the
expansion

Z̃t =
∑
mnp

zp
mn(t,ω1,ω2,W )δm

1 δn
2 w̃p. (C6)

Indeed, this is sufficient to retrieve the generating function
ẐW (λ1,λ2) = Ẑdisc

W (λ1,λ2) + Ẑc
W (λ1,λ2) as [compare with the

small-δi expansion of (C1) and (47)]

Ẑdisc
W (λ1,λ2) = z0

10(ω1,ω2,W )z0
01(ω1,ω2,W ),

Ẑc
W (λ1,λ2) = L−dz0

11(ω1,ω2,W ). (C7)

On the right-hand side the arguments are ω1 = −tλ1 and ω2 =
−tλ2. Inserting the expansion (C6) inside Eq. (C5), we obtain
the initial conditions:

z0
00(t = 0,ω1,ω2,W ) = 0,

z0
10(t = 0,ω1,ω2,W ) = −�′(0+)ω2

1,

z0
01(t = 0,ω1,ω2,W ) = −�′(0+)ω2

2,

z0
11(t = 0,ω1,ω2,W ) = −�′′(W )ω1ω2,

z1
00(t = 0,ω1,ω2,W ) = 0. (C8)

Obviously we have z0
00(t,ω1,ω2,W ) = 0, ∀ t . We also obtain

the evolution equation:

∂tz
0
10 = −

( ∂

∂ω1
z0

10

)
z0

10 −
( ∂

∂ω2
z0

10

)
z0

01 − z1
00

∂

∂W
z0

10,

∂t z
0
01 = −

( ∂

∂ω1
z0

01

)
z0

10 −
( ∂

∂ω2
z0

01

)
z0

01 − z1
00

∂

∂W
z0

01,

∂t z
0
11 = −

( ∂

∂ω1
z0

10

)
z0

11 −
( ∂

∂ω1
z0

01

)
2z0

20 −
( ∂

∂ω1
z0

11

)
z0

10

−
( ∂

∂ω2
z0

10

)
2z0

02 −
( ∂

∂ω2
z0

01

)
z0

11 −
( ∂

∂ω2
z0

11

)
z0

01

−z1
00

∂

∂W
z0

11 − z1
10

∂

∂W
z0

01 − z1
01

∂

∂W
z0

10,

∂t z
1
00 = −

( ∂

∂ω1
z1

00

)
z0

10 −
( ∂

∂ω2
z1

00

)
z0

01 − z1
00

∂

∂W
z1

00.

(C9)

As a consequence of the initial conditions (C8), one can look
for a solution of Eq. (C9) such that

∂

∂ω2
z0

10 = ∂

∂ω1
z0

01 = ∂

∂W
z0

10 = ∂

∂W
z0

01 = z1
00 = 0. (C10)

Each term has an interpretation in the notations of the main
text. z0

10 corresponds to Ẑ(λ1) and z0
01 corresponds to Ẑ(λ2),

which in the present notations reads [see Eqs. (43) and (58)
and recall Sm = σ/m4 = σ t2]

z0
10(ωi) = Ẑ(λi) = 1 + 2σωit − √

1 + 4σωit

2σ t2
. (C11)

This is the solution of Eq. (C9) using Eq. (C10). Note that
z1

00 = 0 can be seen as the signature that diagrams contributing
to the avalanche at w = 0 and at w = W can be linked only
by one vertex �′′(W ), as observed in the diagrammatics; see
Eq. (69). This is already present in the initial condition (C8).
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The equation for z0
11 becomes

∂tz
0
11 = −

( ∂

∂ω1
z0

10

)
z0

11 −
( ∂

∂ω1
z0

11

)
z0

10

−
( ∂

∂ω2
z0

01

)
z0

11 −
( ∂

∂ω2
z0

11

)
z0

01. (C12)

One can check that the result (70) obtained diagrammatically
in the main text, and which in the present notations reads

z0
11 = −�′′(W )

4σ 2t2

1 − √
1 + 4σω1t√

1 + 4σω1t

1 − √
1 + 4σω2t√

1 + 4σω2t
,

solves this equation with the initial condition (C8). This
demonstrates the equivalence of the two methods and results.

APPENDIX D: SADDLE-POINT CALCULATION FOR
THE LOCAL STRUCTURE

1. Algebraic derivation of Eq. (107)

In this appendix we prove formula (107) “from first
principles” using a saddle-point calculation on the improved
action (57). This computation is similar to the one presented
in Ref. [32] for the calculation of the one-shock density. Here
the observable of interest is

Ẑ
φ1φ2

W (λ1,λ2) = 1∫
x
φ1

x

∫
x
φ2

x

lim
δ1,δ2→0+

∂δ1,δ2GW (δ1,δ2),

GW (δ1,δ2) = e
∫
x
φ1

xλ1[ûx (w1+δ1)−ûx (w1)]e
∫
x
φ2

xλ2[ûx (w2+δ2)−ûx (w2)],

(D1)

where w2 = w1 + W . This observable can be expressed using
the improved action 
[u] of the replicated field theory (57)
with i = 1, . . . ,4 sets of a = 1, . . . ,n replicated position fields
ũi

ax feeling a parabolic well at position w̃i with w̃1 = w1,
w̃2 = w1 + δ1, w̃3 = w1 + W , w̃4 = w1 + W + δ2:

GW (δ1,δ2) =
∫

D[u]e
∫
x

∑4
i=1 νiψ

i
x (ui

1x−w̃i )−
[u]. (D2)

Here and for the rest of this appendix, the n → 0 limit is
implicit. To compute the disorder average, we have singled out
replica a = 1. In order to write the formulas in a compact form,
we introduced new variables ν2 = λ1, ν1 = −λ1, ν4 = λ2,
ν3 = −λ2, ψ1

x = ψ2
x = φ1

x , ψ3
x = ψ4

x = φ2
x . At the improved-

tree level, the functional integral is evaluated through a
saddle-point calculation as

GW (δ1,δ2) = e
∫
x

∑4
i=1 νiψ

i
x (ui

1x−w̃i )−
[u], (D3)

where the position fields ui
ax solve the saddle-point equation∫

x ′
g−1

xx ′
(
ui

ax ′ − w̃i

) − 1

T

∑
cj

R′(ui
ax − uj

cx

) = T νiψ
i
xδa1.

(D4)
We are interested in the solution of Eq. (D4) in the T → 0
limit. As in Ref. [32], we look for a solution that isolates the
first replica (a = 1) in each set (i = 1, . . . ,4) of position fields
as

ui
ax = ui

x − (1 − δa1)T Ui
x. (D5)

Inserting the ansatz (D5) into (D4) leads to∫
x ′

g−1
xx ′

(
ui

1x ′ − w̃i

) +
∑

j

R′′(ui
1x − u

j

1x

)
Uj

x = 0,

∫
x ′

g−1
xx ′U

i
x ′ +

∑
j �=i

R′′′(ui
1x − u

j

1x

)
Ui

xU
j
x = νiψ

i
x.

Being ultimately interested in the computation of (D1), we
solve this equation in an expansion in δ1 and δ2 as

u1
x = w̃1 + w̃2

2
− u11

x δ1 + u12
x δ2,

u2
x = w̃1 + w̃2

2
+ u21

x δ1 + u22
x δ2,

u3
x = w̃3 + w̃4

2
+ u31

x δ1 − u32
x δ2,

u4
x = w̃3 + w̃4

2
+ u41

x δ1 + u42
x δ2,

Ui
x = Ui0

x + Ui1
x δ1 + Ui2

x δ2. (D6)

Using now the definition (D1) we need to perform the
following derivatives of (D3), ∂δ1∂δ2 = ∂w̃2∂w̃4 . Since the fields
ui

ax are evaluated at the saddle point, we can differentiate only
with respect to the explicit dependence in the w̃i . Using the
form (57) for 
[u], these derivatives can be calculated by
repeating the identity

∂w̃i
GW =

[
−νi

∫
x

ψi
x + 1

T

∑
ai

∫
xx ′

g−1
xx ′

(
ui

ax ′ − w̃i

)]
GW.

Using that limn→0
∑

a(ui
ax − w̃i) = T Ui

x we obtain the de-
composition

Ẑ
φ1φ2

W (λ1,λ2) = Ẑφ1
(λ1)Ẑφ2

(λ2) + Ẑ
c,φ1φ2

W (λ1,λ2), (D7)

with the explicit forms

Ẑφ1
(λ1) =

∫
x

( − ν2ψ
2
x + ∫

x ′ g
−1
xx ′U

20
x ′

)∫
x
ψ2

x

,

(D8)

Ẑφ2
(λ2) =

∫
x

( − ν4ψ
4
x + ∫

x ′ g
−1
xx ′U

40
x ′

)∫
x
ψ4

x

,

and

Ẑ
c,φ1φ2

W (λ1,λ2) = 1∫
ψ2

x

∫
ψ4

x

∫
x

∫
x ′

g−1
xx ′U

22
x ′

= 1∫
ψ2

x

∫
ψ4

x

∫
x

∫
x ′

g−1
xx ′U

41
x ′ . (D9)

Although not obvious, these definitions are in agreement with
those of the main text. Despite their complexity, the equations
satisfied by the u and U variables obey several symmetries.
The important ones are U 10

x = −U 20
x and U 30

x = −U 40
x ; U 11

x =
−U 21

x and U 32
x = −U 42

x ; U 12
x = −U 22

x and U 31
x = −U 41

x ;
u11

x = u21
x and u32

x = u42
x ; and u12

x = u22
x and u31

x = u41
x . We

also have U 22
x = U 41

x .
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Using these symmetries, one finds that U 20
x and U 40

x satisfy∫
x ′

g−1
xx ′U

20
x ′ = σ

(
U 20

x

)2 + ν2ψ
2
x ,

(D10)∫
x ′

g−1
xx ′U

40
x ′ = σ

(
U 40

x

)2 + ν4ψ
4
x ,

where σ = R′′′(0+). Note that these are related to the function
Z

φ
x (λ) defined in the main text in Eq. (96) through the

relation Z
φ1

x (λ1) = ∫
x ′ g

−1
xx ′U

20
x ′ . Hence, Eq. (D8) leading to the

disconnected part of the result for Ẑ
φ1φ2

W (λ1,λ2) is in agreement
with the main text. Let us now introduce two important

kernels defined as the functional derivatives K2(x,z) = δU 20
x

ν2δψ2
z

and K4(x,z) = δU 40
x

ν4δψ4
z
. They satisfy

∫
x ′

g−1
xx ′K2(x ′,z) − 2σU 20

x K2(x,z) = δ(x − z),

∫
x ′

g−1
xx ′K4(x ′,z) − 2σU 40

x K4(x,z) = δ(x − z),

and are important building blocks in our calculation. These
kernels are symmetric: the kernel of the operator K−1

2 is given
by K−1

2 (x,x ′) = g−1
xx ′ − 2σU20xδ(x − x ′). In particular, it is a

symmetric function of its arguments, and thus K2(x,z) also is a
symmetric function. The analytic expressions of the functions
U 20

x and U 40
x are hard to obtain in generality. In Ref. [31] they

were obtained for avalanches measured on hyperplanes for SR
elasticity: ψ2

x = δ(x1), where x1 denotes the first coordinate of
the d-dimensional variable x. We recall this explicit solution
in Appendix D 2.

a. Solutions for the u variables

Let us first consider the solution for the u variables. The
equations read∫

x ′
g−1

xx ′

(
1

2
− u11

x ′

)
− 2σU 10

x u11
x = 0,

∫
x ′

g−1
xx ′u

31
x ′ = 2u11

x U 10
x R′′′(W ),

∫
x ′

g−1
xx ′

(
1

2
− u32

x ′

)
− 2σU 30

x u32
x = 0,

∫
x ′

g−1
xx ′u

12
x ′ = 2u32

x U 30
x R′′′(W ). (D11)

The solutions are expressed in terms of the two kernels as

u11
x = u21

x = − σ

R′′′(W )
u31

x + 1

2
= − σ

R′′′(W )
u41

x + 1

2

= m2

2

∫
z

K2(x,z), (D12)

u32
x = u42

x = − σ

R′′′(W )
u12

x + 1

2
= − σ

R′′′(W )
u22

x + 1

2

= m2

2

∫
z

K4(x,z). (D13)

b. Solutions for the U variables

For the U variables, the equations read

∫
x ′

g−1
xx ′U

21
x ′ − 2σU 20

x U 21
x − 2R(4)(0)u11

x

(
U 20

x

)2 = 0,

∫
x ′

g−1
xx ′U

42
x ′ − 2σU 40

x U 42
x − 2R(4)(0)u32

x

(
U 40

x

)2 = 0,

∫
x ′

g−1
xx ′U

22
x ′ − 2σU 20

x U 22
x − 2R(4)(W )u32

x U 20
x U 40

x = 0,

∫
x ′

g−1
xx ′U

41
x ′ − 2σU 40

x U 41
x − 2R(4)(W )u11

x U 40
x U 20

x = 0.

(D14)

Its solutions are

U 11
x = −U 21

x = −2R(4)(0)
∫

z

K2(x,z)u11
z

(
U 20

z

)2
,

U 32
x = −U 42

x = −2R(4)(0)
∫

z

K2(x,z)u32
z

(
U 40

z

)2
,

U 12
x = −U 22

x = −2R(4)(W )
∫

z

K2(x,z)u32
z U 20

z U 40
z ,

U 31
x = −U 41

x = −2R(4)(W )
∫

z

K4(x,z)u11
z U 20

z U 40
z .

(D15)

c. Final result

Using Eq. (D9) we obtain

Ẑ
c;φ1,φ2
W (λ1,λ2) = 1∫

ψ2
x

∫
ψ4

x

R(4)(W )m4

×
∫

x ′,z,z′
K2(x ′,z)U 20

z U 40
z K4(z′,z).

(D16)

Using the above results, U 20
x = ∫

x ′ gxx ′Z
φ1
x ′ (λ1) and U 40

x =∫
x ′ gxx ′Z

φ2
x ′ (λ2), as well as K2(x,z) = ∫

x ′ gxx ′
δZ

φ1

x′ (λ1)
λ1δφ1

z
and

K4(x,z) = ∫
x ′ gxx ′

δZ
φ2

x′ (λ2)
λ2δφ2

z
; remembering that ψ2

x = φ1
x and

ψ4
x = φ2

x , one shows that this formula is equivalent to
Eq. (107).

d. Simplified form of the final result

The equivalent results (D16) and (107) both involve a
functional derivative, which is in general a rather complicated
object. We can, however, obtain a simplified formulation.
From Eq. (D16) it is clear that it is sufficient to compute,
for i = 1,2,

χi(x) =
∫

z

Ki(z,x) =
∫

z

Ki(x,z), (D17)
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rather than the full kernel Ki , and using the symmetry of Ki .
Integrating Eq. (D11) over z, one shows that χi(x) solves the
equations ∫

x ′
g−1

xx ′χ2(x ′) − 2σU 20
x χ2(x) = 1,

∫
x ′

g−1
xx ′χ4(x ′) − 2σU 40

x χ4(x) = 1.

Solving these equations (a task a priori simpler than the
computation of the functional derivative) then leads to,
following (D16),

Ẑ
c;φ1,φ2
W (λ1,λ2) = − 1∫

φ1
x

∫
φ2

x

�′′(W )m4

×
∫

z

χ2(z)U 20
z U 40

z χ4(z). (D18)

2. More explicit solution for avalanches measured
on parallel hyperplanes

a. Setting

We now obtain more explicit formulas in the case where
avalanches are measured on two parallel hyperplanes at a
distance y > 0 from one another and where the elasticity is
short-ranged with kernel (15). That is, noting for definiteness
x1 the first coordinate of the d-dimensional vector x,

φ1
x = δ(x1), φ2

x = δ(x1 − y). (D19)

In this case the problem becomes effectively unidimensional
and the functions U and χ entering into Eq. (D18) only depend
on x1, abbreviated as x in the following. Furthermore, by
translational invariance we can write

U 20
x = Y (λ1,x), χ2(x) = χ (λ1,x),

U 40
x = Y (λ2,x − y), χ4(x) = χ (λ2,x − y). (D20)

These quantities obey the equations(
− d2

dx2
+ m2

)
Y (λ,x) − σ [Y (λ,x)]2 = λδ(x),

(
− d2

dx2
+ m2

)
χ (λ,x) − 2σY (λ,x)χ (λ,x) = 1. (D21)

Solving these equations then leads to

Ẑ
c;φ1,φ2
W (λ1,λ2) = 1

Ld−1
R(4)(W )m4

∫
x

χ (λ1,x)

×Y (λ1,x)Y (λ2,x − y)χ (λ2,x − y). (D22)

b. Solution for Y

The solution Y (λ,x) of Eq. (D21) is already known in the
literature; see Ref. [34] for details. It admits a scaling form

Y (λ,x) = m2

σ
Ỹ

(
σ

m3
λ,mx

)
, (D23)

where Ỹ (λ̃,x̃) solves(
− d2

dx̃2
+ 1

)
Ỹ (λ̃,x̃) − [Ỹ (λ̃,x̃)]2 = λ̃δ(x̃). (D24)

An explicit solution is

Ỹ (λ̃,x̃) = 6(1 − z2)e−|x̃|

[1 + z + (1 − z)e−|x̃|]2
, (D25)

where z(λ̃) is one of the solutions of

λ̃ = 3z(1 − z2). (D26)

The right solution is uniquely defined from the following
properties: It is defined for λ̃ ∈] − ∞,λ̃c = 2/

√
3[, decreases

from z(−∞) = ∞ to zc = z(λ̃c) = 1/
√

3, and approaches 1
as λ̃ approaches 0.

c. Solution for χ

From the coupled equations (D21), it is seen that χ (λ,x)
can be deduced from Y (λ,x) as

χ (λ,x) = 1

m2
− 2σ

m2

∂Y

∂m2
. (D27)

Using the scaling form (D23) we obtain

χ (λ,x) = 1

m2
χ̃

(
λ̃ = λ

σ

m3
,x̃ = mx

)
, (D28)

where

χ̃ = 1 − 2Ỹ + 3λ̃∂λ̃Ỹ − 2x̃∂x̃ Ỹ . (D29)

d. Final scaling form

Combining Eqs. (D22), (D23), and (D28) we can express our
result in terms of a universal scaling function Zw̃ as (we scale
y = ỹ/m, λi = m3

σ
λ̃i , W = w̃/Wμ):

Ẑ
c;φ1,φ2
w̃/Wμ

(
m3

σ
λ̃1,

m3

σ
λ̃2

)

= 1

(Lm)d−1

1

(mSm)2
Ẑw̃(λ̃1,λ̃2,ỹ). (D30)

The quantities Wμ and Sm are as in Eq. (90), with here μ = m

(SR elasticity) and

Zw̃(λ̃1,λ̃2,ỹ) = Ad�
∗′′(w̃)

∫
x̃

χ̃(λ̃1,x̃)Ỹ (λ̃1,x̃)

× Ỹ (λ̃2,x̃ − ỹ)χ̃(λ̃2,x̃ − ỹ), (D31)

where Ỹ and χ̃ are explicit functions given in Eqs. (D25)
and (D29). This is our final result; its explicit evaluation is left
for the future.

APPENDIX E: FIRST MOMENT TO ONE-LOOP ORDER

In this appendix we give the result for 〈S2
1S2〉ρc

W
to one-loop accuracy for short-ranged elasticity. Note that since the formula (40)

is exact, it does not receive higher-loop contributions and the first improvement brought to moments of ρc
W is for 〈S2

1S2〉ρc
W

. The
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latter can be obtained from the known formulas (61) and (118) of Ref. [31],

Ĉ(3)(w1,w2,w3) = − 6

m2
sym123{�′(w12)�(w13)} − 6I3 sym123{�′(w12)2�′(w13) + [�(w12) − �(0)]

×[�′(w13)�′′(w12) + �′(w12)�′′(w13) + �′(w23)�′′(w13)]}. (E1)

The first line corresponds to the improved-tree approximation, sym123 denotes the symmetrization over the wi variables,
I3 = ∫

k
1

(k2+m2)3 , and we have used the shorthand notation wij := wi − wj . As explained in the text, this formula is sufficient to

obtain 〈S2
1S2〉ρc

W
using the K operation. The final result reads

L−2d
〈
S2

1S2
〉
ρc

W

= −6Sm − 4I3
Sm

Ldm2
[�′′(0)�′′(W ) + 3�′′(W )2 + 3�′(W )�′′′(W )] + O(ε3). (E2)

[1] D. Fisher, Collective transport in random media: From super-
conductors to earthquakes, Phys. Rep. 301, 113 (1998).

[2] G. Blatter, M. Feigel’man, V. Geshkenbein, A. Larkin, and V.
Vinokur, Vortices in high-temperature superconductors, Rev.
Mod. Phys. 66, 1125 (1994).

[3] T. Nattermann and S. Scheidl, Vortex-glass phases in type-II
superconductors, Adv. Phys. 49, 607 (2000).

[4] T. Giamarchi and P. Le Doussal, Statics and dynamics of
disordered elastic systems, in Spin Glasses and Random Fields,
edited by A. Young (World Scientific, Singapore, 1997).

[5] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Dynam-
ics of a ferromagnetic domain wall: Avalanches, depinning
transition, and the Barkhausen effect, Phys. Rev. B 58, 6353
(1998).

[6] G. Durin and S. Zapperi, Scaling Exponents for Barkhausen
Avalanches in Polycrystalline and Amorphous Ferromagnets,
Phys. Rev. Lett. 84, 4705 (2000).

[7] S. Moulinet, C. Guthmann, and E. Rolley, Roughness and
dynamics of a contact line of a viscous fluid on a disordered
substrate, Eur. Phys. J. E 8, 437 (2002).

[8] P. Le Doussal, K. Wiese, S. Moulinet, and E. Rolley, Height
fluctuations of a contact line: A direct measurement of the
renormalized disorder correlator, Europhys. Lett. 87, 56001
(2009).

[9] Y. Ben-Zion and J. Rice, Earthquake failure sequences along a
cellular fault zone in a three-dimensional elastic solid containing
asperity and nonasperity regions, J. Geophys. Res. 98, 14109
(1993).

[10] D. S. Fisher, K. Dahmen, S. Ramanathan, and Y. Ben-Zion,
Statistics of Earthquakes in Simple Models of Heterogeneous
Faults, Phys. Rev. Lett. 78, 4885 (1997).

[11] L. Ponson, Depinning Transition in Failure of Inhomogeneous
Brittle Materials, Phys. Rev. Lett. 103, 055501 (2009).

[12] S. Santucci, M. Grob, R. Toussaint, J. Schmittbuhl, A. Hansen,
and K. J. Maløy, Fracture roughness scaling: A case study on
planar cracks, Europhys. Lett. 92, 44001 (2010).

[13] D. Bonamy, S. Santucci, and L. Ponson, Crackling Dynamics in
Material Failure as the Signature of a Self-Organized Dynamic
Phase Transition, Phys. Rev. Lett. 101, 045501 (2008).

[14] R. Planet, S. Santucci, and J. Ortı́n, Avalanches and Non-
Gaussian Fluctuations of the Global Velocity of Imbibition
Fronts, Phys. Rev. Lett. 102, 094502 (2009).

[15] J. Sethna, K. Dahmen, and C. Myers, Crackling noise, Nature
(London) 410, 242 (2001).

[16] L. E. Aragón, A. B. Kolton, P. L. Doussal, K. J. Wiese, and
E. A. Jagla, Avalanches in tip-driven interfaces in random media,
Europhys. Lett. 113, 10002 (2016).

[17] G. Durin, F. Bohn, M. A. Correa, R. L. Sommer, P. Le Doussal,
and K. J. Wiese, Quantitative scaling of magnetic avalanches,
arXiv:1601.01331.

[18] F. Omori, On the aftershocks of earthquakes, J. Coll. Sci., Imp.
Univ. Tokyo 7, 111 (1967).

[19] R. Burridge and L. Knopoff, Model and theoretical seismicity,
Bull. Seismol. Soc. Am. 57, 341 (1967).

[20] E. A. Jagla and A. B. Kolton, The mechanisms of spatial and
temporal earthquake clustering, J. Geophys. Res. 115, B05312
(2010).

[21] E. A. Jagla, F. P. Landes, and A. Rosso, Viscoelastic Effects
in Avalanche Dynamics: A Key to Earthquake Statistics, Phys.
Rev. Lett. 112, 174301 (2014).

[22] E. A. Jagla, Aftershock production rate of driven viscoelastic
interfaces, Phys. Rev. E 90, 042129 (2014).

[23] A. Dobrinevski, P. Le Doussal, and K. J. Wiese, Statistics of
avalanches with relaxation and barkhausen noise: A solvable
model, Phys. Rev. E 88, 032106 (2013).

[24] D. S. Fisher, Interface Fluctuations in Disordered Systems: 5 − ε

Expansion and Failure of Dimensional Reduction, Phys. Rev.
Lett. 56, 1964 (1986).

[25] T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leschhorn,
Dynamics of interface depinning in a disordered medium,
J. Phys. II (France) 2, 1483 (1992).

[26] O. Narayan and D. S. Fisher, Critical behavior of sliding charge-
density waves in 4-epsilon dimensions, Phys. Rev. B 46, 11520
(1992).

[27] O. Narayan and D. S. Fisher, Threshold critical dynamics of
driven interfaces in random media, Phys. Rev. B 48, 7030 (1993).

[28] P. Chauve, P. Le Doussal, and K. Wiese, Renormalization of
Pinned Elastic Systems: How does it Work Beyond One Loop?,
Phys. Rev. Lett. 86, 1785 (2001).

[29] P. Le Doussal, K. J. Wiese, and P. Chauve, 2-loop functional
renormalization group analysis of the depinning transition, Phys.
Rev. B 66, 174201 (2002).

[30] P. Le Doussal, K. J. Wiese, and P. Chauve, Functional renormal-
ization group and the field theory of disordered elastic systems,
Phys. Rev. E 69, 026112 (2004).

[31] P. Le Doussal and K. J. Wiese, Size distributions of shocks and
static avalanches from the functional renormalization group,
Phys. Rev. E 79, 051106 (2009).

012110-21

http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1080/000187300412257
http://dx.doi.org/10.1080/000187300412257
http://dx.doi.org/10.1080/000187300412257
http://dx.doi.org/10.1080/000187300412257
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevLett.84.4705
http://dx.doi.org/10.1103/PhysRevLett.84.4705
http://dx.doi.org/10.1103/PhysRevLett.84.4705
http://dx.doi.org/10.1103/PhysRevLett.84.4705
http://dx.doi.org/10.1140/epje/i2002-10032-2
http://dx.doi.org/10.1140/epje/i2002-10032-2
http://dx.doi.org/10.1140/epje/i2002-10032-2
http://dx.doi.org/10.1140/epje/i2002-10032-2
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.103.055501
http://dx.doi.org/10.1103/PhysRevLett.103.055501
http://dx.doi.org/10.1103/PhysRevLett.103.055501
http://dx.doi.org/10.1103/PhysRevLett.103.055501
http://dx.doi.org/10.1209/0295-5075/92/44001
http://dx.doi.org/10.1209/0295-5075/92/44001
http://dx.doi.org/10.1209/0295-5075/92/44001
http://dx.doi.org/10.1209/0295-5075/92/44001
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.102.094502
http://dx.doi.org/10.1103/PhysRevLett.102.094502
http://dx.doi.org/10.1103/PhysRevLett.102.094502
http://dx.doi.org/10.1103/PhysRevLett.102.094502
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1209/0295-5075/113/10002
http://dx.doi.org/10.1209/0295-5075/113/10002
http://dx.doi.org/10.1209/0295-5075/113/10002
http://dx.doi.org/10.1209/0295-5075/113/10002
http://arxiv.org/abs/arXiv:1601.01331
http://dx.doi.org/10.1029/2009JB006974
http://dx.doi.org/10.1029/2009JB006974
http://dx.doi.org/10.1029/2009JB006974
http://dx.doi.org/10.1029/2009JB006974
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevE.90.042129
http://dx.doi.org/10.1103/PhysRevE.90.042129
http://dx.doi.org/10.1103/PhysRevE.90.042129
http://dx.doi.org/10.1103/PhysRevE.90.042129
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1051/jp2:1992214
http://dx.doi.org/10.1051/jp2:1992214
http://dx.doi.org/10.1051/jp2:1992214
http://dx.doi.org/10.1051/jp2:1992214
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.48.7030
http://dx.doi.org/10.1103/PhysRevB.48.7030
http://dx.doi.org/10.1103/PhysRevB.48.7030
http://dx.doi.org/10.1103/PhysRevB.48.7030
http://dx.doi.org/10.1103/PhysRevLett.86.1785
http://dx.doi.org/10.1103/PhysRevLett.86.1785
http://dx.doi.org/10.1103/PhysRevLett.86.1785
http://dx.doi.org/10.1103/PhysRevLett.86.1785
http://dx.doi.org/10.1103/PhysRevB.66.174201
http://dx.doi.org/10.1103/PhysRevB.66.174201
http://dx.doi.org/10.1103/PhysRevB.66.174201
http://dx.doi.org/10.1103/PhysRevB.66.174201
http://dx.doi.org/10.1103/PhysRevE.69.026112
http://dx.doi.org/10.1103/PhysRevE.69.026112
http://dx.doi.org/10.1103/PhysRevE.69.026112
http://dx.doi.org/10.1103/PhysRevE.69.026112
http://dx.doi.org/10.1103/PhysRevE.79.051106
http://dx.doi.org/10.1103/PhysRevE.79.051106
http://dx.doi.org/10.1103/PhysRevE.79.051106
http://dx.doi.org/10.1103/PhysRevE.79.051106


THIERY, LE DOUSSAL, AND WIESE PHYSICAL REVIEW E 94, 012110 (2016)

[32] P. Le Doussal and K. J. Wiese, First-principle derivation of static
avalanche-size distribution, Phys. Rev. E 85, 061102 (2012).

[33] P. Le Doussal and K. J. Wiese, Avalanche dynamics of elastic
interfaces, Phys. Rev. E 88, 022106 (2013).

[34] M. Delorme, P. Le Doussal, and K. J. Wiese, Distribution of
joint local and total size and of extension for avalanches in the
Brownian force model, Phys. Rev. E 93, 052142 (2016).

[35] T. Thiery, P. Le Doussal, and K. J. Wiese, Spatial shape of
avalanches in the Brownian force model, J. Stat. Mech.: Theory
Exp. (2015) P08019.

[36] A. Dobrinevski, P. Le Doussal, and K. Wiese, Avalanche shape
and exponents beyond mean-field theory, Europhys. Lett. 108,
66002 (2014).

[37] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi,
Domain-wall dynamics and Barkhausen effect in metallic
ferromagnetic materials. I. Theory, J. Appl. Phys. 68, 2901
(1990).

[38] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi,
Domain-wall dynamics and Barkhausen effect in metallic
ferromagnetic materials. II. Experiments, J. Appl. Phys. 68, 2908
(1990).

[39] P. Le Doussal, Finite temperature Functional RG, droplets and
decaying Burgers turbulence, Europhys. Lett. 76, 457 (2006).

[40] A. A. Middleton, P. Le Doussal, and K. J. Wiese, Measuring
Functional Renormalization Group Fixed-Point Functions for
Pinned Manifolds, Phys. Rev. Lett. 98, 155701 (2007).

[41] P. Le Doussal, Exact results and open questions in first principle
functional RG, Ann. Phys. 325, 49 (2009).
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