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The two-dimensional Q-state Potts model with real couplings has a first-order transition for Q > 4. We study
a loop-model realization in which Q is a continuous parameter. This model allows for the collision of a critical
and a tricritical fixed point at Q = 4, which then emerge as complex conformally invariant theories at Q > 4,
or even complex Q, for suitable complex coupling constants. All critical exponents can be obtained as analytic
continuation of known exact results for Q ≤ 4. We verify this scenario in detail for Q = 5 using transfer-matrix
computations.

The study of models in two-dimensional statistical mechan-
ics using complex variables goes back to the work of Lee and
Yang [1] on the Ising model in a complex magnetic field.
Later, complex values of the Ising temperature [2], or the
number of states in the Potts model [3] were considered. Here
complex analysis is used to draw conclusions about a system
for real parameters.

The Q-state Potts model can be reformulated as the Fortuin-
Kasteleyn (FK) model [4], in which each lattice bond is erased
with a probability related to the temperature. This fragments
the lattice into clusters, each with a weight Q which can
now take any value. In particular, bond percolation arises
for Q → 1. In this formulation, correlation functions relate
to probability measures in random geometry (clusters, hulls,
backbones, etc), which at the critical temperature form scale-
and conformally invariant fractals.

In dimension d = 2, with Q and ferromagnetic interactions,
criticality occurs for 0 ≤ Q ≤ Qc = 4 [5]; the phase transi-
tion turns first-order when Q > 4, but approximate conformal
invariance remains [6]. The same happens in higher dimen-
sions, with Qc = 10/3 for d → 6 [7]. In these examples a
stable (critical) fixed point (FP) annihilates with an unstable
(tricritical) one upon varying a symmetry-related continuous
parameter. This phenomenon, found long ago [8, 9], arises
in systems as different as deconfined quantum critical points
[10] and models of quantum impurity spins coupled to a bath
[11].

It has been speculated that in the first-order regime the
model may become critical again for complex values of an
unknown set of couplings [7, 12]. This means that the pair of
FPs does not disappear, but moves out in the complex plane
for Q > Qc, similar to what happens in the O(n) model for
n > 2 [13]. In this Letter, we show how this can be achieved
in a specific 2d lattice Potts model. Our model contains Q as
a free parameter, which can be set to any Q ∈ C. Our motiva-
tion is part of a broader scenario, with ramifications ranging
from quantum field theory to probability theory, as we now
explain.

A first swathe of exact results about the 2d Potts model were
obtained in the 1980’s. The lattice models were rewritten in
terms of loops (the contours of the FK clusters), which in the
continuum limit become level lines of a compactified bosonic

field, to which the methods of Coulomb Gas (CG) [14] and
Conformal Field Theory (CFT) [15] can be applied. Most
of these results have since been proved—and in some cases
surpassed—by probability theorists, using methods such as
Schramm-Loewner Evolution (SLE) [16, 17] and the Confor-
mal Loop Ensemble (CLE) [18]. Critical exponents (the spec-
trum) can be derived from CFT [19]. There are indications of
a relation to Liouville CFT (LCFT) [20], an exactly solvable
interacting CFT with a continuous spectrum, which is unitary
for central charge c ∈ (1,∞). However, LCFT cannot be the
continuum limit of the Potts loop model for generic Q ∈ [0, 4],
since the CG for the latter is known to be non-unitary and has
c ≤ 1 with a discrete spectrum [19].

This situation begs the question whether results for the loop
model can be obtained from LCFT by analytic continuation
through complex values of Q. In LCFT the structure con-
stant of three-point correlation functions is given by the so-
called DOZZ formula, but analytic continuation of the latter
to c ∈ (−∞, 1) is impossible. However, a variant of LCFT,
called LCFTc≤1, exists. It has been established [21–23] that
the DOZZ-type formula for LCFTc≤1 [24] correctly predicts
three-point functions in the Potts loop model. In contrast, con-
tinuation of LCFTc≤1 and its link with the Potts model for
Q > 4 has attracted little attention.

The authors of [12] proposed to analytically continue the
relation between Q and the CG coupling constant outside the
range Q ∈ [0, 4]. They suggested that a pair of complex
CFTs describe the Q > 4 model. Our numerical study of
the lattice model makes this link precise and reveals that the
correspondence extends to a large portion of the complex Q-
plane. In particular, we provide evidence that the spectra of
the two complex CFTs are the appropriate analytic continua-
tion of those [19] for the LCFTc≤1 loop models. We expect
recent results on three- and four-point correlation functions
[25–27] and the symmetries of the space of states [28] of the
loop models to carry over to the complex CFT as well.

Our starting point is a Q-state Potts model on a triangular
lattice with nearest-neighbor interactions K2, and a three-spin
interaction K3 on each up-pointing triangle. Making an FK
expansion [29], one obtains a loop model on a shifted triangu-
lar lattice, with five possible diagrams at each vertex. These
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are, with circles denoting the loci of the Potts spins,

1 z z z 1

Taking equal weights of the first and last diagram imposes a
relation between K3 and K2 which ensures self-duality [29].
The three middle diagrams have weight z = (eK2 − 1)/

√
Q.

We write this as z = x+iy with x, y ∈ R. In addition to these
local weights, there is a non-local factor n =

√
Q for each red

loop. We constrain our study to ℜeK2 > 0.
We study this model via the transfer matrix TL which builds

a row of L triangles, with periodic boundary conditions. Thus
TL propagates

√
3/2 lattice spacings upwards and 1/2 to the

right. The operator Řk that propagates through triangle num-
ber k is

Řk = e2k−1 + z
(
e2ke2k−1 + 1 + e2k−1e2k

)
+ e2k, (1)

where ei are generators of the periodic Temperley-Lieb alge-
bra [28] on 2L sites. Each of the five terms corresponds to one
of the above diagrams. We have TL = u−1qTrŘL · · · Ř2Ř1,
where qTr denotes the quantum trace over the horizontal
space, and u shifts the sites cyclically towards the right. We
diagonalize TL in the space of link patterns, sometimes called
standard modules Wj,ρ2 , with 2j defect lines (FK cluster
boundaries) propagating from bottom to top, and (pseudo)
momentum ρ describing the winding of lines with respect to
the periodic boundary condition; see [28] for details.

The effective central charge cL and critical exponents ∆L

are obtained [30] from the finite-L corrections of the leading
eigenvalues of TL. For cL we need two consecutive sizes, L
and L + 1. We use the ground-state sector, in which TL acts
on defect-free link patterns (j = 0).
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FIG. 1. cL(x) for b = 8, Q ≃ 3.41421, using sizes L = 4 (red) to
12 (blue). The discontinuity near x = −1/

√
Q (vertical dot-dashed

line) is related to level crossings for K2 → −∞. These prevent us
from using this approach for smaller Q. CFT predictions are shown
for B8 (dashed line) and B−8 ≡ B9 (axis, and gray dots).

FIG. 2. Q = 5, L = 9, selected data for ℜc (left) and ℑc right, as a
function of z = x+ iy.
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FIG. 3. Zeros of c′(z). Left: L = 10 using measures on a rectangular
grid of points. Right: L = 13 using measures only on along the
imaginary axis.

For Q ≤ 4, the model contains a critical and a tricritical
point, for fine-tuned values of x. Fig. 1 shows cL as a function
of x: cL is minimal at the critical point (K2,K3 > 0), and
maximal at the tricritical point K2 < 0, K3 > 0. The values
at these points agree with the predictions of CFT,

Q = 4 cos
(π
b

)2

, c(t) = 1− 6

t(t− 1)
. (2)

Here Q defines the parameter b, and we take t = b > 0 for
the critical point and t = −b for the tricritical one. The cor-
responding CFTs are denoted Bb. They are minimal models
[15] for b rational, but the loop model describes generic values
of b (which are real for Q ≤ 4). We identify B−b with Bb+1.
Conformal weights are parametrized by the Kac formula

ht
r,s =

[t(r − s) + s]2 − 1

4(t− 1)t
, (3)

and below we write ∆r,s = 2ht
r,s for the corresponding criti-

cal exponents.
Fig. 1 shows that upon increasing L, cL(z) around the criti-

cal point becomes shallower, while around the tricritical point
it becomes more pointed. The two cases are distinguished by
the large-L behavior of the curvature,

c′′L(zc) ∼ L−2ω. (4)

limL→∞ c′′L(zc) = 0 defines criticality, ℜω > 0. ω is related
to the dimension ∆ of the perturbing operator as

∆ = 2 + ωcrit ≈ 2.57, ∆ = 2 + ωtricrit ≈ 1.55 (5)
∆crit

3,1 = 18/7 = 2.5714, ∆tricrit
3,1 = 14/9 = 1.5556. (6)
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state operator spin

1 GS = Φ1,1 0
2 ϵ = Φ2,1 0
3 L0,−1Φ2,1 −1

4 L−1,0Φ2,1 1

5 ϵ′ = Φ3,1 0
6 T ≡ L0,−2Φ1,1 −2

7 T ≡ L−2,0Φ1,1 2

8 L0,−2Φ2,1 −2

9 L−2,0Φ2,1 2

10 L−1,−1Φ2,1 0

11 L0,−1Φ3,1 −1

12 L−1,0Φ3,1 1

13 L0,−1T −3

14 L−1T 3

15 L0,−3Φ2,1 −3

16 L−3,0Φ2,1 3

17 L−1,−2Φ2,1 −1

18 L−2,−1Φ2,1 1

19 L0,−3Φ2,1 −3

20 L−3,0Φ2,1 3

FIG. 4. Real and imaginary part ∆(S)
r,s of spectrum in the ground-state sector for Q = 5, L = 14, taking only the first 20 EVs. Primaries in

red, dashed; descendents in darker red, dotted. The red dashed vertical lines denote the position of the critical point. For details, see [31].

We find good agreement of measurements (5) with the pre-
dictions of CFT (6). To summarize: we are able to identify a
critical or tricritical point by c′(z) = 0, and use a finite-size
analysis on c′′L(zc) to decide whether it is attractive or repul-
sive. Such a prescription is crucially missing in related work
on the O(n) model, where the location of the critical point is
known analytically [13].

To proceed, we enlarge our transfer-matrix treatment to
complex values of z. The crucial observation is that for all
L and Q, cL(z) is an analytic function of z. It is well rep-
resented by a polynomial in z of moderate order (30-100),
with a negligible error (≪ 10−4). This is valid for Q ≤ 4
and Q > 4: a plot for Q = 5 is shown in Fig. 2. The criti-
cal points are obtained by solving the polynomial c′L(z) = 0,
which can be done with high precision. The result is shown
on the left panel of Fig. 3. There is a pair of critical points
next to the imaginary line (in red), and spurious zeros on the
boundary of the domain of convergence (in black). The latter
roughly indicate the size of the grid of measurement points
in Fig. 2. Analytic continuation is so powerful that one can
replace the grid by points on the imaginary axis only, see the
right panel of Fig. 3. This drastically reduces the work to be
done. Extrapolating to L = ∞, we find

cnumQ=5 ≈ 1.1377 + 0.0221i, (7)

in remarkable agreement with Eq. (2):

cCFT
Q=5 = 1.13755 + 0.0210687i. (8)

This firmly establishes that there is a complex CFT, and that it
can be identified from transfer-matrix calculations.

We can go further and obtain the full spectrum of this com-
plex CFT. We study first the spectrum in the ground-state sec-
tor, using the quotient representation W0,q2 of defect-free link
patterns of dimension 1

L+1

(
2L
L

)
, where

√
Q = q + q−1; see

[28] for details. Fig. 4 shows the exponents corresponding
to the first 20 eigenvalues (EV) in this sector. As the critical
points have x ≈ 0 (see Fig. 3), we take x = 0 and plot against
y ≥ 0. The vertical red dashed line indicates the fixed point.

This spectrum contains the spinless primary operators Φr,1

with eigenvalues ∆r,1 = 2h−b
r,1, starting with r = 1 for the

vacuum (baseline). We verify the appearance of Φ2,1 and
Φ3,1, with the proper dimensions both for the real and imag-
inary parts. Descendents have a non-vanishing spin S. The
dimension of the primary increases by 1 for each level, and
S/

√
3 for the imaginary part. The latter arises since TL prop-

agates by
√

3/4 upwards, and 1/2 rightwards, with ratio
√
3.

Using L−N,−N̄Φr,1 as a shorthand for any descendent on chi-
ral level N and antichiral level N̄ , we get

∆(L−N,−N̄Φr,1) = ∆r,1 + (N + N̄) + 1√
3
(N − N̄)i. (9)

The Φr,1 form Kac modules with one null state on level r. The
content of primaries and the structure of the modules were
predicted for Q < 4 [19] and numerically verified for a cor-
responding loop model [32]. We see in Fig. 4 that all of this
is perfectly respected at Q = 5 for the 20 lowest-lying states:
we conjecture that the results for the spectrum carry over to
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FIG. 5. Zeros of c′(z) at L = 9. Left: Q = 5+2i. Right: Q = 8+i.
We have used separate fits for the upper (black) and lower (blue) half
planes.

the complex CFT by analytic continuation. Generalizations to
sectors with defect lines will be discussed elsewhere [31].

From finite-size scaling we find ω, which satisfies 2 + ω ≈
∆3,1 = 2h−b

3,1,

ω = −0.12(2) + 0.62(2)i, ∆3,1 = 1.9083 + 0.598652i.

We now proceed to complex values of Q. In Fig. 5 we
show the location of the zeros of c′L(z) evaluated in the plane
for Q = 5 + 2i and Q = 8 + i. Since Q∗ ̸= Q they are
no longer complex conjugate of each other, and the two fixed
points are distinct. We can again measure the central charge
and compare to the theoretical prediction, first for Q = 5+2i,

cnumupper ≈ 1.108 + 0.252i, cnumlower ≈ 1.247 + 0.228i,

c(−bQ) = 1.1122 + 0.2505i, c(bQ) = 1.2464 + 0.2293i.

For Q = 8 + i we find

cnumupper ≈ 1.407 + 0.207i, cnumlower ≈ 1.479− 0.047i,

c(−bQ) = 1.4073 + 0.2041i, c(bQ) = 1.4778− 0.0420i.

Both cases are in good agreement. Our procedure continues
to work for Q = 10, Q = 20 and Q = 40.

We have shown that according to definition (4), for Q < 4
and Q = 5 + 2i, both a critical and a tricritical point exist,
while for Q = 5 and Q = 8 + i both points are tricritical.
In general, criticality means ℜ∆3,1 > 2. Inside the yellow-
shaded region on Fig. 6, one point is critical and one tricritical,
whereas outside both are tricritical. The boundary is given by

Q(ϕ) = 2 + 2 cos
( 2π

1 + iϕ

)
, ϕ ∈ R. (10)

Finally draw the two critical points for complex Q, with
ℜQ > 4, as well as their complex conjugates, which are crit-
ical points for Q∗. Moving Q to the real axis, the four points
merge in pairs, and only two fixed points remain.

Our model can be reformulated as non-Hermitian quantum
mechanics. To this end, we take an anisotropic limit of the
transfer matrix, to find a Hamiltonian [33]

H =

L∑
i=1

ei + z̃ (eiei+1 + ei+1ei) . (11)

one point critical

+ one point tricritical
both points tricritical

-20 -10 10 20
ℛQ
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ℐQ

FIG. 6. In yellow, the region where ℜ∆3,1(b) > 2. In blue, the
parametric curve (10).

For real Q ∈ [Q∗, 4) with Q∗ ≃ 2.25, a critical phase ter-
minated by a tricritical end point is found. We posit that for
Q > 4, and Q ∈ C the spin chain exhibits the same complex
critical points studied above [31]. For integer Q, the results
should equal those for the quantum chain formulated in terms
of Potts spins, but details (such as multiplicities and operator
product expansions) may differ due to the change of represen-
tation.

We conclude by remarks on related work. First, a classifi-
cation of critical points with SQ symmetry was made in [34].
The case eK2 < 0, excluded here, may be relevant [31, 35]
for the non-ferromagnetic solutions with Q > 4 studied there.
Second, [13] studied complex CFT in the O(n) model. Due to
the different global symmetry [28] the O(n) CFT differs from
the Potts CFT studied here. In particular, it contains Φr,1 only
for r ∈ 1 + 2N, and has a different phase diagram.
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