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Abstract

We calculate the effective action for disordered elastic manifolds in the ground state (equilibrium) up to 
3-loop order. This yields the renormalization-group β-function to third order in ε = 4 − d, in an expansion 
in the dimension d around the upper critical dimension d = 4. The calculations are performed using exact 
RG, and several other techniques, which allow us to resolve consistently the problems associated with the 
cusp of the renormalized disorder.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Disordered systems are notoriously difficult to treat, since naive perturbation theory leads to 
absurd results, as exemplified by the phenomenon of dimensional reduction [1]. Two main paths 
out of this dilemma have been pursued: Replica symmetry breaking [2], and the functional renor-
malization group. The latter goes back to the work by Wilson [3] and Wegner and Houghton [4]. 
For disordered systems these methods were first used by Daniel Fisher [5]. However it took until 
1992 that Narayan and Fisher [6,7], shortly thereafter followed by Natterman, Stepanow, Tang 
and Leschhorn [8], recognized that the disorder correlator, which plays the role of the coupling 
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constant in the functional renormalization group (FRG) treatment, has to assume a cuspy form. 
The physical origin of this cusp lies in the metastability of the zero-temperature states which 
dominate the partition function, as recognized by Balents, Bouchaud and Mézard [9] in 1996. 
Only in 2006 this property was given a precise meaning as an observable, which can be mea-
sured in a numerical simulation both for the statics [10,11], the driven dynamics [12,13], and 
in an experiment [14]. This has nicely been reviewed in [15]. It was important conceptually, 
since the very existence of the cusp had in the early days questioned the validity of the method. 
Once this question of principle solved, it remained the problems of feasibility and practicality: 
First, whether there is a controlled loop or ε-expansion, and second how to implement a method 
which makes sense of the cusp in this loop expansion, and more particularly of the derivatives 
at the cusp. The latter change sign, depending on whether the limit is taken for positive or neg-
ative argument, not to mention the additional problems arising for a higher-dimensional field 
[16]. While these problems were conceptually simpler to solve for depinning [17], due to the 
Middleton-theorem [18], for the statics the question is more delicate. A consistent solution has 
been given at 2-loop order, based on renormalizability, recursive construction, or consistency 
schemes (the “sloop-algorithm” to be discussed below) [19,20], or exact RG [21–23]. At 3-loop 
order we performed several independent calculations. Here we give the resulting β-function.

The analysis of the fixed point will be published separately [24]. There we will extract the 
roughness exponent ζ , obtain the fixed-point functions R to 3-loop order, give the correction-to-
scaling exponent ω, as well as the momentum dependent 2-point function.

2. Model and basic definitions

The equilibrium problem is defined by the partition function Z := ∫
D[u] exp(−H[u]/T )

associated to the Hamiltonian (energy)

H[u] =
∫

ddx
1

2
[∇u(x)]2 + m2

2
[u(x) − w]2 + V

(
u(x), x

)
. (2.1)

In order to simplify notations, we will often note∫
x

f (x) :=
∫

ddx f (x) , (2.2)

and in momentum space∫
q

f̃ (q) :=
∫

ddq

(2π)d
f̃ (q) . (2.3)

The Hamiltonian (2.1) is the sum of the elastic energy 
∫
x

1
2 [∇u(x)]2 plus the confining potential 

m2

2

∫
x

[u(x) − w]2 which tends to suppress fluctuations away from the ordered state u(x) = w, 
and a random potential V (u, x) which enhances them. w is, up to a factor of m2, an applied 
external force, which is useful to measure the renormalized disorder [10–14,25,26], or properly 
define avalanches [12,13,27–31]. The resulting roughness exponent ζ〈[u(x) − u(x′)]2

〉 ∼ |x − x′|2ζ (2.4)

can be measured in experiments.
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Here and below 〈. . . 〉 denote thermal averages, and (. . . ) disorder ones. In the zero-
temperature limit,the partition function is dominated by the ground state, and we may drop the 
explicit thermal averages. The random potential can without loss of generality [19,20] be chosen 
Gaussian with second cumulant

V (u,x)V (u′, x′) =: R0(u − u′)δd(x − x′) . (2.5)

R0(u) takes various forms: Periodic systems are described by a periodic function R0(u), random-
bond disorder by a short-ranged function, and random-field disorder of variance σ by R(u) �
−σ |u| at large u.

To average over disorder, we replicate the partition function n times, Zn =: e−S , which de-
fines the effective action S ,

S[u] =
n∑

a=1

∫
x

1

2T
[∇ua(x)]2 + m2

2T
ua(x)2 − 1

2T 2

n∑
a,b=1

∫
x

R0
(
ua(x) − ub(x)

)
. (2.6)

We used the notations introduced in Eqs. (2.2) and (2.3). In presence of external sources ja , the 
n-times replicated action becomes

Z[j ] :=
∫ n∏

a=1

D[ua] exp

⎛
⎝−S[u] +

∫
x

∑
a

ja(x)ua(x)

⎞
⎠ , (2.7)

from which all static observables can be obtained. a runs from 1 to n, and the limit of zero 
replicas n = 0 is implicit everywhere.

3. 3-loop β-function

In generalization of Eq. (3.43) of [19,20], we obtain the following functional renormalization 
group equation for the renormalized, dimensionless disorder correlator R̃(u),

−m∂mR̃(u) = (ε − 4ζ )R̃(u) + ζuR̃′(u) + 1
2 R̃′′(u)

2 − R̃′′(u)R̃′′(0)

+ ( 1
2 + ε C1

) [
R̃′′(u)R̃′′′(u)

2 − R̃′′(0)R̃′′′(u)
2 − R̃′′(u)R̃′′′(0+)

2
]

+C2

[
R̃′′′(u)

4 − 2R̃′′′(u)
2
R̃′′′(0+)

2
]
+ C3

[
R̃′′(u) − R̃′′(0)

]2
R̃′′′′(u)

2

+C4

[
R̃′′(u)R̃′′′(u)

2
R̃′′′′(u) − R̃′′(0)R̃′′′(u)

2
R̃′′′′(u)

− R̃′′(u)R̃′′′(0+)
2
R̃′′′′(0)

]
. (3.1)

The coefficients are

C1 = 1

4
+ π2

9
− ψ ′( 1

3 )

6
= −0.3359768096723647... (3.2)

C2 = 3

4
ζ(3) + π2

18
− ψ ′( 1

3 )

12
= 0.6085542725335131... (3.3)

C3 = ψ ′( 1
3 )

6
− π2

9
= 0.5859768096723648... (3.4)

C4 = 2 + π2

− ψ ′( 1
3 ) = 1.4140231903276352... . (3.5)
9 6
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The first line contains the rescaling and 1-loop terms, the second line the 2-loop terms, and the last 
two lines the three 3-loop terms. Note that C1 = 1

4 −C3, and C4 = 2 −C3 = √
2 − 0.000190372...

4. Lifting ambiguities in a non-analytic theory, summary

Ambiguities arise in a perturbative computation of the effective action if one uses a non-
analytic action. To resolve this issue, several methods have been designed, of which we list the 
most important ones below. Some failed attempts at 2-loop order are described in Ref. [20]. 
In addition, the physics of the problem requires the theory to be renormalizable, potential and 
without super-cusp, which gives valuable checks on the values of the “anomalous” graphs.

1) Exact RG. The starting point of exact RG (ERG) methods are exact relations between 
functionals, for reviews see [32,23]. A systematic but straightforward expansion in ε combines 
the anomalous terms from naive perturbation theory in a way that makes them automatically 
non-ambiguous. This method and the corresponding derivation of the β-function is discussed in 
Section 5.

2) Elimination of sloops. The idea, which will be explained in detail in Section 6.1 below, is 
as follows: Since the propagator 〈ũa(k)ũb(−k)〉 = T δab/(k

2 + m2) is diagonal in replica space, 
each contraction in a diagram reduces the number of free replica sums by at most one. Doing a 
contraction which does not constrain the number of replicas further counts as a factor of T = 0, 
and can thus be set to zero. Further contracting such diagrams generates a set of identities which, 
remarkably, is sufficient to obtain unambiguously the 2-replica projection without any further 
assumption. In some sense, it uses in a non-trivial way the constraint that we are working with a 
true T = 0 theory.

3) Recursive construction: An efficient method is to construct diagrams recursively. The 
idea is to identify in a first step parts of the diagram, which can be computed without ambiguity. 
This is e.g. the 1-loop chain-diagram discussed in Section 6.1. In a second step, one treats the 
already calculated sub-diagrams as effective vertices. In general, these vertices have the same 
analyticity properties, namely are derivable twice, and then have a cusp. (Compare R(u) with 
[R′′(u) − R′′(0)]R′′′(u)2 − R′′(u)R′′′(0+)2, which is a contribution to the β-function at 2-loop 
order.) By construction, this method ensures renormalizability, at least as long as there is only 
one possible path. However it is not more general than the demand of renormalizability diagram 
by diagram, discussed below.

4) Renormalizability diagram by diagram: Renormalizability diagram by diagram is the 
key to all proofs of perturbative renormalizability in field-theory, see e.g. [33–40]. These methods 
define a subtraction operator R. Graphically it can be constructed by drawing a box around 
each sub-divergence, which leads to a forest or nest of sub-diagrams (the counter-terms in the 
usual language), which have to be subtracted, rendering the diagram finite. The advantage of 
this procedure is that it explicitly assigns all counter-terms to a given diagram, which finally 
yields a proof of perturbative renormalizability. If we demand that this proof goes through for the 
functional renormalization group, the counter-terms must necessarily have the same functional 
dependence on R(u) as the diagram itself. In general, the counter-terms are less ambiguous, and 
this procedure can thus be used to lift ambiguities in the calculation of the diagram itself. By 
construction this procedure is very similar to the recursive construction discussed under point 3, 
and it is build in to the ERG approach.
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It has some limitations though. Indeed, if one applies this procedure to the 3-loop calculation, 
one finds that it renders unique all but one ambiguous diagram, namely

, (4.1)

which has no subdivergence. Thus there are no counter-terms which could lift the ambiguities. 
This diagram must therefore be computed directly and we found that it can be obtained unam-
biguously by the sloop elimination method. We give an explanation of this method in section 6.1; 
it is also well documented, see section VD of [20].

5) Reparametrization invariance: From standard field theory, one knows that RG functions 
are not unique, but depend on the renormalization scheme. Only critical exponents are unique. 
This is reflected in the freedom to reparametrize the coupling constant g according to g −→ g̃(g)

where g̃(g) is a smooth function, which has to be invertible in the domain of validity of the RG 
β-function.

Here we have chosen a scheme, namely defining R(u) from the exact zero momentum ef-
fective action, using dimensional regularization, and a mass. One can explore the freedom in 
performing reparametrizations. In the functional RG framework, reparametrizations are also 
functional, of the form

R(u) −→ R̂(u) = R̂[R](u) . (4.2)

Of course the new function R̂(u) does not have the same meaning as R(u). Perturbatively this 
reads

R(u) −→ R̂(u) = R(u) + B(R,R)(u) +O(R3) , (4.3)

where B(R, R) is a functional of R. For consistency, one has to demand that B(R, R) has the 
same analyticity properties as R, at least at the fixed point R̃ = R̃∗, i.e. B(R, R) should as R be 
twice differentiable and then have a cusp. Details can be found in Section 7.

As far as applicable, all methods, who are genuinely different, give consistent results. This 
is strong evidence that the problem has a unique field theory, which we identify in this paper to 
3-loop order. In particular, the ambiguities which arise in perturbation theory due to the cusp turn 
out to be superficial and are absent in our treatment. Let us now turn to actual calculations using 
these methods. We start with the ERG approach. We will then use renormalized field theory and 
a combination of the above-mentioned methods. Let us stress that each of these two calculations 
was done independently by one of the authors, which serves as a non-trivial check of the RG 
β-function such obtained.

5. Calculation via the exact renormalization group

In this section we derive the 3-loop flow equations by means of the exact renormalization 
group (ERG). In condensed matter this RG is sometimes called “functional RG” because it is 
based on exact flow equations formulated for thermodynamic functionals. To avoid possible con-
fusions, we will use the term “functional RG” only in the sense of perturbative field theory, i.e. 
as a loop expansion.



K.J. Wiese et al. / Nuclear Physics B 932 (2018) 540–588 545
5.1. Set-up of ERG equation

For each realization of the random potential V , let ZV be the partition function. By the stan-
dard replica trick we average the logarithm of ZV over disorder

lnZV = lim
n→0

1

n

(
Zn

V − 1
)

(5.1)

by introducing replicas of the field. The replicated partition function is written as a functional 
integral

eW [j ] =N0

∫ ∏
x

n∏
a=1

dua(x) e−S[u]+(j,u) . (5.2)

It depends on an external replica-dependent field ja(x) with a = 1 . . . n. We choose N0 = (Zn
V )−1

such that eW [0] = 1. We denote (j, u) = ∑
a

∫
ddx ja(x)ua(x) and the replicated action is given 

by

S[u] = 1

2T

∑
a

∫
ddx

[
(∇xua)

2 + m2ua(x)2]− 1

2T 2

∑
a,b

∫
ddx R0

(
ua(x) − ub(x)

)
.

(5.3)

Correlation functions and other observables averaged over disorder can be calculated from 
replica averages obtained from a polynomial expansion of W [j ], see Ref. [23] for details. For 
example, the connected 2-point correlation function is given by

〈u(x)u(y)〉V − 〈u(x)〉V 〈u(y)〉V = lim
n→0

[
〈u1(x)u1(y)〉rep − 〈u1(x)u2(y)〉rep

]
, (5.4)

where 〈ua(x)ub(y)〉rep = δ2

δja(x)δjb(y) |j=0
W [j ]. Note that 〈ua(x)〉rep = δ

δja(x) |j=0
W [j ] = 0 since 

S[u] = S[−u].
The mass m2 > 0 provides an infrared regularization, and we are interested in the limit of 

m2 → 0. The ERG is set up by successively lowering the parameter m2, which is our RG scale. 
Since the action S[u] depends on m only via its quadratic part in the fields, the scale derivative 
of W [j ] can be expressed by a Polchinski-type equation

Ẇ [j ] = d

dm
W [j ] = −1

2

(
δW

δj
, q̇

δW

δj

)
− 1

2
Tr

[
q̇

δ2W

δj2

]
. (5.5)

Here qab(p) = T −1(p2 + m2)δab denotes the bare inverse propagator and the derivative with 
respect to the scale m is denoted by a dot. Due to momentum conservation the inverse propagator 
in Fourier space has only diagonal elements. The inner product between two fields u and v sums 
over the replica index and the spatial dependence

(u, v) :=
∑
a

∫
ddx ua(x)va(x) . (5.6)

We use matrix notation such that, for example,(
δW

δj
, q̇

δW

δj

)
=

∑
a,b

∫
ddx

∫
ddy

δW

δja(x)
q̇ab(x, y)

δW

δjb(y)
. (5.7)
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The second term in S[u] is invariant under a shift with a replica-independent field. This is 
expressed by the so-called statistical tilt symmetry (STS)

W [j + j̃ ] = W [j ] + 1

2
(j̃ , gj̃ ) + (j, gj̃ ) , (5.8)

where j̃ is a replica-independent field and gab(q) = qab(q)−1. It follows that the thermal propa-
gator

lim
n→0

∑
a

δ2W

δja(x)δjb(y)

∣∣∣∣
j=0

= lim
n→0

∑
a

gab(x, y) (5.9)

is not renormalized.
A Legendre transform of W [j ] allows us to write a more convenient expansion in loops. For 

this we define a functional map ua �→ Ja[u] such that δ
δja(x)

W [j ]
∣∣∣
ja=Ja [u] = ua(x). This map 

exists since the second functional derivative of W is positive for m > 0 at j = 0. The Legendre 
transform is defined as

�[u] = −W [J [u]] + (J [u], u) (5.10)

and is called the effective action. Therefore δ
δua(x)

�[u] = Ja[u](x) and δ2�
δu2 =

(
δ2W
δj2

∣∣∣
j=J [u]

)−1

is the inverse full propagator.
The Legendre transformed version of the statistical tilt symmetry reads

�[u + ũ] = �[u] + 1

2
(ũ, qũ) + (u, qũ) (5.11)

with the field ũ again being replica-independent. Because there is no thermal self-energy we 
write �[u] = 1

2 (u, g−1u) − �̂[u]. The flow equation for �̂ follows from �̇ = −Ẇ and reads

˙̂
�[u] = 1

2
Tr

⎡
⎣gq̇

(
1 − g

δ2�̂

δu2

)−1
⎤
⎦ . (5.12)

In the limit of m → ∞ the effective action becomes the bare action without regularization

lim
m→∞�[u] = S[u]∣∣

m=∞ . (5.13)

5.2. Replica expansion hierarchy

We expand the effective action in the number of replica sums

�[u] = 1

2
(u, g−1u) − 1

2T 2

∑
a,b

R[uab] −
∑
n≥3

1

n!T n

∑
a1,...,an

S(n)[ua1 , . . . , uan ] , (5.14)

where we use the shorthand notation uab(x) = ua(x) − ub(x). Due to STS the one-replica term 
is given by the bare inverse thermal propagator. The two-replica term is a scale-dependent func-
tional that depends on uab(x) only. The initial condition for R is local and given by the bare 
disorder distribution function

lim
m→∞R[u] =

∫
ddx R0(u(x)) . (5.15)
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Higher replica terms are not present in the bare action but they are generated by the RG flow. 
STS implies that

S(n)[ua1 , . . . , uan ] = S(n)[ua1 + v, . . . , uan + v] (5.16)

for any field v(x). It follows that the two-replica term S(2)[ua, ub] = R[uab] is a functional of 
only one field. Because of the sum over all replica indices, we assume all n-replica terms or 
�-cumulants to be symmetric under permutation of the replica fields.

We use the following compressed notation for functional derivatives of n-replica terms to 
denote p1 derivatives with respect to field ua1 and similarly pi derivatives with respect to field 
uai

for i = 1, ..., n

S(n)
p1...pn

[ua1...an ](x1, . . . , xpmax) = δ
δua1 (x1)

. . . δ
δua1 (xp1 )

δ
δua2 (xp1+1)

. . . δ
δuan (xpmax )

S(n)[ua1...an ]
(5.17)

with the total number of derivatives pmax = ∑n
i=1 pi and the short-hand notation S(n)[ua1...an ] =

S(n)[ua1 , . . . , uan ]. For example, using permutation symmetry, the second functional derivative 
of � is given by

δ2�̂

δua(x)δub(x)
=

∞∑
n=2

1

(n − 1)!T n

∑
a2...an

[
S

(n)
20...0[ua,ua2 , . . . , uan](x, y)δab

+ 1

T
S

(n+1)
110...0[ua,ub,ua2 , . . . , uan](x, y)

]
+ 1

T 2 S
(2)
11 [ua,ub](x, y) .

(5.18)

Symmetrization over fields is denoted by curly brackets, that is, {. . .} is the symmetrization of 
. . . over all its variables. Differentiating Eq. (5.16) and using permutation symmetry implies that

0 = δ2

δv(x)δv(y)

∣∣∣∣
v=0

S(n)[ua1 + v, . . . , uan + v] (5.19)

= n{S20...0[ua1 , . . . , uan ](x, y)} + 2n(n − 1){S110...0[ua1 , . . . , uan ](x, y)} .

Because we are interested in the limit of the number of replica indices n → 0, we are free to add 
any function that depends on k < n replicas to a n-th cumulant. This “gauge invariance” will be 
used later to get rid of constant terms in the cumulants.

Via Legendre transformation there is a one-to-one correspondence of �-cumulants to cumu-
lants obtained from a replica expansion of W [j ], see Ref. [23]. Therefore, the �-cumulants can 
be used to calculate observables. In particular, the exact 2-point correlation function averaged 
over disorder is given by

〈u(p)u(−p)〉V = lim
n→0

(
δ2�

δua(p)δub(−p)

∣∣∣∣
u=0

)−1

a=b

= T

m2 + p2 − 1[
m2 + p2

]2

δ2R[u]
δu(p)δu(−p)

∣∣∣∣
u=0

. (5.20)

Here, compared to leading-order perturbation theory, the second derivative of the bare function 
R0(u) is replaced by the second derivative of the renormalized functional R[u].
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In order to obtain RG equations for each �-cumulant, we expand the inverse in Eq. (5.12) in 
a geometric series

˙̂
�[u] = 1

2

∑
l≥0

Tr

⎡
⎣g q̇

(
g

δ2�̂

δu2

)l
⎤
⎦ , (5.21)

insert Eq. (5.18), and count the number of replica sums. The propagators g and gq̇g = −ġ are 
diagonal in replica space. Replica sums arise from second derivatives of �̂, their matrix products, 
and one additional sum from the trace. Therefore, in order to calculate the flow equation of the 
n-th cumulant, the geometric series in Eq. (5.21) does not contribute for l > n. On the other hand, 
a term in the geometric series of l-th order contributes to cumulants to all orders n ≥ l. That is, 
for any initial action the RG flow generates cumulants to all orders.

The term l = 0 and the one-replica term in l = 1 in Eq. (5.21) are constants and can therefore 
be neglected due to gauge invariance. Evaluating the two-replica contributions in the l = 1 and 
l = 2 terms give the flow equation

Ṙ[u] =
∫

x1,x2

ġ(x1, x2)
[
TR′′[u](x2, x1) + S

(3)
110[0,0,−u](x2, x1)

]

+ 1

2

∫
x1,...,x4

[
d

dm
g(x1, x2)g(x3, x4)

]
R′′[u](x2, x3)R′′[u](x4, x1) , (5.22)

where R′′[u] = R′′[u] − R′′[0] with R′′[u](x, y) = S
(2)
20 [u1, u2](x, y)|u1−u2=u. The evaluation at 

zero field arises in terms of coinciding replica indices. We note that Eq. (5.22) is a non-linear 
integro-differential equation for a functional. Similar equations can be obtained for higher cu-
mulants, Ṡ(3) and Ṡ(4); they are given in Appendix B.1. Due to the l = 1 term in Eq. (5.21)
there is a contribution from S(m+1) to Ṡ(m). Therefore, in order to obtain exact solutions for the 
�-cumulants, one has to consider the full, infinitely large hierarchy. Note that, formally, up to 
now no approximations were made; in particular, we do not encounter ambiguities when a cusp 
in the second derivative of the local disorder distribution function develops.

5.3. ε-expansion for T = 0

Since we cannot treat an infinite hierarchy, we perform an additional expansion in ε = 4 − d . 
To this aim we split the disorder distribution functional R[u] into a local and a non-local part

R[u] =
∫

ddx R(u(x)) + R̂[u] . (5.23)

If u(x) = u0 is a constant field, then R̂[u0] = 0, so that only the local part contributes, 
R[u0] = LdR(u0), where Ld = ∫

ddx is the volume of the system. Note that R[u] and R̂[u]
are functionals, whereas R(u) is a function. For m → ∞ the disorder-distribution function has 
only a local part, which we assume to be small. That is, R0(u) and all its derivatives are uni-
formly bound by a small constant.1 We also assume that the local part R(u) of the renormalized 
disorder distribution function remains small. Then the ε-expansion can be obtained by expanding 

1 Due to the formation of a cusp, this consideration does not apply to derivatives at the cusp, which become infinite. 
We will discuss this later.
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the replica expansion hierarchy in R(u). From now on we set the temperature to T = 0. Because 
the rescaled temperature T becomes small for small m, the ε-expansion can also be obtained for 
T > 0 by a composite expansion in T and R(u).

Suppose that R(u) ∼ O(ε). Since for T = 0, Eq. (5.22) is quadratic in R′′, the non-local part 
of the renormalized disorder distribution function will be R̂[u] ∼ O(ε2). A similar argument for 
the higher �-cumulants gives S(n) ∼O(εn) for n ≥ 3. The assumption that also all derivatives of 
the cumulants remain of the same order has to be checked; we will do so up to order ε4, that is, 
3-loop order. With this method the 2-loop order was already obtained in Ref. [23].

The 1-loop equation can be obtained by an expansion to second order in ε and can directly be 
read off from Eq. (5.22). We use that

R′′[u](x1, x2) = R′′(u(x1)
)
δ(x1 − x2) + R̂′′[u](x1, x2) , (5.24)

where the second term is already O(ε2) and does not contribute to Eq. (5.22) at 1-loop order. We 
therefore find

Ṙ[u] = 1

2

∫
x1,x2

[
d

dm
g(x1, x2)

2
]
R′′(u(x1)

)
R′′(u(x2)

)+O(ε3) , (5.25)

where R′′(u) := R′′(u) −R′′(0). The local part is obtained by inserting the constant field u(x) =
u0 and dividing by Ld

Ṙ(u0) = 1

2
İ1R′′(u0)

2 +O(ε3) , (5.26)

where after Fourier transformation I1 = ∫
p

g(p)2 ∼O(m−ε

ε
), and so İ1 ∼O(1). The diagram I1

is evaluated in Eq. (A.6). In order to have the simplest possible formulas, we will absorb a factor 
of εI1|m=1 into the renormalized disorder, see Eq. (6.43). This effectively sets I1 to m−ε/ε. For 
an n-loop integral In we will have to evaluate the ratio In/I

n
1 . We believe this to be the most 

convenient convention for obtaining standardized expressions.
Up to rescaling Eq. (5.26) is the standard 1-loop FRG equation. The solution of this flow 

equation corrects R0(u) ∼ O(ε) to the renormalized R(u) to order ε2. The non-local part in 
terms of this renormalized disorder-distribution function is given by

R̂[u] = 1

2

∫
x1,x2

g(x1, x2)
2R′′(u(x1))R′′(u(x2)) − 1

2
I1

∫
x

R′′(u(x))2 +O(ε3) . (5.27)

Superficially, the ε-expansion seems to work. However, we assumed that R̂[u] is of order ε2 and 
likewise all derivatives of R̂[u]. In fact, the existence of the cusp in R′′(u) of the 1-loop solution 
appearing at a finite scale destroys our assumptions. Due to this cusp, R′′(u) is not differentiable 
at u = 0. The left- and right-sided limits of R′′′ exist but do not coincide R′′′(0+) = −R′′′(0−). 
The fourth derivative R′′′′(u) is uniformly bound for u �= 0 but it is infinity at u = 0.

If we would only need up to two derivatives of R, the ε-expansion would work without 
caveats. However, even the computation of the 2-point correlation function in Eq. (5.20) requires 
a second derivative of the non-local part of R[u], that is, a second derivative of Eq. (5.27) at zero 
field. There enters a third and fourth derivative of R(u(x)) that have to be evaluated at u(x) = 0. 
Furthermore, in the derivation of higher orders in ε, that is, higher orders in the expansion of the 
replica hierarchy in R(u), one encounters higher derivatives as well.

For the calculation of observables via analytic continuation it suffices to evaluate derivatives 
of R(u) at u = 0±, if the left- and right-sided limits give the same result for the observable. 
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For example, the ambiguity is avoided if odd derivatives of R(u) enter the equations only 
squared. However, we work with fluctuating fields u(x) and, for example, the second deriva-
tive of Eq. (5.27) contains a term R′′′(u(x1))R

′′′(u(x2)). While this is a square term we have 
to ensure that either u(x) → 0+ or u(x) → 0− uniformly for all x. That is, ambiguities can be 
avoided if we restrict to non-crossing configurations.

Note that none of our methods can handle observables involving crossing configurations. 
However, handling those is not necessary for the present purpose. The calculation of correla-
tion functions requires only configurations which are infinitesimally close to a uniform one (see 
e.g. the discussion in section V.E of [23]). Hence the two methods presented here are consistent, 
and consistent with each other.

From now on, the limit of two fields ua(x) and ub(x) being equal in a �-cumulant is under-
stood as

lim
ub→ua

S(n)[ua,ub, . . .] := lim
u0→0+ S(n)[ua,ua + u0, . . .] , (5.28)

where u0 is a constant field. That is, all fields are assumed to be close to a uniform configuration. 
We demonstrate in the next two subsections that in this weak limit the 3-loop β-function can be 
derived consistently. That is, it does not matter if the right limit u0 → 0+ or left limit u0 → 0−
are taken in Eq. (5.28).

5.4. ε-expansion to 2-loop order

As an instructive example we review the 2-loop ERG calculation done in Refs. [21,
23]. In order to obtain Eq. (5.22) to order ε3 we have to compute S

(3)
110[0, 0, −u] and 

R′′[u](x2, x3)R′′[u](x4, x1) to this order. We first concentrate on the second term. Note that 
we expand in the renormalized disorder distribution function R(u). This gives

R′′[u](x, y) = R′′(u(x))δ(x − y) + R̂′′[u](x, y) − R̂′′[0+](x, y) . (5.29)

R′′(u(x)) is of order ε and we have to expand the non-local part R̂′′ to second order in R(u), 
that is, we have to insert the second derivative of Eq. (5.27)

R̂′′[u](z1, z2) = δd(z1 − z2)

[∫
x

g(z1, x)2R′′′′(u(z1))R′′(u(x)) − I1R
′′′(u(z1))

2

− I1R
′′′′(u(z1))R′′(u(z1))

]
+ g(z1, z2)

2R′′′(u(z1))R
′′′(u(z2)) +O(ε3) . (5.30)

As described above, in order to calculate R̂′′[0+](z1, z2) we first insert a constant field u0 and 
then take the limit u0 → 0+ to obtain

R̂′′[0+](z1, z2) = [
g(z1, z2)

2 − δd(z1 − z2)I1
]
R′′′(0+)2 +O(ε3) . (5.31)

It is important to note that in this “weak limit” we obtain no ambiguities since R′′′(0+)2 =
R′′′(0−)2 has a straightforward analytic continuation.

The feedback from S(3) is calculated by retaining only terms of order ε3. The calculation is 
relegated to appendix B.1. The result from Eq. (B.1) is
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Ṡ(3)[uabc] =
∫

x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
× (5.32)

×
(

3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)
)

+O(ε4) .

To this order it integrates to

S(3)[uabc] = {
3 tr

[
gR′′

abgR′′
abgR′′

ac

]− tr
[
gR′′

abgR′′
bcgR′′

ac

]}+O(ε4) , (5.33)

where Rab =R[uab]. Here the trace is over real space. The symmetrization over fields {. . .} can 
be written as S(3)[uabc] = 1

2 (A1 + A2 + A3) +O(ε4) with

A1 = tr
[
gR′′

abgR′′
abg(R′′

ac +R′′
bc)

]
(5.34)

A2 = tr
[
gR′′

abg(R′′
ac −R′′

bc)g(R′′
ac −R′′

bc)
]

A3 = 1
3 tr

[
g(R′′

ac +R′′
bc)g(R′′

ac +R′′
bc)g(R′′

ac +R′′
bc)

]
.

In a next step we take the functional derivatives of these terms with respect to ua(x) and ub(y). 
Then the limit b → a is performed by first replacing ub(y) by ua(x) + u0 and then sending 
u0 → 0+. The remaining fields ua(x) only occur in the combination ua(x) − uc(x) and can 
directly be set to zero. When taking the functional derivatives of Eqs. (5.34), it is helpful to 
remember that we set b = a afterwards. Therefore A2 does not contribute to S(3)

110[0, 0, −v] and 
A1 contributes only if the derivatives act on the first two Rab in the trace. Finally, the term A3 is 
a symmetric functional in uac and ubc and can be symmetrically expanded in uab as outlined in 
the appendices of Refs. [23,41]. Setting uc(x) = u(x), we obtain

S
(3)
110[0,0,−u](x1, x2) (5.35)

= 2
[
R′′′(x1)R

′′′(x2) − R′′′(0+)2]g(x1, x2)

∫
y

g(x1, y)g(y, x2)R′′(y) +O(ε4) .

In the above equation and from now on we use the shorthand notation R′′(x) := R′′(u(x)) (and 
similar for higher derivatives expect for x = 0+ and x = u). Inserting Eqs. (5.30), (5.31), and 
(5.35) into Eq. (5.22) we arrive at the 2-loop result

Ṙ[u] =
∫

x1,...,x3

[
d

dm
g(x1, x2)g(x1, x3)

] [
g(x2, x3)

2 − δ(x2 − x3)
]
R′′(x1) (5.36)

× [
R′′′(x2)R

′′′(x3) − R′′′(0+)2]
+

∫
x1,...,x3

[
d

dm
g(x1, x2)

2
] [

g(x2, x3)
2 − δ(x2 − x3)

]
R′′(x1)R

′′′′(x2)R′′(x3)

+
∫

x1,...,x3

[
d

dm
g(x1, x2)

2
]
g(x1, x2)g(x1, x3)R′′(x1)

[
R′′′(x2)R

′′′(x3) − R′′′(0+)2] .

The 2-loop β-function known from FRG calculations [19,20] is the local contribution and is 
obtained by inserting a constant field and dividing by Ld
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Ṙ(u) = 1

2
İ1R′′(u)2 + (İA − I1İ1)R′′(u)

[
R′′′(u)2 − R′′′(0+)2

]
+O(ε4) , (5.37)

where

IA =
∫

p1,p2

g(p1)g(p2)g(p1 + p2)
2 ∼ m−2ε

ε2 . (5.38)

The O( 1
ε
) term in İA is canceled by I1İ1, ensuring a finite β-function. The non-local part inte-

grates to

R̂[u] = A[u] +
∫
x

B(u(x)) +O(ε4) (5.39)

with contributions

A[u] = 1

2

∫
x1,x2

g(x1, x2)
2 R′′(x1)R′′(x2)

+ 1

2

∫
y1,y2,z

g(y1, z)
2g(y2, z)

2 R′′(y1)R′′(y2)R
′′′′(z)

+
∫

x1,x2,y

g(x1, x2)
2g(x1, y)g(x2, y)

[
R′′′(x1)R

′′′(x2) − R′′′(0+)2
]
R′′(y)

− I1

∫
x1,x2

g(x1, x2)R′′(x1)
[
R′′′(x2)

2 − R′′′(0+)2 +R′′(x2)R
′′′′(x2)

]
(5.40)

and

B(u) = −1

2
I1R′′(u)2 + (I 2

1 − IA)R′′(u)
[
R′′′(u)2 − R′′′(0+)2

]
+ 1

2
I 2

1R′′(u)2R′′′′(u) .

(5.41)

5.5. ε-expansion to 3-loop order

In 3-loop order we have to compute S
(3)
110[0, 0, −u] and R′′[u](x2, x3)R′′[u](x4, x1) in 

Eq. (5.22) to order ε4. The flow equation for the three-replica cumulant at T = 0, see Eq. (B.1), 
is given by

Ṡ(3)[uabc] =
∫

x1,x2

ġ(x1, x2)
{

3
2S

(4)
1100[uaabc](x1, x2)

}
(5.42)

+
∫

x1,...,x4

[
d

dm
g(x1, x2)g(x3, x4)

]

×
{

3R′′[uab](x2, x3)
[
S

(3)
110[uaac](x4, x1) − S

(3)
110[uabc](x4, x1)

]}
+

∫
x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]

× {
3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)
}

.
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Because there is a feeding term from the fourth �-cumulant S(4) we have to calculate S(4) to 
order ε4. The only contribution in Eq. (B.2) is S(4)

4 that integrates in this order to

S(4)[uabcd ] = 3
{

4 tr
[
gR′′

abgR′′
acgR′′

adgR′′
ad

]
+ 2 tr

[
gR′′

abgR′′
acgR′′

cdgR′′
ac

]
(5.43)

− 4 tr
[
gR′′

abgR′′
acgR′′

cdgR′′
ad

]
+ tr

[
gR′′

abgR′′
bcgR′′

cdgR′′
ad

]}
+O(ε5) ,

where again R′′
ab(x, y) = R′′[uab](x, y). In order to obtain S(4)

1100[uaabc] the equation has to be 
symmetrized over replica fields and two functional derivatives have to be taken. This lengthy but 
straightforward calculation is not reproduced here. The limit of identical replica fields in the first 
and second entry again has to be taken in the weak limit.

For brevity we introduce the symbol d̃
dmg

that formally denotes a scale derivative that acts only 
on the propagators g that were differentiated in the initial 1PI flow equations, see Eqs. (5.22), 
(B.1), and (B.2). These formal “derivatives” do not act on cumulants nor on g’s that arise other-
wise. In this sense the 2-loop contribution to Ṡ(3), see Eq. (5.32), can be written as

d̃

dmg

1

2

[
A1 + A2 + A3

]
, (5.44)

where A1, A2, and A3 are given in Eq. (5.34). This term was easily integrated in 2-loop order 
since a scale derivative acting on R gives an additional order of ε, that is, d̃

dmg
could be replaced 

by d
dm

. Here we also need the next order, so we have to calculate(
d

dm
− d̃

dmg

)
1

2

[
A1 + A2 + A3

]
, (5.45)

and reinsert the 1-loop result for Ṙ[u] from Eq. (5.25) to obtain this expression to order ε4. It is 
sufficient to insert the local part of R into A1, A2, and A3.

Apart from the feeding from S(4)
1100[uaabc], there are two more 3-loop contributions to the flow 

of S(3). One arises by inserting also non-local contributions to 1-loop order from Eq. (5.27) into 
A1, A2, and A3. And, finally, there is a cross term R ×S(3) from the third line of Eq. (5.42). Here 
we can insert the 2-loop solution S(3) = 1

2 (A1 +A2 +A3) with local R’s into the right-hand-side 
of the flow equation to obtain the complete result at 3-loop order. These 3-loop contributions are 
easily integrated since scale derivatives acting on cumulants would introduce additional loops. 
The details of this calculation and the resulting functional S(3)[uabc] to 3-loop order are given in 
Appendix B.2. In order to obtain S(3)

110[0, 0, −u] it is again convenient to use a symmetric replica 
expansion. Setting ua = ub again requires the weak limit; in addition to potentially problematic 
terms ∼ R′′′(0+)2 we also encounter R′′′(0+)R(5)(0+).

Now we turn to the term R′′[u](x2, x3)R′′[u](x4, x1) in Eq. (5.22). In 3-loop order we have 
to insert

R′′[u](x, y) =R′′(u(x))δ(x − y) + R̂′′[u](x, y) − R̂′′[0+](x, y) , (5.46)

where R̂ is the non-local contribution of the 2-loop solution Eq. (5.39). Taking two functional 
derivatives and taking the weak limit with non-crossing configurations produces anomalous terms 
R′′′(0+)2, R′′′(0+)R(5)(0+), R′′(0+)R′′′′(0+), and R′′(0+)R(6)(0+). Inserting the obtained ex-
pressions for R′′[u](x2, x3)R′′[u](x4, x1) and S(3) [0, 0, −u] in Eq. (5.22) allows us to rearrange 
110
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terms such that they are total derivatives acting on the propagators g only. In summary we obtain 
to 3-loop order

Ṙ[u] = β1loop[u] + β2loop[u] + β3loop[u] (5.47)

with 1- and 2-loop contributions β1loop[u] + β2loop[u] given by Eq. (5.36) and the 3-loop contribu-
tion

β3loop[u] =
∫

x1,x2,y,z

[
d

dm
g2

x1x2
gx1zgx2zg

2
yz

][
R′′′

x1
R′′′

x2
− R′′′(0+)2

]
R′′

yR
′′′′
z

− 2I1

∫
x1,x2,y

[
d

dm
g2

x1x2
gx1ygx2y

]
R′′

y

(
3
[
R′′′

x1
R′′′

x2
R′′′′

x2
− R′′′(0+)2R′′′′(0+)

]
+ R′′′

x1
R′′

x2
R(5)

x2

)

− I1

∫
x,y,z

[
d

dm
g2

xzg
2
yz

][
R′′′

x
2 − R′′′(0+)2 +R′′

xR
′′′′
x

]
R′′

xR
′′′′
z

+ 1
2

∫
x1,x2,y1,y2

[
d

dm
g2

x1x2
g2

x1y1
g2

x2y2

]
R′′′′

x1
R′′′′

x2
R′′(y1)R′′(y2)

+ 1
2I 2

1

∫
x1,x2

[
d

dm
g2

x1x2

][
R′′′

x1

2 − R′′′(0+)2 +R′′
x1

R′′′′
x1

][
R′′′

x2

2 − R′′′(0+)2 +R′′
x2

R′′′′
x2

]

− I1

∫
x1,x2,y

[
d

dm
g2

x1x2
gx1ygx2y

][
R′′′

x1
R′′′

x2
− R′′′(0+)2

][
R′′′

y
2 − R′′′(0+)2 +R′′

xR
′′′′
x

]

+ 1
2

∫
x1,x2,y1,y2

[
d

dm
g2

x1x2
g2

y1y2
gx1y1gx2y2

][
R′′′

x1
R′′′

x2
− R′′′(0+)2

][
R′′′

y1
R′′′

y2
− R′′′(0+)2

]

+ 4
∫

x1,x2,y,z

[
d

dm
gx1x2gyzgx1zg

2
x2z

g(x1y)
][

R′′′
x1

R′′′
x2

R′′′′
z − R′′′(0+)2R′′′′(0+)

]
R′′

x

+
∫

x1,x2,y,z

[
d

dm
g2

x1z
g2

x2z
gx1ygx2y

][
R′′′

x1
R′′′

x2
R′′′′

z − R′′′(0+)2R′′′′(0+)
]

+ 2
∫

x,y1,y2,z

[
d

dm
g2

xzg
2
y1z

gy2zgy2x

]
R′′′

x R′′
y1
R′′

y2
R(5)

z

− 1
2I1

∫
y1,y2,z

[
d

dm
g2

y1z
g2

y2z

]
R′′

y1
R′′

y2

[
3R′′′′

z
2 + 4R′′′

z R(5)
z +R′′

zR
(6)
z

]

+ 1
6

∫
y1,y2,y3,z

[
d

dm
g2

y1z
g2

y2z
g2

y3z

]
R′′

y1
R′′

y2
R′′

y3
R(6)

z

+
∫

x1,x2,y1,y2

[
d

dm
g2

x1x2
gx1y1gx1y2gx2y1gx2y2

]
R′′′′

x1
R′′′′

x2
R′′

y1
R′′

y2

+ 1
2

∫ [
d

dm
gx1x2gx3x4gx1x3gx1x4gx2x3gx2x4

]

x1,x2,x3,x4
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×
{[

R′′′
x1

R′′′
x2

− R′′′(0+)2
][

R′′′
x3

R′′′
x4

− R′′′(0+)2
]
− R′′′(0+)4

}
+

∫
x,y

[
d

dm
g2

xy

]
R′′

x

{
(I 2

1 − IA)R′′′′
x

[
R′′′

x
2 − R′′′(0+)2

]

+ (5I 2
1 − 4IA)

[
R′′′

x
2
R′′′′

x − R′′′(0+)2R′′′(0+)
]
+ (3I 2

1 − 2IA)R′′
xR

′′′′
x

2

+ (4I 2
1 − 2IA)R′′

xR
′′′
x R(5)

x + 1
2I 2

1R′′
x

2
R(6)

x

}
. (5.48)

Here we once again introduced shorthand notations gxy := g(x, y) and Rx := R(u(x)) except 
for x = 0+ and likewise for derivatives of R.

Inserting a constant field and dividing by Ld gives the 3-loop contribution to the β-function

β3loop(u)

= (
4İl + İm − 6I1İA + (5I 2

1 − 4IA)İ1
)[

R′′′(u)2R′′′′(u) − R′′′(0+)2R′′′′(0+)
]
R′′(u)

+ [
İj − 2IAİ1

]
R′′′′(u)2R′′(u)2 (5.49)

+ 1

2

(
I 2

1 İ1 − 2I1İA + İm + İi

)[
R′′′(u)2 − R′′′(0+)2

]2 − 1

2
İiR

′′′(0+)4 +O(ε5)

with the following integrals

I1 =
∫
p

g(p)2 (5.50)

IA =
∫

p1,p2

g(p1)g(p2)g(p1 + p2)
2

Im =
∫

p1,p2,p3

g(p1)g(p2)g(p1 + p2 + p3)g(p3)g(p1 + p2)
2

Il =
∫

p1,p2,p3

g(p1)g(p2)g(p1 + p2)g(p3)g(p1 + p2 + p3)
2

Ij =
∫

p1,p2,p3

g(p1)g(p2)g(p3)
2g(p1 + p2 + p3)

2

Ii =
∫

p1,p2,p3

g(p1)g(p2)g(p3)g(p1 + p3)g(p2 + p3)g(p1 − p2)

which are calculated in appendix A. It turns out that the combinations occurring in Eq. (5.49) are 
finite for ε → 0, so our counting of orders in ε is consistent, and the theory is 3-loop renormal-
izable. Due to gauge invariance we can add any scale-dependent function to R(u) that does not
depend on the fields. In this way we can drop all constants from the β-function. The constants in 
Eq. (5.49) arise directly from Eq. (5.48). In the derivation of the latter we neglected gauge terms 
in S(3) and S(4), so these constants are arbitrary.

Assuming non-crossing configurations, that is, using Eq. (5.28) for taking limits ua −ub → 0, 
allows us to derive all anomalous terms in the β-function without ambiguities. With this assump-
tion, the ε-expansion is a straightforward expansion of the exact hierarchy of flow equations for 
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the �-cumulants in powers of the effective local disorder distribution function R(u). Presumably, 
this will work to all orders in ε.

Crossing configurations could not be treated and are an open problem. It is doubtful that the 
standard ε-expansion can be applied. This is because R(u) and all its derivatives are not a small 
parameter suitable for an expansion if u = 0 cannot be avoided.

In order to make contact with the result obtained by an alternative method later in Section 6, 
we rescale

R(u) = 1

εI1
m−4ζ R̃(umζ ) , (5.51)

where ζ is the roughness exponent. The rescaled function R̃ still depends on the RG scale m and 
satisfies the RG equation to 3-loop order given in Eq. (3.1).

5.6. 2-point correlation function

The expressions obtained above allow us to extract the non-local part, relevant to evaluate the 
full 2-point correlation function [24]. The latter is obtained as follows: The Fourier transform of 
Eq. (5.20) reads

〈u(x)u(y)〉V = T g(x, y) −
∫

z,z′
g(x, z)g(y, z′)R′′[0+](z, z′) . (5.52)

Because of the limit n → 0 in Eq. (5.20), where n is the number of replica fields, this is an exact 
expression; in particular, there are no contributions of three- or higher-replica terms to the 2-point 
function. As in Sec. 5, the expression R′′[0+](z, z′) denotes the second functional derivative of 
R[u] with respect to u(z) and u(z′) that is evaluated in a weak limit u(x) ≈ const. → 0. A precise 
definition of the weak limit is given in Eq. (5.28).

For the expansion in the renormalized local disorder function R(u) with a constant field u we 
use that

R′′[0+](z, z′) = R′′(0+)δ(z − z′) + R̃′′[0+](z, z′) , (5.53)

where the non-local part R̃′′[0+](z, z′) has to be expanded to 2-loop order, like in the derivation 
of the 3-loop β-function. Taking two derivatives of Eq. (5.39), evaluated at a constant field u, 
and sending u → 0+ or u → 0− we find

R̃′′[0+](z1, z2) = δz1z2

[
− I1R

′′′(0+)2 + (5I 2
1 − 4IA)R′′′(0+)2R′′′′(0+)

]
+ g(z1, z2)

2
[
R′′′(0+)2 − 6I1R

′′′(0+)2R′′′′(0+)
]

+ 2g(z1, z2)R
′′′(0+)2R′′′′(0+)

∫
x

g(x, z1)g(x, z2)
[
g(x, z1) + g(x, z2)

]

+ R′′′(0+)2R′′′′(0+)

∫
x

g(x, z1)
2g(x, z2)

2. (5.54)
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6. Effective action and β-function via field theory

6.1. Calculation using the sloop elimination method

Here we discuss a different way to do the contractions, using “excluded replicas”, which will 
finally lead to a rather efficient algorithm for calculating the anomalous terms.

We start by a 1-loop diagram involving two disorder vertices, after having done one Wick-
contraction. For simplicity of notation we are not writing space-indices and momentum integrals, 
which are unimportant for the following discussion.

= 1

2T 3

∑
abc

R′(ua − ub)R
′(ua − uc) . (6.1)

At the next step, the following contractions are possible (restoring the integral)

+ − −

= 1

2T 2

[∑
ab

R′′(ua − ub)
2 +

∑
abc

R′′(ua − ub)R
′′(ua − uc)

− 2
∑
ab

R′′(0)R′′(ua − ub)

]
I1. (6.2)

The second term is a 3-replica contribution (contribution to the third cumulant of the disorder), 
thus not of interest to us. The correction to the disorder at 1-loop order therefore consists of the 
first and last term, equivalent to the first and last two diagrams,

δ(1)R(u) =
[

1

2
R′′(u)2 − R′′(u)R′′(0)

]
I1 . (6.3)

This is equivalent to the result obtained in Eq. (5.26).
An alternative approach consists in remarking that in Eq. (6.1) the terms a = b, and a = c

could be dropped, since they are constants, thus will not be contracted in the next step. We thus 
start from

= 1

2T 3

∑
b �=a �=c

R′(ua − ub)R
′(ua − uc) , (6.4)

which after one Wick-contraction leads to

+

= 1

2T 2

⎡
⎣∑

a �=b

R′′(ua − ub)
2 +

∑
b �=a �=c

R′′(ua − ub)R
′′(ua − uc)

⎤
⎦ I1

= 1

2T 2

[∑
ab

R′′(ua − ub)
2(1 − δab)

+
∑

R′′(ua − ub)R
′′(ua − uc)(1 − δab)(1 − δac)

]
I1
abc



558 K.J. Wiese et al. / Nuclear Physics B 932 (2018) 540–588
= 1

2T 2

[∑
ab

[
R′′(ua − ub)

2 − 2R′′(ua − ub)R
′′(0)

]

+
∑
abc

R′′(ua − ub)R
′′(ua − uc)

]
I1 . (6.5)

The 2-replica term (the double sum) is, as expected, the same result as obtained in Eq. (6.2). 
While the second line contains only excluded replica sums, there can not be any ambiguity. The 
latter may only appear in the ensuing projection onto non-excluded replica sums. This is indeed 
the case for the hat diagram ∼ R′′(u)R′′′(0+)2, as the reader is invited to check on his own, 
starting from∑

a,b

δ
(2)
A R(ua − ub)

=
[∑

a �=b

R′′(ua − ub)(R
′′′(ua − ub))

2 +
∑

a �=b,a �=c

R′′(ua − ub)R
′′′(ua − ub)R

′′′(ua − uc)

−1

2

∑
a �=b,a �=c,b �=c

R′′(ua − ub)R
′′′(ua − uc)R

′′′(ub − uc)

+3

2

∑
a �=b,a �=c

R′′(ua − ub)R
′′′(ua − uc)

2

+1

2

∑
a �=b,a �=c,a �=d

R′′(ua − ub)R
′′′(ua − uc)R

′′′(ua − ud)
]
IA . (6.6)

We will therefore in the following present an improved projection method, which we have termed 
the “sloop-elimination” method. (The name may be thought of as “super”-partner of a normal 
loop, thus sloop, which cancels part of it.)

The idea of the method is very simple. Let us consider the second term on the second line 
of Eq. (6.2). It is a three-replica term proportional to the temperature. In a T = 0 theory such a 
diagram should not appear, thus it can identically be set to zero:∑

abc

= 1

2T 2

∑
abc

R′′(ua − ub)R
′′(ua − uc)I1 ≡ 0 . (6.7)

Projecting such terms to zero at any stage of further contractions is very natural in our present 
calculation (and also e.g. in the exact RG approach, where terms are constructed recursively 
and such forbidden terms must be projected out). It is valid only when (i) the summations over 
replicas are free (ii) the term inside the sum is non-ambiguous. These conditions are met for 
any diagram with sloops, provided the vertices have at most two derivatives. (One can in fact 
start from vertices which either have no derivative or exactly two.) Subtracting this term from 
Eq. (6.5) immediately yields the result (6.3).

While this could also have been done directly, let us illustrate the power of the procedure on 
an example. We want to contract the expression (6.7) with a third vertex R

0 =
∑
abc

∑
de

R(ud −ue) ≡ 1

T 4

∑
a �=b,a �=c,d �=e

R′′(ua −ub)R
′′(ua −uc)R(ud −ue) ,

(6.8)
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where we have already dropped constant terms which will disappear after the contractions. Also 
note that implicitly here and in the following the vertices are at points x, y, z in that order. We 
will contract the third vertex twice, once with the first and once with the second, i.e. look at the 
term proportional to IA = ∫

x,y,z
g(x − y)2g(x − z)g(y − z).

Performing the first contraction between points x and z yields

1

T 3

[ ∑
a �=b,a �=c,a �=e

R′′′(ua − ub)R
′′(ua − uc)R

′(ua − ue)

−
∑

a �=b,a �=c,b �=e

R′′′(ua − ub)R
′′(ua − uc)R

′(ub − ue)
]

≡ 0 . (6.9)

Similarly, the second contraction yields (with the standard combinatorial factor of 1/2)

1

T 2

[1

2

∑
a �=b,a �=c,a �=e

R′′′(ua − ub)R
′′′(ua − uc)R

′′(ua − ue)

+
∑

a �=b,a �=c

R′′′(ua − ub)R
′′′(ua − uc)R

′′(ua − uc)

+1

2

∑
a �=b,b �=e

R′′′(ua − ub)R
′′′(ua − ub)R

′′(ua − ue)

−1

2

∑
a �=b,a �=c,b �=c

R′′′(ua − ub)R
′′′(ua − uc)R

′′(ua − uc)
]
IA ≡ 0 . (6.10)

This non-trivial identity tells us that the sum of all the terms (or diagrams) thus generated upon 
contractions must vanish. Stated differently: A sloop, as (6.7) as well as the sum of all its descen-
dents vanishes. Note that this is not true for each single term, but only for the sum.

A property that we request from a proper p-replica term is that upon one self contraction 
it gives a (p − 1)-replica term. It may also give T times a p-replica term (a sloop) but this 
is zero at T = 0, so we can continue to contract. Thus we have generated several non-trivial 
projection identities. The starting one is that the 2-replica part of (6.7) is zero, since (6.7) is a 
proper 3-replica term. This is what is meant by the symbol “≡” above and the last identity is the 
one we now use.

Indeed compare (6.10) with (6.6). One notices that all terms apart from the first in (6.6) appear 
in (6.10). They also have the same relative coefficients, apart from the third one of (6.6). Thus 
one can use (6.10) to simplify (6.6):∑

a,b

δ
(2)
A R(ua − ub) =

[∑
a �=b

R′′(ua − ub)R
′′′(ua − ub)

2

+
∑

a �=b,a �=c

R′′(ua − ub)R
′′′(ua − uc)

2
]
IA . (6.11)

The function R′′′(u)2, which appears in the last term, is continuous at u = 0. It is thus obvious 
how to rewrite this expression using free summations and extract the 2-replica part

δ
(2)
A R(u) =

[(
R′′(u) − R′′(0)

)
R′′′(u)2 − R′′′(0+)2R′′(u)

]
IA . (6.12)

This coincides with the contribution of diagram A in the ERG approach, see the second term of 
Eq. (5.37). We can write diagrammatically the subtraction that has been performed as
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Fig. 1. Diagrams at 3-loop order (without insertion of lower order counter-terms).

δ
(2)
A R = − , (6.13)

where the loop with the dashed line represents the sub-diagram with the sloop, i.e. the term (6.10)
(with in fact the same global coefficient). The idea is that subtracting sloops is allowed since they 
vanish. The advantage of the method is that all intermediate results are uniquely defined.

There are other possible identities, which are descendants of other sloops. For instance a 
triangular sloop gives, by a similar calculation:

= R′′(0)
∑
a �=b

R′′′(ua − ub)
2 +

∑
a �=b,a �=c

R′′(0)R′′′(ua − ub)R
′′′(ua − uc)

+
∑

a �=b,b �=c

R′′(ub − uc)R
′′′(ua − ub)

2

+
∑

a �=c,b �=c,c �=d

R′′′(ua − uc)R
′′′(ub − uc)R

′′(uc − ud) . (6.14)

This however does not prove useful to simplify δ(2)
A R.

Remains to calculate the 3-loop diagrams, shown on Fig. 1. This is achieved in appendix C. 
Since the above method generates a large number of identities, one can wonder whether they 
are all compatible. We have checked that this is indeed so, but we have not attempted a general 
proof.

6.2. The effective action up to 3-loop order

Using the sloop elimination method exposed in the preceding section, we have calculated all 
diagrams up to 3-loop order. They are presented graphically on Fig. 1, and given below. The 
expressions intervening in the sloop-projection algorithm are collected in appendix C. Here we 
give the final result for the effective action, before discussing how to obtain the β-function in the 
next section.

The effective dimensionfull renormalized disorder to 3-loop order reads

Reff(u) = R(u) + δ(1)R(u) + δ(2)R(u) + δ(3)R(u) + . . . (6.15)

The 1-loop term is, noting R′′
u := R′′(u), R′′

0 := R′′(0), R′′′
0 := R′′′(0+) etc.

δ(1)R(u) = 1 [
R′′

u
2 − R′′

uR′′
0

]
I1 . (6.16)
2
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The 2-loop term is

δ(2)R(u) =
[
R′′

uR′′′
u

2 − R′′
0R′′′

u
2 − R′′

uR′′′
0

2
]
IA + 1

2

[
(R′′

u − R′′
0 )2R′′′′

u

]
IB . (6.17)

The 3-loop terms read

δ(3)R(u) = (h) + (i) + (j) + (k) + (l) + (m) + (n) + (o) + (p) + (q) (6.18)

(h) = 1

2
(R′′

u − R′′
0 )2R′′′′

u
2
Ih (6.19)

(i) = 1

2

(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)

Ii (6.20)

(j) = (R′′
u − R′′

0 )2R′′′′
u

2
Ij (6.21)

(k) = 0 (6.22)

(l) = 4
(
R′′

uR′′′
u

2
R′′′′

u − R′′
0R′′′

u
2
R′′′′

u − R′′
uR′′′

0
2
R′′′′

0

)
Il (6.23)

(m) = 1

2

(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)

Im (6.24)

(n) = 1

6

(
R′′

u − R′′
0

)3
R(6)

u In (6.25)

(o) =
(
R′′

uR′′′′
u R′′′

u
2 − R′′

0R′′′′
u R′′′

u
2 − R′′

uR′′′
0

2
R′′′′

0

)
Io (6.26)

(p) = 2(R′′
u − R′′

0 )2R′′′
u R(5)

u Ip (6.27)

(q) = (R′′
u − R′′

0 )R′′′′
u

(
R′′′

u
2 − R′′′

0
2
)

Iq . (6.28)

6.3. Derivation of the RG-equation to 3-loop order

Let us now discuss in general the strategy to renormalize theories, whose interaction is not a 
single coupling-constant, but a whole function, here the disorder-correlator R(u). We denote by 
R0 the bare disorder – this is the object in which perturbation theory is carried out – and by R
the renormalized disorder, i.e. the corresponding term in the effective action �.

We define the dimensionless bilinear 1-loop, trilinear 2-loop and quadrilinear 3-loop functions

δ(1)(R,R) := δ(1)R (6.29)

δ(2)(R,R,R) := δ(2)R (6.30)

δ(3)(R,R,R,R) := δ(3)R , (6.31)

where if all arguments are the same, we only give this one argument, e.g. δ(1)(R) = δ(1)(R, R), 
δ(2)(R) = δ(2)(R, R, R) and δ(3)(R) = δ(3)(R, R, R, R). For different arguments we use the mul-
tilinear formulas

f (x, y) := 1

2

[
f (x + y) − f (x) − f (y)

]
(6.32)

g(x, y, z) := 1

6

[
g(x + y + z) − g(x + y) − g(y + z)

−g(x + z) + g(x) + g(y) + g(z)
]

(6.33)
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h(w,x, y, z) := 1

24

[
h(w + x + y + z) − h(w + x + y) − h(w + x + z) − h(w + y + z)

−h(x + y + z) + h(w + x) + h(w + y) + h(w + z) + h(x + y)

+h(x + z) + h(y + z) − h(w) − h(x) − h(y) − h(z)
]

. (6.34)

Schematically, the renormalized disorder is

R = R0 + δ(1)R(R0) + δ(2)R(R0) + δ(3)R(R0) +O(R5
0) , (6.35)

calculated in the preceding section (where we had not explicitly written an index 0 to indicate 
the bare disorder). The inversion of relation (6.35) is

R0 = R − δ(1)(R) − δ(2)(R) + 2δ(1)(R, δ(1)(R))

−δ(3)(R) + 3δ(2)(R,R, δ(1)(R)) + 2δ(1)(R, δ(2)(R))

−δ(1)(δ(1)(R)) − 4δ(1)(R, δ(1)(R, δ(1)(R))) +O(R5) . (6.36)

Since an n-loop integral scales like m−nε the β-function is directly read off from (6.35),

−m∂mR
R0

= ε
[
δ(1)(R0) + 2δ(2)(R0) + 3δ(3)(R0)

]
+O(R5

0) . (6.37)

However, we need the β-function in terms of R, for which we replace R0 by R, using Eq. (6.36),

−m∂mR
R0

= ε
[
δ(1)(R) + 2δ(2)(R) − 2δ(1)(R, δ(1)(R))

+3δ(3)(R) − 6δ(2)(R,R, δ(1)(R)) − 2δ(1)(R, δ(2)(R))

+δ(1)(δ(1)(R), δ(1)(R)) + 4δ(1)(R, δ(1)(R, δ(1)(R)))
]

+O(R5) . (6.38)

Using the results from Eqs. (6.16), (6.17) and (6.18), this is, printing one diagram and its counter-
terms (as dictated by the renormalization group R-operation) per line:

−m∂mRu =
(

1
2R′′

u
2 − R′′

uR′′
0

)
(εI1)

+
(
R′′

uR′′′
u

2 − R′′
0R′′′

u
2 − R′′

uR′′′
0

2
)

ε
(

2IA − I 2
1

)
+
(
(R′′

u − R′′
0 )2R′′′′

u

)
ε
(
IB − I 2

1

)
+(R′′

u − R′′
0 )2(R′′′′

u )2ε
( 3

2Ih − 6I1IB + 9
2I 3

1

)
+ 3

2

(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)
(εIi)

+(R′′
u − R′′

0 )2R′′′′
u

2
ε
(
3Ij − 2IAI1

)
+
(
R′′

uR′′′
u

2
R′′′′

u − R′′
0R′′′

u
2
R′′′′

u − R′′
uR′′′

0
2
R′′′′

0

)
ε
(

12Il − 12I1IA + 4I 3
1

)
+
(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)

ε
( 3

2Im + 1
2I 3

1 − 2I1IA

)
+ (

R′′
u − R′′

0

)3
R(6)

u ε 1
2

(
In − 3I1IB + 2I 3

1

)
+
(
R′′

uR′′′′
u R′′′

u
2 − R′′

0R′′′′
u R′′′

u
2 − R′′

uR′′′
0

2
R′′′′

0

)
ε(3Io − 4I1IA + I1IB)

+(R′′
u − R′′

0 )2R′′′
u R(5)

u ε6(Ip − I1IA − I1IB + I 3
1 )

+(R′′
u − R′′

0 )R′′′′
u

(
R′′′

u
2 − R′′′

0
2
)

ε(3Iq − 3I1IA − 2I1IB + 2I 3
1 ) . (6.39)
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On this form, one can explicitly check renormalizability. Since we kept the amplitudes of sub-
divergences, as for instance that of the 2-loop bubble-chain diagram, one can exactly see, where 
these terms come from. Actually the form given above is unique, even though several diagrams 
have the same functional dependence on R.

Let us now proceed to simplify the above equation. In order to do so, we have to choose a 
renormalization-scheme. We calculate the 3 leading terms in the ε-expansion of each diagram, 
i.e. up to order 1/ε for the 3-loop diagrams, up to order ε0 for the 2-loop diagrams and up to 
order ε for the 1-loop diagram. In order to have the final result as simple as possible, we absorb a 
factor of εI1 into R. This means that an n-loop integral has to be normalized by (εI1)

n. It is with 
this normalization that the amplitudes are given in appendix A. The advantage of this procedure 
is that integrals take the most simple form, and there are no spurious terms like ψ(1) or ζ(2). By 
this way, the 1-loop diagram is automatically subtracted completely and one never has to worry 
about its finite parts. However, we have a choice of how to subtract diagrams at 2-loop order. 
The most common choice is to subtract the divergent part only. The advantage of this procedure 
is that the 2-loop β-function takes the simplest form, with the combination of ε(2IA − I 2

1 ) in 
the second line of (6.39) replaced by 1

2 . The disadvantage is that then diagrams like (q) do not 
vanish, but have an amplitude proportional to (see last line of (6.39)) Iq − I1IA (since IB = I 2

1 , 
and in our normalizations this is exact in any subtraction scheme). Now if at second order, we 
only subtract the diverging part of IA this combination becomes

Iq − I1 × diverging part of IA = I1 × finite part of IA =O
(

1

ε

)
. (6.40)

We therefore chose to always subtract the diagram exactly. At order 3 at which we are working 
here, this means that we have to keep the finite part of IA. This is sufficient, since the 1-loop 
integral is normalized to have no finite part, and since from the 3-loop integrals one only needs 
the diverging part anyway. Let us now use that

IB = I 2
I

Ih = In = I 3
1

Ip = Iq = I1IA (6.41)

to restate the β-function:

−m∂mRu =
(

1
2R′′

u
2 − R′′

uR′′
0

)
(εI1)

+
(
R′′

uR′′′
u

2 − R′′
0R′′′

u
2 − R′′

uR′′′
0

2
)

ε
(

2IA − I 2
1

)
+ 3

2

(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)
(εIi)

+(R′′
u − R′′

0 )2R′′′′
u

2
ε
(
3Ij − 2IAI1

)
+
(
R′′

uR′′′
u

2
R′′′′

u − R′′
0R′′′

u
2
R′′′′

u − R′′
uR′′′

0
2
R′′′′

0

)
ε
(

12Il − 12I1IA + 4I 3
1

)
+
(
R′′′

u
4 − 2R′′′

u
2
R′′′

0
2
)

ε
( 3

2Im + 1
2I 3

1 − 2I1IA

)
+
(
R′′

uR′′′′
u R′′′

u
2 − R′′

0R′′′′
u R′′′

u
2 − R′′

uR′′′
0

2
R′′′′

0

)
ε(3Io − 4I1IA + I 3

1 ) . (6.42)

Finally, we go to the dimensionless renormalized disorder R̃, defined in Eq. (5.51) by
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R(u) =: m−4ζ

εI1
R̃(umζ ) ≡ mε−4ζ

εĨ1
R̃(umζ ) (6.43)

and group together alike terms. This yields our final expression for the 3-loop β-function given 
in Eq. (3.1). The coefficients C1 to C4, already given in Eqs. (3.2)–(3.5) are constructed from the 
diagrams via

C1 = 2IA

(εI1)2 − 1

ε2 − 1

2ε
= 9 + 4π2 − 6ψ ′( 1

3 )

36
= −0.3359768096723647 (6.44)

C2 = ε

(
3

2
I1 + 3

2
Im + 1

2
I 3

1 − 2I1IA

)
(εI1)

−3

= 3

4
ζ(3) + π2

18
− ψ ′( 1

3 )

12
= 0.6085542725335131 (6.45)

C3 = ε(3Ij − 2I1IA)(εI1)
−3 = ψ ′( 1

3 )

6
− π2

9
= 0.5859768096723648 (6.46)

C4 = ε
(

12Il − 16I1IA + 5I 3
1 + 3Io

)
(εI1)

−3

= 2 + π2

9
− ψ ′( 1

3 )

6
= 1.4140231903276352 . (6.47)

These constants are closely related to each other analytically.

7. Reparametrization invariance

It is known in standard field theory, that one can perform a change of variables, and thus 
formally change the β-function, while all observables remain unchanged. In the context of a func-
tional RG, this reparametrization invariance is much larger. The function R(u) can be changed 
into an arbitrary functional of f [R]. The most useful such reparametrizations involve function-
als f [R], which have the same structure as corrections to R, obtained perturbatively. Especially, 
when the field u has dimension ζ , and R times the 1-loop integral has dimension −4ζ , this 
means that on dimensional grounds for each additional power of R in f [R], there should be 4 
derivatives. Also we do not want R(u) to have different analyticity properties, i.e. if R(u) has 
a r.h.s. Taylor-expansion with a missing linear term (absence of a super-cusp) then f [R] should 
have the same properties. The most suggestive such functional is the 1-loop contribution itself, 
which we study now.

The 2-loop RG-equation for the renamed disorder correlator R̃u reads

−m∂mR̃u ≡ β[R̃](u)

= (ε − 4ζ ) R̃u + uζ R̃′
u + 1

2
R̃′′

u
2 − R̃′′

uR̃′′
0 + 1

2

(
R̃′′

uR̃′′′
u

2 − R̃′′
0 R̃′′′

u
2 − R̃′′

uR̃′′′
0

2
)

.

(7.1)

Consider the following change of variables

R̃u ≡ f [R](u) = Ru − λ

(
1
R′′

u
2 − R′′

uR′′
0

)
+O(R3) . (7.2)
2
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Varying m yields

−m∂mR̃u = −m∂m

[
Ru − λ

(
1

2
R′′

u
2 − R′′

uR′′
0

)]
. (7.3)

This is equivalent to stating that

β[R̃](u) = β[R](u) − λ
{
R′′(u)β[R]′′(u) − R′′(0)β[R]′′(u) − R′′(u)β[R]′′(0)

}
. (7.4)

Solving this equation perturbatively yields the β-function for Ru

β[R](u) = (ε − 4ζ )Ru + ζuR′
u +

[
1

2
R′′

u
2 − R′′

uR′′
0

]
(1 + λε)

+1

2

(
R′′

uR′′′
u

2 − R′′
0R′′′

u
2 − R′′

uR′′′
0

2
)

+O(ε4) (7.5)

This equations tells us nothing more than that adding a coefficient of order ε to the second-
order term does not change universal results at 2-loop order. (The reader may want to verify this 
surprising result for the slope of the β-function at 2-loop order in a scalar field-theory.)

Suppose now that β[R](u) = 0. Then this also holds for its derivatives and multiples thereof. 
Therefore, we can add to the fixed-point equation of the β-function terms of the form

R′′(u)β[R]′′(u) − R′′(0)β[R]′′(u) − R′′(u)β[R]′′(0) . (7.6)

Note that these are the same terms, which appeared in equation (7.4).
In the following, we chose ζ = 0, since this yields the simplest relations. We will comment 

on the more general case later. Expression (7.6) then reads

ε
(
R′′

u
2 − 2R′′

uR′′
0

)
+

(
R′′

uR′′′
u

2 − R′′
0R′′′

u
2 − R′′

uR′′′
0

2
)

+ (
R′′

u − R′′
0

)2
R′′′′(u) . (7.7)

Adding −1/2 times (7.7) to the β-function (7.5) and choosing there λ = −1/2 to eliminate the 
additional 1-loop order term gives

0 = εRu +
[

1

2
R′′

u
2 − R′′

uR′′
0

]
− 1

2

(
R′′

u − R′′
0

)2
R′′′′(u) +O(ε4) . (7.8)

In this equation, we have traded the term proportional to R′′R′′′2 for a term of the form R′′′′R′′2. 
Since the latter is uniquely defined, this allows again to fix the anomalous terms associated to 
R′′R′′′2.

It would be satisfactory, to have a similar result for the case ζ �= 0. The above construction 
however yields terms of the form(

ζuR′
u

)′′
R′′

u (7.9)

plus the respective anomalous terms. Although one can of course solve differential equations 
involving these terms, and thus e.g. check the numerical solution of the fixed point equation to 
be discussed later, we have found no way to eliminate these terms, without generating even more 
“unusual” ones. Our search comprised rescalings of Ru, of the field u, adding uβ[R]′(u) to both 
the variable transformation and the β-function itself, and adding multiples of the β-function. 
On the other hand, one can first write the β-function without rescaling, then do the non-trivial 
transformations given above, and finally perform the rescaling. This will simply give the standard 
rescaling terms.
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Let us also comment on the power of reparametrization invariance at 3-loop order. While it 
proves to be a powerful tool for many diagrams, it is at least not applicable to fix all anomalous 
terms. This can be anticipated from the difference between diagrams (o) and (q) (see appendices 
C.3.8 and C.3.10), which is proportional to

(o) − (q) ∼ R′′′
0

2
(
R′′

uR(4)
u − R′′

0R(4)
u − R′′

uR
(4)
0

)
. (7.10)

While (o) and (q) have the same normal terms, their difference is proportional to R′′′(0+)2, thus 
the anomalous terms are different.

8. Conclusions

In this article, we have obtained the functional renormalization-group flow equations for the 
equilibrium properties of elastic manifolds in quenched disorder up to 3-loop order. The analysis 
of these findings will be given in a separate publication [24]: There we will extract the roughness 
exponent ζ , obtain the fixed-point functions R to 3-loop order, and give the correction-to-scaling 
exponent ω.

An interesting question is how the formalism derived here can be extended to N > 1 compo-
nents. It had been shown in Ref. [16] that there is an ambiguity in the 2-point function already at 
1-loop order. While this allowed the authors of [16] to still conclude on the β-function at 2-loop 
order, the problem becomes more severe at 3-loop order, and despite considerable efforts in this 
direction we have not been able to lift the ambiguities in some of the graphs.
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Appendix A. Loop integrals for all diagrams up to 3 loops

A.1. General formulae, strategy of calculation, and conventions

We make use of the Schwinger parameterization

1

An
= 1

�(n)

∞∫
0

du un−1e−uA , (A.1)

and the d-dimensional momentum integration∫
ddp

(2π)d
e−ap2 ≡

∫
p

e−ap2 = 1

ad/2

∫
p

e−p2 = 1

ad/2

1

(4π)d/2 . (A.2)

In order to avoid cumbersome appearances of factors like 1
(4π)d/2 , we will write explicitly the last 

integral, and will only calculate ratios compared to the leading 1-loop diagram I1, given in the 
next section.

We will frequently use the decomposition trick

1

k2 + 1
= 1

k2 − 1

k2(k2 + 1)
, (A.3)
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which works well for dimension d ≤ 4. The reason for the utility of this decomposition is that it 
allows one to replace the massive propagator by a massless one, which is easier to integrate over, 
and a term converging faster for large k, which finally renders the integration finite.

Special functions which appear are

ψ(x) := �′(x)

�(x)
, (A.4)

ψ ′(x) = d

dx
ψ(x) . (A.5)

A.2. The 1-loop integral I1

The integral I1 is defined as

I1 := =
∫
k

1

(k2 + m2)2 , (A.6)

and is calculated as follows:

I1 =
∫
k

∞∫
0

dα α e−α(k2+m2)

=
⎛
⎝∫

k

e−k2

⎞
⎠ ∞∫

0

dα α1− d
2 e−αm2

=
⎛
⎝∫

k

e−k2

⎞
⎠m−ε�

(ε

2

)
. (A.7)

We will also denote the dimensionless integral

Ĩ1 = I1

∣∣∣
m=1

. (A.8)

This gives us the normalization-constant for higher-loop calculations

(εI1) = m−ε

⎛
⎝∫

k

e−k2

⎞
⎠ ε�

(ε

2

)
= m−ε

⎛
⎝∫

k

e−k2

⎞
⎠2�

(
1 + ε

2

)
. (A.9)

A.3. 2-loop diagram IA

The non-trivial 2-loop integral can be written as

IA = =
∫

p1,p2

g(p1)g(p2)
2g(p1 + p2) = �(ε)

m2ε
J̃A , (A.10)

with
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J̃A =
∞∫

0

dx dy fA(x, y) = J1 + J2 + J3 (A.11)

fA(x, y) = y

(x + y + xy)2− ε
2 (1 + x + y)ε

(A.12)

J1 =
1∫

0

dy

∞∫
0

dxfA(x, y) (A.13)

J2 =
∞∫

1

dy

∞∫
0

dx
1

(1 + x)2− ε
2

1

y1+ ε
2

= 4

(2 − ε)ε
(A.14)

J3 =
∞∫

1

dy

∞∫
0

dx

[
fA(x, y) − 1

(1 + x)2− ε
2

1

y1+ ε
2

]
. (A.15)

The integrals J1 and I1 were solved by expanding the integrand in ε to order ε

IA

(εI1)2 = 1

2ε2 + 1

4ε
+ 1

72

[
9 + 4π2 − 6ψ ′( 1

3 )
]
+O(ε) . (A.16)

The result agrees with the one obtained by the subtraction method.

A.4. 2-loop integral IB

The trivial 2-loop diagram is

IB := = I 2
1 . (A.17)

A.5. Ii

Ii = (A.18)

Ii

(εI1)3 = 1

(εI1)3

∫
p1,p2,p3

g(p1)g(p2)g(p3)g(p1 + p3)g(p2 + p3)g(p1 − p2)

= ζ(3)

2ε
+O(ε) . (A.19)

A.6. Ij

Ij = (A.20)
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Ij

(εI1)3 = 1

(εI1)3

∫
p1,p2,p3

g(p1)g(p2)g(p3)
2g(p1 + p2 + p3)

2 =
3∑

i=1

I
j
i (A.21)

I
j

1 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p3)
2g(p1 + p2 + p3)

2 = 1

3ε3 + 1

6ε2 + 1

12ε
+O(1)

(A.22)

I
j
2 = −2

1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p1)g(p3)
2g(p1 + p2 + p3)

2 = O(1) (A.23)

I
j
3 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p1)g(p2)g(p3)
2g(p1 + p2 + p3)

2 = O(1) . (A.24)

A.7. Il

Il = (A.25)

Il

(εI1)3 = 1

(εI1)3

∫
p1,p2,p3

g(p1)g(p2)g(p1 + p2)g(p3)g(p1 + p2 + p3)
2 =

4∑
i=1

I l
i (A.26)

I l
1 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2)2

g(p3)g(p1 + p2 + p3)
2

= 1

6ε3 + 1

4ε2 + 7

24ε
+O(1) (A.27)

I l
2 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2)2

g(p1 + p2)g(p3)g(p1 + p2 + p3)
2

= −4π2 + 3ψ ′( 1
3 ) − 3ψ ′( 5

6 )

216ε
+O(1) = Im

2 +O(1) (A.28)

I l
3 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p2)g(p1 + p2)g(p3)g(p1 + p2 + p3)
2 = O(1) (A.29)

I l
4 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p1)g(p2)g(p1 + p2)g(p3)g(p1 + p2 + p3)
2 = O(1) (A.30)

Il

(εI1)3 = 1

6ε3 + 1

4ε2 + 1

ε

[
−π2

54
+ 7

24
− 1

72

(
ψ ′( 1

3 ) − ψ ′( 5
6 )
)]

. (A.31)

A.8. Im

Im = (A.32)
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Im

(εI1)3 = 1

(εI1)3

∫
p1,p2,p3

g(p1)g(p2)g(p1 + p2 + p3)g(p3)g(p1 + p2)
2 =

4∑
i=1

Im
i (A.33)

Im
1 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

g(p3)g(p1 + p2)
2

= Im
1,1 + Im

1,2 (A.34)

Im
1,1 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

1

p2
3

g(p1 + p2)
2 = 1

3ε3 + 1

3ε2 + 2 + π2

12ε

(A.35)

Im
1,2 = − 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

1

p2
3

g(p3)g(p1 + p2)
2 = − π2

24ε
(A.36)

Im
2 = − 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

g(p1 + p2 + p3)g(p3)g(p1 + p2)
2

= −4π2 + 3ψ ′( 1
3 ) − 3ψ ′( 5

6 )

216ε
+O(1) (A.37)

Im
3 = −2

1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p2)g(p1 + p2 + p3)g(p3)g(p1 + p2)
2

= − π2

12ε
+O(1) . (A.38)

Finally,

Im
4 = 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

g(p1)g(p2)g(p1 + p2 + p3)g(p3)g(p1 + p2)
2

= Im
4,0 + Im

4,1 (A.39)

Im
4,0 = I1(0)

1

(εI1)3

∫
p1,p2

1

p2
1p

2
2

g(p1)g(p2)g(p1 + p2)
2

= 5π2 − 3ψ ′( 1
3 ) + 3ψ ′( 5

6 )

216ε
+O(1) (A.40)

Im
4,1 = 1

(εI1)3

∫
p1,p2

[I1(p1 + p2) − I1(0)] 1

p2
1p

2
2

g(p1)g(p2)g(p1 + p2)
2 = O(1) . (A.41)

All in all

Im

(εI1)3 = 1

3ε3 + 1

3ε2 − 4π2 − 18 + ψ ′( 1
3 ) − ψ ′( 5

6 )

108ε
+O(1)

= 1

3ε3 + 1

3ε2 + 3 + 2π2 − 3ψ ′( 1
3 )

18ε
+O(1) , (A.42)

where two PolyGamma-identities were used
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ψ ′( 1
3 ) + ψ ′( 5

6 ) = 4ψ ′( 2
3 ) (A.43)

ψ ′( 1
3 ) + ψ ′( 2

3 ) = 4π2

3
. (A.44)

Appendix B. Complimentary material for Section 5

B.1. Functional RG equations for S(3) and S(4)

The flow equation of the third �-cumulant in the ERG hierarchy is given by

Ṡ(3)[uabc] =
∫

x1,x2

ġ(x1, x2)

{
−3T S

(3)
110[uabc](x1, x2) + 3

2
S

(4)
1100[uaabc](x1, x2)

}

+
∫

x1,x2,x3,x4

[
d

dm
g(x1, x2)g(x3, x4)

]{
3T

2
R′′[uab](x2, x3)R′′[uac](x4, x1)

+3R′′[uab](x2, x3)
[
S

(3)
110[uaac](x4, x1) − S

(3)
110[uabc](x4, x1)

]}
+

∫
x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]

× {
3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)
}

. (B.1)

We split the flow equation for the fourth �-cumulant

Ṡ(4)[uabcd ] = Ṡ
(4)
1 [uabcd ] + Ṡ

(4)
2 [uabcd ] + Ṡ

(4)
3 [uabcd ] + Ṡ

(4)
4 [uabcd ] (B.2)

into four parts

S
(4)
1 [uabcd ] = 2

∫
x1,x2

ġ(x1, x2)
{
−3T S(4)[uabcd ](x2, x1) + S(5)[uaabcd ](x2, x1)

}
(B.3)

S
(4)
2 [uabcd ] = 6T

∫
x1,x2,x3,x4

[
d

dm
g(x1, x2)g(x3, x4)

]{
R′′[uab](x2, x3)S

(3)
200[uacd ](x4, x1)

}

+ 6
∫

x1,x2,x3,x4

[
d

dm
g(x1, x2)g(x3, x4)

]

×
{
R′′[uab](x2, x3)S

(4)
1100[uaacd ](x4, x1)

−R′′[uab](x2, x3)S
(4)
1100[uabcd ](x4, x1)

+ S
(3)
200[uabc](x2, x3)S

(3)
110[uaad ](x4, x1)

+ S
(3)
110[uabc](x2, x3)S

(3)
110[ubad ](x4, x1)

}
(B.4)

S
(4)
3 [uabcd ] = 4T

∫ [
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]

x1,...,x6
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×
{
R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uad ](x6, x1)

}
+ 6

∫
x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]

×
{

2R′′[uab](x2, x3)R′′[uac](x4, x5)S
(3)
110[uaad ](x6, x1)

− 2R′′[uab](x2, x3)R′′[uac](x4, x5)S
(3)
110[uacd ](x6, x1)

− 2R′′[uac](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd ](x6, x1)

+ 2R′′[ubc](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd ](x6, x1)

+R′′[uab](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd ](x6, x1)

}
(B.5)

S
(4)
4 [uabcd ] = 3

∫
x1,...,x8

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)g(x7, x8)

]

×
{

4R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uad ](x6, x7)R′′[uad ](x8, x1)

+ 2R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[ucd ](x6, x7)R′′[uac](x8, x1)

− 4R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[ucd ](x6, x7)R′′[uad ](x8, x1)

+R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[ucd ](x6, x7)R′′[uad ](x8, x1)
}

(B.6)

B.2. Third �-cumulant S(3) to 3-loop order

In total there are four contributions to the flow of S(3) in 3-loop order

Ṡ(3)[uabc] = d̃

dmg

4∑
i=1

ui[uabc] +O(ε5) , (B.7)

where the first contribution is known from the 2-loop calculation and reads

u1 = 1

2
(A1 + A2 + A3) ∼O(ε3) , (B.8)

where only the local part of R[v] is inserted, so u1 is of order ε3. The second contribution comes 
from inserting the non-local part of R[v] to second order, that is Eq. (5.27), into 1

2 (A1 +A2 +A3).

u2 = u2,1 + u2,2 + u2,3 ∼O(ε4) , (B.9)

where we split the contributions according to different types of integrals. This is not the shortest 
way to write but better comprehensible. The same is done in the contributions from the RS(3)

term

u3 = u3,1 + u3,2 ∼O(ε4) , (B.10)

where u1 was used for S(3) on the right-hand side. Finally

u4 = u4,1 + u4,2 ∼O(ε4) (B.11)

is the feeding term from S(4), where we insert Eq. (5.43).
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Eq. (B.7) integrates to

S(3)[uabc] =
5∑

i=1

u(3),i[uabc] +O(ε5) (B.12)

with the 2-loop result u(3),1[uabc] = u1[uabc] and

u(3),2[uabc] =
m∫
(u2,1 − T ) = −1

2
I1

∫
x1,x2,x3

g(x1, x2)g(x2, x3)g(x3, x1)

×
((

2R′′
ab(x1)

[
R′′

ac(x2) +R′′
bc(x2)

]
+

[
R′′

ac(x1) −R′′
bc(x1)

][
R′′

ac(x2) −R′′
bc(x2)

])

×
[
R′′′′

ab (x3)R′′
ab(x3) + R′′′

ab(x3)
2 − R′′′(0+)2

]
+

(
R′′

ab(x1)R′′
ab(x2) +

[
R′′

ac(x1) +R′′
bc(x1)

][
R′′

ac(x2) +R′′
bc(x2)

])
×

[
R′′′′

ac (x3)R′′
ac(x3) + R′′′′

bc (x3)R′′
bc(x3) + R′′′

ac(x3)
2 + R′′′

bc(x3)
2 − 2R′′′(0+)2

]
+ 2R′′

ab(x1)
[
R′′

ac(x2) −R′′
bc(x2)

][
R′′′′

ac (x3)R′′
ac(x3) − R′′′′

bc (x3)R′′
bc(x3)

+ R′′′
ac(x3)

2 − R′′′
bc(x3)

2
])

(B.13)

u(3),3[uabc] =
m∫
(u2,2 + u3,1) = 1

2

∫
x1,x2,x3,x4

g(x1, x2)g(x1, x4)g(x2, x4)g(x3, x4)
2

×
((

2R′′
ab(x1)

[
R′′

ac(x2) +R′′
bc(x2)

]
+

[
R′′

ac(x1) −R′′
bc(x1)

][
R′′

ac(x2) −R′′
bc(x2)

])
×R′′

ab(x3)R
′′′′
ab (x4)

+
(
R′′

ab(x1)R′′
ab(x2) +

[
R′′

ac(x1) +R′′
bc(x1)

][
R′′

ac(x2) +R′′
bc(x2)

])
×

[
R′′

ac(x3)R
′′′′
ac (x4) +R′′

bc(x3)R
′′′′
bc (x4)

]

+ 2R′′
ab(x1)

[
R′′

ac(x2) −R′′
bc(x2)

][
R′′

ac(x3)R
′′′′
ac (x4) −R′′

bc(x3)R
′′′′
bc (x4)

])
(B.14)

u(3),4[uabc] =
m∫
(u2,3 + u4,2) =

∫
x1,x2,y1,y2

g(y1, y2)
2g(x1, x2)g(x1, y1)g(x2, y2)

×
{{

R′′
ab(x1)

[
R′′

ac(x2) +R′′
bc(x2)

]
+ 1

2

[
R′′

ac(x1) −R′′
bc(x1)

][
R′′

ac(x2) −R′′
bc(x2)

]}

×
[
R′′′

ab(y1)R
′′′
ab(y2) − R′′′(0+)2

]
+ 1 {

R′′
ab(x1)R′′

ab(x2) +
[
R′′

ac(x1) +R′′
bc(x1)

][
R′′

ac(x2) +R′′
bc(x2)

]}

2
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×
[
R′′′

ac(y1)R
′′′
ac(y2) + R′′′

bc(y1)R
′′′
bc(y2) − 2R′′′(0+)2

]

+R′′
ab(x1)

[
R′′

ac(x2) −R′′
bc(x2)

][
R′′′

ac(y1)R
′′′
ac(y2) − R′′′

bc(y1)R
′′′
bc(y2)

]}
(B.15)

u(3),5[uabc] =
m∫
(u3,2 + u4,1)

= 1

2

∫
x1,x2,y1,y2

g(y1, y2)g(x1, y1)g(x1, y2)g(x2, y1)g(x2, y2)

×
{[

R′′
ab(x1)R′′

ab(x2) +R′′
bc(x1)R′′

bc(x2) +R′′
ac(x1)R′′

ac(x2)
]

×
[
R′′′

ab(y1)R
′′′
ac(y2) + R′′′

ac(y1)R
′′′
bc(y2) − R′′′

ab(y1)R
′′′
bc(y2)

]
+ 2R′′

ab(x1)R′′
ac(x2)

[
R′′′

ab(y1)R
′′′
ab(y2) + R′′′

ab(y1)R
′′′
ac(y2) + R′′′

ab(y1)R
′′′
bc(y2)

− R′′′
ac(y1)R

′′′
bc(y2) + R′′′

ac(y1)R
′′′
ac(y2) − R′′′(0+)2

]
+ 2R′′

ab(x1)R′′
bc(x2)

[
R′′′

ab(y1)R
′′′
ab(y2) − R′′′

ab(y1)R
′′′
ac(y2) − R′′′

ab(y1)R
′′′
bc(y2)

− R′′′
ac(y1)R

′′′
bc(y2) + R′′′

bc(y1)R
′′′
bc(y2) − R′′′(0+)2

]
+ 2R′′

ac(x1)R′′
bc(x2)

[
R′′′

bc(y1)R
′′′
bc(y2) − R′′′

ab(y1)R
′′′
ac(y2) + R′′′

ab(y1)R
′′′
bc(y2)

+ R′′′
ac(y1)R

′′′
bc(y2) + R′′′

ac(y1)R
′′′
ac(y2) − R′′′(0+)2

]}
(B.16)

Appendix C. Systematic treatment of diagrams up to 3 loops: sloops and recursive 
construction

We present a systematic procedure to obtain (relatively) simple results for diagrams at up to 3 
loops. The idea is to write the diagram, and then to consider all possible sloops which lead to the 
same diagram. Subtracting them with the right weight leads to results which are much simpler 
than those obtained by trying to reduce expressions term by term. The notation used throughout 
this section is

hab := R′′
ab(1 − δab) , gab := R′′′

ab(1 − δab) , fab := R′′′′
ab (1 − δab) ,

pab := R
(5)
ab (1 − δab) , sab := R

(6)
ab (1 − δab) . (C.1)

We also use h0 := R′′
aa a.s.o. The notation is such that all summations (which are implicit) are 

restricted. An example is

hab :=
∑
ab

hab ≡
∑
a �=b

hab =
∑
ab

R′′
ab −

∑
a

R′′
aa . (C.2)

We will write rather indistinguishably, in a little abuse of notation, R(ua − ub) ≡ Ru ≡ Rab , 
whatever is more convenient or suggestive. Below, we will give all diagrams.
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There is always an additional combinatorial factor. At n-loop order, denote the number of 
propagators between points i and j as ni,j . Further denote the number of symmetries S as NS . 
Then the combinatorial factor for the contribution to R is

Comb =
(

1

2

)n
× 1

NS
×

∏
i,j

1

ni,j ! (C.3)

at n-loop order, written apart from the diagram. We will give this factor at the beginning of each 
diagram with the same conventions as above.

C.1. 1 loop

Here we give the 1-loop diagram. A (closed) dashed line represents a sloop. Comb = 1
2 × 1

2 ×
1
2 .

= 4hab
2 + 4hab hac (C.4)

=
∑
a,b

4R′′
ab R′′

ac = 4h0
2 + 8h0 hab + 4hab hac (C.5)

− = −4h0
2 − 8h0 hab + 4hab

2 = 4
∑
a,b

[
R′′

ab
2 − 2R′′

0 R′′
ab

]
+ const. (C.6)

C.2. 2 loops

C.2.1. The hat-diagram
Comb = 1

22 × 1
2 × 1

2

= 8
(

2g2
ab hab + 3g2

ab hbc − gab gac hbc + 2gac gbc hbc + gac gbc hcd

)
(C.7)

= 8
(
g2

ab hbc − gab gac hbc + 2gac gbc hbc + gac gbc hcd

)
(C.8)

= 8
(
h0 g2

ab + h0 gab gac + g2
ab hbc + gac gbc hcd

)
. (C.9)

The simplest combination is

− = 16g2
ab (hab + hbc) . (C.10)

C.2.2. The bubble-chain
The bubble-chain has Comb = 1

22 × 1
2 × ( 1

2 )2, and reads

= 16fab h2
ab + 32fab hab hbc + 8fac hab hcd + 8fac hbc hcd (C.11)

= 16h0 fab hab + 16h0 fab hbc + 16fbc hab hbc + 8fac hab hcd

+ 8fac hbc hcd . (C.12)
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Now two sloops are a little bit more complicated, and in fact to be specific, we set

:= 1

2

[
+

]
. (C.13)

We have

= 16h2
0 fab + 32h0 fab hac + 16fab hac had (C.14)

= 16h2
0 fab + 32h0 fab hac + 16fab hac hbd (C.15)

= 16h2
0 fab + 32h0 fab hac + 8fab hac had + 8fab hac hbd . (C.16)

Note that we have dropped the term f0, which naively would be there in the calculations. This 
can be done, since f0

∑
abc R′′

abR
′′
ac is itself a 3-replica-term.

Then the simplest combination is

− 2 +
= 16fab (hab − h0)

2 = 16
∑
a,b

R′′′′
ab

(
R′′

ab − R′′
0

)2
. (C.17)

C.3. 3 loops

C.3.1. Diagram (h)
Diagram (h) has Comb = 1

23 × 1
2 × ( 1

2 )3.

= 64f 2
ab h2

ab + 128fab
2 hab hbc + 64fab fbc hab hbc + 64fab fbc hab hcd

+32fbc
2 hab hcd + 64fac fbc hac hcd + 32fbc

2 hac hcd

+16fac fcd hab hde + 32fac fcd hbc hde + 16fad fcd hbd hde (C.18)

= 64h0 fab
2 hab + 64h0 fab

2 hbc + 64h0 fab fbc hbc + 64fbc
2 hab hbc

+32h0 fab fbc hcd + 32h0 fac fbc hcd + 32fbc
2 hab hcd

+32fac fcd hab hcd + 32fbc
2 hac hcd + 32fac fcd hbc hcd

+16fac fcd hab hde + 32fac fcd hbc hde + 16fad fcd hbd hde (C.19)

= 64fab fbc hab hbc + 64fab fac hab hcd + 64fac fbc hac hcd

+16fab fad hbc hde + 32fab fbd hbc hde + 16fad fcd hbd hde (C.20)

= 64h0
2 fab

2 + 64h0
2 fab fac + 128h0 fab

2 hac + 64h0 fab fac had

+32fab
2 hac had + 16fab fad hac hae + 32fab

2 hac hbd

+64h0 fab fac hcd + 32fab fad hac hde + 16fab fbd hac hde (C.21)
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For two intersecting 2-loops, there are 2 possibilities, and we define

= 1

2

⎡
⎢⎣ +

⎤
⎥⎦ . (C.22)

The terms are

= 64h0 fab fbc hbc + 32h0 fab fac hcd + 32h0 fac fbc hcd + 64fac fcd hbc hcd

+32fab fad hac hde + 32fad fcd hbd hde (C.23)

= 64h0 fab fbc hbc + 32h0 fab fbc hcd + 32h0 fac fbc hcd + 64fac fcd hab hcd

+32fad fcd hab hde + 32fab fbd hac hde (C.24)

= 64h0 fab fbc hbc + 32h0 fab fac hcd + 32h0 fac fbc hcd + 32fac fcd hab hcd

+32fac fcd hbc hcd + 32fab fad hac hde + 16fab fbd hac hde

+16fad fc,d hbd hde . (C.25)

Now 3 intersecting sloops. They can intersect in 3 different manners, and we take the average, 
with the weight proportional to their combinatorial factor,

= 1

4

⎡
⎢⎢⎢⎣ + 2 +

⎤
⎥⎥⎥⎦ . (C.26)

The respective contributions are:

= 64h0
2 fab fad + 128h0 fab fad hac + 64fab fad hac hae (C.27)

= 64h0
2 fab fad + 64h0 fab fad hae + 64h0 fab fad hbc + 64fab fad hae hbc

(C.28)

= 64h0
2 fab fad + 128h0 fab fad hbc + 64fab fad hbc hde (C.29)

= 64h0
2 fab fad + 64h0 fab fad hac + 16fab fad hac hae + 64h0 fab fad hbc

+32fab fad hae hbc + 16fab fad hbc hde (C.30)
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The final combination is

− 2 − + + 2 −

= 64f 2
ab (hab − h0)

2 = 64
∑
a,b

f 2
ab (hab − h0)

2 . (C.31)

Note that each sloop comes with a factor of (−1) and furthermore one has taken into account the 
proper combinatorial factor. This result is confirmed by the recursive-construction algorithm.

C.3.2. Diagram (i)
Comb = 1

23 × 1
4! × 1. For a given order of the contractions, we have:

= 16
(

6g4
ab + 16g3

ab gac + 3g2
ab g2

ac + 6g2
ab gac gad + gab gac gad gae

+12g2
ab gac gbc

)
(C.32)

= 16
(
g2

ab g2
ac + 2g2

ab gac gad + gab gac gad gae

)
(C.33)

= 16
(

4g3
ab gac + 3g2

ab gac gad + gab gac gad gae + 3g2
ab gac gbc

)
. (C.34)

The simplest combination is

+ 3 − 4 = 96
(
g4

ab + g2
ab g2

ac

)
= 1-rep + 96

∑
a,b

(
R′′′

ab
4 − 2R′′′

ab
2
R′′′

0
2
)

+ 3-reps . (C.35)

Note that the factors are combinatorial factors for the number of possibilities to chose the sloop, 
while the signs are less intuitive. The diagram is supercusp-free.

C.3.3. Diagram (j)
Diagram (j) has Comb = 1

23 × 1
4 × 1

2 . We number 1 to 4 for points x1 to x4,

(C.36)

We have performing, the contractions in the order (23)(23)(13)(12)(34)(24) or (13)(12)(34)(24)
(23)(23)

= 16
(
4f 2

ab h2
ab + 12f 2

ab hab hbc − 4fab fac hab hbc + 2fab fbc hab hbc

+fab fac h2
bc + 2fab fbc h2

bc + 4fab fbc hab hbd + 3f 2
ab hbc hbd

+4f 2
ac hab hcd − 2fac fad hab hcd + fad fcd hbd hde

)
. (C.37)

Sloops: The 2-sloop contracted as (23)(23)(13)(12)(34)(24) gives
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= 16
(
4f 2

ab hab hbc − 4fab fac hab hbc + 2fab fbc hab hbc + fab fac h2
bc

+2fab fbc h2
bc + 4fab fbc hab hbd + f 2

ab hbc hbd + 2f 2
ac hab hcd

−2fac fad hab hcd + fad fcd hbd hde

)
. (C.38)

The 3-sloop is

= 16
(
2h0 f 2

ab hab + h0 fac fad hab + 3h0 f 2
ab hbc − h0 fab fac hbc

+2h0 fac fbc hbc + 2f 2
ab hab hbc + 2fab fbc hab hbd + f 2

ab hbc hbd

+2fac
2 hab hcd − fac fad hab hcd + fad fcd hbd hde

)
. (C.39)

The 4-sloop (13)(12)(34)(24), then contracted (23)(23) gives

= 16
(

3h2
0 f 2

ab + h2
0 fab fac + 2h0 fac fad hab + 6h0 f 2

ab hbc + 3f 2
ab hbc hbd

+fad fcd hbd hde) . (C.40)

We can study another configuration, which we do not know how to draw, so call it S

S = 16(hab(x1) + h0)gac(x2)gac(x3)Rde(x4) , (C.41)

where we have already dropped the term a = c, which will disappear after the next contraction. 
Contracting (34) and then (24) gives

64h0 fab
2 hab + 64h0 fab

2 hbc + 64fbc
2 hab hbc + 32fac

2 hab hcd + 32fbc
2 hac hcd .

(C.42)

A simple combination seems to be

− = 32
(

2f 2
ab h2

ab + 4f 2
ab hab hbc + f 2

ab hbc hbd + f 2
ac hab hcd

)
. (C.43)

A still simpler configuration is

− − S = 64(−h0fab
2hab + fab

2hab
2 − h0fab

2hbc + fab
2habhbc)

= 64[fab
2hab(hab − h0) + fab

2hbc(hab − h0)]
= 64[fab

2(hab − h0)](hab + hbc) . (C.44)

The trivial de-slooping gives (confirmed by the recursive-construction algorithm)

− = 64f 2
ab(hab − h0)

2 = 64
∑
ab

R′′′′
ab

2 (
R′′

ab − R′′
0

)2
. (C.45)
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C.3.4. Diagram (k)
Next is diagram (k). It has Comb = 1

23 × 1
2 × 1

3! . With contractions (13)(13)(13)(12)(34)(24) 
we have

= 16
(
12f 2

ab hab hbc − 6fac
2 hab hbc + 6fac

2 h2
bc + 2fab fbc hab hbd

+7f 2
ab hbc hbd + fad fcd h2

bd − 2fab fac hbc hcd + fab fad hbc hcd

+2fab fbc hbc hcd − 2fab fbd hbc hcd + fad fcd hbd hde

)
. (C.46)

The 2-sloop (13)(13), then (13)(12)(34)(24) gives

= 16
(
4f 2

ab hab hbc − 2fac
2 hab hbc + 2fac

2 h2
bc + 2fab fbc hab hbd

+3f 2
ab hbc hbd + fad fcd h2

bd − 2fab fac hbc hcd + fab fad hbc hcd

+2fab fbc hbc hcd − 2fab fbd hbc hcd + fad fcd hbd hde

)
. (C.47)

We find that the difference is

− = 64
(

2f 2
ab hab hbc − f 2

ac hab hbc + f 2
ac h2

bc + f 2
ab hbc hbd

)
. (C.48)

Trivial deslooping gives

0 . (C.49)

This is important since there is no counter-term in the theory for the divergence between the two 
leftmost vertices.

C.3.5. Diagram (l)
Diagram (l) has Comb = 1

23 × 1 × 1
2 . We use the notation

(C.50)

Diagram (l) is

= 16
(

4fabg
2
abhab + 8fabg

2
abhbc − 3fabgabgachbc + fbcgabgachbc − fabg

2
achbc

+fbcg
2
achbc − 3fabgabgbchbc − 5fbcgabgbchbc + fabg

2
bchbc + fbcg

2
achcd

−facgabgbchcd − 2fbcgabgbchcd + 4facgacgbchcd + fbcgabgbdhcd

+fcdgadgbdhcd − fbcgacgcdhcd + fcdgadgbdhde

)
. (C.51)

The 2-sloop is

= 16
(

2fabg
2
abhbc − fabgabgachbc + fbcgabgachbc − fabg

2
achbc + fbcg

2
achbc

−fabgabgbchbc − 3fbcgabgbchbc + fabg
2
bchbc + fbcg

2
achcd − facgabgbchcd

−2fbcgabgbchcd + 2facgacgbchcd + fbcgabgbdhcd + fcdgadgbdhcd

−fbcgacgcdhcd + fcdgadgbdhde

)
. (C.52)
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There is the special sloop configuration, which is obtained by starting from 16gab(1)gab(2) ×
hac(2)Rde(4). It is denoted and reads

= 32
(

− fab gab gac hbc − fab gab gbc hbc + fbc gac gbc hbc + fac gac gbc hcd

)
.

(C.53)

Now diagram (l) is with the 2-sloop subtracted is

− = 32
(

2fab g2
ab hab + 3fab g2

ab hbc − fab gab gac hbc − fab gab gbc hbc

+fbc gac gbc hbc + fac gac gbc hcd

)
. (C.54)

An even simpler configuration is

− − = 64
(
fab g2

ab hab + fab g2
ab hbc

)
. (C.55)

There are of course much more possible sloops, involving three or four vertices. However, we 
did not use them here, and thus do not display them.

The recursive-construction algorithm gives, consistent with the above

= 64
[
R′′

u(R′′′
u )2R′′′′

u − R′′
0 (R′′′

u )2R′′′′
u − R′′

u(R′′′
0 )2R′′′′

0

]
. (C.56)

C.3.6. Diagram (m)
Diagram (m) has Comb = 1

23 × 1
4 × ( 1

2 )2. It is not independent of the path of contractions. We 
number

(C.57)

The simplest result is obtained by using contractions (12)(12)(34)(34)(13)(24)

= 16
(

4g4
ab + 8g3

ab gac + 8g2
ab g2

ac + 8g2
ab gac gad + gab gac gad gae

−4g2
ab gac gbc − 2g2

ab gac gbd − gab gad gbc gcd

)
. (C.58)

Another result is obtained using (12)(12)(13)(24)(34)(34) instead of (12)(12)(34)(34)(13)(24). 
The difference is

(12)(12)(13)(24)(34)(34) − (12)(12)(34)(34)(13)(24) = 32gab gac gbc gcd . (C.59)

We check that this projects to 0.
Now the sloops give

= 16
(

4g3
ab gac + 2g2

ab g2
ac + 6g2

ab gac gad + gab gac gad gae − 2g2
ab gac gbc

−2g2
ab gac gbd − gab gad gbc gcd

)
(C.60)
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= 16
(

4g2
ab gac gad + gab gac gad gae − 2g2

ab gac gbd − gab gad gbc gcd

)
. (C.61)

The following combination is simple

− 2 + = 64g4
ab + 64g2

ab g2
ac

= 1-rep + 64
∑
a,b

(
R′′′

ab
4 − 2R′′′

ab
2
R′′′

0
2
)

+ 3-reps . (C.62)

C.3.7. Diagram (n)
Comb = 1

23 × 1
3! × ( 1

2 )3. We have with the choice of contractions (13)(13)(23)(23)(34)(34)

= 16(4hab
3sab + 12hab

2hbcsab + 6habhachcdsac + 6hachbchcdsac

+3habhcdhdesad + hadhbdhdescd) . (C.63)

A single sloop is

= 16(4h0hab
2sab + 8h0habhbcsab + 2h0habhcdsac + 2h0hbchcdsac

+3habhcdhdesad + 4habhbc
2sbc + 4habhbchcdsbc + 4hachbchcdsbc

+hadhbdhdescd) . (C.64)

Double and triple sloops yield

= 1

2

[
+

]
(C.65)

= 32(2h2
0habsab + 2h2

0hbcsab + 2h0habhcdsac + habhachdesad + 4h0habhbcsbc

+2h0hachcdsbc + 2hachbchcdscd + hadhbdhdescd) (C.66)

= 32(2h2
0habsab + 2h2

0hbcsab + 2h0habhcdsac + 2h0hbchcdsac + 2habhcdhdesad

+4h0habhbcsbc + 2hadhbchcdscd) (C.67)

= 16(4h2
0habsab + 4h2

0hbcsab + 4h0habhcdsac + 4h0hbchcdsac + 3habhachdesad

+8h0habhbcsbc + 2hachbchcdscd + 2hadhbchcdscd + hadhbdhdescd) . (C.68)

= 1

4

[
+ 3

]
(C.69)
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= 16(h3
0sab + 3h2

0habsac + 3h0habhacsad + habhachaesad) (C.70)

= 16(h3
0sab + 3h2

0habsac + 2h0habhcdsac + h0habhacsad + habhachdesad)

(C.71)

= 4(4h3
0sab + 12h2

0habsac + 6h0habhcdsac + 6h0habhacsad + habhachaesad

+3habhachdesad) . (C.72)

The final result is

− 3 + 3 − 4 = 64(hab − h0)
3sab . (C.73)

This is confirmed by the recursive-construction algorithm.

C.3.8. Diagram (o)
Comb = 1

23 × 1
2 × ( 1

2 )2.

= 64fab gab
2 hab + 128fab gab

2 hbc − 64fab gab gac hbc − 64fab gab gbc hbc

−64fbc gab gbc hbc + 16fab gac gbc hcd + 96fbc gac gbc hcd

−16fab gad gbc hcd − 32fac gad gbc hcd − 16fcd gad gbc hcd

+16fab gbc
2 hcd − 16fab gbc gbd hcd − 32fac gbc gcd hcd

+16fad gbd gcd hde (C.74)

= 32fab gab
2 hbc − 32fab gab gac hbc − 32fab gab gbc hbc + 32fbc gac gbc hbc

+16fab gac gbc hcd + 64fbc gac gbc hcd − 16fab gad gbc hcd

−32fac gad gbc hcd − 16fcd gad gbc hcd + 16fab gbc
2 hcd − 16fab gbc gbd hcd

−32fac gbc gcd hcd + 16fad gbd gcd hde (C.75)

= 4h0 fab gab
2 + 8h0 fab gab gac + 4h0 fab gac gad + 4fab gab

2 hac

+8fab gab gac had + 4fab gac gad hae . (C.76)

For 2 touching loops, intersections are possible:

= 1

2

⎡
⎢⎣ +

⎤
⎥⎦ (C.77)
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The terms are

= 32fab gac
2 hcd − 32fab gac gad hcd − 64fac gbc gcd hcd

+32fad gbd gcd hde (C.78)

= 32fab gac gbc hcd + 64fac gac gbc hcd − 64fac gad gbc hcd

−32fab gac gbd hcd − 32fcd gac gbd hcd (C.79)

= 16fab gac
2 hcd − 16fab gac gad hcd + 16fab gac gbc hcd + 32fac gac gbc hcd

−32fac gad gbc hcd − 16fab gac gbd hcd − 16fcd gac gbd hcd

−32fac gbc gcd hcd + 16fad gbd gcd hde . (C.80)

The simplest combination is

− 2 + = 64fabg
2
ab (hab + hbc)

= 64
∑
a,b

R
(4)
ab R′′′

ab
2
R′′

ab − R′′
0 R′′′′

ab R′′′
ab

2 − R′′′′
0 R′′′

0
2
R′′

ab . (C.81)

This is confirmed by recursive construction.

C.3.9. Diagram (p)
The diagram (p) has Comb = 1

23 × 1 × ( 1
2 )2 and is

= 16(4gabhab
2pab + 10gabhabhbcpab − 2gachabhbcpab − 2gbchabhbcpab

−gcdhabhcdpac + 3gbchachcdpac + gcdhabhdepad + 2gachbc
2pbc

+3gbchabhcdpbc − gbdhabhcdpbc + 3gbchachcdpbc − gbdhachcdpbc

−gcdhachcdpbc + gbdhachcdpcd + gbdhadhdepcd) . (C.82)

The two 1-sloop terms are

= 16(4h0gabhabpab + 6h0gabhbcpab − 2h0gachbcpab − 2h0gbchbcpab

+h0gbchcdpac − gcdhabhcdpac + gcdhabhdepad + 2h0gachbcpbc

+4gbchabhbcpbc + h0gachcdpbc + 3gbchabhcdpbc − gbdhabhcdpbc

+3gbchachcdpbc − gbdhachcdpbc − gcdhachcdpbc

+gbdhachcdpcd + gbdhadhcdpcd + gbdhadhdepcd) (C.83)

= 16(2gabhabhbcpab − 2gachabhbcpab − 2gbchabhbcpab + gachabhcdpac

−gadhabhcdpac − gcdhabhcdpac + 3gbchachcdpac + gcdhabhdepad



K.J. Wiese et al. / Nuclear Physics B 932 (2018) 540–588 585
+2gachbc
2pbc + gbchachcdpbc − gbdhachcdpbc − gcdhachcdpbc

+gbdhachcdpcd + gbdhadhdepcd) . (C.84)

There are again the 2-sloop terms,

= 1

2

[
+

]
(C.85)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + 2gachabhcdpac

−2gachabhcdpad − 2h0gabhbcpbc + 2h0gachcdpbc + 2gcdhadhcdpbd

−2gbchachcdpcd + 2gbdhadhdepcd) (C.86)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + 2h0gbchcdpac

+2gcdhabhcdpad + 2gcdhabhdepad − 2h0gabhbcpbc + 2gbchachcdpbc

−2gbchadhcdpbd − 2gbchadhcdpcd) (C.87)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + h0gbchcdpac

+gachabhcdpac − gachabhcdpad + gcdhabhcdpad + gcdhabhdepad

−2h0gabhbcpbc + h0gachcdpbc + gbchachcdpbc − gbchadhcdpbd

+gcdhadhcdpbd − gbchachcdpcd − gbchadhcdpcd + gbdhadhdepcd) . (C.88)

There are more sloops, but we find a simple expression with only the above. It is

− − +

= −64h0gabhabpab + 64gabhab
2pab − 64h0gabhbcpab + 64gabhabhbcpab . (C.89)

Trivially deslooping gives, as with the recursive-construction algorithm,

= 64R′′′
u R(5)

u (R′′
u − R′′

0 )2 . (C.90)

C.3.10. Diagram (q)
Diagram (q) has Comb = 1

23 × 1
2 × ( 1

2 )2. We make contractions (13)(13)(24)(24)(23)(34)

= 16(4fabgab
2hab + 4fabgabgachab + 6fabgbc

2hab + 4fbcgbc
2hab

+3fbdgbc
2hab + 2fabgbcgbdhab + 2fbcgbcgbdhab + fbdgbcgbehab

+3facgcd
2hab + facgcdgcehab + 2fbcgbcgbdhac − 2fcdgbcgbdhac

−2fbcgabgachbc) . (C.91)

Sloop (13)(13), then (24)(24)(23)(34) gives
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= 16(4h0fabgab
2 + 4h0fabgabgac − 2h0fbcgabgac + 2h0facgabgad

+6h0fabgbc
2 + 4fbcgbc

2hab + 3fbdgbc
2hab + 2fbcgbcgbdhab

+fbdgbcgbehab + 3facgcd
2hab + facgcdgcehab + 2fbcgbcgbdhac

−2fcdgbcgbdhac) . (C.92)

Sloop (24)(24), then (13)(13)(34)(24) yields

= 16(4fabgabgachab + 2fabgbcgbdhab + 2fbcgbcgbdhab + fbdgbcgbehab

+fadgcd
2hab + facgcdgcehab + 2facgbc

2hac + 2fbcgbcgbdhac

−2fcdgbcgbdhac + fcdgbd
2had − 2fbcgabgachbc) . (C.93)

Sloops (13)(13) and (24)(24), then (23)(34) gives

= 16(4h0fabgabgac − 2h0fbcgabgac + 2h0facgabgad + 2h0facgbc
2

+2fbcgbcgbdhab + fbdgbcgbehab + fadgcd
2hab + facgcdgcehab

+2fbcgbcgbdhac − 2fcdgbcgbdhac + fcdgbd
2had) . (C.94)

There are more sloops, but our now acquired experience tells us that the simplest combination 
should be

− − +

= 64(fabgab
2hab + fabgbc

2hab − h0fabgab
2 − h0fabgbc

2) . (C.95)

Trivial de-slooping yields in agreement with recursive construction

= 64 [R′′′
u

2 − R′′′
0

2]R′′′′
u (R′′

u − R′′
0 ) . (C.96)
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