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Abstract. - The Lässig-Wiese (LW) field theory for the freezing transition of random RNA
secondary structures is generalized to the situation of an external force. We find a second-order
phase transition at a critical applied force f = fc. For f < fc forces are irrelevant. For f > fc,
the extension L as a function of pulling force f scales as L(f) ∼ (f − fc)

1/γ−1. The exponent
γ is calculated in an ǫ-expansion: At 1-loop order γ = 1/2, equivalent to the disorder-free case.
At 2-loop order γ = 0.6. Using a locking argument, we speculate that this result extends to the
strong-disorder phase.

Introduction. – RNA is a heteropolymer con-
structed from four different nucleotides A, C, G and U
located on a sugar-phosphate polymer backbone. In so-
lution, a single RNA strand bends back onto itself and
folds into a configuration of loops, stems and termi-
nating bonds, due to formation of Watson-Crick pairs
A-U and C-G from bases located on different parts of
the strand. Together with environmental conditions like
temperature and ionic concentration, the primary struc-

ture (base sequence) determines the most probable base-
pairings, known as secondary structure, which then de-
termines the most probable spatial conformation (tertiary
structure) [1, 2]. Unlike protein folding, which exhibits
a strong interdependence between secondary and tertiary
structure [3], RNA folding may be studied at the level of
secondary structures due to a clear separation of energy
scales.

Since the pioneering work of Bundschuh and Hwa [4],
several authors have studied the statistical physics of RNA
secondary structures for random sequences [5–8]. It is
commonly believed that these systems undergo a freez-
ing transition upon lowering the temperature. Based on a
replica approach, Lässig and Wiese [9], and David and
Wiese [10] have recently developed a systematic field-
theory formulation for this phase transition in terms of
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interacting random walks (RW). The critical exponents
characterizing pairing statistics and replica overlap were
computed within a 2-loop renormalization analysis, and
found to be remarkably close to numerical simulations
[4, 11].

An interesting way to probe RNA chains is to study its
behavior under an external pulling force (see fig. 1a for an
illustration). Recently, extension-force curves have been
measured, by attaching beads to the RNA-molecule and
pulling on it, using an optical trap [12,13]. For homopoly-
mers, the competition between structure formation and
denaturation of the RNA strand leads to a second-order
phase transition at a critical force f = fc [11]. For f < fc

the strand is still in a collapsed phase, while for f > fc it
is in a extended “necklace phase” with a macroscopic ex-
tension (end-to-end distance). While quite a few literature
exists about the subject (see [14] for an overview) there
is of today no theory to compute the characteristic expo-
nent γ of the extension-force characteristics for disordered
RNA strands at the transition. In this letter we fill this
gap. We propose an extension of the RW field theory for
random RNA by including an external pulling force f . We
show that within our theory the force is renormalized by
the quenched disorder, hence the exponent γ is modified
with respect to its mean-field value γ0 = 1/2. Conversely,
we argue that the disorder coupling is not renormalized by
the force at any order in perturbation theory. We use per-
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(a)

(b)

(c)

Fig. 1: (a) Illustration of the planar structure of RNA under
tension, (b) rainbow diagram and (c) corresponding height re-
lief.

turbative renormalization of the new theory to compute γ
to 1-loop order. Finally, we comment on 2-loop results.

The model. – We consider a RNA strand with L
bases labeled with indices s = 1, . . . , L. Similarly, we use
the index s to label a backbone segment between adja-
cent bases s and s + 1. A secondary structure S is a
set of base pairs (s, t), s < t. We only retain so-called
planar structures S: any two different base pairs (s, t),
(s′, t′) are either independent s < t < s′ < t′ or nested
s < s′ < t′ < t. S can be represented by a diagram of
arches (fig. 1b). Planarity implies that the arches do not
cross each other. We introduce the contact operator Φ
defined by Φ(s, t) = 1 if (s, t) ∈ S, and 0 otherwise [9].
Moreover we define the height field h on the segment r by
h(r) :=

∑

s≤r

∑L
t>r Φ(s, t), counting the number of arches

over r. This leads to an identification of each open pla-
nar secondary structure S with a height function subject
to boundary conditions h(0) = h(L) = 0. A segment be-
tween the bases r and r +1 belongs to the free part of the
structure if and only if h(r) = 0 (fig. 1c).

In order to develop a statistical mechanics model, we
have to assign to each structure S an energy E[S]. We
assume that it may be written as a sum of the contribu-
tions from the formation of base pairs Epair[S] and from
the external force Eforce[S]. Bond formation between the
bases at s and t involves a pairing energy η(s, t) which
in general depends on the nature of the pairing partners.
We sum over all pairing energies of base pairs in S and ob-
tain Epair[S] =

∑

s<t η(s, t)Φ(s, t) [4]. The energy due to
the external force, Eforce[S], depends on the spatial con-
figuration of the free part of the strand and its elasticity.

We assume that every free backbone segment aligns with
the force, hence the energy is proportional to the force
f times the number of monomers in the free strand [6].
Thus, we neglect any elasticity and entropic effects for
the free segments and for the bonds which terminate loop
structures (figure 1a). By analogy with the contact opera-
tor Φ(s, t), we introduce a free-strand operator ∆(r) such
that ∆(r) = 1 if h(r) = 0, and 0 otherwise. This allows to
write Eforce[S] = −f

∑

r ∆(r) .
Having defined the energy of a given secondary struc-

ture, we proceed to study the partition function

Z =
∑

S∈S(L)

exp

[

−
∑

s<t

η(s, t)Φ(s, t) + f
∑

s

∆(s)

]

(1)

where S(L) denotes the set of all possible planar sec-
ondary structures with L bases. Before considering ran-
dom RNA chains, we briefly review the properties of the
partition function in the case of uniform pairing ener-
gies η(s, t) = η0 (that we may take = 0). For f = 0
one deduces from the height picture that the problem is
equivalent to the statistics of a RW on the positive real
axis h ≥ 0. The partition function is ZL ∝ L−ρ0 with
ρ0 = 3/2 the characteristic exponent of first return. This
leads to a pairing probability for the base pair (s, t) scaling
like p(s, t) = 〈Φ(s, t)〉 ∝ [|t − s|(L − |t − s|)]−ρ0 . Switch-
ing on the force f > 0 amounts to adding an attractive
short-range potential at the origin h = 0. This is a well-
known problem of statistical mechanics. For instance it
describes surface wetting transitions in 1 + 1 dimensions
(see e.g. [16]). For forces f larger than a critical force fc,
the RW is bound to the origin h = 0 whereas for f < fc

it is unbound (i.e. free to wander far away from h = 0).
In fact, the f = 0 problem can be mapped onto a free

RW r(s) in d = 2ρ0 = 3 dimensions; the height field is the
modulus h(s) = |r(s)|. The inclusion of the short-ranged
attraction in the case f > 0 corresponds to a short-ranged
attractive potential at r = 0. In the continuum limit, the
action of this model reads

S3D[r(s)] =

∫ L

0

ds

(

1

4
[ṙ(s)]

2
− fδ3(r(s))

)

, (2)

and describes the pinning of a RW by an attractive impu-
rity at the origin.

We now exploit this analogy to extend our analysis to
random RNA structures. Numerical simulations [4] sug-
gest to model sequence disorder by independent Gaussian
random binding energies η(s, t),

η(s, t) = η0 , η(s, t)η(u, v)− η2
0 = σ2δ(s−u)δ(t− v) (3)

Following [9, 10], we construct a field theory in the con-
tinuum limit L → ∞. We perform a perturbative ex-
pansion in the disorder amplitude g = σ2 > 0, and the
force strength f . To model disorder, we use the replica
trick. Each replica α = 1, . . . , n is represented by a
RW rα(s) in an embedding space R

d (with dimension
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d = 2ρ0 = 3). In fact, the explicit form of the pairing
probability for uniform RNA suggests to consider closed
RWs rα(s). Nevertheless, we can (and shall) use open
RWs because they have been proven to lie in the same
universality class and considerably simplify the calcula-
tions [10]. Within the RW representation, the contact
operator reads Φα(s, t) = δd(rα(s) − rα(t)). The aver-
age over the disorder η generates an attractive interac-
tion between the replicas. It is described by the overlap

operator Ψαβ(s, t) = Φα(s, t)Φβ(s, t) (counting the com-
mon arches of the replicas α and β in the original pic-
ture). By analogy with (2) we represent the operator ∆
as ∆α(s) := δd(rα(s)). The resulting action in the RW
picture is

S[{rα}] =
∑

α

∫

1

4
[ṙα(s)]

2

− g
∑

α<β

∫∫

s<t

Ψαβ(s, t) − f
n

∑

α=1

∫

∆α(s) , (4)

and generalizes the model of [10] (where f = 0). Before
using perturbation theory, we generalize the model to di-
mensions 2 ≤ d ≤ 3 [9, 10]. Setting ǫ = d − 2 we find the
canonical scaling dimensions dim g = ǫ and dim f = ǫ/2.
The original theory corresponds to ǫ = 1. The generalized
model is renormalizable at ǫ = 0 as the f = 0 model [17].

Perturbation theory. – We represent the perturba-
tive expansion of Z in f, g in terms of Feynman diagrams.
The g-vertex Ψαβ (disorder interaction vertex) is denoted
by a double arch between a pair of replicas [9,10] and the
f -vertex ∆α (force interaction at r = 0) is depicted by a
force insertion on a single replica:

Ψαβ = ∆α = (5)

Non-planar diagrams involving the disorder interaction,
see fig. 2(a), may be eliminated by introducing n×N pairs
of auxiliary fields γ and γ̃ in the action and by taking the
large-N limit [10]. Since the force term only acts on the
free part of the RNA strand, also diagrams of the type
given on fig. 2(b) must be excluded. This is achieved by
a similar “planarity constraint” that can be implemented
using the same auxiliary fields.

(a) (b)

Fig. 2: Non-planar diagrams.

We now consider the partition function for a single (bun-
dle of replica) RW with fixed end-points, or rather its

Fourier transform Z({q′
α}, {q

′′
α}; f, g), defined as

Z({q′
α, q′′

α}; f, g)

=

∫

D[{rα}] e
−S[{rα}]

∏

α

V α
q′

α

(0)V α
q′′

α

(L) (6)

where the vertex operator V α
q

(s) = exp (iqrα(s)) in-
jects incoming external momenta {q′

α}, {q
′′
α} to each end-

point of the replica α of the RW. The (regularized) di-
mensionless integration measure is given by D[rα] =
∏

i dd
rα,i/(4πa2/m)d/2 where a is an ultraviolet cut-off

and m = 1/2 the mass of the Brownian particle asso-
ciated with the RW. We further simplify the model by
setting q

′
α ≡ q

′, q
′′
α ≡ q

′′ without loss of generality.
The perturbative expansion in g and f leads to a

systematic diagrammatic representation of Z. The dia-
grams can be classified according to the number of repli-
cas with force insertions. The absence of force inser-
tions on the replica α leads to a momentum conservation
δd(q′

α + q
′′
α) (translation invariance rα(s) → rα(s) + r).

Thus, the set of all possible diagrams is classified accord-
ing to the number k of its external momentum conserva-
tions: k = n conservations correspond to a diagram of
the force-free theory, k = n − 1 conservations to a single
replica subject to force insertions, etc. We group all dia-
grams with k conservations into a restricted partition func-
tion Ξn−k(q′, q′′; f, g), so that formally Z(q′, q′′; f, g) =
∑

k δ(q′ + q
′′)kΞn−k(q′, q′′; f, g). Ξ0 describes the force-

free theory, Ξ1 the sector where only one replica interacts
with the impurity, Ξ2 the sector where two replicas inter-
act with the impurity, etc. In the following we focus on
Ξ1(q,−q), since this simplifies the calculations. Perturba-
tive expansion up to order two in f or g yields

Ξ1(q,−q; f, g) =

f n + f2 n

+ fg

[

n(n − 1)
(

+
)

+
n(n − 1)(n − 2)

2

]

+ · · · (7)

There are four topologically different Feynman diagrams.
The first contribution is

=

∫

0<u<L

〈∆1(u)

n
∏

α=1

V α
q

(0)V α
−q

(L)〉0

= L e−q
2Ln, (8)

where 〈 〉0 denotes the average w.r.t. the free RW action
S0[r] (f = g = 0), with a proper subtraction of the (n −
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1) translational zero-modes. The second diagram is UV
divergent at ǫ = 0. Isolation of the corresponding pole
yields

=

∫∫

0<u<v<L

〈∆1(u)∆1(v)

n
∏

α=1

V α
q

(0)V α
−q

(L)〉0

=

∫∫

0<u<v<L

e−q
2(L−v+u)|v − u|−d/2e−q

2L (n−1)

=
ǫ→0

−
L2

ǫ
e−q

2Ln + O(1) (9)

The divergence comes from the short-distance behavior
of the product of two ∆ operators ∆(u)∆(v) =

u→v
|u −

v|−d/2∆(v) + · · · . The third contribution is also UV di-
vergent,

=

=

∫∫∫

0<u<v<w<L

〈∆1(u)Ψ12(v, w)
n

∏

α=1

V α
q

(0)V α
−q

(L)〉0

=

∫∫∫

0<u<v<w<L

e−2q
2(L−w+v)|w − v|−de−q

2L (n−2)

=
ǫ→0

−
L

ǫ
(Lq

2 − 1) e−q
2Ln + O(1) , (10)

as well as the fourth

=

∫∫∫

0<u<L
0<v<w<L

〈∆1(u)Ψ23(v, w)

n
∏

α=1

V α
q

(0)V α
−q

(L)〉0

=

∫∫∫

0<u<L
0<v<w<L

e−2q
2(L−w+v)|w − v|−de−q

2L (n−2)

=
ǫ→0

−
L

ǫ
(2Lq

2 − 1) e−q
2Ln + O(1) . (11)

Renormalization. – We remove the UV divergences
in the expansion (7) by formally taking ρ0 as analytical
regularization parameter. In order to eliminate the simple
poles in ǫ = 2ρ0 − 2 at ǫ = 0, we define the renormalized
theory through the renormalized action

SR =
∑

α

∫

s

Z

4
ṙ

2
α − gRµ−ǫ

Zg

∑

α<β

∫∫

0<s<t<L

Ψαβ(s, t)

− fRµ−ǫ/2
Zf

∫

s

∆α(s) + 2nZ1 . (12)

Here Z, Zg and Zf denote the wave-function, the coupling
constant and the force counterterms respectively. Z1 ac-
counts for boundary effects since we deal with open RWs
[10]. The coefficients of their development in fR, gR con-
tain the leading poles in 1/ǫ. Furthermore, we have intro-
duced the renormalization mass scale µ ∼ 1/L. From di-
mensional analysis we deduce the relations between renor-
malized and bare r, q, g and f : For the field r = Z

1/2
rR,

q = Z
−1/2

qR, for the couplings g = gRµ−ǫ
ZgZ

−d and
f = fRµ−ǫ/2

Zf Z
−d/2. The renormalized partition func-

tions are related to the bare ones via

ΞR
k (q′

R, q′′
R, fR, gR) = Z

−kd/2e−2nZ1Ξk(q′, q′′, f, g) . (13)

The prefactor on the r.h.s. takes into account the (n − k)
zero modes, boundary effects and the change of normaliza-
tion in the integration measure. Consistency of the theory
requires cancelation of all divergences upon renormaliza-
tion for each individual Ξk. In particular, renormaliza-
tion of the force-free terms Ξ0 has been performed previ-
ously [10] and yields the counter terms Z = 1+gR(n−1)/ǫ,
Zg = 1 + gR(7 − 4n)/ǫ and Z1 = 1 + 3g(n − 1)/4ǫ. They
do not depend on f at any order since they correspond
to “bulk” divergences for the random walk in interaction
with the potential at the origin (“boundary” term). For
the counter term Zf we need Ξ1, whose Feynman diagrams
were computed in eqns. (8)-(11):

Ξ1 = nLfe−(q′)2Ln

×

[

1 +
g(n − 1)

2ǫ

(

n + 2

2
− 2n(q′)2L

)

−
2f

ǫ

]

. (14)

We absorb the poles by the counter terms of the force-
free theory and Zf = 1 + 2f/ǫ. This expression depends
neither on the number of replicas n, nor on g. Thus at first
order there is no coupling between force and disorder. A
straightforward calculation gives the RG β-functions

βf (gR, fR) = −
dfR

d log µ

∣

∣

∣

∣

f

= −
ǫ

2
fR + f2

R, (15)

βg(gR, fR) = −
dgR

d log µ

∣

∣

∣

∣

g

= −ǫgR + (5 − 2n)g2
R (16)

In the physical case of random RNA, n = 0, they yield
the RG flow depicted in fig. 3 with four fixed points. The
attractive Gaussian fixed point O = (0, 0) describes the
molten phase of [4]. D = (ǫ/5, 0) is the fixed point of the
glass transition found in [9, 10]. We identify F = (0, ǫ/2)
with the denaturation transition of a homopolymer (wet-
ting in 1 + 1 dimensions). More interesting, a new bi-
critical UV unstable fixed point B = (ǫ/2, ǫ/5) emerges
from our one-loop analysis. It leads to four phases sepa-
rated by the critical lines f ≡ ǫ/2 and g ≡ ǫ/5. In par-
ticular, a new phase at both high force and strong disor-
der emerges. Physically, it corresponds to isolated frozen
branched structures separated by free parts of the strand.
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Fig. 3: Schematic view of renormalization group flow in the
(g, f) plane. The critical lines distinguish the molten phase
(I), a glass phase (II), (III) the denatured homopolymer phase.
A new phase (IV) corresponds to RNA strands with isolated
frozen structures separated by free parts.

The extension L as a function of the force f is given by
the anomalous dimension of this force. The scaling ansatz
reads

L(f) = LαF ([f − fc]L
γ) , (17)

where F(z) is a scaling function. At the bi-critical fixed
point, we find

γ = − dim[f − fc] =
∂βf

∂fR

∣

∣

∣

∣

fc

=
ǫ

2
. (18)

Since L =
〈

∫ L

0 dx∆(x)
〉

, the exponent α = γ. Demand-

ing that for large systems the extension L become exten-

sive, i.e. ∼ L, yields F(z) ∼ z
1

γ
−1 for z ≫ 1, so that for

large RNA molecules L(f) ∼ L(f − fc)
1

γ
−1. Setting ǫ = 1

yields the exponent γ = 1/2 which is the same result as for
the homopolymer denaturation transition, first discussed
in [11]. This is consistent with the fact that the 1-loop
beta function for f does not depend on g, so that γ is not
changed by the quenched disorder. However, this result
does not hold at higher orders [17].

Conclusion. – To summarize, we have developed a
field-theoretic description of random RNA under applica-
tion of an external force, by extending the force-free field
theory. It permits to study the second-order denatura-
tion transition. At 1-loop order, the RG flow functions for
force f and disorder strength g decouple so that the denat-
uration is not influenced by disorder. We have computed
the critical exponent γ = 1/2 for the force-extension char-
acteristic at the transition which agrees with previously
considered homopolymer models.

We have extended our calculations to second order
in perturbation theory [17]. The renormalization group
flow of f then depends on the disorder strength g. The

procedure yields a scaling exponent γ = 0.6 for the
force-extension characteristic, resulting in L(f) ∼ L(f −

fc)
1

γ
−1 ≈ L(f −fc)

2/3. According to the locking hypothe-
sis [9], the critical exponents for the glass transition coin-
cide with the exponents in the glass phase. It is important
to understand whether this mechanism still holds in the
presence of the force, i.e. on the critical line beyond the bi-
critical fixed point. Supposing this hypothesis, our predic-
tion for the exponents α and γ is in reasonable agreement
with numerical simulations of Müller et al. [11, 18].
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