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In this article, we review basic facts about disordered systems, especially the existence of
many metastable states and and the resulting failure of dimensional reduction. Besides tech-
niques based on the Gaussian variational method and replica-symmetry breaking (RSB), the
functional renormalization group (FRG) is the only general method capable of attacking
strongly disordered systems. We explain the basic ideas of the latter method and why it is
difficult to implement. We finally review current progress for elastic manifolds in disorder.

PACS: 64.60.Ak

1 Introduction

Statistical mechanics is by now a rather mature branch of physics. For pure systems like a ferro-
magnet, it allows to calculate so precise details as the behavior of the specific heat on approach-
ing the Curie-point. We know that it diverges as a function of the distance in temperature to the
Curie-temperature, we know that this divergence has the form of a power-law, we can calculate
the exponent, and we can do this with at least 3 digits of accuracy. This is a true success story of
statistical mechanics. On the other hand, in nature no system is really pure, i.e. without at least
some disorder (“dirt”). As experiments (and theory) seem to suggest, a little bit of disorder does
not change the behavior much. Otherwise experiments on the specific heat of Helium would not
so extraordinarily well confirm theoretical predictions. But what happens for strong disorder?
By this I mean that disorder completely dominates over entropy. Then already the question:
“What is the ground-state?” is no longer simple. This goes hand in hand with the appearance of
so-called metastable states. States, which in energy are very close to the ground-state, but which
in configuration-space may be far apart. Any relaxational dynamics will take an enormous time
to find the correct ground-state, and may fail altogether, as can be seen in computer-simulations
as well as in experiments. This means that our way of thinking, taught in the treatment of pure
systems, has to be adapted to account for disorder. We will see that in contrast to pure systems,
whose universal large-scale properties can be described by very few parameters, disordered sys-
tems demand the knowledge of the whole disorder-distribution function (in contrast to its first
few moments). We show how universality nevertheless emerges.
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Experimental realizations of strongly disordered systems are glasses, or more specifically
spin-glasses, vortex-glasses, electron-glasses and structural glasses (not treated here). Further-
more random-field magnets, and last not least elastic systems in disorder.

What is our current understanding of disordered systems? It is here that the success story
of statistical mechanics, with which I started, comes to an end: Despite 30 years of research,
we do not know much: There are a few exact solutions, there are phenomenological methods
(like the droplet-model), and there is the mean-field approximation, involving a method called
replica-symmetry breaking (RSB). This method is correct for infinitely connected systems, e.g.
the SK-model (Sherrington Kirkpatrick model), or for systems with infinitely many components.
However it is unclear, how far it applies to real physical systems, in which each degree of freedom
is only coupled to a finite number of other degrees of freedom.

In this article, I report recent advances for elastic manifolds in random media. This system
has the advantage of being approachable by other (analytic) methods, while still retaining all the
rich physics of strongly disordered systems.

2 Physical realizations, model and observables
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Fig. 1. An Ising magnet at low temperatures (left) has a domain wall described by a functionu(x). Without
disorder, it is flat. In the presence of disorder it will be deformed. Right: an elastic lattice (e.g. vortex
lattice) deformed by disorder. This is described by a vector~u(x).

Before developing the theory to treat elastic systems in a disordered environment, let us give
some physical realizations. The simplest one is an Ising magnet. Imposing boundary condi-
tions with all spins up at the upper and all spins down at the lower boundary (see figure 1), at
low temperatures, a domain wall separates a region with spin up from a region with spin down.
In a pure system at temperatureT = 0, this domain wall is completely flat. Disorder can de-
form the domain wall, making it eventually rough again. Two types of disorder are common:
random bond (which on a course-grained level also represents missing spins) and random field
(coupling of the spins to an external random magnetic field). Figure 1 shows, how the domain
wall is described by a displacement fieldu(x). Another example is the contact line of water (or
liquid Helium), wetting a rough substrate. (The elasticity is long range). A realization with a
2-parameter displacement field~u(~x) is the deformation of a vortex lattice: the position of each
vortex is deformed from~x to ~x + ~u(~x). A 3-dimensional example are charge density waves.

All these models have in common, that they are described by a displacement field

x ∈ Rd −→ ~u(x) ∈ RN . (1)
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For simplicity, we setN = 1 in the following. After some initial coarse-graining, the energy
H = Hel +HDO consists out of two parts; the elastic energy

Hel[u] =
∫

ddx
1
2

(∇u(x))2 (2)

and the disorder

HDO[u] =
∫

ddxV (x, u(x)) . (3)

In order to proceed, we need to specify the correlations of disorder. Suppose that fluctuationsu
in the transversal direction scale as

(u(x)− u(y))2 ∼ |x− y|2ζ (4)

with a roughness-exponentζ < 1. Starting from a disorder correlator

V (u, x)V (u′, x′) = f(x− x′)R(u− u′) (5)

and performing one step in the RG-procedure, one has to rescale more in thex-direction than in
theu-direction. This will eventually reducef(x − x′) to aδ-distribution, whereas the structure
of R(u− u′) remains visible. We therefore choose as our starting-model

V (u, x)V (u′, x′) := δd(x− x′)R(u− u′) . (6)

There are a couple of useful observables. We already mentioned the roughness-exponentζ. The
second is the renormalized (effective) disorder. It will turn out that we actually have to keep
the whole disorder distribution functionR(u), in contrast to keeping a few moments. Other
observables are higher correlation functions or the free energy.

3 Treatment of disorder

Having defined our model, we can now turn to the treatment of disorder. The problem is to
average not the partition-function, but the free energy over disorder:F = lnZ. This can be
achieved by the beautifulreplica-trick. The idea is to write

lnZ = lim
n→0

1
n

(
en lnZ − 1

)
= lim

n→0

1
n

(Zn − 1) (7)

and to interpretZn as the partition-function of ann times replicated system. Averaginge−
Pn

a=1Ha

over disorder then leads to thereplica-Hamiltonian

H[u] =
1
T

n∑
a=1

∫
ddx

1
2

(∇ua(x))2 − 1
2T 2

n∑
a,b=1

∫
ddxR(ua(x)− ub(x)) . (8)

Let us stress that one could equivalently pursue a dynamic formulation. We therefore should not
encounter, and in fact do not encounter, problems associated with the use of the replica-trick.
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4 Dimensional reduction

There is a beautiful and rather mind-boggling theorem relating disordered systems to pure sys-
tems (i.e. without disorder), which applies to a large class of systems, e.g. random field systems
and elastic manifolds in disorder. It is called dimensional reduction and reads as follows[1]:
Theorem:A d-dimensional disordered system at zero temperature is equivalent to all orders in
perturbation theory to a pure system ind − 2 dimensions at finite temperature.Moreover the
temperature is (up to a constant) nothing but the width of the disorder distribution. A simple
example is the 3-dimensional random-field Ising model at zero temperature; according to the
theorem it should be equivalent to the pure 1-dimensional Ising-model at finite temperature. But
it has been shown rigorously, that the former has an ordered phase, whereas we have all solved
the latter and we know that there is no such phase at finite temperature. So what went wrong?
Let me stress that there are no missing diagrams or any such thing, but that the problem is
more fundamental: As we will see later, the proof makes assumptions, which are not satisfied.
Nevertheless, the above theorem remains important since it has a devastating consequence for
all perturbative calculations in the disorder: However clever a procedure we invent, as long
as we do a perturbative expansion, expanding the disorder in its moments, all our efforts are
futile: dimensional reduction tells us that we get a trivial and unphysical result. Before we try to
understand why this is so and how to overcome it, let me give one more example. Dimensional
reduction allows to calculate the roughness-exponentζ defined in equation (4). We know (this
can be inferred from power-counting) that the widthu of a d-dimensional manifold at finite
temperature in the absence of disorder scales asu ∼ x(2−d)/2. Making the dimensional shift
implied by dimensional reduction leads to

(u(x)− u(0))2 ∼ x4−d ≡ x2ζ i.e. ζ =
4− d

2
. (9)

5 The Larkin-length

To understand the failure of dimensional reduction, let us turn to an interesting argument given by
Larkin [2]. He considers a piece of an elastic manifold of sizeL. If the disorder has correlation
lengthr, and characteristic forcēf , this piece will typically see a force of strength

FDO = f̄

(
L

r

)d
2

. (10)

On the other hand, there is an elastic force, which scales like

Fel = cLd−2 . (11)

These forces are balanced at theLarkin-lengthL = Lc with

Lc =
(

c2

f̄2
rd

) 1
4−d

. (12)

More important than this value is the observation that in all physically interesting dimensions
d < 4, and at scalesL > Lc, the membrane is pinned by disorder; whereas on small scales
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R(ua(x)− ub(x))
= a b

x
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δR(ua − ub) =
y

ba
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x

− 2

a
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a

=
∫

x−y

C(x− y)2
[
R′′(ua − ub)2 − 2R′′(ua − ub)R′′(ua − ua)

]
Fig. 2. The disorder vertexR(ua(x) − ub(x)) and the correlation-functionC(x − y), with Fourier-
transformC̃(k) = 1

k2 , which is diagonal in replica-space (left). Contracting two disorder-vertices with
two correlation-functions leads to the two 1-loop contributionsδR to the disorder-correlatorR (right). The
integral

R
x−y

C(x− y)2 = Lε

ε
, whereL is some IR-cutoff.

elastic energy dominates. Since the disorder has a lot of minima which are far apart in configu-
rational space but close in energy (metastability), the manifold can be in either of these minimas,
and the ground-state is no longer unique. However exactly this is assumed in e.g. the proof of
dimensional reduction; as is is most easily seen in its supersymmetric formulation [3].

6 The functional renormalization group (FRG)

Let us now discuss a way out of the dilemma: Larkin’s argument suggests that4 is the upper
critical dimension. So we would like to make anε = 4 − d expansion. On the other hand,
dimensional reduction tells us that the roughness isζ = 4−d

2 (see (9)). Even though this is
systematically wrong below four dimensions, it tells us correctly that at the critical dimension
d = 4, where disorder is marginally relevant, the fieldu is dimensionless. This means that having
identified any relevant or marginal perturbation (as the disorder), we find immediately another
such perturbation by adding more powers of the field. We can thus not restrict ourselves to
keeping solely the first moments of the disorder, but have to keep the whole disorder-distribution
functionR(u). Thus we need afunctional renormalization grouptreatment (FRG). This was first
proposed in 1986 by D. Fisher [4]. Performing an infinitesimal renormalization, i.e. integrating
over a momentum shellà la Wilson, leads to the flow∂`R(u), with (ε = 4− d)

∂`R(u) = (ε− 4ζ) R(u) + ζuR′(u) +
1
2
R′′(u)2 −R′′(u)R′′(0) . (13)

The first two terms come from the rescaling ofR andu respectively. The last two terms are the
result of the 1-loop calculations, which are sketched in figure 2.

More important than the form of this equation is it actual solution, sketched in figure 3. After
some finite renormalization, the second derivative of the disorderR′′(u) acquires a cusp atu = 0;
the length at which this happens is the Larkin-length. How does this overcome dimensional
reduction? To understand this, it is interesting to study the flow of the second and forth moment.
Taking a derivative of (13) w.r.t.u and settingu to 0, we obtain

∂`R
′′(0) = (ε− 2ζ) R′′(0) + R′′′(0)2 −→ (ε− 2ζ)R′′(0) (14)

∂`R
′′′′(0) = εR′′′′(0) + 3R′′′′(0)2 + 4R′′′(0)R′′′′′(0) −→ εR′′′′(0) + 3R′′′′(0)2 . (15)
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renormalization

uu

-R’’(u) -R’’(u)

Fig. 3. Change of−R′′(u) under renormalization and formation of the cusp.

SinceR(u) is an even function,R′′′(0) andR′′′′′(0) are 0 and the above equations forR′′(0)
andR′′′′(0) are in fact closed. Equation (14) tells us that the flow ofR′′(0) is trivial and that
ζ = ε/2 ≡ 4−d

2 . This is exactly the result predicted by dimensional reduction. The appearance
of the cusp can be inferred from equation (15). Its solution is

R′′′′(0)
`
=

c eε`

1− 3 c (eε` − 1) /ε
, c := R′′′′(0)

`=0
(16)

Thus after a finite renormalizationR′′′′(0) becomes infinite: The cusp appears. By analyzing
the solution of the flow-equation (13), one also finds that beyond the Larkin-lengthR′′(0) is no
longer given by (14) withR′′′(0)2 = 0. The correct interpretation of (14), which remains valid
after the cusp-formation, is (for details see below)

∂`R
′′(0) = (ε− 2ζ) R′′(0) + R′′′(0+)2 . (17)

Renormalization of the whole function thus overcomes dimensional reduction. The appearance
of the cusp also explains why dimensional reduction breaks down. The simplest way to see this
is by redoing the proof for elastic manifolds in disorder, which in the absence of disorder is a
simple Gaussian theory. Terms contributing to the 2-point function involveR′′(0), TR′′′′(0) and
higher derivatives ofR(u) atu = 0, which all come with higher powers ofT . To obtain the limit
of T → 0, one setsT = 0, and onlyR′′(0) remains. This is the dimensional reduction result.
However we just saw thatR′′′′(0) becomes infinite. ThusR′′′′(0)T may also contribute, and the
proof fails.

7 Why is a cusp necessary?

The appearance of a cusp might suggest that our approach is fatally ill. Let me present a simple
argument, why a cuspis a physical necessity and not an artifact.To this aim, consider a toy
model with only one Fourier-modeu = uq

H[u] =
1
2
q2u2 +

√
ε Ṽ (u) . (18)

Since equation (13) has a fixed point of orderR(u) ∼ ε for all ε > 0, V (u) scales like
√

ε for ε
small and we have made this dependence explicit in (18) by usingV (u) =

√
εṼ (u). The only

further input comes from the physics: ForL < Lc, i.e. before we reach the Larkin length, there
is only one minimum, as depicted in figure 4. On the other hand, forL > Lc, there are several
minima. Thus there is at least one point for which

d2

du2
H[u] = q2 +

√
ε Ṽ ′′(u) < 0 . (19)
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u

H[u]
L < Lc

L > Lc

u

Fig. 4. The toy model (18) before (left) and after (right) the Larkin-scale.

In the limit of ε → 0, this is possible if and only if1ε R′′′′(0), which a priori should be finite for
ε → 0, becomes infinite:

1
ε
R′′′′(0) = V ′′(u)V ′′(u′)

u=u′
= ∞ . (20)

This argument shows that a cusp is indeed a physical necessity.

8 Beyond 1 loop?

Functional renormalization has successfully been applied to a bunch of problems at 1-loop order.
From a field theory, we however demand more. Namely that it

• allows for systematic corrections beyond 1-loop order

• be renormalizable

• and thus allows to make universal predictions.

However, this has been a puzzle since 1986, and it has even been suggested that the theory
is not renormalizable due to the appearances of terms of orderε

3
2 . Why is the next order so

complicated? The reason is that it involves terms proportional toR′′′(0). A look at figure 3
explains the puzzle. Shall we use the symmetry ofR(u) to conclude thatR′′′(0) is 0? Or shall
we take the left-hand or right-hand derivatives, related by

R′′′(0+) := lim
u>0
u→0

R′′′(u) = − lim
u<0
u→0

R′′′(u) =: −R′′′(0−). (21)

In the following, I will present the solution of this puzzle. First at 2-loop order [5] and then at
largeN [7]. The latter approach allows for another independent control-parameter, and sheds
further light on the cusp-formation.

9 Results at 2-loop order

For the flow-equation at 2-loop order, we find [5]

∂`R(u) = (ε− 4ζ) R(u) + ζuR′(u) +
1
2
R′′(u)2 −R′′(u)R′′(0)

+
1
2

(R′′(u)−R′′(0))R′′′(u)2 − 1
2
R′′′(0+)2R′′(u) . (22)

The first line is the result at 1-loop order, already given in (13). The second line is new. The most
interesting term is the last one, which involvesR′′′(0+)2 and which we therefore callanomalous.
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ζ one loop two loop estimate simulation and exact

d = 3 0.208 0.215 0.215± 0.01 0.22± 0.01 [8]
d = 2 0.417 0.444 0.42± 0.02 0.41± 0.01 [8]
d = 1 0.625 0.687 0.67± 0.02 2/3

Fig. 5. Results forζ in the random bond case.

The hard task is to fix the prefactor(− 1
2 ). We have up to now invented six algorithms to fix it;

one leads to inconsistencies and shall not be reported here. The other five algorithms are consis-
tent with each other: The sloop-algorithm, recursive construction, reparametrization invariance,
renormalizability, and potentiality. For lack of space, we restrain our discussion to the last two
ones. At 2-loop order the following diagram appears

R’’’R’’’

R’’

−→ 1
2

(R′′(u)−R′′(0))R′′′(u)2 − 1
2
R′′(u)R′′′(0+)2 (23)

leading to the anomalous term. The integral (not written here) contains a subdivergence, which
is indicated by the box. Renormalizability demands that its leading divergence (which is of order
1/ε2) be canceled by a 1-loop counter-term. The latter is unique thus fixing the prefactor of the
anomalous term. (The idea is to take the 1-loop correctionδR in figure 2 and replace one of the
R′′ in it by δR′′ itself, which the reader can check to leading to the terms given in (23) plus terms
which only involve even derivatives.)

Another very physical demand is that the problem remain potential, i.e. that forces still derive
from a potential. The force-force correlation function being−R′′(u), this means that the flow of
R′(0) has to be strictly 0. (The simplest way to see this is to study a periodic potential.) From
(9) one can check that this does not remain true if one changes the prefactor of the last term in
(9); thus fixing it.

Let us give some results for cases of physical interest. First of all, in the case of a periodic
potential, which is relevant for charge-density waves, the fixed-point function can be calculated
analytically as (we choose period 1, the following is foru ∈ [0, 1])

R∗(u) = −
(

ε

72
+

ε2

108
+ O(ε3)

)
u2(1− u)2 + const. (24)

This leads to a universal amplitude. In the case of random field disorder (short-ranged force-
force correlation function)ζ = ε

3 . For random-bond disorder (short-ranged potential-potential
correlation function) we find numericallyζ = 0.20829804ε + 0.006858ε2. This compares well
with numerical simulations, see figure 5.

10 LargeN

In the last section, we have discussed renormalization in a loop expansion, i.e. expansion inε. In
order to independently check consistency it is good to have another non-perturbative approach.
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This is achieved by the large-N limit, which can be solved analytically and to which we turn
now. We start from

H[~u,~j] =
1

2T

n∑
a=1

∫
x

~ua(x)
(
−∇2+m2

)
~ua(x)−

n∑
a=1

∫
x

~ja(x)~ua(x)

− 1
2T 2

n∑
a,b=1

∫
x

B
(
(~ua(x)− ~ub(x))2

)
. (25)

where in contrast to (8), we use anN -component field~u. ForN = 1, we identifyB(u2) = R(u).
We also have added a massm to regularize the theory in the infra-red and a source~j to calculate
the effective actionΓ(~u) via a Legendre transform. For largeN the saddle point equation reads

B̃′(u2
ab) = B′

(
u2

ab + 2TI1 + 4I2[B̃′(u2
ab)− B̃′(0)]

)
(26)

This equation gives the derivative of the effective (renormalized) disorderB̃ as a function of the
(constant) background fieldu2

ab = (ua − ub)2 in terms of: the derivative of the microscopic
(bare) disorderB, the temperatureT and the integralsIn :=

∫
k

1
(k2+m2)n .

The saddle-point equation can again be turned into a closed functional renormalization group
equation forB̃ by taking the derivative w.r.t.m:

∂lB̃(x) ≡ −m∂

∂m
B̃(x) = (ε−4ζ)B̃(x)+2ζxB̃′(x)+

1
2
B̃′(x)2− B̃′(x)B̃′(0)+

εT B̃′(x)
ε+B̃′′(0)

(27)

This is a complicated nonlinear partial differential equation. It is therefore surprising, that one
can find an analytic solution. (The trick is to write down the flow-equation for the inverse func-
tion of B̃′(x), which is linear.) Let us only give the results of this analytic solution: First of all,
for long-range correlated disorder of the form̃B′(x) ∼ x−γ , the exponentζ can be calculated
analytically asζ = ε

2(1+γ) . It agrees with the replica-treatment in [9] and the 1-loop treatment

in [10]. Second, it demonstrates that before the Larkin-length,B̃(x) is analytic and thus dimen-
sional reduction holds. Beyond the Larkin length,B̃′′(0) = ∞, a cusp appears and dimensional
reduction is incorrect. This shows again that the cusp is not an artifact of the perturbative ex-
pansion, but an important property even of the exact solution of the problem (here in the limit of
largeN ).

11 Relation to Replica Symmetry Breaking (RSB)

There is another treatment of the limit of largeN given by Mézard and Parisi [9]. They start
from (25) butwithouta source-termj. In the limit of largeN , a Gaussian variational ansatz of
the form

Hg[~u] =
1

2T

n∑
a=1

∫
x

~ua(x)
(
−∇2+m2

)
~ua(x)− 1

2T 2

n∑
a,b=1

σab ~ua(x)~ub(x) (28)

becomes exact. The art is to make an appropriate ansatz forσab. The simplest possibility,σab =
σ for all a 6= b reproduces the dimensional reduction result, which breaks down at the Larkin
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from UV−cutoff

1

FRG

2[   ](  ) + σ z m

2
m

0
z

zcmz

IR−cutoff

Fig. 6. The function[σ] (u) + m2 as given in [9].

length. Beyond that scale, a replica symmetry broken (RSB) ansatz forσab is suggestive. To this
aim, one can breakσab into four blocks of equal size, choose one value for the both outer diagonal
blocks, and then iterate the procedure on the diagonal blocks. One finds that the more often one
iterates, the better the results. In fact, one has to repeat this procedure infinite many times. This
seems like a hopeless endeavor, but Parisi has shown that the infinitely often replica symmetry
broken matrix can be parameterized by a function[σ](z) with z ∈ [0, 1]. In the SK-model,z has
the interpretation of an overlap between replicas. While there is no such simple interpretation
for the model (28), we retain thatz = 0 describes distant states, whereasz = 1 describes nearby
states. The solution of the large-N saddle-point equations leads to the curve depicted in figure

6. Knowing it, the 2-point function is given by〈uku−k〉 = 1
k2

(
1 +

∫ 1

0
dz
z2

[σ](z)+m2

k2+[σ](z)+m2

)
. The

important question is: What is the relation between the two approaches, which both pretend to
calculate the same 2-point function? Comparing the analytical solutions, we find that the 2-point
function given by FRG is the same as that of RSB, if in the latter expression we only take into
account the contribution from the most distant states, i.e. those forz between 0 andzm (see figure
6). To understand why this is so, we have to remember that the two calculations were done under
quite different assumptions: In contrast to the RSB-calculation, the FRG-approach calculated the
partition function in presence of an external fieldj, which was then used to give via a Legendre
transformation the effective action. Even if the fieldj is finally turned to 0, the system might
remember its preparation, as is the case for a magnet: Preparing the system in presence of a
magnetic field will result in a magnetization which aligns with this field. The magnetization will
remain, even if finally the field is turned off. The same phenomena happens here: By explicitly
breaking the replica-symmetry through an applied field, all replicas will settle in distant states,
and the close states from the Parisi-function[σ] (z) + m2 (which describesspontaneousRSB)
will not contribute. However the full RSB-result can be reconstructed by remarking that the part
of the curve betweenzm andzc is independent of the infrared cutoffm, and then integrating over
m [7]. We also note that a similar effective action has been proposed in [11]. While it agrees
qualitatively, it does not reproduce the correct FRG 2-point function, as it should.
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12 Perspectives

More interesting problems have been treated by the above methods, and much more has to be
done. Besides equilibrium problems, driven systems are also studied experimentally. An ex-
ample is the domain wall in a random field magnet, driven through the system by an applied
magnetic field. This was treated in [12, 13], and it was concluded that for non-periodic disorder,
there is only one fixed point, describing both random bond and random field disorder. Our 2-loop
calculations [5, 6] present the first consistent field theory, capable to distinguish between statics
and dynamics. They also show that a conjecture by [13] thatζ = ε

3 be exact to all orders is
violated at second order. We have applied the same methods to the statics at 3-loop order and
to the random field problem. An expansion in1/N , (by now we have obtained the effective
action), should allow to finally describe such notorious problems as the strong-coupling phase of
the Kardar-Parisi-Zhang equation. Finally, it is still open of whether FRG can also be applied to
spin-glasses as e.g. the SK-model. We leave this problem as a challenge to the reader.
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give this lecture. I am grateful to Arun Paramekanti for a critical reading of the manuscript, and
to my collaborators Pierre Le Doussal and Pascal Chauve for all their enthousiasm and dedicated
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