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The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a
Brownian Bt starting from the origin, and evolving during time T, one considers the following three
observables: (i) the duration tþ the process is positive, (ii) the time tlast the process last visits the origin, and
(iii) the time tmax when it achieves its maximum (or minimum). All three observables have the same
cumulative probability distribution expressed as an arcsine function, thus the name arcsine laws. We show
how these laws change for fractional Brownian motion Xt, a non-Markovian Gaussian process indexed by
the Hurst exponent H. It generalizes standard Brownian motion (i.e., H ¼ 1

2
). We obtain the three

probabilities using a perturbative expansion in ε ¼ H − 1
2
. While all three probabilities are different, this

distinction can only be made at second order in ε. Our results are confirmed to high precision by extensive
numerical simulations.
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The three arcsine laws for Brownian motion or
more generally for discrete random processes [1–4] are
celebrated properties of stochastic processes. For a
Brownian Bt starting from the origin, and evolving during
time T, one considers the following three observables (see
Fig. 1): (i) the total duration tþ when the process is positive,
(ii) the last time tlast the process visits the origin, and
(iii) the time tmax it achieves its maximum (or minimum).
Remarkably, all three observables have the same proba-
bility distribution as a function of ϑ ≔ t=T,

pðϑÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑð1 − ϑÞp : ð1Þ

As the cumulative distribution contains an arcsine function,
these laws are commonly referred to as the first, second,
and third arcsine law. These laws apply quite generally to
Markov processes, i.e., processes where the increments are
uncorrelated [2]. Their counterintuitive form with a diver-
gence at ϑ ¼ 0 and ϑ ¼ 1 has sparked a lot of interest, and
they are considered among the most important properties of
stochastic processes. Recent studies led to many exten-
sions, in constrained Brownian motion [5–7], for general
stochastic processes [8–13], even in higher dimensions
[14–16]. The laws are realized in a plethora of real-world
examples, from finance [17,18] to competitive team
sports [19].
In this Letter, we ask how these laws change for

fractional Brownian motion (FBM) which is a generaliza-
tion of standard Brownian motion preserving scale invari-
ance as well as translation invariance, both in time and

space. FBM was introduced in its final form by Mandelbrot
and Van Ness [20] to describe time-series data in natural
processes. It is defined as a Gaussian process Xt, starting at
zero, X0 ¼ 0, with mean hXti ¼ 0 and covariance

hXtXsi ¼ t2H þ s2H − jt − sj2H: ð2Þ

The parameter H ∈ ð0; 1Þ is the Hurst exponent. Standard
Brownian motion corresponds to H ¼ 1

2
where the covari-

ance reduces to hXtXsi ¼ 2minðs; tÞ. Unless H ¼ 1
2
, the

process is non-Markovian; i.e., its increments are not
independent.
ForH > 1

2
they are positively correlated, while forH < 1

2

they are anticorrelated. This non-Markovian nature makes a
theoretical analysis of FBM difficult, and only a few exact

FIG. 1. The three observables tþ, tlast, and tmax considered in
this Letter.
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results are available in the literature [21–23], in particular,
for functionals of the trajectories [24–26].
FBM is important as it successfully models a variety of

natural processes [27]: a tagged particle in the single file
(H ¼ 0.25) [28,29], the integrated current in diffusive
transport (H ¼ 0.25) [30], polymer translocation through
a narrow pore (H ≃ 0.4) [31–33], anomalous diffusion
[34,35], values of the log return of a stock (H ≃ 0.6 to 0.8)
[36–39], hydrology (H ≃ 0.72 to 0.87) [40], a tagged
monomer in a polymer (H ¼ 0.25) [41], solar flare activity
(H ≃ 0.57 to 0.86) [42], the price of electricity in a
liberated market (H ≃ 0.41) [43], telecommunication net-
works (H ≃ 0.78 to 0.86) [44], telomeres inside the nucleus
of human cells (H ≃ 0.18 to 0.35) [45], or diffusion inside
crowded fluids (H ≃ 0.4) [46]. Generalizing the three
arcsine laws (1) to FBM thus has fundamental importance,
as well as a multitude of potential applications.
Unlike for Brownian motion, the probabilities of the

three observables tþ, tlast, and tmax are different. Using an
expansion in ε ¼ H − 1

2
, we derive them in the form

pþðϑÞ ¼
N þ

½ϑð1 − ϑÞ�H eεF
þ
1
ðϑÞþε2Fþ

2
ðϑÞþOðε3Þ; ð3Þ

plastðϑÞ ¼
N last

ϑHð1 − ϑÞ1−H eεF
last
1

ðϑÞþε2F last
2

ðϑÞþOðε3Þ; ð4Þ

pmaxðϑÞ ¼
N max

½ϑð1 − ϑÞ�H eεF
max
1

ðϑÞþε2Fmax
2

ðϑÞþOðε3Þ: ð5Þ

The prefactors of the exponential are predicted using
scaling arguments for ϑ → 0 and ϑ → 1. They are linked
to the persistence exponent θ ¼ 1 −H [21,22]. For exam-
ple, Eq. (4) is approximately the probability to return to the
origin ∼ϑ−H and never to return afterwards ∼ð1 − ϑÞ−θ.
The terms in the exponential are nontrivial and remain
finite over the full range of ϑ. We use the convention that
the integral over each F function vanishes, which adjusts
the normalization constants N . To leading order we find

Fþ
1 ðϑÞ ¼ Fmax

1 ðϑÞ

¼ π

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϑ

ϑ

r
þ 2ð2ϑ − 1Þacosð ffiffiffi

ϑ
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϑÞϑp −

π2

2
þ 2; ð6Þ

F last
1 ðϑÞ ¼ 0: ð7Þ

The expression of Fmax
1 ðϑÞ was reported earlier [47–50].

The equality of Fþ
1 and Fmax

1 , and their difference from the
vanishing F last

1 , is qualitatively seen in Fig. 2. We have no
intuitive understanding of this coincidence.
A numerical estimation of the three probabilities is

obtained using a discrete-time algorithm [51] for FBM
of a given H, which generates sample trajectories drawn
from a Gaussian probability with covariance (2). The

probabilities in Figs. 2 and 3 are obtained by averaging
over 5 × 109 sample trajectories, each with 213 time steps.
Figure 2 shows that plastðϑÞ behaves markedly differ-

ently from the other two distributions; especially, it is
asymmetric under the exchange ϑ → 1 − ϑ. This can be
seen in the scaling part of Eq. (4), where the exponent H
comes from the return probability to the starting point,
while the survival exponent θ ¼ 1 −H governs the diver-
gence for ϑ → 1. This asymmetry in exponents is reversed
around H ¼ 1

2
, as seen in the inset of Fig. 2.

The analytical expressions for F 2 in Eqs. (3)–(5) are
cumbersome; we will sketch the derivation for the simplest
one, F last

2 ðϑÞ, below, while the remaining ones will be
reported elsewhere [52].
Confirmation of our theoretical results comes from

comparison with numerical simulations of the probabilities
presented in Fig. 3 for ε ¼ −0.17. Deviations start becom-
ing visible for jεj ≈ 0.25 and higher (see Supplemental

FIG. 2. Numerical simulation results for the probability of
the three observables tlast, tþ, and tmax for a FBM with H ¼ 0.33.
The inset shows the probabilities for H ¼ 0.66. Note that the
distributions of tþ and tmax are almost indistinguishable.

FIG. 3. Comparison of the formulas (3)–(5) with their corre-
sponding numerical simulation result of a FBM with H ¼ 0.33.
The dashed lines are the theoretical result. pmaxðϑÞ is shown in
the inset as it is almost indistinguishable from pþðϑÞ.
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Material [53]). For a finer comparison we plot our
theoretical results of F 2ðϑÞ in Fig. 4 alongside their
extraction from numerical simulations. To illustrate our
procedure, we use Eq. (3) to define

Fþ
2;εðϑÞ ≔

1

ε

�
1

ε
ln
�
pþðϑÞ

½ϑð1 − ϑÞ�H
N þ

�
− Fþ

1 ðϑÞ
�
: ð8Þ

Then, Fþ
2;εðϑÞ ¼ Fþ

2 ðϑÞ þOðεÞ which contains all terms
in the exponential in Eq. (3) except Fþ

1 ðϑÞ. One can
improve this estimation by using that the subleading term in
Fþ

2;εðϑÞ is odd in ε, to define

F̄þ
2;εðϑÞ ≔

1

2
½Fþ

2;εðϑÞ þ Fþ
2;−εðϑÞ� ¼ Fþ

2 ðϑÞ þOðε2Þ: ð9Þ

A comparison of F̄þ
2;εðϑÞ extracted from numerical simu-

lations of pþðϑÞ with the theoretical result of Fþ
2 ðϑÞ is

plotted in Fig. 4 for ε ¼ � 1
6
. The figure also contains the

comparison for F last
2 ðϑÞ and Fmax

2 ðϑÞ. As one sees, the
agreement between theory and numerical simulations is
quite striking: we remind the reader that these are sub-
subleading corrections, almost indiscernable in Fig. 3. We
note the much larger amplitude of F last

2 ðϑÞ. The latter also
has the largest deviations from the theory, especially for
θ → 0. These deviations indicate the presence of sublead-
ing terms of order ε4, or higher.
In Fig. 2 the probabilities pþðϑÞ and pmaxðϑÞ are difficult

to distinguish from each other. Their difference can
analytically be seen only at second order in ε. To underline
that these are distinct distributions, we show the difference
δF 2ðϑÞ ¼ Fmax

2 ðϑÞ − Fþ
2 ðϑÞ in Fig. 5.

In the rest of this Letter we sketch the derivation of
formulas (3)–(5). We begin with the action which charac-
terizes the probability of a FBM trajectory,

S½X� ¼
Z

T

0

dt1

Z
T

t1

dt2 _Xt1C
−1ðt1; t2Þ _Xt2 : ð10Þ

Here Cðt1; t2Þ is the covariance given in Eq. (2). We use an
expansion [48,54] of the action around H ¼ 1

2
to take

advantage of the Markov property of Brownian motion.
One writes

Cðt1; t2Þ

¼ 2Dε

�
δðt1 − t2Þ þ

ε

jt1 − t2j
þ 2ε2 ln j t1−t2τ j

jt1 − t2j
þOðε3Þ

�

ð11Þ

which leads to an expansion of the action [55]

(a) (b) (c)

FIG. 4. A comparison for the three F 2ðϑÞ obtained analytically (black dashed lines) and their measurement using formula (9) with
ε ¼ � 1

6
. From left to right: (a) positive time, (b) time of the last visit to the origin, and (c) time for the maximum. The scattered dots are

the raw data from trajectories of N ¼ 213 time steps, averaged over 5 × 109 samples, which are coarse grained by a factor of 100 to give
the green curve. Approximations of our analytical results are given in the Supplemental Material [53].

FIG. 5. The difference δF 2ðϑÞ ¼ Fmax
2 ðϑÞ − Fþ

2 ðϑÞ, using the
same conventions as in Fig. 4. This plot quantifies the difference
between the first and third arcsine law.

PHYSICAL REVIEW LETTERS 120, 040603 (2018)

040603-3



S½X� ¼ 1

2Dε

Z
T

0

dt1

Z
T

t1

dt2 _Xt1
_Xt2

�
δðt1 − t2Þ þ

ε

jt1 − t2j

þ
Z

t2

t1

ds
ε2

jt1 − sjjt2 − sj þOðε3Þ
�

ð12Þ

whereDε ≃ ð1þ 2εÞτ2ε and all expressions are regularized
by an ultraviolet cutoff τ in time.
Our calculation for the probabilities is done in Laplace

variables. One reason for this choice is that the space
integrals appearing in perturbation theory are easier. A
further advantage is that temporal convolutions become
mere products in the conjugate Laplace variables. The
action (12) is expressed in Laplace variables by writing

Θðjt1 − t2j − τÞ
jt1 − t2j

≃
Z

Λ

0

dye−yjt1−t2j: ð13Þ

Here Λ is a UV cutoff related to the cutoff τ in time via [48]
Λ ¼ ð1=τÞe−γE where γE is Euler’s constant. As an explicit
example, let us consider the calculation of Plastðt; TÞ and its
Laplace transform

~Plastðλ; sÞ ¼
Z

∞

0

dT
Z

T

0

dte−λt−sTPlastðt; TÞ: ð14Þ

The quantity of interest Plastðt; TÞ has a scaling form
Plastðt; TÞ ¼ Tplastðt=TÞ which using Eq. (14) yields

~Plastðλ; sÞ ¼
1

s

Z
1

0

dϑ
plastðϑÞ
1þ κϑ

; κ ¼ λ

s
: ð15Þ

Defining ~plastðκÞ ≔ s ~Plastðλ; sÞ, one obtains the probability
plastðϑÞ by taking the inverse transformation

plastðϑÞ ¼ lim
ϕ→π

−1
πϑ

ℑ ~plastðκ ¼ eiϕ=ϑÞ; ð16Þ

where ℑ denotes the imaginary part. This is proven from
Eq. (15) using the Sokhotski-Plemelj-Weierstrass theorem
[56,57] in complex analysis.
The calculation is simplest at order zero in ε, i.e., for a

Brownian. Using Eqs. (12) and (14) one writes

~P
H¼1

2

last ðλ; sÞ ¼ lim
x0→0

2

x0

Z
∞

0

dx ~Zðx0; x0; sþ λÞ ~Zþðx0; x; sÞ:

ð17Þ

Here ~Zðx; y; sÞ ¼ ð2 ffiffiffi
s

p Þ−1 expð− ffiffiffi
s

p jx − yjÞ is the Laplace
transform of the Brownian propagator, while ~Zþðx; y; sÞ ¼
Zðx; y; sÞ − Zðx;−y; sÞ is the propagator in presence of an
absorbing wall at the origin. This yields

~p
H¼1

2

last ðκÞ ¼ s ~P
H¼1

2

last ðsκ; sÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

p : ð18Þ

Using the transform (16) one obtains the arcsine law (1).

Perturbative corrections to the probability are evaluated
by following a similar procedure [48]. Contributions at
different orders in ε are represented by the diagrams in
Fig. 6. The nonvanishing contributions at order ε come
from the two diagrams (a) and (b) which like (17) are
expressed in terms of the Brownian propagator. For
example, the amplitude corresponding to diagram (a) is

4ε

x0

Z
Λ

0

dy
Z

∞

−∞
dx1

Z
∞

−∞
dx2

Z
∞

0

dx ~Zðx0;x1; s1Þ

× ∂x1
~Zðx1;x2; s1þ yÞ∂x2

~Zðx2;x0; s1Þ ~Zþðx0; x; sÞ ð19Þ

where s1 ¼ sð1þ κÞ. This leads to the nontrivial power law
in Eq. (4) and a vanishing F last

1 in Eq. (7).
At order ε2, there are multiple diagrams which contribute

to the probability ~plastðϑÞ. However, the only contributions
to F last

2 come from the two diagrams (c) and (d) in Fig. 6.
After some tedious algebra, the net amplitude of the two
diagrams reads

~F last
2 ðκÞ¼−

Z
Λ

0

dy1dy2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κþy1þy2þ1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κþy1þ1

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κþy2þ1

p
þ ffiffiffiffiffiffiffiffiffiffi

κþ1
p �×2

ffiffiffiffiffiffiffiffiffiffi
1þκ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1þy2þ1

p
y21y

2
2

×ð1−
ffiffiffiffiffiffiffiffiffiffiffiffi
y1þ1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
y2þ1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1þy2þ1

p
Þ: ð20Þ

Finally, F last
2 ðϑÞ is obtained using

(a)

(c) (d)

(b)

FIG. 6. The diagrams (a) and (b) contributing to the order-ε
term in plastðϑÞ, as well as (c) and (d) contributing to the order-ε2
term F last

2 ðϑÞ in (4). Solid lines denote the Brownian propagators,
with absorbing boundary conditions indicated by a bold line
after time t. The curly lines represent the order-ε interaction
in Eq. (12).
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F last
2 ðϑÞ ¼ lim

ϕ→π
ℜ ~F last

2 ðκ ¼ eiϕ=ϑÞ; ð21Þ

which follows from Eqs. (16) and (4) [58]. Integrals in
Eq. (20) converge for Λ → ∞ leading to the result shown in
the middle of Fig. 4.
Similar calculations for the other two probabilities

PþðϑÞ and PmaxðϑÞ are more involved. For example, in
pmaxðϑÞ ten diagrams contribute to the power law
½ϑð1 − ϑÞ�−H in Eq. (5); in addition there are seven
diagrams which contribute to Fmax

2 . All these terms need
to be grouped with the appropriate repeated first-order dia-
grams to yield combinations which converge for Λ → ∞.
These calculations will be reported elsewhere [52].
To summarize, we calculated the probabilities (3)–(5)

generalizing the three arcsine laws to FBM up to order ε2,
improved by incorporating the exact scaling results for ϑ →
0 and 1. Our numerical simulations confirm these highly
nontrivial predictions accurately.
Most realizations of FBM found in practical applications

fall within the range H ≃ 1
2
� 0.25 where our formulas

yield high-precision predictions. Our approach further
offers a systematic framework to obtain other analytical
results for non-Markovian processes, of which very few are
available so far.
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International Publishing, Cham, 2013).

[5] S. N. Majumdar, J. Randon-Furling, M. J. Kearney, and M.
Yor, On the time to reach maximum for a variety of
constrained Brownian motions, J. Phys. A 41, 365005
(2008).

[6] S. N. Majumdar and J. P. Bouchaud, Optimal time to sell a
stock in the Black-Scholes model: comment on ‘Thou shalt
buy and hold’, by A. Shiryaev, Z. Xu, and X. Y. Zhou,
Quant. Finance 8, 753 (2008).

[7] J. Randon-Furling and S. N. Majumdar, Distribution of the
time at which the deviation of a Brownian motion is
maximum before its first-passage time, J. Stat. Mech.
(2007) P10008.

[8] S. N. Majumdar, Universal first-passage properties of dis-
crete-time random walks and Lévy flights on a line:
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