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RNA forms elaborate secondary structures through intramolecular base pairing. These structures perform
critical biological functions within each cell. Due to the availability of a polynomial algorithm to calculate the
partition function over these structures, they are also a suitable system for the statistical physics of disordered
systems. In this model, below the denaturation temperature, random RNA secondary structures exist in one
of two phases: a strongly disordered, low-temperature glass phase and a weakly disordered, high-temperature
molten phase. The probability of two bases to pair decays with their distance with an exponent 3/2 in the molten
phase and about 4/3 in the glass phase. Inspired by previous results from a renormalized field theory of the
glass transition separating the two phases, we numerically study this transition. We introduce distinct order
parameters for each phase that both vanish at the critical point. We finally explore the driving mechanism behind
this transition.
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I. INTRODUCTION

Heteropolymer folding is a fundamental biophysical pro-
cess all living systems rely on. It is of medical relevance,
since, e.g., misfolded proteins and nucleic acids are strongly
implicated in the development of several neurological dis-
orders, such as Alzheimer’s, Parkinson’s, and Lou Gehrig’s
disease [1–6]. While general questions of heteropolymer fold-
ing can be addressed both in proteins and in ribonucleic
acids (RNA), RNA is the simpler of the two systems as it
is composed of only four monomers (as opposed to 20 for
proteins), the nucleotides adenine (A), cytosine (C), guanine
(G), and uracil (U). These nucleotides have a tendency to form
Watson-Crick (A-U, C-G) base pairs. To form these pairs, the
RNA strand folds back onto itself, which leads to the cre-
ation of RNA secondary structures. From a statistical physics
standpoint, heteropolymer folding presents a challenging task
for the physics of disordered systems. In particular, RNA
secondary structures are one of the few disordered systems for
which one can calculate the partition function in polynomial
time [7].

Previous studies show that RNA secondary structures exist
within one of two well-identified phases. Above a critical tem-
perature Tc, the system is in a phase where sequence disorder
does not play a significant role. This simplifying assumption
allows one to model any random base sequence or a sequence
with random pairing energies, εi, j , as a homopolymer. The
defining trait for this phase is that the partition function of
long RNA molecules is dominated by an exponentially large
number of secondary structures with energies differing only at
the order of O(kBT ). This phase is denoted the molten phase.

Beginning in 1968, de Gennes [8], while studying the
folded homopolymer, laid the theoretical foundation for our
understanding of the molten phase by showing that the prob-
ability of two bases to pair scales as p(�) ∼ �−α , where � is

the distance between any two bases labeled i and j = i + �

for 1 � i < j � N, and that α = 3/2. In later studies [9,10]
it was demonstrated analytically that sequence disorder, when
introduced perturbatively, is irrelevant for small disorder or
high temperatures. It was also confirmed numerically that
the pairing probability of a four-letter representation of the
RNA heteropolymer model matches the scaling behavior of de
Gennes’ earlier prediction at high enough temperature [9,10].

At low temperatures sequence disorder can no longer be
ignored. This glass (or “frozen”) phase is characterized by
the existence of a small number of low-energy secondary
structures. In the glass phase the scaling exponent of the pair-
ing probabilities was found numerically to be α ≈ 1.34 [11].
Properties of the glass phase have been extensively stud-
ied [9–19]. While the existence of the glass phase is well
established and the glass phase itself has been characterized
extensively, there is yet no clear signature and characterization
of the expected phase transition between the molten and the
glass phase.

Through the use of a renormalized field theory [13], Lässig
and Wiese (LW) showed analytically that the freezing tran-
sition between the molten and the glass phase is of at least
second order. They proved that their model is renormalizable
at 1-loop order. They further argued that the value of the
exponent α at the transition is the same as in the glass phase.
The field theory was later refined by David and Wiese [14,15],
showing that it is renormalizable to all orders in perturbation
theory. At 2-loop order [14,15] it then predicts that α = 3/2
in the molten phase and α ≈ 1.36 at the transition and in the
glass phase.

However, questions concerning the location of this critical
point, the existence and behavior of a suitable order parameter,
and the transition’s driving mechanism remained open. In the
present study, through the use of numerical simulations and
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FIG. 1. Diagrammatic and abstract representations of an RNA
secondary structure. (a) The backbone of the molecule is represented
by the solid bright line while the solid black lines stand for the
hydrogen-bonded base pairs where each base is depicted as a circle.
The shape of the backbone is such that stems of stacked base pairs
and the loops connecting or terminating them can be clearly seen.
Stems form double-helical structures similar to that of DNA. (b)
The same structure as in (a) but with the backbone of the molecule
stretched out turning the solid black lines representing each base pair
into arches. The base pairs represented by the red dashed lines in
(a) and (b) create a pseudoknot visible in (b) as a crossing of the
arches. We exclude such pairings in our definition of a secondary
structure. Pseudoknots, such as these, do not contribute much to the
total energy and are often deemed part of an RNA molecule’s tertiary
structure.

analytical tools inspired by the field theory, we study two
order parameters which both vanish at the transition. One of
them is non-zero in the molten phase, the other in the frozen
phase. This allows us to precisely locate the critical point.
Measuring pairing probability distributions, we explore the
mechanism driving this transition.

This paper is organized as follows: In Sec. II we define
the model. Section III details our efforts to locate the critical
temperature by establishing two order parameters. Section IV
probes the transition mechanism. In Sec. V we discuss our
results.

II. RNA SECONDARY-STRUCTURE MODEL

A. RNA secondary structures

Each RNA molecule is described by its sequence of N
bases b1 . . . bN , its primary structure. Given a molecule, an
RNA secondary structure, such as the one shown in Fig. 1,
can then be defined by a list of ordered pairs (i, j) with i < j
representing the base pairs formed by the molecule. Following
previous studies in the field of RNA secondary structure
reviewed in Ref. [20], we require each base to pair with no
more than one other base and we only consider structures that
exclude pseudoknots. The latter is accomplished by requiring
that any two base pairs (i, j) and (k, l ) with i < k satisfy either
i < j < k < l or i < k < l < j (see Fig. 1). Configurations
violating this rule are termed pseudoknots.

While pseudoknots are biologically relevant [21,22], the
no pseudoknot constraint is necessary to make both analytical

and numerical calculations feasible. The error introduced by
the no pseudoknot constraint is limited due to their relatively
infrequent occurrence in real folded RNA [23]. We consider
any pseudoknots and base triples as parts of the tertiary struc-
ture of the molecule, i.e., its three-dimensional conformation,
given the secondary structure. Importantly, we also ignore any
other constraints on the secondary strutures due to the tertiary
structure, such as, e.g., excluded-volume constraints, in our
model.

B. Energy model

To fully describe the statistical physics of RNA secondary
structures we have to complement the definition of valid
secondary structures by an energy function that assigns an
energy to every structure. While very sophisticated energy
models are available [24], which allow detailed quantitative
descriptions of the folding of actual RNA molecules, in this
paper we follow previous studies [9,25] that focus on the
universal aspects of RNA secondary structure formation and
adopt a simplified RNA energy model. Specifically, we con-
sider contributions from each base pair, and associate with the
pair of bases labeled i and j an interaction energy, εi, j . The
total energy of a structure S is defined as

E [S] =
∑

(i, j)∈S

εi, j . (1)

In realistic energy models used in actual secondary-structure
prediction of biologically relevant RNA molecules [24], the
interaction energies capture several physically distinct effects:
the enthalpic contributions of hydrogen bonding between the
two bases of the pair, stacking between the aromatic rings
of two consecutive bases along the strand, and (screened)
Coulomb repulsion between the negatively charged phos-
phate groups of the backbones. In addition, these interaction
“energies” are in reality free energy differences between a
paired and an unpaired state. They include the difference
in entropy between two unpaired bases freely fluctuating in
three-dimensional space and a base pair constrained in its
three-dimensional fluctuations due to the requirement to re-
main paired and due to the greater stiffness of double-stranded
over single-stranded RNA. The enthalpic and entropic
contributions nearly balance. At room or body temperature,
the enthaltpic contributions slightly outweigh the enthalpic
contributions and RNA forms secondary structures. At tem-
peratures of around 80 ◦C (depending on the sequence) the
entropic contributions outweigh the enthalpic contributions,
the interaction free energies become positive, and the RNA
denaturates. Thus, in principle, the interaction (free) energies
εi, j depend on temperature and the identities of the bases
bi and b j rendering the εi, j temperature dependent random
variables with discrete values and a complicated correlation
structure if the RNA sequences are chosen randomly. Since we
are here interested in universal properties of phase transitions,
we further simplify our model [9] by choosing these interac-
tion energies as independent Gaussian random variables taken
from the distribution

ρ(ε) = 1√
2πD

e− ε2

2D (2)
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with mean energy zero and variance D. A mean energy of zero
is still low enough to guarantee that most bases engage in base
pairs and thus to avoid the denatured phase that we are not
interested in. Also, while we ignore the explicit temperature
dependence of the realistic interaction free energies, the uni-
versal properties of the phase transition should not depend on
which parameter is tuned to cross the transition.

Since
√

D is the only energy scale in this model, we set
D = 1 in our simulations, but report all results in units scaled
by

√
D. Finally note that this kind of uncorrelated Gaussian-

disorder model is expected to have less severe finite-size
effects [11] than other choices of disorder models.

C. Partition function

Once an energy has been assigned to each secondary
structure S, the partition function is defined as

Z (N ) =
∑

S∈�(N )

e−βE [S], (3)

where �(N ) is the set of allowed secondary structures of N
bases, and β = 1/kBT . In the absence of pseudoknots, the
partition function can be studied by considering substrands
of the total sequence from base i to base j. The restricted
partition function Zi, j for these substrands obeys the recursive
equation [7]

Zi, j = Zi, j−1 +
j−1∑
k=i

Zi,k−1e−βεk, j Zk+1, j−1, (4)

in which by convention Zi,i−1 = 1. In this recursion, the
right-hand side involves only restricted partition functions for
shorter substrands than the one on the left-hand side. Thus,
the total partition function, Z (N ) = Z1,N , can be calculated
by progressing from the shortest substrands to longer ones in
O(N3) time.

The analogous recursion equation [26]

Ei, j = min
i�k< j

[Ei, j−1, Ei,k−1 + εk, j + Ek+1, j−1] (5)

holds for the energy Ei, j of the lowest-energy structure on
the substrand of the total sequence from base i to base j,
where Ei,i−1 = 0 by convention. This equation can be used in
conjunction with a backtracking mechanism [26] to calculate
the (zero-temperature) ground-state secondary structure for
any disorder configuration {εi, j}i, j in O(N3) time.

D. Observables

From the partition function of RNA secondary structures,
we can calculate a variety of physical observables that charac-
terize the structural ensemble. Primarily, we study the pairing
probability, pi, j , for a given base pair (i, j). This probability
can be obtained as

pi, j ≡ e−βεi, j Zi+1, j−1Zj+1,i−1

Z1,N
, (6)

where Zi+1, j−1 can be calculated from Eq. (4) and
Zj+1,i−1 is the partition function of the sequence
b j+1b j+2...bN b1...bi−2bi−1. This last quantity can be obtained

when the recursion Eq. (4) is applied to a duplicated sequence
b1...bN b1...bN and calculated as Zj+1,N+i−1.

We are specifically interested in the dependence of mo-
ments of the ensemble averaged base-pairing probability on
the distance |i − j| = � between the two bases. Within the
molten phase, and for large �, this quantity has a power-law
dependence

〈p(�)n〉 ≡ 〈
pn

i,i+�

〉 ∼
[
�(N − �)

N

]−αn

, (7)

where the brackets stand for the ensemble average over the
random base-pairing energies {εi, j}i, j and αn is a critical
exponent. The parameter n allows probing different moments
of the distribution of the base pairing probabilities p(�). Note
that the form of Eq. (7) has a practical advantage over the
asymptotic behavior �−αn , as it allows us to use larger � in
extrapolations.

The logarithms of each pairing probability,

	Fi, j = −kBT ln(pi, j ), (8)

have been interpreted as the “pinching free energy” [9], which
is the free-energy difference between a pinch of the monomers
labeled i and j, and the unperturbed, or unpinched, state. In
Sec. III, as in previous studies [9], we will show how we can
use the free energy of the largest possible pinch,

	F (N ) ≡ 	F1, N
2 +1, (9)

to obtain an estimate of the critical temperature. Here
monomers 1 and N

2 + 1 are treated as representatives of all
splits of a molecule of N bases into two equal pieces of length
N
2 − 1.

E. Review of main results of the Lässig-Wiese field theory

Our numerical analysis of the glass transition is inspired by
a field-theoretical calculation by Lässig and Wiese [13], and
its refinements in Refs. [14,15]. This theory starts from the
Gaussian-disorder model defined in Sec. II B. It introduces
replicas (copies) of the RNA molecule and shows that the
disorder-averaged partition function of the replicated system
can be written in terms of two relevant operators. The first is
the contact field 
α (i, j) that is 1 if the bases labeled i and
j in replica α are paired and 0 otherwise. The second is the
overlap field �α,β (i, j) between two replicas α and β defined
as �α,β (i, j) ≡ 
α (i, j)
β (i, j), i.e., �α,β (i, j) is 1 if the
bases labeled i and j are paired in both replicas α and β and
0 otherwise. The scaling dimensions of these operators, i.e.,
the exponents with which their thermal and disorder-averaged
expectation values depend on the distance | j − i| between the
two bases, are called ρ and θ , respectively.

Lässig and Wiese treat the disorder in the model pertur-
batively, prove renormalizability of the theory at first order
(later extended to renormalizability to all orders by David and
Wiese [14,15]), calculate the β function, find a critical point
that they identify with the glass transition, and calculate the
critical exponents ρ∗ and θ∗ (the scaling dimensions of 
 and
�) at this transition. Importantly, they find expressions for the
two critical exponents as a function of the scaling dimension
of the disorder and the number of replicas. In the relevant
limit of zero replicas, the expression for the exponent θ∗ (the
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FIG. 2. Secondary structures of a random RNA molecule at
distant times as presented in Ref. [13]. The pairing overlap is defined
by the common base pairings between the left and right configuration
(corresponding bases are shown in black). (a) Above Tc, the molecule
contains conserved subfolds on scales up to the correlation length ξ

(indicated by shading) and is molten on large scales. (b) Below Tc,
the molecule is “locked” into its minimum-energy structure on all
scales, up to rare fluctuations (unshaded).

scaling dimension of � at the transition) becomes smaller
than the expression for the exponent ρ∗ (the scaling dimension
of 
 at the transition) as the scaling dimension of the disorder
approaches its physical value. Since �α,β (i, j) � 
α (i, j), it
is impossible that the probability for two bases to be paired
in multiple replicas decays slower than the probability for the
same two bases to be paired in a single replica. Thus, Lässig
and Wiese conclude that rather than crossing each other, the
two exponents must become identical, i.e., that θ∗ = ρ∗. They
interpret this physically as the different replicas “locking”
with each other, so that at the transition (and below) there
is no difference between looking at the pairing behavior of
one or multiple replicas. This results in the picture of small-
scale locked regions in a background of an overall molten
structure above the transition temperature, and an overall
locked structure with small-scale molten regions below the
transition temperature as indicated in Fig. 2. The length scale
ξ of these small-scale regions diverges as ξ ∼ |T − Tc|−ν∗

with ν∗ = 1/(2 − θ∗) as the phase transition is approached
from either side. The actual values of the exponents from the
2-loop calculation by David and Wiese [14,15] are

θ∗ = ρ∗ ≈ 1.36 (10)

and thus

ν∗ ≈ 1.56. (11)

They are very close to the numbers of θ∗ = ρ∗ ≈ 11/8 =
1.375 and ν∗ ≈ 8/5 = 1.6 provided by Lässig and Wiese in
their original one-loop calculation [13].

To connect the results of the Lässig-Wiese theory to the
observables described in Sec. II D, we have to realize that the
pairing probability p(�) is the thermal average of the contact
field 
α (i, i + �). Since ρ is the scaling dimension of the

thermal and ensemble averaged contact field 
α (i, i + �), it
describes the scaling of the disorder average of the pairing
probability p(�), i.e., the quantity described by n = 1 in
Eq. (7). Thus,

α1 = ρ. (12)

Similarly, the thermal average of the overlap field �α,β (i, i +
�) equals the square of the pairing probability p(�), since
the bases labeled i and i + � have to independently pair in
the two replicas. Since θ is the scaling dimension of the
thermal and ensemble averaged overlap field �α,β (i, i + �),
it describes the scaling of the disorder average of the square
of the pairing probability p(�), i.e., the quantity described by
n = 2 in Eq. (7). Thus,

α2 = θ. (13)

F. Numerical approach

To investigate the RNA secondary-structure glass transi-
tion, we use RNA molecules of lengths within the range of
500 � N � 4000. For each length, many independent realiza-
tions of the random base-pairing energies εi, j are chosen, and
the partition function of all allowable secondary structures is
calculated for each realization of the random variables using
Eq. (4). Then, the observables described above are calculated
for each realization of the random variables and averaged over
those realizations (as well as over the starting base i in case of
the base-pairing probability). In the aim to keep the numerical
effort manageable we averaged over 20 000 samples for N =
500, over 10 000 samples for N ∈ 750, 1000, 1500, over 5000
samples for N = 2000, and over 1000 samples for N = 4000.
We varied the temperature in a range of 0.1 � kBT/

√
D � 1.0

to capture the behavior deep within each phase and close
to the phase transition, which we will find to be located at
kBT/

√
D ≈ 0.53. Note that the smaller number of samples for

large systems is partially compensated by a factor of N in the
statistics; e.g., the number of starting points for base pairs at a
given distance grows as N , and we average over these starting
points. As a result, our statistics are almost independent of
size at the chosen numbers of samples.

III. SCALING OF THE CONTACT AND
OVERLAP OBSERVABLES

To understand the model’s behavior at the transition, we
must know its precise location. Previous studies [9,17,27]
using different disorder models found that for the system
sizes achievable in numerical simulations, thermodynamic
signatures of the phase transition are quite weak, making an
exact localization of the critical temperature Tc challenging.
In this section we will identify two order parameters inspired
by the Lässig-Wiese field theory to obtain the precise location
of the critical temperature Tc.

A. Pairing-probability exponents alone do not specify
transition temperature

In principle, the critical exponents αn alone should al-
low us to locate the phase-transition temperature Tc. In
the molten phase p(�) is independent of disorder and thus
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FIG. 3. Average pairing probability versus substrand length. The
upper figure shows how the pairing probability scales as Eq. (7) in the
glass phase at the lowest temperature considered, kBT/

√
D = 0.1.

As mentioned in the text, within this phase the critical exponent,
α(g)

n , is insensitive to the value of n. The lower figure shows how the
pairing probability scales as Eq. (7) in the molten phase at the highest
temperature considered, kBT/

√
D = 1.0, but demonstrates how the

value of α(m)
n directly depends on the value of n.

〈p(�)n〉 ≈ 〈p(�)〉n, i.e.,

α(m)
n = nα

(m)
1 = n

3

2
, (14)

where we identify exponents in the molten phase with a
superscript (m). In the glass phase and at the transition, the
Lässig-Wiese theory predicts [see Eqs. (10), (12), and (13)]

α∗
n = α∗

1 ≈ 1.36 and α(g)
n = α

(g)
1 ≈ 1.36 (15)

independent of n, where we denote exponents at the phase
transition with a superscript asterisk and exponents in the
glass phase with a superscript (g).

To verify this, we calculated the disorder-averaged base-
pairing probabilities 〈p(�)n〉 numerically for different temper-
atures at N = 4000 and fitted them to Eq. (7) to obtain αn.
Indeed, Fig. 3 shows that the expected power laws hold, for
values of n = 1, 2, both at low temperature (T = 0.1) and at
high temperature (T = 1).

However, Fig. 4 shows the behavior of α1 and α2 across
the transition, which we show later is at Tc = 0.53

√
D/kB.

One can see that the apparent values of the exponents change
gradually from their value in the glass phase to their value in
the molten phase as the system undergoes the phase transition.
The steepness of this change only increases slightly as the
system size is increased from N = 1000 to N = 4000. Thus,
these exponents cannot be used to precisely locate the critical
temperature or to obtain the values of the exponents at the
transition.

This gradual change in exponents is consistent with the
weakness of the transition observed in earlier work by Pagnani
et al. [17]. There, it was found that the specific heat has a very
broad “feature” at the glass transition, and that the second
derivative of the specific heat is the first derivative akin to a
divergence, albeit with large finite-size effects. For this reason,
we did not try to identify the location of the phase transition
using derivatives of the free energy.

FIG. 4. The exponents α1 and α2 as a function of temperature.
As expected, αn becomes independent of n at a value of α(g)

n ≈
1.36 at very low temperatures and approaches α(m)

n = n 3
2 at high

temperatures. However, the changes in apparent αn are so gradual
and the steepness increases only so slightly as the system size is
quadrupled that this quantity can neither be used to determine the
critical temperature nor the exponents at the transition.

B. Coarse estimate of phase-transition temperature
from pinch free energies

To obtain a first estimate of the transition temperature,
we follow [9] and consider the disorder-averaged pinch free
energy 〈	F 〉. As seen in the inset of Fig. 5, this quantity has a
logarithmic dependence on the sequence length N at both low
and high temperatures [9]. We thus fit it to the linear form

〈	F (N )〉 = a(T ) ln(N ) + c(T ). (16)

for sequence lengths in the range 500 � N � 2000. The
resulting prefactor a(T ) is shown in the main part of Fig. 5. As
expected [8], in the molten phase a(T ) ≈ 3

2 kBT resulting in a
linear dependence of the prefactor on temperature. However,
for lower temperatures, the prefactor is non-monotonic in
temperature and thus lends itself as an estimator of the critical

FIG. 5. Pinch free energy prefactor a(T ) versus temperature. The
inset shows the disorder-averaged pinch free energy versus ln(N ) in
both the glass phase (kBT = 0.1

√
D) and the molten phase (kBT =

1.0
√

D). This allows us to extract the prefactors of these logarithmic
behaviors, which are shown as a function of temperature in the main
graph. The temperature at which the prefactor changes slope is an
estimate of the phase transition temperature Tc.
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FIG. 6. High-temperature pairing ratio 〈p(�)2〉/〈p(�)〉 versus
substrand length. The curves show the behavior of this new observ-
able at several temperatures in the vicinity of Tc and for temperatures
deep within the glass phase (kBT/

√
D = 0.1) and molten phase

(kBT/
√

D = 1.0). The dashed yellow lines are fits to Eq. (17).

temperature. The intersection of linear fits on either side of the
minimum yields Tc ≈ 0.51

√
D/kB.

C. Order parameters for the transition, and a more precise
estimation of the phase-transition temperature

Using this value of Tc as a guide, we limited the range over
which we performed our simulations to 0.4 � kBT/

√
D �

0.7 for sequence lengths up to N = 4000. Since the scaling of
the base-pairing probability 〈p(�)n〉 by itself does not demon-
strate a clear indication of when a finite system of length
N approaches Tc, we defined two additional observables that
allow us to extract when the system approaches Tc from either
side. The first is the ratio 〈p(�)2〉/〈p(�)〉, which we would
expect to be constant for large � in the glass phase due to
α2 = α1 and revert back to a power law similar to Eq. (7)
with an exponent of 3/2 in the molten phase. Conversely,
the second new observable, 〈p(�)〉2/〈p(�)2〉 we expect to
be constant in the high-temperature regime for large � and
then decay with the power law of Eq. (7) and an exponent
of approximately 1.36 at low temperatures. Figures 6 and 7
show these observables for several temperatures, both above,
below, and close to the critical temperature at N = 4000. As

FIG. 7. Low-temperature pairing ratio 〈p(�)〉2/〈p(�)2〉 versus
substrand length. Shown is the behavior of this new observable
at several temperatures in the vicinity of Tc and for temperatures
deep within the glass phase (kBT/

√
D = 0.1) and molten phase

(kBT/
√

D = 1.0). The dashed yellow lines are fits to Eq. (18).

indicated with dashed yellow lines, we fit these curves to the
forms

〈p(�)2〉
〈p(�)〉 = Ag

{[
�(N − �)

N

]−ω(g)

+ 	g

}
, (17)

〈p(�)〉2

〈p(�)2〉 = Am

{[
�(N − �)

N

]−ω(m)

+ 	m

}
, (18)

with offsets 	g and 	m, exponents ω(g) and ω(m), and global
prefactors Ag and Am. We identify the offsets 	g and 	m as
the order parameters of the system.

It may seem surprising to have two order parameters, one
for each phase. It is not commonly known that such observ-
ables can be constructed quite generally. In the Appendix we
illustrate this fact for a two-dimensional Ising model, where it
is analytically known that there is only one phase transition.
As that example shows, an order parameter is a quantity
that vanishes in one phase, is nonzero in the other one, and
can be used to determine the critical temperature; it may, or
may not, be associated with a specific symmetry. The two
quantities 	g and 	m we constructed each vanish in one of the
phases and are nonzero in the other one, as they probe specific
properties of their respective phases. While we cannot exclude
that there are two consecutive phase transitions at very close
temperatures, we have no indication for this hypothesis. The
example of the Ising model suggests that there is likely only
one transition, even though it is mathematically possible to
have 〈p(�)〉2 < 〈p(�)2〉 < 〈p(�)〉, which would make both
quantities vanish simultaneously, and possibly for more than
a single temperature.

The order parameters 	g and 	m scale close to the transi-
tion as ξ−ω, where ξ is a characteristic length scale, diverging
at the transition as ξ ∼ |T − Tc|−ν∗

. This implies that 	g and
	m should depend on temperature T as

	g ∼ |T − Tc|ω(g)ν∗
, (19a)

	m ∼ |T − Tc|ω(m)ν∗
. (19b)

To determine the two exponents, we vary them over a range
of 1 � (ω(g)ν∗, ω(m)ν∗) � 4 for each system size N and fit a
linear regression to 	(ω(g)ν∗ )−1

g versus T , and 	(ω(m)ν∗ )−1

m versus
T for a small temperature range immediately below and
above kBT/

√
D = 0.53, respectively. We then choose for each

system size the values of ω(g)ν∗ and ω(m)ν∗ that maximize
the coefficient of determination R2 of the linear fits. Last, we
treat each system size as an independent realization (upon
inspection the dependence of the optimal ω(g)ν∗ and ω(m)ν∗ on
system size does not seem to have a systematic contribution)
and determine the average and standard error of the mean
of the two exponents. On the left side of the critical point
(T < Tc), we find

ω(g)ν∗ ≈ 2.12 ± 0.08, (20)

while on its right side (T > Tc)

ω(m)ν∗ ≈ 2.43 ± 0.06. (21)

Figure 8 shows 	
1

ω(g)ν∗
g and 	

1
ω(m)ν∗
m with the such determined

values for ω(g)ν∗ and ω(m)ν∗ as functions of temperature.
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FIG. 8. Appropriate powers of the order parameters 	g and 	m versus temperature. (a) As 	g defined by Eq. (18) approaches kBT/
√

D ≈
0.53 from below it drops below zero. (b) Similarly, as 	m defined by Eq. (17) approaches kBT/

√
D ≈ 0.53 from above it becomes negative.

Note that to take the appropriate powers of the order parameters, the power is taken of their absolute value and the sign is restored afterwards.
On the side of the transition, where the order parameters 	g and 	m are negative, they tend to zero with increasing system size N . This allows
precise determination of the phase transition temperature kBT/

√
D ≈ 0.53 ± 0.01.

One clearly sees that each quantity approaches zero roughly
linearly on its respective side of kBTc/

√
D = 0.53 (	g for T <

Tc and 	m for T > Tc). Both cross zero at kBTc/
√

D = 0.53
and become dependent on the system size N on the opposite
side of kBTc/

√
D = 0.53, where they remain small and appear

to tend toward zero with increasing system size N . We thus
conclude that 	g and 	m are nonzero on their respective
side of the phase transition and vanish on the opposite side,
rendering them proper order parameters for the transition.
We further conclude that the phase transition takes place
at kBTc/

√
D = 0.53 ± 0.01. To verify the consistency of the

observed critical behavior, we note that the field theoretical
predictions given in Eqs. (11) and (14), (15) read

ω(g)ν∗ = (
2α

(g)
1 − α

(g)
2

)
ν∗ = 1.36 × 1.56 = 2.12 (22)

and

ω(m)ν∗ = (
α

(m)
2 − α

(m)
1

)
ν∗ = 3

2
× 1.56 = 2.34. (23)

These values are in good agreement with our numerically
determined values in Eqs. (20) and (21).

IV. TRANSITION MECHANISM

With the critical temperature in hand, we aim to understand
the mechanism of the phase transition itself. Deep in the
molten phase, base-pairing energies are irrelevant and as a
consequence any base can pair with any other base. Thus, the
thermally averaged base-pairing probability p(�) is the same
for any pair of bases with the same distance � and decays
with the distance � as the power law introduced in Eq. (7).
This probability is independent of the disorder realization. In
contrast, at zero temperature the RNA molecule folds into
the ground-state structure, which is typically nondegenerate
within the Gaussian-disorder model. Thus, for a given realiza-

tion of the disorder the thermally averaged pairing probability
of a given base pair is either zero (if the base pair is not
in the ground-state structure) or one (if the base pair is in
the ground-state structure). Which base pairs have a zero
probability and which have a probability of one changes with
the disorder realization. Thus, the scaling behavior Eq. (7) at
zero temperature arises only after ensemble averaging.

As discussed in Sec. II E, and illustrated in Fig. 2, the pic-
ture of the phase transition proposed in Ref. [13] is that as the
phase transition is approached from below, the fraction of base
pairs “locked” into a ground-state structure decreases by the
appearance of molten regions. At the transition, the situation
inverts and the “locked” base pairs become localized regions
of decreasing size within an overall molten structure on the
high-temperature side of the phase transition. These ideas
are reflected in the order parameters introduced in Eqs. (17)
and (18). Let us stress that while the expression “locked” used
in Ref. [13] suggests that bases are paired with probability 1,
this condition can be relaxed to mean that they are paired
with probability p > 0.5, or even p � 0.1. This suffices to
render the expectations Eqs. (17) and (18) nontrivial. We will
understand “locked” in this sense from now on.

A. Base-pairing probability distribution

To directly probe the transition mechanism, we numeri-
cally calculate the entire distribution of base-pairing prob-
abilities P(p; �). We note that all moments of the disorder-
averaged base-pairing probabilities can be reconstructed from
these distributions as

〈p(�)n〉 =
∫ 1

0
pnP(p; �) dp. (24)

We obtain these distributions by explicitly calculating the
base-pairing probabilities pi,i+� using Eq. (6) and then tab-
ulating their frequencies averaged over all i and many real-
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FIG. 9. Distributions of the logarithm of base-pairing probabil-
ities x = − ln(p) for system size N = 4000 averaged over the final
third of all �’s. (a) Deep in the molten phase (kBT/

√
D = 1.0) the

distribution of base-pairing probabilities has a distinct Gaussian-like
form, which would go to a delta peak as T → ∞ (D → 0). The inset
shows that no weight of the distribution is present close to x ≈ 0
(p ≈ 1). (b) Deep in the glass phase (kBT/

√
D = 0.1) the base-

pairing distribution still has a Gaussian-like form, albeit broader than
the high-temperature distribution. As the inset shows there exists now
a peak close to x ≈ 0 (p ≈ 1).

izations of the disorder. Moreover, due to the large range of
base-pairing probabilities, instead of taking histograms of the
pi,i+� themselves, we sample the distribution Q(x; �), where
x = − ln(p(�)). The two distributions are connected to each
other by Q(x; �) dx = P(p; �) dp and thus moments of the
disorder-averaged base-pairing probability can be obtained
from Q(x; �) as

〈p(�)n〉 =
∫ ∞

0
e−nxQ(x; �) dx. (25)

To reduce the statistical noise, we further use

Q(x) :=
∫ N/2

N/3
Q(x; �) d�, (26)

where the range of integration is motivated by the fact that
according to Eq. (7), the pairing probability p(�) is a function
of �(N − �)/N , and in the chosen range the latter does not
vary by more than 10%.

Figure 9 shows that in both temperature regimes the
base-pairing probability distribution Q(x) has a Gaussian-like
shape. Figure 9(a) is the distribution of Q(x) at the highest
temperature considered, kBT/

√
D = 1, for a system of size

N = 4000. The distribution is centered around x ≈ 13 and we
interpret it as a broadened version of what would be a δ-peak
around the value of 〈p(�)〉 from Eq. (7) at infinite temperature
or D = 0. Figure 9(b) shows the same distribution at the

FIG. 10. Distributions of the logarithm of base-pairing probabil-
ities x = − ln(p) for system size N = 4000 averaged over the final
third of all �’s multiplied with e−x for the same ranges as shown
in Fig. 9, there without the factor of e−x . (a) Deep in the molten
phase (kBT/

√
D = 1.0) the distribution of base-pairing probabilities

has a distinct Gaussian-like form, which would go to a delta peak
as T → ∞ (D → 0). (b) Deep in the glass phase (kBT/

√
D = 0.1)

the base-pairing distribution consists of only a peak at x ≈ 0 (p ≈ 1).
Note the difference in scales between Figs. 9(a) and 10(a) while the
scales in Figs. 9(b) and 10(b) are identical.

lowest temperature numerically accessible to us, kBT/
√

D =
0.1. Here we see a broad Gaussian-like distribution again.
However, it is by far wider than the high-temperature distribu-
tion and is located at x ≈ 95, i.e., at much smaller base-pairing
probabilities than its high-temperature counterpart. We inter-
pret this Gaussian-like feature as the contributions from all the
base pairs that are not part of the ground-state structure and
thus would have exactly zero probability at zero temperature,
while acquiring a finite, albeit very small (x 
 0, p � 1),
pairing probability at low temperatures. Importantly, as the
inset of Fig. 9(b) shows, close to the origin (x ≈ 0 or p ≈ 1)
there exists another peak. We interpret this prominent peak
at x ≈ 0 as the contributions from those base pairs that are
“locked” in the ground-state structure and thus define the
glass phase of this model. As the inset in Fig. 9(a) shows, no
corresponding peak at x ≈ 0 occurs deep in the molten phase.

As discussed above, when calculating the ensemble aver-
aged pairing probability 〈p(�)〉 the distribution Q(x; �) has
to be integrated against e−x. Thus, to appreciate where the
weight contributing to the ensemble-averaged pairing prob-
ability 〈p(�)〉 is coming from in the two phases, Fig. 10 shows
e−xQ(x). Deep in the molten phase (kBT/

√
D = 1.0) multi-

plying with e−x simply shifts the peak of the Gaussian-like
distribution to somewhat smaller x (larger p). In contrast, deep
in the glass phase (kBT/

√
D = 0.1) the Gaussian peak at large

x observed in the distribution Q(x) alone becomes invisible
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FIG. 11. Separation of the glass-phase ground and nonground-
state distributions. (a) The total base-pairing distribution within the
glass phase (kBT/

√
D = 0.1). (b) The ground-state base-pairing

distribution (note the difference in scale). This peak represents the
frequency of those pairs “locked” in the ground-state structure and
are the contributing weight seen in the inset of Fig. 9(b). (c) The
non-ground-state base-pairing distribution. As mentioned in the text,
the broad Gaussian-like peak seen in the low-temperature regime is
a result of non-ground-state pairs that have a small, nonzero pairing
probability at finite temperatures. These probabilities would be zero
at T = 0.

and only the feature at x ≈ 0 remains and is unaffected in
amplitude by multiplication with e−x. Thus, as suspected, in
the glass phase only the small-x range contributes significantly
to the ensemble-averaged pairing probability.

B. Locked base pairs at finite temperature stem from
ground-state base pairs at zero temperature

To confirm that the peak at x ≈ 0 in the low-temperature
behavior is indeed generated from the base pairs that form the
ground-state structure at T = 0, we explicitly separate the dis-
tribution Q(x) into two sub-distributions. We use the approach
outlined at the end of Sec. II C to calculate the ground-state
structure for every disorder configuration and then tabulate
the base-pairing probabilities across all � for base pairs par-
ticipating in the ground-state structure separately from those
which do not. This allows us to split the entire base-pairing
probability Q(x) into a ground-state contribution QGS(x) and
a non-ground-state contribution QNGS(x). Figures 11 and 12
show these ground-state and non-ground-state distributions at
the lowest and highest temperatures considered. In Fig. 11(b)
one can see that the ground-state pairs directly contribute to
the distinct peak close to x ≈ 0, which we interpret as those
base pairs that are “locked” in the ground-state structures.
This further confirms that it is the non-ground-state pairs that
make up the bulk of the total distribution seen in Fig. 9(b),
each of which would otherwise be zero at T = 0. Figure 12
then explains the absence of any weight in the inset of
Fig. 9(a). The lack of ground-state pair contributions in the
region x ≈ 0 indicates that the system is no longer in the glass
phase at this temperature. Since the transition is driven by the
behavior of the ground-state base pairs alone, we focus on
QGS(x) from now on.

FIG. 12. Separation of the molten-phase ground and non-
ground-state distributions. (a) The total base-pairing distribution
within the molten phase (kBT/

√
D = 1.0). (b) The ground-state

base-pairing distribution (note the difference in scale). The lack
of weight close to x ≈ 0 is due to a significantly reduced pairing
probability of ground-state base pairs at high temperatures leading
to the absence of any feature in the inset of Fig. 9(a). (c) The non-
ground-state pairs dominate the total pairing probability distribution.

C. Locked base pairs disappear at the phase transition

Our next goal is to quantify how the weight of “locked”
ground-state base pairs changes through the transition. Since
a ground-state base pair remaining “locked” at a finite tem-
perature does not mean that the pairing probability of this
base pair is one, but rather that it is sizable in some way, we
introduce a pragmatic way to characterize the disappearance
of “locked” base pairs. Specifically, we divide the range 0 �
x � 0.7 (corresponding to p � 0.5) into an equal number of
bins and ask which fraction of these bins receive at least one
ground-state base pair with N/3 � � � N/2 when we sample
10 000 independent disorder configurations (for N = 1000).
This quantity is shown in Fig. 13. While its detailed behavior
is definitely dependent on the choice of the upper cutoff

FIG. 13. Fraction of bins at x � 0.7 with zero counts as a func-
tion of temperature for N = 1000. We split the range 0 � x < 0.7
(corresponding to p � 0.5) into 139 equal bins of width 0.005. A
bin has zero counts when not a single ground-state base pair with
N/3 � � � N/2 in 10 000 disorder configurations has a thermally
averaged base pairing probability in the interval of x associated with
the bin. The fraction of bins with zero counts dramatically increases
from near zero to near one at the phase transition temperature. The
horizontal solid line indicates where 10% of the bins have zero
counts, the vertical line the location of Tc.

022415-9



BAEZ, WIESE, AND BUNDSCHUH PHYSICAL REVIEW E 99, 022415 (2019)

FIG. 14. Average ground-state base-pairing probabilities versus
x for system size N = 1000. (a) At kBT/

√
D = 0.3, and all tem-

peratures below, the region close to x ≈ 0 is the dominant peak.
(b) As the temperature is increased, the height of these peaks all
drop to roughly the same height as the neighboring peaks. (c) Above
kBT/

√
D ≈ 0.35, the probability density QGS(x) at x ≈ 0 is actually

lower than at moderate x.

on x, the width of the bins, and the number of samples, it
is quite clear from the very strong temperature dependence
shown in Fig. 13 that essentially all log-probabilities x � 0.7
are present for kBT/

√
D � 0.45, while they are absent for

kBT/
√

D � 0.7. This switch should only moderately depend
on our particular choices. It is consistent with the disappear-
ance of locked base pairs at the phase transition.

D. Behavior of the base-pairing probability distribution at x ≈ 0

As we have seen in Fig. 11, the base-pairing probability
distribution is highly peaked at x ≈ 0 deep in the glass phase,
consistent with a picture in which a base pair that is part of
the ground-state structure at zero temperature still has proba-
bility essentially 1 at kBT/

√
D = 0.1. Since we have seen in

Sec. IV C that the entire base-pairing probability at x � 0.7
(p � 0.5) disappears at the transition to the molten phase, it is
of interest to look at the shape of the distribution as the tran-
sition is approached. Figure 14 shows these distributions at
various temperatures below, but close to, the glass-transition
temperature. The most striking feature is that they switch
from a behavior where the bulk of the distribution is at x ≈ 0
(p = 1) at low temperatures to a behavior where base-pairing
probabilities with small x are still prevalent but probabilities
at x ≈ 0 (p ≈ 1) itself are suppressed. An intermediate case
of a distribution that is essentially independent of x over the
entire range 0 � x � 0.7 appears at kBT/

√
D ≈ 0.35.

When plotting the same data on a double logarithmic scale
(Fig. 15) we find that over the range of 0 � x � 0.7 the
ground-state base-pairing distribution is well described by a
power law,

QGS(x) ∼ x−γ , (27)

that allows us to capture its behavior in terms of a single
temperature-dependent exponent γ . Figure 15 shows that the
slope of these fits (the black dotted lines) turns from nega-
tive to positive with increasing temperature. The temperature
dependence of the exponent γ is shown in Fig. 16. For
T → 0 it approaches −1 consistent with a true δ-peak of
the distribution at base-pairing probability one. The expo-

FIG. 15. Double logarithmic plot of the average ground base-
pairing distributions versus x for system size N = 1000. At tempera-
tures below the glass transition, the ground-state pairing distributions
at moderate pairing probabilities are approximate power laws (black
dashed fit lines, bins with zero counts ignored in the fits) whose
exponents turn from negative to positive as the temperature increases.

nent crosses zero for kBT/
√

D between 0.34 and 0.36 and
tends to one at the glass-transition temperature, where it
becomes impossible to determine it, since too many bins in
x receive zero counts (see above). We conclude that while
the transition, at which high-probability base pairs disappear
is at kBT/

√
D ≈ 0.53 as shown in Sec. III, already at a

lower temperature of kBT/
√

D ≈ 0.35 the system transitions
from an ensemble where the bulk of the pairing probability
distribution is at p = 1 to an ensemble where the probability
distribution has a power law with positive exponent at x = 0,
i.e., where the probability density goes to zero for pairing
probabilities of p = 1. We call this transition, close in spirit
to the one proposed in Ref. [13], secondary freezing, stressing
that we have not found any signature of a thermodynamic
phase transition.

V. CONCLUSIONS

In this work, we numerically studied the glass-molten
phase transition of RNA secondary structures using a Gaus-
sian disorder model. With the guidance of previous studies
of this system using renormalization-group theory [13–15]

FIG. 16. γ versus temperature. When plotted against tempera-
ture, the slopes of the fit lines from Fig. 15 cross zero at a point
between kBT = 0.34

√
D and kBT = 0.36

√
D, which could be inter-

preted as the secondary freezing event mentioned in Ref. [13].

022415-10



BEHAVIOR OF RANDOM RNA SECONDARY STRUCTURES … PHYSICAL REVIEW E 99, 022415 (2019)

(a) (b)

FIG. 17. (a) Simulation results for the two order parameters of the 2D Ising model at linear size L = 150: Nonvanishing for T < Tc (blue
in online version) the magnetization m; superimposed the analytical result of Yang [28] (black dashed). Nonvanishing for T > Tc (red in online
version), the high-temperature order-parameter O defined in Eq. (A1). The black dashed line is a fit of the data, starting with a square-root
singularity in T − Tc (exact form to be confirmed analytically). This can be verified in (b), where f (x) = x2 + 4x6 + 10x20; the higher-order
terms where chosen such that even for large T/Tc the data roughly lie on a straight line, namely 0.927(T/Tc − 1). This shows that O is an
order parameter for the high-temperature phase. Simulations where performed for system size L = 150, using a total of 1000L2 updates per
temperature in the region 1 � T � 1.3, and 200L2 updates elsewhere, starting from a configuration annealed at the next smaller temperature.
Statistical fluctuations are given by the shaded regions. The dominant error is systematic.

we determined the precise location of the transition by the
introduction of two order parameters, one for the glass phase
and one for the molten phase. In addition to precisely locating
the critical temperature of this system, we confirmed the nu-
merical values of the critical exponents at the phase transition
predicted by the field theory.

We provide an explanation as to how this model transitions
between its molten and glass states by studying the behavior
of the base-pairing probability distributions. In particular,
we show that the total base-pairing probability distribution
can be broken into two sub-distributions composed of base
pairs that are “locked” in the ground-state structures below
the glass transition temperature, QGS(x; �), and non-ground-
state base pairs, QNGS(x; �), that never develop a sizable
pairing probability. Interestingly, we also identify a potential
secondary freezing event [13] within the low temperature
phase. At temperatures below this secondary freezing event,
the most prevalent base pairing probability of ground-state
base pairs remains one even at finite temperatures indicating
that they are truly locked. Above this secondary freezing event
but below the glass transition temperature, base pairs with
significant pairing probabilities (p � 0.5) remain prevalent
but the density of base pairs with pairing probability one itself
vanishes, indicating that locking is maintained only in the
weaker sense that locked base pairs are common to a finite
fraction of the thermodynamic ensemble rather than to “all”
structures. It would be interesting to study the implications
of this secondary freezing event on the kinetics of RNA
structures.
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APPENDIX: CONSTRUCTION OF TWO ORDER
PARAMETERS IN THE TWO-DIMENSIONAL

ISING MODEL

In this Appendix we construct a pair of order parameters
vanishing on either side of a phase transition in a system
known to have only a single phase transition. To this end,
consider the Curie point in magnets, separating a ferromag-
netic from a paramagnetic phase. In the ferromagnetic phase,
the magnetization is an order parameter, vanishing when
approaching the transition from below. This order parameter
has a Z2 symmetry, which is spontaneously broken in the
ordered phase. The connected correlation function in the
ordered phase decays exponentially, defining a correlation
length ξferro, which diverges at the transition, ξferro ∼ |T −
Tc|−ν∗

. While this correlation length does not show the Z2

symmetry breaking, its inverse could still be used as an order
parameter.

In the high-temperature phase it is more difficult to find an
order parameter. One idea is to use the (inverse) correlation
length, which vanishes as 1/ξpara ∼ |T − Tc|ν∗

. A better ob-
servable can be constructed as follows: Draw a line along one
of the lattice directions, and note the numbers S of consecutive
spins with the same sign. As an example, in a system of
linear size L = 10 with periodic boundary conditions, the
configuration “0111100010” on the chosen line translates into
the four random variables {S1, . . . , S4} = {4, 3, 1, 2}. Define
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the observable

O :=
( 〈S〉

〈S2〉 − 1

L

)
×

(
1

3
− 1

L

)−1

. (A1)

At T = 0, all spins are aligned and S takes only one value,
S = L. By construction O vanishes. For T → ∞, the spins
are independent, and the ratio 〈S〉/〈S2〉 → 1/3. Thus, O
approaches 1 for T → ∞. The behavior for intermediate

temperatures is shown in Fig. 17 (left): The observable O
vanishes (approximately) for T � Tc and roughly grows as
O � 0.927

√
T − Tc for T > Tc. This is more clearly seen by

plotting O2 (plus higher-order terms to bring the result closer
to a straight line for larger T ), see the right of Fig. 17. A small
rounding around T = Tc persists due to finite-size effects.
Since there is only one phase transition in the 2D Ising model,
this shows that one can construct two order parameters for this
single transition.
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