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Fractional Brownian motion is a self-affine, non-Markovian, and translationally invariant generalization of
Brownian motion, depending on the Hurst exponent H . Here we investigate fractional Brownian motion where
both the starting and the end point are zero, commonly referred to as bridge processes. Observables are the time
t+ the process is positive, the maximum m it achieves, and the time tmax when this maximum is taken. Using
a perturbative expansion around Brownian motion (H = 1

2 ), we give the first-order result for the probability
distribution of these three variables and the joint distribution of m and tmax. Our analytical results are tested
and found to be in excellent agreement, with extensive numerical simulations for both H > 1

2 and H < 1
2 . This

precision is achieved by sampling processes with a free end point and then converting each realization to a bridge
process, in generalization to what is usually done for Brownian motion.
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I. INTRODUCTION

Stochastic processes are a powerful tool to describe the
evolution of systems where the microscopic dynamics is not
accessible. As an example, Brownian motion, also called the
Wiener process, was introduced as an effective probabilistic
description for the dynamics of a particle subjected to
collisions with its environment [1], be it a gas or a liquid.

An important class of such processes, which contain
Brownian motion, are Markov chains. For these the evolution
depends only on the current position but is independent
of previous ones. Stated differently: In a discrete dynamics
the increments between successive positions are independent
random variables. This Markov property is at the center of
powerful tools [2] for stochastic processes, such as Green-
function methods, the Fokker-Plank equation, etc.

Though Markov chains successfully model many systems,
there are also relevant systems which do not evolve with
independent increments and thus are non-Markovian, i.e.,
history dependent. Such processes naturally appear for the
dynamics of a single point in a spatially extended object, as,
for instance, a single spin in a magnet or a marked monomer
in a polymer. Their dynamics becomes non-Markovian due to
the coupling to the neighbors.

Dropping the Markov property, but keeping the other
ingredients of Brownian motion, i.e., Gaussianity, scale in-
variance and stationarity of the increments defines an enlarged
class of random processes, known as fractional Brownian
motion (fBm), and parameterized by the Hurst parameter H ,
which quantifies the self-affinity of the process. Its covariance
function is

G−1(t1,t2) = 〈
Xt1Xt2

〉 = t2H
1 + t2H

2 − |t1 − t2|2H . (1)

Since the process is Gaussian, Eq. (1) defines it. Such
processes appear in a broad range of contexts: anomalous
diffusion [3], diffusion of a marked monomer inside a polymer
[4,5], polymer translocation through a pore [5–8], single-file
diffusion [9–11] observable experimentally in ion channels
[12,13], the dynamics of a tagged monomer [14,15], finance
(fractional Black-Scholes, fractional stochastic volatility mod-
els, and their limitations) [16–18], hydrology [19,20], and

many more. Their extreme-value statistics has been studied
in many references [9–11,21–26].

When studying random processes in a time interval [0,T ],
quite generally the initial value X0 is known, and the end
point XT is itself a random variable determined by the random
process. On the other hand, there are also cases when one
knows the end point XT . These processes are referred to as
bridge processes or bridges. For a Brownian one refers to
Brownian bridges.

Using a Fourier decomposition with the same amplitude
for each mode, but different values of H , one can generate
realizations of fBm bridges and study their dependence on H ,
see Ref. [27] and Sec. II below. Sample trajectories ranging
from H = 0.25 (red) to H = 0.875 (blue) in increments of
0.125 are presented on Fig. 1.

Bridges are useful building blocks in constructing more
complicated observables; we will see an application of this
idea in Sec. IV. They are also commonly used in constructing
refinements of random walks, e.g., for financial modeling [28].
Finally, they appear as the difference from the asymptotic limit
in the construction of the empirical distribution function [29].

FIG. 1. Examples of fBm bridges for different values of H ,
generated from the same random numbers using the Davis and Harte
procedure [27]; H = 0.25 in red (outmost curves) to H = 0.875 in
blue (innermost), with increments of 1/8.
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We investigate three observables relevant for bridges:
(i) the time tmax the random process achieves its maximum,
(ii) the value m of this maximum,
(iii) the time t+ the process is positive, or its positive time,

supposing one starts at X0 = 0.
For Brownian motion, and for a bridge terminating at its

starting point after time T , both tmax and t+ have a uniform
distribution [30],

Pbridge
H=1/2(tmax) = Pbridge

H=1/2(t+) = 1

T
. (2)

In contrast, for Brownian motion with a free end point (i.e.,
without constraint) the corresponding probability reads [2,30]

P free
H=1/2(t = tmax) = P free

H=1/2(t = t+) = 1

π
√

t(T − t)
. (3)

These two results, as well as a way to interpolate between them
for the positive-time distribution, can be found in Ref. [31].
For the maximum value m, up to time T , the probability
distributions are

Pbridge
H=1/2(m) = 2m

T
e− m2

T �(m), (4)

P free
H=1/2(m) = e− m2

4T√
πT

�(m). (5)

Properties of fractional Brownian motion were recently in-
vestigated within a perturbative approach in H = 1/2 + ε,
expanding around Brownian motion, corresponding to H =
1/2 [32–34]. We extend these results by considering bridge
processes. While observables related to the maximum of
an unconstrained fractional Brownian motion were already
considered in Refs. [33,34], the observable t+ is considered
for the first time here. Indeed, we will show that at leading
order in ε = H − 1

2 , the probability distributions for tmax and
t+ differ, contrary to Brownian motion, and processes with a
free end point, where they agree at leading order [35].

Finally, we test our analytical results against numerical
simulations for H = 0.4, H = 0.6, and H = 0.66. This is
achieved by constructing a subtracted process out of each
realization of a fBm with free end points. This procedure
yields the same statistics as a fractional Brownian bridge and
is much more efficiently simulated than an unconstrained fBm,
for which one retains only realizations which are bridges.

This article is organized as follows: Section II introduces
some general results about Gaussian bridges, as well as their
application to fractional Brownian motion.

Section III recalls the methodology developed in Ref. [34]
on the perturbative expansion around Brownian motion.

Section IV introduces t+, the time spent by the process in
the positive half space. We start with a discrete random walk
before taking the continuum limit to obtain the distribution of
t+ for Brownian motion. This is used as a starting point for the
perturbative expansion described in the previous section, with
some technical steps left to Appendix B. The analytical results
obtained are then compared to numerical simulations.

Section V presents results on the extreme-value statistics
for a fBm bridge: the maximum value m as well as the time tmax

to reach it. Some of these results are derived from a general

calculation performed in Ref. [34]; we also present a new and
simpler way to obtain the maximum-value distribution.

Several appendices complete our work: Appendix B
contains details about the inverse of an integral transform
appearing in our calculation and its relation to the Abel
transform. Appendix C summarizes the necessary inverse
Laplace transforms needed in the main text.

II. PRELIMINARIES: GAUSSIAN BRIDGES

Consider a real-valued process Xt , starting at X0 = 0.
We define a bridge, denoted XB

t , to be the same process
conditioned to be at a at time T . Its one- and two-point
correlation functions are

〈
XB

t1

〉 =
〈
Xt1δ(XT − a)

〉
〈δ(XT − a)〉 , (6)

〈
XB

t1
XB

t2

〉 =
〈
Xt1Xt2δ(XT − a)

〉
〈δ(XT − a)〉 . (7)

We now assume that Xt is a centered Gaussian process, i.e.,
〈Xt 〉 = 0 for all t , and that cumulants of order higher than
2 vanish. To express the correlation function of the bridge
process in terms of the unconditioned process, we insert the
identity δ(x) = ∫ ∞

−∞ eikx dk
2π

into the above equations. After
some lines of algebra presented in Appendix A, we arrive at

〈
XB

t1

〉 = a

〈
Xt1XT

〉
〈
X2

T

〉 , (8)

〈
XB

t1
XB

t2

〉 = 〈
Xt1Xt2

〉 − [〈
X2

T

〉 − a2
] 〈

Xt1XT

〉〈
Xt2XT

〉
〈
X2

T

〉2 . (9)

Consider now the subtracted process XS
t defined from the

original process Xt as

XS
t := Xt − (XT − a)

〈XtXT 〉〈
X2

T

〉 . (10)

One easily checks that its one- and two-point correlation
functions coincide with those of XB

t given in Eqs. (8) and
(9). This is sufficient to conclude that XB

t and XS
t are the same

processes,

XS
t

law= XB
t . (11)

While this result was derived in Ref. [36] by other methods,
the prescription (10) does not seem to be generally known.

Frequently used for Brownian motion Xt := Bt the sub-
tracted process (10) reduces to

BS
t = Bt − t

T
(BT − a). (12)

This is equivalent in law to a Brownian bridge ending at a.
For fractional Bronwian motion with Hurst exponent H ,

the subtracted term is nonlinear in t , containing the expression

f

(
ϑ := t

T

)
:= 〈XtXT 〉〈

X2
T

〉 = 1

2
[1 + ϑ2H − (1 − ϑ)2H ].

(13)

The equivalence (11) is crucial for the numerical simulations
presented in this work. Simulating bridge process using its
definition requires us to discard almost all generated paths,
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while the subtracted process can be constructed from every
generated path without loss of statistics.

III. PERTUBATIVE APPROACH TO FBM

We recall here some useful definitions for fBm, as well
as the ideas of the perturbative expansion around Brownian
motion developed in Refs. [32,34].

First, as fractional Brownian motion is a Gaussian process,
it is characterized by its covariance function G−1 given in
Eq. (1). This covariance function allows us to write an action
for the possible realizations of Xt ,

S[X] = 1

2

∫
t1,t2

Xt1G(t1,t2)Xt2 . (14)

This yields the average of any observable O[X] for the fBm
within a path-integral formulation,

〈O[X]〉 =
∫

D[X] O[X] e−S[X]. (15)

To compute observables explicitly from this expression, we
expand the action around Brownian motion, corresponding to
H = 1/2 in Eq. (1). Writing H = 1/2 + ε, we obtain at first
order in ε

S[X] =
∫ T

0
dt1

Ẋ2
t1

4Dε,τ

− ε

2

∫ T −τ

0
dt1

∫ T

t1+τ

dt2
Ẋt1Ẋt2

|t2 − t1| + O(ε2). (16)

The first term is the standard action of Brownian motion, with
a rescaled diffusive constant

Dε,τ = 1 + 2ε[1 + ln(τ )] + O(ε2). (17)

The regularization cutoff τ (which is a ultraviolet (UV) cutoff
in time) appears in the second term of the action, which is
a nonlocal (in time) interaction between derivatives of the
process. For the derivation of this expansion we refer to
Ref. [32].

Note that the nonlocality in time of the action is a mani-
festation of the non-Markovian nature of fractional Brownian
motion. We will use this formalism to compute observables
for bridges of fBm in an ε expansion, following the strategy
and using results of Ref. [34].

IV. POSITIVE TIME OF A FBM BRIDGE

In this section, we investigate the distribution of the time
spend up to time T by the process Xt in the positive half space.
This time, denoted t+, is defined by

t+ :=
∫ T

0
dt �(Xt ), (18)

where � is the Heavyside function, �(x) = 1 if x > 0, and
�(x) = 0 otherwise, and X0 = 0.

Below, we first consider a discrete random walk and
derive the Laplace transform (i.e., generating function) of the
distribution of t+. Taking the continuous-time limit allows us to
obtain the distribution of t+ for Brownian motion. We use this
result to construct our perturbative expansion for a fractional
Brownian motion bridge and to derive an analytical prediction
at order ε.

FIG. 2. Illustration of the reflection principle: Every path ema-
nating from 1 and attaining zero again (blue) is compensated by a
reflected path emanating from −1 (green).

A. Positive time of a discrete random walk

Consider a discrete random walk Xn with discrete steps ±1
(without bias), starting at X0 = 0. We denote Nn,x the number
of paths which go from 0 to x in n steps. This number is
nonzero only if x and n have the same parity and x is smaller
than n. It can be obtained by retaining the term of order qx

from the generating function for all paths, (q + q−1)n, i.e.,(
q + 1

q

)n

=
n∑

i=0

qi

(
1

q

)n−i(n

i

)
. (19)

Identifying x = 2i − n yields

Nn,x =
(

n
n+x

2

)
. (20)

It can also be deduced as follows: Paths ending in x have
n+ = n+x

2 up segments and n− = n−x
2 down segments. The

number of paths with n+ up segments is ( n

n+
), which again

yields Eq. (20).
Denote by N+

n,x the number of strictly positive paths, i.e.,
Xi > 0 for all i > 0, which go from 0 to x > 0 in n steps. By
the reflexion principle, illustrated in Fig. 2, this is the same
as the number of paths that go from 1 to x in n − 1 steps,
minus the number of paths which start at −1 and go to x in
n − 1 steps,

N+
n,x = Nn−1,x−1 − Nn−1,x+1 = x

n
Nn,x. (21)

The ratio

N+
n,x

Nn,x

= x

n
(22)

is the probability that a path from 0 to x in n steps is strictly
positive, also known as the Ballot theorem.1

Another quantity of interest is the number of excursions,
i.e., paths that go from X0 = 0 to X2n = 0 with all intermediate

1The ballot theorem states that if in an election candidate A receives
p votes and candidate B receives q votes with p > q, the probability
that A stays ahead of B throughout the count is (p − q)/(p + q), see
Refs. [2,37].
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positions positive, and which we denote N
+,first
2n , because the

end point is the first zero of the path. Such a path necessarily
has X2n−1 = 1, which gives

N
+,first
2n = N+

2n−1,1 = 1

2n − 1

(
2n − 1

n

)
= (2n − 2)!

n!(n − 1)!
.

(23)

We now study the time when a random process is positive:
A segment Si from i − 1 to i is considered positive if
Xi−1 + Xi > 0 and negative otherwise. Note that, contrary
to the positions Xi , a segment Si is either positive or negative.
The time t+ a random walk is positive is defined as the number
of positive segments.

Denote as N
pos
2n,2k the number of bridge paths of length 2n

with 2k positive intervals; by convention we set N
pos
0,0 := 1.

We can use Eq. (23) to get a recursion relation for N
pos
2n,2k , with

n � 1,

N
pos
2n,2k =

n∑
i=1

[
N

+,first
2i N

pos
2(n−i),2(k−i) + N

+,first
2i N

pos
2(n−i),2k

]
.

(24)

This is illustrated in Fig. 2. In this sum, 2i is the position of the
first zero (after the origin) of the path of length 2n. Since the
path does not change sign, these 2i first segments are either all
positive (first term inside the sum) or negative (second term).

To solve this equation, we introduce two generating
functions:

p̃pos(ν,ρ) :=
∑
n�0

∑
k�0

ν2kρ2n
N

pos
2n,2k

22n
, (25)

p̃+,first(ρ) :=
∑
n>0

ρ2n N
+,first
2n

22n
= 1 −

√
1 − ρ2

2
. (26)

Inserting these definitions into Eq. (24) transforms the recur-
sion relation into an algebraic equation,

p̃pos(ν,ρ) = [p̃+,first(νρ) + p̃+,first(ρ)]p̃pos(ν,ρ) + 1. (27)

Equation (27) can be solved as

p̃pos(ν,ρ) = 1

1 − p̃+,first(νρ) − p̃+,first(ρ)
. (28)

This is a geometric sum of the form

p̃pos(ν,ρ) =
∑
n�0

[p̃+,first(νρ) + p̃+,first(ρ)]n. (29)

Its interpretation is simple: All bridges can be constructed as
a sequence of first-return bridges. In a first-return bridge each
factor of ρ comes with a factor of ν for the positive paths and
alone for negative paths.

Using the explicit expression of Eq. (26), we obtain

p̃pos(ν,ρ) = 2√
1 − (νρ)2 +

√
1 − ρ2

. (30)

Other generating functions can be obtained as well: First, for
the probability to return to zero (including the term with zero

steps) the latter is

p̃0(ρ) :=
∑
n�0

ρn Nn,x

2n
= 1√

1 − ρ2
. (31)

For the probability to return to 0 without having become
negative, this is (including the term with zero steps)

p̃
�0
0 (ρ) = 1

1 − p̃+
first(ρ)

≡ p̃pos(0,ρ)

= 2

1 +
√

1 − ρ2
. (32)

The generating function for paths starting at zero and ending
in x without ever returning to zero can be obtained as well

p̃+
x (ρ) :=

∑
n�0

ρn
N+

n,x

2n

= ρx

(1 +
√

1 − ρ2)x
= (1 −

√
1 − ρ2)x

ρx
. (33)

This can be understood by considering the path from the end:
One can first go up and down to the starting value x for a
number n � 0 steps, before going down by one step, leading
to p̃

�0
0 (ρ) × ρ

2 for the generating function to (backwards!)
reach x − 1. Repeating this x times, and using Eq. (32), we
arrive at Eq. (33).

B. Propagators in continuous time

We now wish to take the continuum limit. To this aim, we
note that in the limit of a time-discretization step δt → 0, the
process

Xt �
√

2δtXn , with n = floor

(
t

δt

)
(34)

converges to a Brownian. The normalization ensures that we
recover the covariance function (1) with H = 1

2 .
Denote by P(t+,X0 = x1,XT = x2) the probability distri-

bution of the positive time t+ within the interval [0,T ] for a
standard Brownian motion Xt , starting at X0 = x1 and ending
at XT = x2. For our perturbative expansion it is useful to have
this in Laplace variables, namely

W̃+(λ,s,x1,x2)

=
∫ ∞

0
dT

∫ T

0
dt+e−sT −λt+P(t+,X0 = x1,XT = x2).

(35)

We now use the result from the previous section, starting with
the special case x1 = x2 = 0. The probability distribution for
a Brownian that its positive time, up to time T , is t+ and that
X0 = XT = 0, i.e., the process is a bridge, can be obtained
from the discrete case via

P(t+,XT )dt+dXT |XT =0 �
δt→0

1

2n
N

pos
n,k . (36)

Here n = floor(T/δt), k = floor(t+/δt), and δt is the time
discretization step. This allows us to relate the generating
function (30) to the Laplace transform of the continuous-time
distribution W̃+ with x1 = x2 = 0, which we denote W̃+(λ,s),

052105-4



EXTREME-VALUE STATISTICS OF FRACTIONAL . . . PHYSICAL REVIEW E 94, 052105 (2016)

FIG. 3. In red (bottom curve) a contribution to W̃+
1 (λ,s,x1,x2),

where the path reaches 0 at least once (here for x1 = 0.5 and x2 = 1).
In blue (top curve) the additional contribution to W̃+

2 (λ,s,x1,x2),
where the path never reaches 0, possible when x1 and x2 have the
same sign (here for x1 = 0.5 and x2 = 1).

setting ν → e−δtλ, ρ → e−δts and then taking the limit of
δt → 0. The measure dt+dBT gives a factor of

√
2δt3/2, cf.

Eq. (34). This yields

W̃+(λ,s)
√

2δt3/2 � p̃pos(e−δtλ,e−δts)δt2

� 2δt2

√
1 − e−2δt(s+λ) + √

1 − e−2δts

�
√

2δt3/2

√
λ + s + √

s
+ O(δt2). (37)

Thus

W̃+(λ,s) = 1√
λ + s + √

s
. (38)

From this result for the bridge we obtain the expression for
W̃ (λ,s,x1,x2) by distinguishing two cases, see Fig. 3: The first
case is when the process changes sign at least once. It can be
decomposed into a constant-sign part (contributing to t+ or
not, depending on the sign of x1), a bridge part, and another
constant sign part ending in x2. The other case is when the
process never changes sign, which corresponds to the survival
probability and can be expressed using the method of images.

We recall the Laplace transform of this propagator from x1

to x2, conditioned that the path has never touched zero [34],

P̃ +
0 (x1,x2; s) = e−√

s|x1−x2| − e−√
s|x1+x2|

2
√

s
�(x1x2). (39)

The normalized limit x1 → 0 is

P̃ +
0 (x2; s) = lim

x1→0

1

x1
P̃ +

0 (x1,x2; s) = e−√
sx2 �(x2). (40)

The final result is the sum of two terms,

W̃+(λ,s,x1,x2) = W̃+
1 (λ,s,x1,x2) + W̃+

2 (λ,s,x1,x2). (41)

The first contribution involves a crossing and is a product of
two factors (40) and one factor (38),

W̃+
1 (λ,s,x1,x2)

= e−√
s+λ�(x1)|x1| 1√

s + λ + √
s
e−√

s+λ�(x2)|x2|. (42)

The � functions in the exponential are understood as follows:
If x1 > 0, then s is changed to s + λ, since this segment
contributes both to T and t+. In the opposite case x1 < 0,
this segment contributes only to T but not to t+, thus s remains
unchanged. The same argument applies to the last factor as a
function of the sign of x2.

The contribution when the walk never changes sign is

W̃+
2 (λ,s,x1,x2)

= e−√
s+λ�(x1)|x1−x2| − e−√

s+λ�(x1)|x1+x2|

2
√

s + λ�(x1)
�(x1x2). (43)

This is the propagator (39), with again s shifted to s + λ if x1,
and as a consequence also x2, are positive.

The result for W̃+(λ,s,x1,x2) can also be obtained by
solving the Fokker-Planck equation

∂2
x2

W̃+(λ,s,x1,x2)

= [s + λ�(x2)]W̃+(λ,s,x1,x2) + δ(x1 − x2). (44)

One verifies that W̃+
1 + W̃+

2 is indeed a solution.
As a check, we consider Brownian motion starting at 0 and

without any constraint at the end point by integrating W̃+ over
the last variable,∫ ∞

−∞
dx W̃+(λ,s,0,x) = 1√

s(s + λ)
. (45)

The corresponding probability distribution for t+ is known as
one of the arcsine laws, as given in Eq. (3). Indeed, computing
the double Laplace transform from this known result yields
Eq. (45):∫ ∞

0
dT

∫ T

0
dt+e−sT −λt+ 1

π
√

t+(T − t+)
= 1√

s(s + λ)
.

(46)
For a Brownian bridge, i.e., x1 = x2 = 0, we have

W̃+(λ,s,0,0) = W̃+(λ,s) = 1√
λ + s + √

s
. (47)

Let us note some subtleties. Equation (47) is the double
Laplace transform of the probability distribution that the
Brownian process spends a time t+ in the positive half space
and ends in 0 at time T . If we want to have the condtional
probability distribution for t+, knowing that the process is a
bridge, then we need to divide the result by the probability
density to return to x = 0 at time T , which is (2

√
πT )−1. The

double Laplace transform to compute is then∫ ∞

0
dT

∫ T

0
dt+e−sT −λt+ 1

T

1

2
√

πT
= 1√

λ + s + √
s
. (48)

Here 1/T is the uniform probability distribution (2) of t+ for
a Brownian bridge, and (2

√
πT )−1 is the probability density

to return to 0 at time T . This indeed reproduces Eq. (47).
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C. Scale invariance and a useful transformation

The fact that fBm is a scale-invariant (i.e., self affine)
process implies interesting properties for various distributions.
For t+, and similarly for other temporal observables, the
distribution PT

H (t+) for a fBm process defined on [0,T ] (with
either a free end point or a constrained one) takes the scaling
form

PT
H (t+) = 1

T
g

(
ϑ = t+

T

)
. (49)

Using this, the double Laplace transform of the distribution
can be reformulated using a one-variable transformation:

P̃H (λ,s) =
∫ ∞

0
dT

∫ T

0
dt+e−sT −λt+PT

H (t+)

=
∫ ∞

0
dT

∫ 1

0
dϑ e−T (s+λϑ)g(ϑ)

= 1

s

∫ 1

0
dϑ

g(ϑ)

1 + λ
s
ϑ

= 1

s
ḡ

(
κ = λ

s

)
. (50)

The scaling function g(ϑ) encoding the distribution PT
H (t+),

and the scaling function ḡ(κ) encoding its double Laplace
transform P̃ (λ,s), are related by a simple integral transform
which we denote K1,

K1[g](κ) :=
∫ 1

0
dϑ

g(ϑ)

1 + κϑ
= ḡ(κ). (51)

For the case of interest, a fBm bridge of length T , this relation is
more complicated since we cannot compute directly the double
Laplace transform of Pbridge

H (t+) but only the transform of an
unnormalized distribution, which we write ZN (T )Pbridge

H (t+).
As we will see, the normalization factor ZN (T ), which is the
probability density to return to 0 at time T , is a power law,

ZN (T ) = C T α−1, (52)

with some constant C. In this case, the double Laplace
transform of the unnormalized distribution is computed as∫ ∞

0
dT

∫ T

0
dt+e−sT −λt+CT α−1Pbridge

H (t+)

=
∫ 1

0
dϑ

∫ ∞

0
dT CT α−1e−T (s+λϑ)g(ϑ)

= C �(α)

sα

∫ 1

0
dϑ

g(ϑ)(
1 + λ

s
ϑ

)α

!= C �(α)

sα
Kα[g]

(
κ = λ

s

)
. (53)

Here we generalized the K transform to another exponent,

Kα[g](κ) :=
∫ 1

0
dϑ

g(ϑ)

(1 + κϑ)α
. (54)

If ḡ(κ) = Kα[g](κ) is the Kα transform of a function g(ϑ)
normalized to unity, then ḡ(κ) → 1 for κ → 0. If further g(ϑ)
is time-reversal symmetric, g(ϑ) = g(1 − ϑ) for ϑ ∈ [0,1],
then the function ḡ(κ) has the symmetry

ḡ(κ) = 1

(1 + κ)α
ḡ

(
− κ

1 + κ

)
. (55)

D. FBm bridge with H = 1
2 + ε

The path-integral approach presented in Sec. III yields an
expression for the (non-normalized) density distribution of t+
for a bridge,

Zpos(t+,T ) =
∫ XT =0

X0=0
D[X] δ

(∫ T

0
dt �(Xt ) − t+

)
e−S[X].

(56)

It is useful to consider its double Laplace transform (T → s

and t+ → λ), which we denote with a tilde,

Z̃pos(λ,s) =
∫ ∞

0
dT e−sT

∫ XT =0

X0=0
D[X] e−S[X]−λ

∫ T

0 dt �(Xt ).

(57)

Using the ε-expansion (16) for the action, we compute
this perturbatively, expanding around Brownian motion. The
resulting series in ε has the form

Z̃pos(λ,s) = Z̃
pos
0 (λ,s) + εZ̃

pos
1 (λ,s) + O(ε2). (58)

The first term of this expansion, the result for Brownian
motion, is, as in Eq. (47), obtained from the propagator W̃+,

Z̃
pos
0 (λ,s) = W̃+(λ,s) = 1√

s

1√
1 + κ + 1

= ḡ0(κ)

2
√

s
. (59)

Here we denoted

ḡ0(κ) =
∫ 1

0
dϑ

g0(ϑ)√
1 + κϑ

= 2√
1 + κ + 1

. (60)

This can be inverted to

g0(ϑ) = 1. (61)

This reproduces the known result that the probability distribu-
tion (2) for a Brownian bridge is uniform [30,31].

To compute the order-ε term Z̃
pos
1 (λ,s), we use the same

diagrammatic rules as in Ref. [34], Sec. III D. These rules
are easily expressed in Laplace variables, which is why
we compute the expansion of Z̃pos(λ,s). The first order-ε
correction comes from the nonlocal interaction in the action,
given in the second line of Eq. (16), and can be written as

Z̃
pos
1A (λ,s) = 2

∫ �

0
dy

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 W̃+(λ,s,0,x1)

× ∂x1W̃
+(λ,s + y,x1,x2) ∂x2W̃

+(λ,s,x2,0). (62)

As explained in Ref. [34], the large-y cutoff �, which
is necessary as the integral is logarithmically divergent, is
linked to the short-time (UV) regularization τ introduced in
Eq. (16) by � = e−γE/τ . Performing the integrations over
space variables and over y, and after some simplifications,
we obtain

Z̃
pos
1A (λ,s) = 1√

s

[(
4√

κ + 1
+ 4

)
ln(

√
κ + 1 + 1)

− 2κ + 2 + √
κ + 1

κ
ln(κ + 1)

+ ln(sτ ) + 7 − 7 ln(4) + γE√
κ + 1 + 1

]
. (63)
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We have expressed the result in terms of the dimensionless
variable κ = λ/s. The second order-ε correction comes from
the rescaling of the diffusive constant, cf. Eq. (17). It is
computed by rescaling T in the result for the Brownian, setting
T → Dε,τ T . In Laplace variables, this is equivalent to writing

Z̃
pos
0 (λ,s) → 1

Dε,τ

Z̃
pos
0

(
λ

Dε,τ

,
s

Dε,τ

)
. (64)

Extracting the order-ε term gives

Z̃
pos
1B (λ,s) = −1 + ln(τ )

2
√

s

2√
1 + κ + 1

. (65)

Resumming all order-ε corrections,

Z̃
pos
1 (λ,s) = Z̃

pos
1A (λ,s) + Z̃

pos
1B (λ,s), (66)

the τ dependence vanishes. The ln(s) term in Eq. (63) is
proportional to ḡ0(κ), such that we can recast it as an order-ε
correction to the exponent of the prefactor: s−1/2 → sH−1 +
O(ε2). This allows us to write the path integral (57) in the form

Z̃pos(λ,s) = �(1 − H )

2
√

πs1−H

[
ḡ0(κ) + εḡ

pos
1 (κ)

] + O(ε2). (67)

With this choice of prefactor, the constant C in Eq. (53) is
C = (2

√
π )−1, and ḡ

pos
1 (κ) is

ḡ
pos
1 (κ) = 8

(
1√

κ + 1
+ 1

)
ln(

√
κ + 1 + 1)

− 2
2κ + 2 + √

κ + 1

κ
ln(κ + 1) + 4

3 − 4 ln(4)√
κ + 1 + 1

.

(68)

We recall that this function contains contributions from Z̃
pos
1A ,

Z̃
pos
1B and the expansion of 1√

π
�( 1

2 − ε) = 1 + ε[γE + ln(4)] +
O(ε2), due to the choice of normalization in Eq. (67).

We know that the distribution of the positive time has the
form given in Eq. (49). After expanding it in ε it gives

Pbridge
H= 1

2 +ε
(t+) = 1

T

[
g0(ϑ) + εg

pos
1 (ϑ)

] + O(ε2), (69)

where, as before, ϑ = t+/T .
We have seen in Sec. IV C that the scaling functions g(ϑ)

and ḡ(κ) are related via the K1−H transform, where the index
of the transformation is fixed by the prefactor sH−1 in Eq. (67).

Expanding with respect to ε in the definition of the K
transform gives

ḡ(κ) =
∫ 1

0
dϑ

1

(1 + κϑ)
1
2 −ε

g(ϑ)

=
∫ 1

0
dϑ

1 + ε ln(1 + κϑ)√
1 + κϑ

[g0(ϑ) + εg1(ϑ)] + O(ε2)

= ḡ0(κ) + ε

∫ 1

0
dϑ

[g1(ϑ) + g0(ϑ) ln(1 + κϑ)]√
1 + κϑ

+O(ε2). (70)

The order-ε correction g1(ϑ) that we are looking for is then
given by

g1(ϑ) = K−1
1
2

[ḡ1(κ) − ḡ0,1(κ)], (71)

where we have defined

ḡ0,1(κ) =
∫ 1

0
dϑ

ln(1 + κϑ)√
1 + κϑ

g0(ϑ)

= 2

κ
{2 + √

1 + κ[ln(κ + 1) − 2]}. (72)

This contribution is valid both for t+ and tmax, since both
observables have the same distribution at order zero, and both
have the same power law from scaling.

We now have to deal with the inverse K 1
2

transform in
Eq. (71). This is linked to the Abel transform, on which
details are given in Appendix B. The final result for the order-ε
correction is

g
pos
1 (ϑ) = 4

[
2 − 1√

ϑ + 1
+ ln

(√
ϑ + 1

4
√

ϑ

)

− 1√
1 − ϑ + 1

+ ln

(√
1 − ϑ + 1

4
√

1 − ϑ

)]
. (73)

We can check that the integral of g
pos
1 (ϑ) over [0,1] vanishes,

such that Eq. (69) is correctly normalized at order ε. We also
checked that by computing numerically the K1/2 transform
of this result reproduces ḡ

pos
1 (κ) − ḡ0,1(κ) with excellent

precision.
Close to the boundary, the asymptotics is

g
pos
1 (ϑ) �

ϑ→0,1
−2 ln(ϑ) − 2 ln(1 − ϑ). (74)

This asymptotics can be recast into a power law consistent
with scaling. The distribution of t+ for a fBm bridge with
H = 1

2 + ε can then be written as

Pbridge
H= 1

2 +ε
(t+) = exp(ε[Fpos(ϑ) − 4])

T [ϑ(1 − ϑ)]2H−1
+ O(ε2). (75)

The scaling function Fpos(ϑ) has by definition a vanishing
integral and is given by

Fpos(ϑ) = 4

[
3 − 1√

ϑ + 1
+ ln

(√
ϑ + 1

4

)

− 1√
1 − ϑ + 1

+ ln

(√
1 − ϑ + 1

4

)]
. (76)

E. Numerical results

To test our analytical predictions, we compare them to
results from numerical simulations. As in Ref. [34], we
construct a large number of fBm paths using the Davis and
Harte procedure, cf. Ref. [27] for details on the numerical
method. From these samples, we construct a numerical
estimation Pbridge

H (t+) of the distribution of t+ for various
values of H , choosing T = 1. This is shown on Fig. 4, where
results for the distributions of both t+ and tmax are given. To
compare to the analytical result (76), we extract Fpos

num from
these distributions, using

Fpos
num(ϑ) = 1

ε
ln

(
T [ϑ(1 − ϑ)]2H−1Pbridge

H= 1
2 +ε

(ϑ)
) + 4. (77)
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FIG. 4. Comparison of the two “arcsine laws” for a fBm bridge
with Hurst exponent H = 0.66. Dots represent the distribution
extracted from numerical simulations, the plain lines represent the
analytical result at order ε given in Eqs. (75) and (82), and the dashed
line is the scaling form (identical for both observables).

As is shown in Fig. 5 (left), when ε → 0, Fpos
num(ϑ) converges

to Fpos(ϑ). The deviation being antisymmetric in ε strongly
suggests that there is an order-ε2 correction to the distribution
of t+, which we did not calculate here.

V. EXTREMUM OF FBM BRIDGES

In Ref. [34], a general formula was derived for the path
integral over fBm paths Xt starting at m1, going to x0 ≈ 0 at
time t1, and ending in m2 at time t1 + t2 = T , while staying
positive, Xt > 0 for all t ∈ [0,T ]. This quantity, denoted
Z+(m1,t1; x0; m2,t2), is the first-order result in an ε expansion.
It was used [34] to derive results about extremal properties
of fBm in the unconstrained case: Both the distribution of
the maximum m, and the time tmax when this maximum is
achieved, were computed, as well as their joint distribution.
Comparison to numerical simulations showed that this result is
of great precision for small ε, and of good precision for larger
vales of ε.

Here we apply these results to fBm bridges. The general re-
sult for Z+(m1,t1; x0; m2,t2), restricted to m1 = m2 = m, and

choosing t1 + t2 = T , immediately gives the joint distribution
of the maximum m, and the time tmax = t1 when this maximum
is attained. In a second step, we can then integrate over t1 at T

fixed, or over m at t1 and t2 fixed, to obtain the distributions of
m and tmax.

We will finally rederive these results in a simpler way,
taking advantage of the scaling transformations introduced in
Sec. IV C.

A. Distribution of the time to reach the maximum

Starting with Eq. (44) of Ref. [34] and following the
procedure in its Sec. IV C, we express the probability for tmax,
denoted Pbridge

H (tmax), as

Pbridge
H (tmax) = 1

ZN (T )

∫ ∞

0
dm Z+(m,t ; x0; m,T − t). (78)

The integral over m accounts for all possible values of the
maximum. ZN (T ) is a normalization factor such that the
integral over tmax of Pbridge

H (tmax) is normalized to unity,

ZN (T ) =
∫ T

0
dt

∫ ∞

0
dm Z+(m,t ; x0; m,T − t)

= x2−4ε
0√
4π

(1 + εC1) + O(ε2). (79)

The constant C1 can be computed from Z+, but it is equivalent
to require that the order-ε term in Eq. (78) does not change the
normalization, such that the distribution Pbridge

H (tmax) remains
normalized to 1.

Expanding the distribution of tmax in the same way as for
Eq. (69), the order-ε term becomes, setting again ϑ = tmax/T ,
and T = 1.

gmax
1 (ϑ) = 2

√
π

∫ ∞

0
dm [Z+

1 (m,ϑ ; x0; m,1 − ϑ)

−C1Z
+
0 (m,ϑ ; x0; m,1 − ϑ)]

FIG. 5. Left: Numerical estimation of the scaling function Fpos(ϑ), from top to bottom for H = 0.33 (red dots), H = 0.4 (orange dots),
H = 0.6 (green dots), and H = 0.66 (blue dots), compared to the analytical result given in Eq. (76) (plane line). Right: ibid. for Fmax(ϑ) for
H = 0.33 (blue dots, bottom) and H = 0.66 (red dots, top), the analytical result (plane line) is given in Eq. (83). For both plots, and for each
value of H , the statistics is done with 5 × 106 sampled paths, discretized with N = 212 points.

052105-8



EXTREME-VALUE STATISTICS OF FRACTIONAL . . . PHYSICAL REVIEW E 94, 052105 (2016)

= 2[6(
√

1 − ϑ+
√

ϑ)−3ϑ ln(1−ϑ)−3(1−ϑ) ln(ϑ)

+ (4 − 3ϑ) ln(2 − ϑ) + (3ϑ + 1) ln(ϑ + 1)

+ (6ϑ − 4)arcth(
√

1 − ϑ) + (2 − 6ϑ)arcth(
√

ϑ)

− 8 − 4 ln(2)]. (80)

This result will be checked from Eq. (108) given below.
Demanding that gmax

1 (ϑ) has integral zero fixed the constant
C1 to C1 = 4 ln(2) − γE.

Close to the boundary, the correction has the same asymp-
totics as in the calculation for t+, namely

gmax
1 (ϑ) �

ϑ→0,1
−2 ln(ϑ) − 2 ln(1 − ϑ), (81)

which indicates the same change in the power-law behavior of
Pbridge

H (tmax). Again taking an exponential resummation of the
order-ε correction, we obtain a formula similar to Eq. (75) but
with a different scaling function Fmax(ϑ),

Pbridge
H= 1

2 +ε
(tmax) = exp(ε[Fmax(ϑ) − 4])

T [ϑ(1 − ϑ)]2H−1
+ O(ε2). (82)

Fmax(ϑ) is a bounded function of ϑ ∈ [0,1] and can be
expressed from Eq. (80) as

Fmax(ϑ) = gmax
1 (ϑ) + 2 ln

(
ϑ(1 − ϑ)

) + 4. (83)

The constant 4 was added in Eq. (83) and subtracted in Eq. (82)
to have

∫ 1
0 dϑ gmax

1 (ϑ) = ∫ 1
0 dϑ Fmax(ϑ) = 0.

The two distributions, for t+ and tmax, at order ε are plotted
in Fig. 4. While both functions have the same power-law
behavior for ϑ close to 0 or 1, their difference is clearly visible.
The result (83) for Fmax(ϑ) is compared with great precision
to numerical simulations on Fig. 5 (right).

B. The maximum-value distribution

Similarly to the distribution of tmax, the distribution of the
maximum value m = maxt∈[0,T ] Xt can be expressed from the
result for Z+ given in Eq. (44) of Ref. [34]:

Pbridge
H (m) = 1

ZN (T )

∫ T

0
dt Z+(m,t ; x0; m,T − t). (84)

This calculation is rather cumbersome, but it is possible to
give a simpler derivation, where we do not constrain paths
to go close to the boundary but construct Pbridge

H (m) by
taking a derivative of its cumulative distribution, the survival
probability, conditioned such that the end point of the process
is the same as the starting point. In this framework, the order-ε
correction to Pbridge

H (m) can, due to the nonlocal term in
the action (16), be expressed in Laplace variables (T → s)
using the diagrammatic rules of Ref. [34]. The integrals to be
computed are

Z̃max
1A (m,s) = 2∂m

∫ �

0
dy

∫
x1,x2>0

P̃ +
0 (m,x1; s)

× ∂x1 P̃
+
0 (x1,x2; s + y) ∂x2 P̃

+
0 (x2,m; s)

= 2(a + 1)e2a Ei(−4a) − 2 Ei(−2a)

+ 2e−2a

{
a

[
ln

(
m2

4τ

)
− ln(a) − 1

]

+ ln

(
2τ

m2

)
− γE

}
, (85)

where a := √
sm is a dimensionless variable, � = e−γE/τ ,

and the propagator P̃ +
0 (x1,x2; s) is defined in Eq. (39). To deal

with the inverse Laplace transform, we use formulas (G10)
and (G11) derived in Ref. [34], plus similar formulas collected
in Appendix C. The final result for the correction after the
inverse Laplace transformation is

Zmax
1A (m,T ) = ze−z2

√
πT

{
2z

√
πez2

erfc(z) + 4(1 − z2)J (z2)

+ 2z2

[
ln

(
T z2

τ

)
+ γE − 1

]

+ ln

(
τ 3

T 3z8

)
− 4γE + 1

}
. (86)

We introduced the scaling variable z := m/
√

T . The special
function J defined in Ref. [34] is

J (x) = 1

2
πerfi(

√
x) − x 2F2

(
1,1;

3

2
,2; x

)
. (87)

For a Brownian bridge we have

Zmax
0 (m,T ) = m

√
πT

3
2

e− m2

T , (88)

which, after normalization, allows us to recover the
distribution (4).

The second order-ε correction, which comes from the
rescaling of the diffusive constant, is obtained by replacing
T → Dε,τ T in Eq. (88); for the order-ε term this gives

Zmax
1B (m,T ) = ze−z2

√
πT

(2z2 − 3)(1 + ln τ ). (89)

Resumming these corrections up to order ε cancels all
τ dependencies; recasting the relevant corrections into the
power-law prefactor and the Gaussian tail and expressing
the result in terms of the dimensionless variable y := m/T H

finally yields

Pbridge
H (m) = 2

√
πT H

[
Zmax

0 + ε
(
Zmax

1A + Zmax
1B

)] + O(ε2)

= 2y1−8ε

T H
e−y2Aε+εG(y) + O(ε2). (90)

The special function G appearing here is

G(y) = − 4(y2 − 1)J (y2) + 2
√

πey2
y erfc(y)

+ 2y2[ln(4y2) + γE] − 4γE − 2. (91)

This result contains several nontrivial predictions: First, at
small m, the distribution Pbridge

H (m) has a power law given by
m1−8ε+O(ε2). This can be obtained by considering the proba-
bility starting at m to remain positive (survive) up to time T ,

S(T ,m) :=
∫ m

0
dm1 PH (m1). (92)
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In this relation the dependence of PH (m) on T is implicit. It
is valid both for the case of a bridge and of a free end point.
To survive in a bridge in the limit of m → 0 demands survival
both in the beginning and at the end, and thus we expect that
for small m

Sbridge(T ,m) ∼ [S free(T ,m)]2. (93)

Using the result of Ref. [34] thatP free
H (m) ∼ m

1
H

−2 implies that

Pbridge
H (m) ∼ m

2
H

−3. (94)

This is in agreement with our order-ε result.
Second, at large m, Pbridge

H (m) has a Gaussian tail with
the dimensionless variable y2 = z2/T 2ε = m2/T 2H and a
nontrivial number Aε = 1 + 4ε ln(2) + O(ε2). We will see in
the next section why this number appears and how we can
compute it exactly (i.e., for all H ).

Third, there is a crossover in the power-law behavior at
large y, given by the asymptotic behavior of the function G(y),

G(y) �
y→∞ 4 ln(y). (95)

This yields a subleading power-law behavior at large m,

Pbridge
H (m) e

Aε
m2

T 2H ∼ m1−4ε+O(ε2). (96)

This result agrees with the asymptotic form given by Piterbarg
[38], who showed that2

Pbridge
H (m) e

Aε
m2

T 2H � Cm
1
H

−1. (97)

C. Optimal path for fBm and the tail of the
maximum distribution

In this section, we study the tail of the maximum distribution
for fBm. Contrary to a process with a free end point, the
maximum is not taken at the end, and, as a consequence, the
tail is not simply given by the known propagator evaluated at
time T at position m.

We start with some general considerations: If we choose
t1, . . . ,tn ∈ R, then the density distribution for a fBm path Xt

to take values Xt1 = x1, . . . ,Xtn = xn can be expressed, using
the Gaussian nature of the process Xt , as

Pn(x1,x2, . . . ,xn) = exp

⎛
⎝−1

2

∑
ij

xiMij xj

⎞
⎠. (98)

The matrice Mij is given by

M−1
ij = 〈

Xti Xtj

〉 = t2H
i + t2H

j − |ti − tj |2H . (99)

To study bridges, consider now two points, x1 = x at time t1 =
t with 0 < t < T and x2 = 0 at time t2 = T . The probability
distribution of x given xT = 0 is then given by

P(xt = x|xT = 0) = P2(x,0) = exp

(
−M11 x2

2

)
. (100)

2Remarkably, the theorem D.3 of Piterbarg [38] even predicts the
constant C in this relation, which, apart from known functions,
contains the Pickands constant H2H . This is discussed in [41].

The matrix element in question is (with ϑ = t/T )

M11

2
= 1

T 2H

1

4ϑ2H − [ϑ2H − (1 − ϑ)2H + 1]2
. (101)

It takes its minimum for ϑ = 1
2 . The tail for the maximum of

a bridge is thus given by Eq. (100) with the matrix element
M11 in Eq. (101) evaluated at ϑ = 1

2 :

PT (m) ≈ P(xT/2 = m|xT = 0)

= e
− m2

T 2H
4H

4−4H +O(ln(m))
. (102)

This heuristic argument is consistent with the result from our
ε expansion and allows us to predict the exact value of the
constant Aε,

Aε = 4H

4 − 4H
= 1 + 4 ln(2)ε + O(ε2). (103)

We can go further and study the shape of the optimal path
with conditions X0 = X1 = 0 and X1/2 = 1. This is done by
consideringPn(x,1,0), taken at time t1 = t , t2 = 1/2, and t3 =
T = 1. We then find XSP

t = x which minimizes the “energy”
− lnP3(x,m,0). This is for 0 � ϑ � 1

2 achieved for

XSP
t = m

4−4H
[2 − 2(1 − 2ϑ)2H + 4H (1 − ϑ)2H

+ 4H ϑ2H − 4H ]. (104)

For T
2 < t � T one has XSP

t = XSP
T −t . This is represented for

m = 1 and T = 1 in red in Fig. 6 for various values of H . It
is interesting to observe that this optimal path is not a straight
line going from X0 = 0 to X1/2 = 1 and back to X1 = 0, but at
t = 1/2 peaked for H < 1/2, and smoothened for H > 1/2.
It is equivalently interesting to compare this to the optimal
path which goes from X0 = 0 to X1/2 = 1, without imposing
any constraint at t = 1, plus a similar segment from X1/2 = 1
to X1 = 0 without constraint on X0 (blue dashed lines). This
would indeed be the optimal path if there were no correlations
between times t < 1/2 and t > 1/2.

We finally note that the limit of H → 1 is nontrivial, and
given by (see right side of Fig. 6)

XSP
t = m

ln(4)
{(1 − 2ϑ)2 ln(1 − 2ϑ) − 2(1 − ϑ)2 ln(1 − ϑ)

+ϑ[ln(16) − 2ϑ ln(4ϑ)]}, 0 � t � T

2
, (105)

and XSP
t = XSP

T −t for T
2 < t < T . We expect this also to be the

lowest-energy fluctuation for the fBm bridge.

D. Joint Distribution of m and tmax

To obtain the joint distribution of m and tmax, we start
with Eq. (44) of Ref. [34] and specify m1 = m2 = m. This is
equivalent, in the notations of Ref. [34], to setting

y1 = m√
2ϑH

, y2 = m√
2(1 − ϑ)H

where ϑ = tmax

T
. (106)

The resulting expression can more compactly be written in
terms of

υ := m√
2[ϑ(1 − ϑ)]H

. (107)
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FIG. 6. Plain red line: Optimal paths for fBm conditioned to X0 = 0, X1/2 = 1, and X1 = 0, for, from left to right, H = 0.1, H = 0.25,
and H = 1. The blue dashed line represents the optimal paths when neglecting the correlation between [0,1/2] and [1/2,1].

Recasting terms proportional to ln(ϑ), ln(1 − ϑ), and ln(υ)
into the prefactor, we get

Z+(m,ϑ ; x0; m,1 − ϑ)

= x2−4ε
0 υ2−8εe− υ2

2

2π [ϑ(1 − ϑ)]3H−1
{1 + ε[F(υ,ϑ) + C2]} + O(ε2)

(108)

with

F(υ,ϑ) = I(υ(1 − ϑ)) + I(υϑ) − I(υ) + 2(υ2 − 1)

υ2ϑ(1 − ϑ)

− I(υ(1 − ϑ))

1 − ϑ
− I(υϑ)

ϑ
+ 2 I(υ

√
1 − ϑ)

+ 2 I(υ
√

ϑ) + υ2[ln(2υ2) + γE]

− 12 − 8 ln(2). (109)

The definition of the special function I is given in Eq. (C1).

C2 = 4[2 − γE + ln(2)]. (110)

First, this result allows us to recover Eqs. (80) and (83), noting
that

Fmax(ϑ) =
√

2

π

∫ ∞

0
dυ υ2e− υ2

2 F(υ,ϑ). (111)

As we defined
∫ 1

0 dϑ Fmax(ϑ) = 0, there is an additional
constant C2, related to the prefactor υ−8ε in Eq. (108).

Second, we can extract the conditional probability of υ,
given ϑ . This is interesting since for a Brownian the latter

depends only on the variable υ introduced in Eq. (107),

Pbridge
H= 1

2
(υ|ϑ) =

√
2

π
υ2e− υ2

2 . (112)

For a generic value of H = 1
2 + ε, our ε expansion, recast in

an exponential form, gives

Pbridge
H (υ|ϑ) =

√
2

π
υ

2
H

−2e− υ2

2 +ε[F(υ,ϑ)+C2−Fmax(ϑ)] + O(ε2).

(113)

The functions F(υ,ϑ) and Fmax(ϑ) are defined in Eqs. (109)
and (83). The exponent in Eq. (113) can be derived from
scaling. To this aim, note that the probability to have a
maximum of m up to time T is

PH (m) = ∂mS(T ,m). (114)

On the other hand, the probability that the maximum m is taken
at time T is

PH (m|T ) = ∂T S(T ,m). (115)

We conclude that for small m

Pbridge
H (m|T ) ∼ m

T
Pbridge

H (m) ∼ m
2
H

−2 ∼ υ
2
H

−2. (116)

This exponent, written in Eq. (113), agrees with the perturba-
tive expansion

2

H
− 2 = 2 − 8ε + O(ε2). (117)

FIG. 7. Numerical results for PH (υ|ϑ) for H = 2
5 (left), H = 3

5 (middle), and H = 2
3 (right). The values of ϑ are chosen as ϑ = 0,

ϑ = 0.05, ϑ = 0.25, to ϑ = 0.5, the maximum useful value due to the symmetry ϑ → 1 − ϑ . We used N = 218 points and 5 × 106 samples.
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Finally, using the result (101) and expressing it in terms of υ

predicts a tail e−A′
ευ

2
, with

A′
ε = 2[ϑ(1 − ϑ)]2H

4ϑ2H − [ϑ2H − (1 − ϑ)2H + 1]2

= 1

2

[
1 + ε2 [(1 − ϑ) ln(1 − ϑ) + ϑ ln(ϑ)]2

2(1 − ϑ)ϑ
+ O(ε3)

]
.

(118)

Thus our resummation (113) is correct to order ε; whether at
higher order it is preferential to use υ introduced in Eq. (107)
with A′

ε given in Eq. (118) or whether one should keep e−υ2/2

for the tail and redefine υ can only be answered after a second-
order calculation.

We verified the prediction (113) for Pbridge
H (υ|ϑ) numeri-

cally, see Fig. 7. The agreement is good for H close to 1
2 for

ε = − 1
10 and ε = 1

10 (left two figures). Corrections of order
ε2 can be anticipated, since our numerical results for both
ε = − 1

10 and ε = 1
10 show approximately the same (small)

deviation from the analytics, independent of the sign of ε.
These putative O(ε2) corrections also explain the larger

systematic deviations for H = 2
3 , i.e., ε = 1

6 (right plot).

VI. CONCLUSIONS

In this article we developed a systematic analytical
framework to treat bridge processes for fractional Brownian
motion, in an expansion around Brownian motion. We
considered the probability of the time t+ that a bridge process
is positive and of the time tmax it achieves its maximum. For
a Brownian bridge, both t+ and tmax have the same uniform
probability distribution. For a fractional Brownian bridge, both
observables have the same power-law behavior for times close
to the beginning and end, but the subleading scaling functions
differ considerably. We calculate them to first order in ε and
verified them to high precision with numerical simulations.
We also obtained and checked the joint distribution of the
maximum m and the time tmax when this maximum is taken.
These tests were possible due to the development of an
efficient algorithm to generate samples of fBm bridges.
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APPENDIX A: DETAILS ON CORRELATION FUNCTIONS
FOR THE BRIDGE

Starting from Eqs. (6) and (7), and inserting the identity
δ(x) = ∫ ∞

−∞ eikx dk
2π

, we obtain

〈δ(XT − a)〉 =
∫ ∞

−∞

dk

2π
〈eik(XT −a)〉

=
∫ ∞

−∞

dk

2π
e−ika e− k2

2 〈X2
T 〉

= e
− a2

2〈X2
T

〉

√
2π

√〈
X2

T

〉 , (A1)

〈
Xt1δ(XT − a)

〉 =
∫ ∞

−∞

dk

2π
〈Xt1e

ik(XT −a)〉

=
∫ ∞

−∞

dk

2π
e−ika ik 〈Xt1XT 〉e− k2

2 〈X2
T 〉

= e
− a2

2〈X2
T

〉

√
2π

√〈
X2

T

〉 a〈Xt1XT 〉〈
X2

T

〉 , (A2)

〈
Xt1Xt2δ(XT − a)

〉 =
∫ ∞

−∞

dk

2π

〈
Xt1Xt2e

ik(XT −a)〉

=
∫ ∞

−∞

dk

2π
e−ikae− k2

2 〈X2
T 〉

× [〈Xt1Xt2〉 − k2〈Xt1XT 〉〈Xt2XT 〉]

= e
− a2

2〈X2
T

〉

√
2π

√〈
X2

T

〉
[〈

Xt1Xt2

〉 + (
a2 − 〈

X2
T

〉)

×
〈
Xt1XT

〉〈
Xt2XT

〉
〈
X2

T

〉2
]
. (A3)

From the first to the second lines of the last two equations
we used Wick’s theorem and the fact that Xt has mean zero.
Putting everything together, we arrive at Eqs. (8) and (9).

APPENDIX B: ABEL TRANSFORM AND INVERSION
OF K 1

2
TRANSFORM

For a real function g(ϑ) nonvanishing on the interval [0,1],
we consider the transformation K 1

2
defined as

ḡ(κ) ≡ K 1
2
[g](κ) :=

∫ 1

0

g(ϑ)√
1 + κϑ

dϑ. (B1)

The question is how to reconstruct g, knowing ḡ.
The Abel transform F of a function f is defined as [39,40]

F (y) =
∫ ∞

y

2rf (r)√
r2 − y2

dr. (B2)

The inverse formula, allowing us to recover f from F , is

f (r) = − 1

π

∫ ∞

r

F ′(y)√
y2 − r2

dy. (B3)

To make the link with K 1
2
, we change variables from ϑ to

r := √
ϑ in Eq. (B1) and introduce f (r) := g(ϑ = r2). Then,

for κ > 0,

ḡ(κ) =
∫ 1

0

f (r)√
1 + κr2

2r dr = 2√
κ

∫ ∞

0

f (r)r√
1
κ

+ r2
dr. (B4)

In the last equality, we changed the upper integration limit,
using f (r) = 0 for r > 1. We now continue ḡ(κ)

√
κ in the

complex plane from real positive to real negative κ by setting
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κ = eiϕ/y2|ϕ=±π with y > 0. This gives

ḡ(κ)
√

κ =
∫ ∞

y

2rf (r)√
r2 − y2

dr +
∫ y

0

2rf (r)√
r2 − y2

dr

= F (y) + e−iϕ/2G(y). (B5)

We have split the integral over r into two parts: The first part
is a real function F (y) ∈ R, which is the Abel transform of
f (r). The second term is purely imaginary because of the
denominator; which of the two possible branches is taken
depends on how we continued ḡ(κ)

√
κ , choosing either of

the branches ϕ = ±π . This means that we can express the
Abel transform F (y) of f (r) from ḡ(κ) as

F (y) = R[ḡ(κ)
√

κ|κ=−1/y2 ], (B6)

where R denotes the real part. We can now use formula (B3)
to invert the Abel transform.

Since f (r) vanishes for r > 1, according to the definition
(B2) F (y) also vanishes for y > 1. One can thus reduce the
upper bound in Eq. (B3) to 1. Finally reintroducing the function
g(ϑ) instead of f (r), we get

g(ϑ) = − 1

π

∫ 1

√
ϑ

F ′(y)√
y2 − ϑ

dy, (B7)

where F (y) is defined from ḡ(κ) in Eq. (B6). We now want
to apply this to compute g1(ϑ) from Eq. (71). We need to
compute the inverse K1/2 transform of

ḡ
pos
1 (κ) − ḡ0,1(κ) = 8

(
1√

κ + 1
+ 1

)
ln(

√
κ + 1 + 1)

− 16
ln(4) − 1√
κ + 1 + 1

− 4(κ + √
κ + 1 + 1) ln(κ + 1)

κ
. (B8)

From scaling, we expect that close to the boundary

g1(ϑ) � −2 ln(ϑ(1 − ϑ)). (B9)

To simplify the calculation, we subtract this divergent part.
Define

ḡln(κ) :=
∫ 1

0
dϑ

ln(ϑ(1 − ϑ)) + 2√
1 + κϑ

= 4[ln(2) − 1]

1 + √
κ + 1

+ 2
√

κ + 1 ln(κ + 1)

κ

+ 4(1 − √
κ + 1) ln(

√
κ + 1 + 1)

κ
. (B10)

Setting ḡ(κ) := ḡ
pos
1 (κ) − ḡ0,1(κ) + 2ḡln(κ) in Eq. (B6) yields

F (y) = − 8y2 ln(y)√
1 − y2

− 24
√

1 − y2 ln(2)

− 8(y2 − 1) arcsin(y)

y
. (B11)

Computing the integral (B7) finally gives

g(ϑ) =K−1
1
2

[ḡ1(κ) − ḡ0,1(κ) + 2ḡln(κ)]

= 4

[
3 − 1√

1 − ϑ + 1
− 1√

ϑ + 1

+ ln

(
(
√

ϑ + 1)(
√

1 − ϑ + 1)

16

)]
. (B12)

Adding the logarithmic terms, we recover the result (73) given
in the main text.

APPENDIX C: INVERSE LAPLACE TRANSFORMS
NECESSARY FOR THE MAXIMUM OF THE
BRIDGE AND OTHER USEFUL RELATIONS

In this Appendix we give a table of useful relations for the
inverse Laplace transforms encountered in this article.

All appearing hypergeometric functions can be eliminated
by using two special functions, introduced in Refs. [32–34]
and named I(x) and J (x),

I(x) = 1

6
x4

2F2

(
1,1;

5

2
,3;

x2

2

)
+ π (1 − x2)erfi

(
x√
2

)

+
√

2πe
x2

2 x + 2 − 3x2, (C1)

J (x) = 1

2
π erfi(

√
x) − x 2F2

(
1,1;

3

2
,2; x

)
. (C2)

These functions are related to each other by the relations

I(x) = 2 + 2(1 − x2)J
(

x2

2

)
+

√
2πe

x2

2 x erfc

(
x√
2

)
,

(C3)

I(x) = −2 e
x2

2 ∂2
x

[
e− x2

2 J
(

x2

2

)]
. (C4)

To arrive at these identities, and to express everything in terms
of one of these two functions, two nontrivial relations between
hypergeometric functions were used (they can be checked by
Taylor expansion to high order):

− 3 2F2

(
1,1;

3

2
,2;

x2

2

)
+ 2F2

(
1,1; 2,

5

2
;
x2

2

)

+ 6

x2

[√
π

2

e
x2

2

x
erf

(
x√
2

)
− 1

]
= 0, (C5)

− x3

[
3 2F2

(
1,1;

3

2
,2; −x2

2

)
+ 2F2

(
1,1; 2,

5

2
;
x2

2

)]

+ erf

(
x√
2

)[
3πxerfi

(
x√
2

)
− 3

√
2πe

x2

2

]
+ 6x = 0.

(C6)
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We now express the needed inverse Laplace transforms either in terms of I or J , depending on which form is more compact.
(Note that each function appears naturally in a given context [34].)

Transforms involving only e−√
s , and powers of

√
s are elementary,

L−1
s→t [e

−√
s] = e− 1

4t

2
√

πt3/2
, (C7)

L−1
s→t [e

−√
s
√

s] = −e− 1
4t (2t − 1)

4
√

πt5/2
, (C8)

L−1
s→t

[
e−√

s

√
s

]
= e− 1

4t√
πt

. (C9)

Transforms with an additional factor of ln(s) are

L−1
s→t [e

−√
s
√

s ln(s)] = − e− 1
4t

4
√

πt5/2

{
− 2t I

(
1√
2t

)
+ (2t − 1)[ln(4t) + γE]

}
, (C10)

L−1
s→t

[
e−√

s ln(s)√
s

]
= e− 1

4t√
πt

[
2J

(
1

4t

)
− ln(4t) − γE

]
, (C11)

L−1
s→t [e

−√
s ln(s)] = e− 1

4t

4
√

πt5/2

[
2J

(
1

4t

)
− ln(4t) − γE

]
−

erfc
(

1
2
√

t

)
t

. (C12)

Transforms involving the exponential integral function are

L−1
s→t [Ei(−√

s)] = −
erfc

(
1

2
√

t

)
2t

, (C13)

L−1
s→t [e

√
sEi(−2

√
s)] = e− 1

4t

4
√

πt3/2

[
2J

(
1

4t

)
+ ln(t) − γE

]
−

erfc
(

1
2
√

t

)
2t

, (C14)

L−1
s→t [

√
se

√
sEi(−2

√
s)] = e− 1

4t

8
√

πt5/2

{
2t I

(
1√
2t

)
+ (2t − 1)[ln(t) − γE] − 8t

}
, (C15)

L−1
s→t

[
e
√

sEi
(−2

√
s
)

√
s

]
= e− 1

4t

2
√

πt

[
γE − 2 J

(
1

4t

)
− ln(t)

]
. (C16)
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