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Abstract
In the theory of extreme values of Gaussian processes, many results are 
expressed in terms of the Pickands constant αH . This constant depends 
on the local self-similarity exponent α of the process, i.e. locally it is a 
fractional Brownian motion (fBm) of Hurst index /α=H 2. Despite its 
importance, only two values of the Pickands constant are known: =H 11  
and / π=H 12 . Here, we extend the recent perturbative approach to fBm 
to include drift terms. This allows us to investigate the Pickands constant αH  
around standard Brownian motion (α = 1) and to derive the new exact result 

α γ α= − − + −αH O1 1 1E
2( ) ( ) .

Keywords: fractional Brownian motion, Pickands constant, extreme-value 
statistics

(Some figures may appear in colour only in the online journal)

1. Introduction: maximum of a Gaussian process

The extreme-value statistics of strongly correlated variables is an active research field. 
However, only few general theorems for the maximum of a set of such variables are known. 
Notable exceptions are random walks [1, 2], the free energy of a directed polymer on a  
tree [3], the eigenvalues of a random matrix [4], or the extreme-values of specific Gaussian 
processes [5–8].

For generic Gaussian random processes, the tail of the distribution for large values of the 
maximum has been studied notably by Pickands and Piterbarg, and led to the definition of 
what is now known as the Pickands constant. The concepts continue to be studied and applied 
[9–13].

To appreciate the high degree of universality of the theorems involved, we first state the 
original theorem of Pickands [14], formulated for stationary processes: consider a stationary 
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Gaussian process Xt with mean ( ) =E X 0t , and normalized squared variance ( ) =E X 1t
2 . By 

assumption, the covariance function

( ) ( )= +Er t X X: t t t0 0 (1)

is independent of t0. Suppose that it satisfies

( ) < ∀ >r t t1 0, (2)

( )       →−| |α!r t t t1 for 0. (3)

Condition (2) excludes that the process is periodic, while condition (3) sets the scales for Xt 
and t and defines the exponent α, which can take values in the range ⩽α<0 2. Under these 
circumstances, one has [14]

Theorem 1 (Pickands 1969). 

> Ψ ∞α
α

∈
H!P X u u Tu umax as

t T
t

0,

2( ) ( )   →
[ ]

/
 (4)

⎛
⎝⎜

⎞
⎠⎟∫πΨ = −

∞
u

x
xwith :

1
2

exp
2

d
u

2
       ( ) (5)

χ=α
∞ < <T

and : lim
1

exp max .
T t T

t
0

         ( ( ))
→

EH (6)

The first term on the rhs of equation (4), ( )Ψ u , is an integrated Gaussian as expected from 
intuition, or more rigorously from the Borel inequality [15]. The rare events which contribute 
most to equation (6) are localized in time. They thus appear with a probability proportional 
to T, and the limit necessitates the factor of 1/T. The non-trivial statements are that the limit 
(6) exists, and that the amplitude can be calculated from a specific process χt depending only 
on α.

To define χt, we first recall the definition [16] of a fractional Brownian motion (fBm) with 
Hurst exponent /α=H 2, ( ⩽<H0 1), denoted Bt: it is a Gaussian process starting at the ori-
gin, B0  =  0, with mean zero, ( ) =E B 0t , and covariance function

( ) =| | +| | −| − |α α αE B B t s t s .t s (7)

The process χt is then defined as a fBm with drift,

( )χ = − = −| |αEB B B t:
1
2

,t t t t
2 (8)

constructed to have expectation ( ) =χE e 1t .

Let us stress the power of this result: apart from the Gaussian tail encoded in ( )Ψ u , Pickands’ 
theorem predicts not only the subleading power-law behavior /αu2 , but even (as physicists 
would call it) its universal amplitude αH .

A major challenge remains, namely evaluation of Pickands’ constant. Only the cases where 
fBm reduces to standard Brownian motion (α = 1), and where fBm is an affine process (α = 2, 
i.e. a straight line) are known,

π
= =H H1 and

1
.1 2 (9)
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There is yet no analytical result for other values of α. In this letter, we use a path integral for-
mulation, evaluated perturbatively around Brownian motion, to show that

γ α α= − − + −α 1 1 1 ,E
2( ) ( )H O (10)

where γE is Euler’s constant.
For other values of α, only numerical estimations exist, see figure 1. These are difficult: e.g. 

for a Brownian Pickands’ finite-T estimator, i.e. the expression inside the limit (6), converges 
as / T1  [17]. A representation with a much better convergence has been given by Dieker and 
Yakir [17]:

Theorem 2 (Dieker and Yakir, 2014). 

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∫

=α
χ

χ∞
−

− < <

H
t

lim
e

e d
.

T
T

T

max T t T t

t→
E (11)

Thus effectively the inverse of ( )∫= χ
−

ET t2 e d
T

T
t  can be moved inside the expectation value 

( )χ− < <E emax T t T t . The estimator (11) converges much better than Pickands original one, leading 
to the results presented on figure 1 (red dots [17]).

Let us conclude this introduction by another remarkable theorem due to Piterbarg [7, 8], 
which extends Pickands’ theorem by relaxing the stationarity hypothesis. Suppose that a 
random process Xt with zero mean is defined on the interval [0, T ], and has a unique time 

( )∈t T0,0  of maximal variance, normalized to 1. Further suppose that for some positive a, c, 
α and β the variance and covariance functions satisfy

  ( ) ( )     →σ = = − | − |βEt X a t t t t: 1 for ,t
2

0 0 (12)

( ) ( )    →     →= = − | − |αEr t s X X c t s t t s t, : 1 for and .t s 0 0 (13)

Figure 1. Comparison of the numerical data of [17] (red dots), interpolation (green solid 
line), tentatively continued to α = 0 (green dashed line) and our order-ε result (blue, 
dot-dashed). The gray-blue data points with error bars are our numerical estimates for 
αH , based on equation (14), see appendix D for details.
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One finally needs a weak regularity condition, namely that for some γ and G positive, 
( ) ⩽− | − |γE X X G t st s

2 . The theorem D.3 of Piterbarg [7] (see also [8]) then distinguishes 
several cases. We only state the one which is relevant below.

Theorem 3 (Piterbarg 1978). If β α> , then

( ) ( / ) ( )     →
[ ]

β
> =

Γ +
Ψ ∞α α

β

α β
∈

−HP X u
c

a
u u umax

2 1 1
as ,

t T
t

0,

1

1

2 2
 (14)

with αH  and ( )Ψ u  as defined in equations (5) and (6).

This beautiful theorem applies to a fractional Brownian bridge defined on [0,1] and repro-
duces the Pickands constant of equation (10), see appendix D. Figure 2 shows convergence to 
the asymptotic behavior implied by equation (14).

To simplify the discussion in the next sections, we introduce a process zt with an arbitrary 
drift strength µ

µ= + | |αz B t .t t (15)

Setting µ = −1 allows us to recover χ=zt t, as defined in equation (8). Pickands’ constant can 
also be computed by setting µ = 1, using

=α
∞

− ∈H E
T

lim
1

e .
T

zmint T t0,( )
→

[ ] (16)

2. Brownian with drift, and its Pickands constant (α = 1)

We recall some results about Brownian motion with drift which are useful to expand Pickands’ 
constant around α = 1.

Figure 2. Plot of = =∈
− −α αPF u X u u a c: max e 2t t

u
0,1

1 22 2 1( ) ( )[ ]
/ , and its convergence 

to αH  for ∞u → . The constants a and c are given in equation  (D.1). The symbols 
are simulations for α = 0.4 to α = 1.5, see legend, with numerical parameters 

= =T t Nd 218/  and 106 samples. Plain lines of the same color are the estimated 
asymptotics at large u, i.e. the Pickands constant, leading to the gray-blue results 
presented in figure 1.
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For α = 1, the fBm process Bt is a standard Brownian motion, with covariance 
( )   ( )=E B B D t s2 min ,t s , and diffusion constant D. The propagator µ

+P  of the process zt defined 
in equation (15), with positivity constraint is1

⎛
⎝⎜

⎞
⎠⎟π

= ∂ < > | =

= −

=

µ

µ µ

+

∈

− −
− − − +

− − +

µ µ

P x x T z x z z x

DT

P x x T

, , : , min 0

e
4

e e

e , , .

x T
t T

t

x x T x x
DT

x x
DT

D
x x

D
T

0
0,

0 0

4 4

2 4 0 0

D D2 0
2

4 0
2

0
2

0

2

( ) ( )

( )

[ ]

( ) ( ) ( )

( )

P

 

(17)

Here +P0  is the propagator for the process without drift, i.e. µ = 0. To compute Pickands’ con-
stant we choose µ = =D 1, see equation (16). We can recover a generic diffusion constant D 
(with µ = D), by setting →T DT  as can be checked on equation (17). The survival probability 
Q of this process, which is defined as the probability to remain positive up to time T while 
starting at x0  >  0, can be computed from µ

+P  as

( ) ( )∫= = + − − +α µ=
∞

=
+ −

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥Q x T x P x x T

x T
T

x T
T

, d , ,
1
2

erf
2

e erfc
2

1 .x
1 0

0
1 0

0 00

 

(18)

Using translation invariance, ( )α=Q x T,1 0  can also be interpreted as the probability that, 
when starting at x  =  0, the process never becomes smaller than  −x0, i.e. the probability that 
its minimum is larger than  −x0. From this we can extract the distribution of the minimum 

[ ]= − ∈m z: mint T t0,  itself,

( ) ( )
( )⎛

⎝⎜
⎞
⎠⎟ π

= ∂ = − +α α= =
−

− +

P m Q m T
m T

T T
,

1
2

e erfc
2

e
.T

m
m

1 1

m T
T

2

4
 (19)

The result (19) allows us to compute Pickands’ constant via its definition (16):

( )
( )

→
!

⎜ ⎟⎛
⎝

⎞
⎠
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∫ π

= + + +

+ +

α

∞

=
−

∞ −

P

O

m m
T T T

T

d e
2

1 erf
2

1 e

2 e .

m T T

T T

0 1 4

4

 
(20)

The Pickands constant is the coefficient of the linear term in the large-T asymptotics of  
equation (20). We thus recover the known result for the Brownian, =H 11 .

3. Perturbative expansion around Brownian motion: α ε= +1 2

3.1. Action

The action of a stochastic process is defined as minus the log of the probability to find a real-
ization zt, i.e. [ ] [ ]= −S Pz z: lnt t . Since the process (15) we consider is Gaussian, the action 
is quadratic in zt. For

α ε= +1 2 (21)

1 This result, obtained by the method of images, is easily checked to satisfy the diffusion equation with the appropri-
ate boundary conditions.
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with ε a small parameter, we follow the ideas of [18–21] to construct in appendix A the action 
to order ε, setting µ = 1:

[ ] [ ] [ ] ( )ε ε= + +S S S Oz z z ,t t t0 1
2 (22)

with

∫= − − +
ε τ

ε τS z t
z
D

z z D T
d

˙
4 2 4

,t

T
t T

0
0

2

,

0 ,[ ] ( )
 (23)

∫ ∫ ∫= −
−

−
−

τ

τ

−

+
⎜ ⎟⎛
⎝

⎞
⎠z t z

t
T t

t t
z z

t t
1
2

d ˙ ln
1
2

d d
˙ ˙

.t

T

t

T

t

T t t
1

0 0
1 2

2 11

1 2[ ]     S (24)

We recognise S0 as the standard Brownian action with a diffusion constant [21]

[ ( )] ( )Oε τ ε= + + +ε τD 1 2 1 ln ,,
2 (25)

and a linear drift µ = ε τD , . The time τ is a regularization cutoff for coinciding times (an UV 
cutoff), necessary to define perturbation theory. It has no impact on the distribution of observ-
ables which can be extracted from the path integral [19, 21].

3.2. Pickands’ constant

To investigate Pickands’ constant, we start with a path-integral representation for the survival 
probability of the process zt, an idea introduced in [22, 23], and developed for the situation at 
hand in [18–21]:

( )
( )

[ ] [ ] [ ]∫ ∫= Θα
∞

=

=
−D SQ m T

Z T
x z z,

1
d e ,

z m

z x

t t
z

N 0

T
t

0
 (26)

where [ ]Θ zt  constrains the path zt to remain positive; the normalisation constant ( )Z TN  is the 
sum over all paths without the constraint z0  =  m (and thus independent of m). Computing the 
path integral in equation (26) within the ε-expansion of the action (22) allows us to write

ε ε
ε τ ε

= + +
= Θ + − Θ + + ∂ +

α
+ +

+
Z T Q m T Z m T Z m T

z z z T Z m T

, , ,

2 1 ln , .t t t T

N
0 1

2

0 1 0 0
2

( ) ( ) ( ) ( ) ( )
〈 [ ]〉 [ 〈 [ ] [ ]〉 ( ) ( )] ( )

O

S O
 

(27)

The symbol ⟨ ⟩... 0 denotes averages over paths zt with the standard Brownian action with drift 
(µ = =D 1), initial conditon z0  =  m and a free end-point zT. Thus, the zeroth-order term

( ) ⟨ [ ]⟩ ( )≡ Θ ≡ α
+

=Z m T z Q m T, ,0 0 1 (28)

is the survival distribution of the Brownian as given in equation (18). For the order-ε term +Z1 , 
there is a contribution due to the non-local correction of the action S1, see equation (24), and a 
contribution due to the rescaling of the diffusive constant (and the drift) in S0, →= ε τD D1 , .

Before expliciting these terms, we show how this leads to the Pickands constant. Using 
( ) ( ) ( )→= α∞Z T Z T Q m Tlim ,N m N , (note that αQ  is the cumulative distribution), we arrive at

( ) ( )[ ( )] ( ) ( )
→

Oε ε ε= − + +α
+

∞

+ +Q m T Z m T Z m T Z m T, , 1 lim , , .
m

0 1 1
2

 (29)

As for α = 1 in equation (20), the Pickands constant is obtained from the large-T asymptotics 
of

J. Phys. A: Math. Theor. 50 (2017) 16LT04



7

∫ ∫

∫ ∫ε ε

∂ = ∂

+ ∂ − ∂ +

α
∞ ∞

+

∞
+

∞

+
∞

+⎡
⎣⎢

⎤
⎦⎥

m Q m T m Z m T

m Z m T Z m T m Z m T

d e , d e ,

d e , lim , d e , .

m
m

m
m

m
m

m

m
m

0 0
0

0
1 1

0
0

2

( ) ( )

( ) ( ) ( ) ( )
→

O

 

(30)

The first term was already computed in equation  (20). For the order-ε term, the function 
( )+Z m T,1  can be expressed from the bare propagator µ=

+P 1, given in equation  (17), and its 
cumbersome Laplace transform ˜ ( )+

Z m s,1  derived in appendix B. The asymptotics

( ) ( ( ))→
O∫ τ τ

γ∂ = − + − − +
∞

+ ∞ ⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥m Z m T

T T
T

T
Td e ,

2
ln 1 ln 1 2 lnm

m
T

0
1

2

E

 

(31)

and

τ
= −

∞

+ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥Z m T

T T
lim ,

2
ln 1 ,

m
1 ( )

→
 (32)

allows us to compute Pickands’ constant at order ε. Combining these contributions according 
to equation (30) cancels the τ dependence, as it should, and finally gives

εγ ε α γ α= − + ≡ − − + −ε+ 1 2 1 1 1 ,1 2 E
2

E
2( ) ( ) ( )H O O (33)

where γE is the Euler–Mascheroni constant, whose numerical value is γ ≈ 0.577E .
This result, which gives the derivative of the Pickands constant at α = 1, compares favour-

ably to the extensive numerical simulations of [17] plotted on figure 1. Though much less 
precise, it is also in agreement with our results obtained by numerical simulations of the 
maximum of a fBm bridge, using equations (14) and (D.1).

3.3. Distribution of m at large T

For standard Brownian motion, α = 1, the distribution ( )α=P mT
1  given in equation (19) has the 

interesting property to converge to a non-trivial limit when →∞T , namely

( ) ( )
→

= ∂ =α α=
∞

∞
=

−P m Q m Tlim , e .
T

m
m

1 1 (34)

Using the same expansion as in equation (30), we can express this distribution for α ε= +1 2 ,

( )( ) ( ) ( ) ( ) ( ) ( )
→

P Oε ε= ∂ + ∂ − ∂ +α
+ +

∞

+ +⎡
⎣⎢

⎤
⎦⎥m Z m T Z m T Z m T Z m T, , lim , , .T

m m
m

m0 1 1 0
2

 

(35)

The expression of ˜ ( )+
Z m s,1  given in appendix B encodes ( )αP mT  for a generic T, but we restrict 

ourselves to the large-T limit for simplicity. Using the asymptotics

( ) ( ) ( )→
Oγ τ∂ = − + + + + − − ++ ∞ − ⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

⎫⎬⎭
⎛
⎝⎜

⎞
⎠⎟Z m T m

T
T

m
T

, 2e 1 ln
4

1 ln 2Ei
1

,m
T m

1 E

 (36)

and the one given in equation (32), we see that ( )αP mT  converges at large T to a non-trivial 
distribution,

ε γ ε= − + + − + +α ε= +
∞ −m m me 1 2 1 e Ei ln .m m

1 2 E
2( ) { [ ( ) ( )]} ( )P O

 
(37)
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This is in agreement with the following conjecture: For all ( )α∈ 0, 2 , the distribution ( )αP mT  
converges to a distribution α

∞P (m) which has the large-m asymptotics

αα
α α∞ ∞ − −P
H

!m m e .
m

m1 1( )
→

 (38)

This conjecture is numerically tested on figure 3. It can be motivated heuristically, see appendix C.

4. Conclusions

In this letter, we derived the linear term in the expansion of the Pickands constant around 
Brownian motion. Apart from the Pickands constant at α = 1 and α = 2, this is the only ana-
lytically available information we have today.

It would be interesting to continue this approach to higher orders. While the quadratic term 
seems feasible, it is rather difficult to evaluate, and has to be left for future research.

As our methods allow us to obtain the full distribution of the maximum, and not only its 
limiting behavior for large arguments, other questions can be posed. A particularly interesting 
one is the probability distribution of the maximum of a fBm with an unconstraint endpoint. 
From [7, 8] we know that at α = 1 this behavior changes. For α< 1 it is non-trivial as in equa-
tion (14), while for α> 1 the tail is simply given by the distribution at the endpoint. For α 
close to 1 both terms will contribute in a non-trivial way yet to be determined.
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Figure 3. Test on the asymptotic behavior of α
∞P m( ), for α = 1. (blue), α = 1.2 (green) and 

α = 1.5 (red). Plain lines represent the conjectured limits for large m, using the numerical 
value of αH  from [17]. Simulation parameters are T  =  8, = −td 2 14, with 106 samples.
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Appendix A. Derivation of the action in presence of a drift

Here we derive the action for the process µ= + αz B tt t , where Xt is a fractional Brownain 
motion, close to standard Brownian motion, i.e. with parameter α ε= +1 2 , and ε small. As 
the process Bt is Gaussian, its action is given by its covariance function ( ) ( )=− EG t t B B, t t

1
1 2 1 2 ,

[ ] ( )∫=S B B G t t B
1
2

˙ , ˙ .
t t

t t
,

1 2
1 2

1 2 (A.1)

While it is not possible to derive a simple closed expression for a generic value of α, we can 
express the action S in an ε-expansion. This was done in [19] for the process without drift; 
the result reads

∫ ∫ ∫ε ε= −
−
+

ε τ

τ

τ

−

+
B t

B
D

t t
B B

t t
d

˙

4 2
d d

˙ ˙
.

T
t

T

t

T t t

0

2

, 0
1 2

2 1

2

1

1 2[ ] ( )S O (A.2)

The first term involves a rescaled diffusion constant ( ) ( )ε τ ε= + + +ε τ OD 1 2 1 ln,
2 .  

From this, it is possible to obtain the action for zt by changing variables → [µ− +B z˙ ˙ 1t t  
)] ( )ε+Otln 2 . Expanding each term of the action, we get

→

( ) ( ) ( )O

∫ ∫

∫

µ
µ

εµ εµ ε

− − +

− + + +

ε τ ε τ ε τ ε τ
t

B
D

t
z
D

z z
D

T
D

t z t T T

d
˙

4
d

˙
4 2 4

d ˙ 1 ln ln ,

T
t

T
t T

T

t

0

2

, 0

2

,

0

,

2

,

0

2 2

 

(A.3)

and

∫ ∫ ∫ ∫

∫

µ τ

µ
τ τ

ε

− −
− +

− + − +

τ

τ

τ

τ

−

+

−

+

⎜ ⎟ ⎜ ⎟

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝
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⎛
⎝

⎞
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⎤
⎦⎥

t t
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t t
t t

z z

t t
T

T

t z
t T t

d d
˙ ˙

d d
˙ ˙

ln 1

d ˙ ln ln .

T

t

T t t T

t

T t t

T

t

0
1 2

2 1 0
1 2

2 1

2

0

1

1 2

1

1 2→

( )O
 

(A.4)

There are some simplifications:

( ) ( )Oµ εµ ε
µ τ µ ε+ + + = +

ε τ

ε+
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

T
D

T T
T

T
T

4
ln

2
ln 1

4
2

,

2
2

2
1 2

2 (A.5)

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ ∫ ∫τ

τ− − + = − − − +t z
t T t

t z t t z
T t

t
z zd ˙ ln 2 d ˙ 1 ln d ˙ ln 2 1 ln

T

t

T

t

T

t T
0 2 0 0

0
( ) ( ) ( )( )

 

(A.6)

After recombining these terms, we obtain the rather compact expression

[ ]

( )

S

O

∫

∫ ∫ ∫

µ µ

µ ε ε ε

= − − +

−
−

−
−
+

ε τ

ε

τ

τ

+

−

+
⎜ ⎟⎛
⎝

⎞
⎠

z t
z
D

z z T

t z
t

T t
t t

z z

t t

d
˙

4 2 4

2
d ˙ ln

2
d d

˙ ˙
.

t

T
t T

T

t

T

t

T t t

0

2

,

0 2
1 2

0 0
1 2

2 1

2

1

1 2

 
(A.7)

The last term of the first line does not depend on zt, thus acts as a global normalisation which 
has no impact on the observables we compute from this action. We choose to change it to 

/µ ε τTD 42
,  for simplicity and fix µ = 1, which finally gives the expressions (22) and (23) of 

the main text.
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Appendix B. Details of the calculations

In this appendix, we give the details of the computation for the order-ε correction in the path 
integral (26). The difficult contribution in equation (27) is ⟨ [ ] [ ]⟩= Θ+ SZ z z:AB t t1, 1 0, which we 
now decompose into two terms = ++ + +Z Z ZAB A B1, 1 1  using the expression of S1 given in the 
action (23):

∫ ∫=
Θ
−

τ

τ

+
−

+

−−

Z m T t t
z z z

t t
,

1
2

d d
˙ ˙ e

,A

T

t

T t t
1

0
1 2

0

2 1

zT z T

1

1 2

0
2 4

( ) [ ] (B.1)

and

∫= Θ
−

+ − − ⎜ ⎟⎛
⎝

⎞
⎠Z m T t z z

t
T t

,
1
2

d ˙ e ln .B

t

t
z z T

1
0

2 4
0

T 0( ) [ ] (B.2)

The averages ⟨ ⟩... 0 denote averages with respect to the standard Brownian action, with no drift, 
as the drift is now enforced by the exponential factors. We can express these averages in terms 
of the drift-free bare propagator with positivity constraint, +P0 . Following the diagrammatic 
rules defined in [21], the first correction can be written after a Laplace transform →T s as

˜ ( ) ˜ ( ¯) ˜ ( ¯ ) ˜ ( ¯)∫= ∂ + ∂+

>

− + + +
Z m s P m x s P x x s y P x x s, 2 e , , , , , , .A

x y

x m
x x1

, 0
2 0 1 0 1 2 0 2 3

i

3

1 2 (B.3)

We introduced ¯ /= +s s: 1 4, a shifted Laplace variable due to the term /−e T 4. As explained 
in [19], each żti in (B.1) corresponds to a factor of ∂2 xi acting to the following propagator 

in equation  (B.3). To account for the factor of ( )− −t t2 1
1, we use the identity − =−t t2 1

1( )  

∫ >
− −e

y
y t t

0
2 1( ) which produces a shift in the second propagator by a new variable y wkich we 

need to integrate over. We recall the expression of the propagator in Laplace variables,

˜ ( )
( )

= −+ − | − | − +
P x x s

s
, ,

e e
2

.
s x x s x x

0 1 2
1 2 1 2

 (B.4)

The second correction, due to the non linearity in the drift, is given by

( ) ( ) ( )∫ ∫= ∂ −
−

+ − + + −⎜ ⎟⎛
⎝

⎞
⎠Z m T t P m x t P x x T t

t
T t

, d e , , , , ln e .B

x

T x m
x

T
1

>0
0

2 0 1 0 1 2 4

i

2

1

 (B.5)
In order to compute its Laplace transform, we use the integral representation

( )( )∫−
= −

∞
− − −⎜ ⎟⎛

⎝
⎞
⎠

t
T t

y
y

ln
d

e e .y T t yt

0
 (B.6)

Inserting this into equation (B.5) and taking the Laplace transform gives

[
]

˜ ( ) ˜ ( ¯) ˜ ( ¯ )

( ¯ ) ˜ ( ¯)

∫ ∫= ∂ +

− + ∂

+ ∞

>

− + +

+ +

Z m s
y
y

P m x s P x x s y

P m x s y P x x s

,
d

e , , , ,

˜ , , , , .

B
x

x m
x

x

1
0 0

2 0 1 0 1 2

0 1 0 1 2

i

2

1

1

 
(B.7)

For both ˜+Z A1  and ˜+Z B1 , the integrals over the space variables xi can be computed quite easily, 
as the Laplace-transformed propagator ˜+P0  is exponential in these variables (contrary to the 
time-dependent propagators, where the dependence is Gaussian). For the integral over y, ˜+Z A1  
has a logarithmic divergence at large y which corresponds to the UV divergence when →t t2 1 
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in equation (B.1). The necessary large-y cutoff Λ (such that the integration over y is performed 
in the interval [ ]Λ0, ) equivalent to the UV cutoff τ is given by /τΛ = γ−e E .2

Combining these two terms finally gives (remind ¯ = +s s 1
4
)

( )

( )

( )

[ ˜ ( ) ˜ ( )]

¯
[ ¯ ( ) ¯ ¯ ¯ ( ) ] ( ¯ )

¯
( ¯ ¯ ¯ ¯ )( ( ¯ ) ) ¯

¯ ¯ ¯ ¯

¯ ¯ ( )

¯
/

¯
/

/

τ γ

τ
γ

τ γ

+

= − + + + − − − −

+ + + + − + + −

+ − + − − − +

+ − − + − − −

−

− +

−⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟
⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

s Z m s Z m s

s
s m ssm s s m s m

s
s ssm s s s s

s ssm s s
m

m
m s

m
m s s

, ,

e
8

8 1 8 4 2 1 1 Ei 2

e
16

8 8 4 2 1 ln 4 1 8

8 8 4 6 1 ln 1

1
2

Ei
2

e Ei
2

ln .

A B

s m

s m

m

2
1 1

3 2

3 2
E

3 2
2

E

E

1
2

1
2

 

(B.8)

From this expression, and denoting ˜ ˜ ˜= ++ + +
Z Z Z:AB A B1 1 1  , it is possible to compute the asymptot-

ics used in the main text, first in terms of the Laplace variable:

τ γ

γ

− +

+
+ − + −

+

−

−

!Z m s
s

s
m m m

s
s

,
e 1 ln

2

2
e ln 1 Ei

ln ,

AB
s m

m

1
0 E

2

E

˜ ( ) ( )[ ( ) ]

[ ( ) ] ( ) ( ) ( ( ))

→

O
 

(B.9)

˜ ( ) ( ) ( )
→

O
τ γ

−
+

+
∞ −!Z m s

s

s
,

ln

2
e ,AB

m
m

1
E

2 (B.10)

and

˜ ( )
( ) ( )→

! ⎜ ⎟⎛
⎝

⎞
⎠∫

τ γ τ γ
∂ −

+ −
−

+ +
+

∞ +
Om Z m s

s

s

s

s s
d e ,

ln ln 3 2 1
.m

m AB
s

0
1

0 E
1
2

3

3
E

2
 

(B.11)
Note that for the last term it is important to compute the integral over m before expanding in s.

The remaining order-ε correction in equation (26) is due to a change of the diffusive con-
stant in the Brownian action, from D  =  1 to ε τ ε= + + +ε τD 1 2 1 ln, ( ) ( )O , with the corre-
sponding change in the drift such that the term linear in zt in S0, see equation (23), remains 
unchanged. This change is equivalent to setting → ε τT D T,  in the result for the Brownian, 
which, as stated in the main text, gives an order-ε correction of the form

( ) ( ) ( )τ= + ∂ +Z m T T Z m T, 2 1 ln ,D T1 0 (B.12)

in equation (27), for a total first-order contribution

( ) ( ) ( )= +Z m T Z m T Z m T, , , .AB D1 1 1 (B.13)

The rescaling term ( )Z m T,D
1  contributes to the Pickands constant with

2 As explained in [21], this comes from the requirement: ∫ ∫ ∫γ τ= Λ + + = =
τ

Λ − − ΛOt T Td e ln e ! ln
T yt T T t

t0 0 E
d( ) ( ) ( / ) .
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( ) ( ) ( )
→ /O∫ τ∂ + +

∞ ∞ −!m Z m T Td e , 2 1 ln e .m
m D

T
T

0
1

4 (B.14)

The inverse Laplace transform of equation (B.11) plus the contribution from (B.14) gives the 
result (31) of the main text. For the two other terms, the rescaling of the diffusive constant has 
no impact as

( ) ( )
→ →

∂ = ∂ =
∞

+

∞

+T Z m T T Z m Tlim , lim , 0.
T

T
m

T0 0 (B.15)

Finally, formulae (36) and (32) are computed directly from (B.9) and (B.10) via an inverse 
Laplace transformation.

Appendix C. Heuristic derivation of the conjecture (38)

The heurisitic derivation of our conjecture (38) is as follows: for α≪m T  and ≫T 1 we have 

( ) ( )α α
∞!P Pm mT , while for α≫m T , up to subleading (power-law and constant) corrections 

( ) ( )
α

−
α
α

−
!P m eT m T

T

2

4 , since very large values of the maximum are reached towards the end of the 
time interval. Using that this cutoff function becomes sharp for large T, we get

( ) ( )∫ ∫α α

∞
∞

α

!P P
T

m m
T

m m
1

d e
1

d e .m T
T

m

0 0
 (C.1)

In order to make Pickands’ definition meaningful, the rhs has to become independent of T for 
large T. This implies that the large-m behaviour of ( )α

∞P m  is exponentially decaying in m to 
compensate the em prefactor. This can still be multiplied by a power law in m times a constant. 
The unique such possibility is

( )
αα
α α∞ − −!P
H

m m e ,m1 1 (C.2)

as given in equation (38).

Appendix D. Extracting the Pickands constant from the maximum  
of a fBm bridge

Theorem (14) applies to a fractional Brownian bridge defined on [0, 1]. Normalizing the pro-
cess s.t. ( )/ ==E X 1t 1 2

2 , equations (12)–(13) are satisfied with

( )α β α α α= = = − +
−

=
−

α

α

α

α

− +
H a c2 , 2,

4 2 1
4 2

,
2

4 2
.

1 1
 (D.1)

Expanding equation (14) in α− 1 yields

α α∂ > + − − − + −α∈
−!X u u umax e 1 ln 4 4 ln 1

1
2

1 .u t t
u

0,1 2 2
2{ }( ) [ ( ) ( ) ] ( )[ ]P H O

 (D.2)
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Our result (90) from [18], valid at order α− 1, and expanded for large u is

{ }
( )

[ ( ) ( ) ] ( ) ( )

[ ]P

O Oγ α α

∂ >

+ − − − − + − +

∈

− −!

X u

u u u

max

e 1 ln 4 4 ln 1 2
1

2
1

u t t

u

0,1

2 E
2 1

2

 (D.3)
This identifies γ α α= − − + −α 1 1 1 ,E

2( ) ( )H O  confirming equation (10).
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