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Lectures on Conformal Field Theory, summer 2000, Universität Essen
Lectures: Principles of non-local field theories and their application to polymerized membranes,
Workshop of “Graduiertenkolleg der Universität Heidelberg”, September 2000
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Lectures on “Quantum Phase Transitions”, summer 2004, Universität Köln
Lectures on “Selected Topics in Statistical Field Theory”, second year of the master program of
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Other responsibilities

ACMO, responsable d’hygiène et sécurité du LPTENS, since 2005.

Summary of Past Research

References marked as [KWnn] refer to my list of publications on page 32, references [nnn] refer to the
literature, see page 27; note that my list of publications on page 32 includes links to the corresponding pdf
files. The project begins on page ??, a table of contents can be found on page 58. Recent work is explained
in more detail. All figures are from my work, if not stated otherwise.

1 Objectives
The aim of my research was and is to develop new analytical methods, either using field theory or other
analytical methods, including exact solutions, to obtain a unified and precise description of disordered
and complex systems with current applications ranging from condensed matter physics to non-linear and
biologically inspired physics.

2 Functional renormalization and applications

2.1 Introduction
The functional renormalization group (FRG) method is an old idea going back to Wilson [1] and Wegner
[2]. In 1986 D.S. Fisher realized that this method can fruitfully be applied to a large class of disordered
systems [3]. The idea is that it is necessary to follow the full disorder distribution (a function, rather than a
single parameter, its strength) under renormalization, i.e. under elimination of the small-scale fluctuations.
Typically, the flow equation, say for the force-force correlator ∆(u), looks like this

− m∂

∂m
∆(u) = (ε− 2ζ)∆(u) + ζu∆′(u)− 1

2

d2

du2
[∆(u)−∆(0)]2 (1)flowDelta

(m is the IR regulator, see below, ε = 4−d (d=dimension), and ζ is the roughness exponent.) By following
the flow for a full function, instead of a single moment (the “disorder strength”) the method, encompasses
the most severe shortcomings of more traditional methods, as the mean-field treatment invoking replica-
symmetry breaking [4], or hierarchical lattices, which do not take into account spatial fluctuations in realis-
tic systems. There are solid reasons to believe (see below) that this method is the currently most promising,

5

http://www.phys.ens.fr/~wiese/masterENS/masterENS.pdf
http://www.kitp.ucsb.edu/sciart2011


both conceptually and for applications. For instance it should ultimately settle such old unsolved problems
as: What is the correct description of the ground state and excitations in glasses: Parisi’s (multiple pure
states) [4], Fisher’s (droplets) [5], or (probably) something else, which reduces to the latter two in certain
limits.

Working with FRG is difficult for several technical reasons. 1-loop approximations have been devel-
oped and used for some time, but recently, in a series of publications [KW20, KW23, KW25-KW27, KW31-
KW33, KW35, KW36, KW38, KW40-KW44, KW46-KW48, KW50-KW54, KW57-KW62, KW65-KW67,
KW69, KW, KW72-KW74, KW76-KW78, KW81, KW82, KW84, KW85, KW87, KW89, KW91, KW93,
KW95, KW98, KW103, KW104,KW105], together with various collaborators, I have laid the foundations
for a deeper understanding of the method, and thereby opened the door to further applications. The power
of the method is now well established, and we can calculate finer and finer details.

2.2 Basic ideas
The functional renormalization group (FRG) approach to disordered systems studies the flow of the com-
plete disorder correlator (as opposed to its moments) under renormalization, i.e. eliminating the fast degrees
of freedom. One observes that after a finite renormalization the disorder correlator becomes non-analytic,
and the description in moments breaks down. This non-analyticity is an immediate consequence of the
multiple minima of the problem, for an explanation see e.g. section 6 in [KW53], and the upcoming sec-
tions 2.3 and 2.5. [KW53] also provides a good introduction and overview. Earlier reviews are [KW26,
KW33, KW42].

I have used this method to study a number of problems (Collaboration with Pierre Le Doussal). The
first are the equilibrium properties of an elastic manifold in disorder, for which I have been able to obtain
results at 2-loop order [KW20, KW35, KW43], in quite good agreement with numerical simulations. This
had been a challenge for some time, since beyond leading order derivatives of the disorder-correlator at the
non-analyticity appear, which led many researchers to question the method. I have been able to show that
a consistent theory can be constructed beyond leading order, with quantitative predictions for experiments,
as e.g. the roughness exponent [KW20, KW35] or even the complete distribution of the interface width
[KW31, KW32] or threshold forces [KW48]. Those have now been verified in a number of numerical
simulations[6, 7, 8, 9] and [KW31] and even in an experiment [10]. I have recently been able to obtain the
FRG flow-equations for the equilibrium statics at 3-loop order [KW103,105].

Considering dynamics, a critical force is necessary before the elastic manifold starts to move. At this
threshold, a new universality class emerges, which is different from the static one discussed above [KW20,
KW25]. It had been stated by Narayan and Fisher [11] that the roughness of the interface is exactly
ζ = (4 − d)/3 (d = dimension of the manifold), to all orders in perturbation theory. While this result is
correct for the equilibrium properties of Random Field disorder, numerical evidence raised doubts about its
validity for the depinning transition. Even more, their theory is unable to distinguish between statics and
driven dynamics, and thus account for the non-reversibility of the latter. Together with Pierre Le Doussal
and Pascal Chauve, I have been able to show that there are indeed corrections at 2-loop order, which correct
the roughness exponent upwards, and render the disorder correlator non-potential, as expected on physical
grounds [KW20, KW25]. Our numerical predictions were later verified by Rosso and Krauth [6], and by
Rosso, Hartmann, and Krauth [8].

Universal quantities are not restricted to critical exponents, but include more complex observables as
the distribution of the interface width [KW31, KW32]. Equivalently intriguing is the case of depinning in
an anisotropic medium [KW27], which bares some relation to directed percolation.

In [KW41] I have discussed the use of the supersymmetry method for elastic manifolds. One explicitly
sees that when the cusp appears at the Larkin length, then supersymmetry is broken. Interestingly, when
the Gaussian variational method with replica-symmetry breaking can be used — this is the case for number
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Figure 1: Left: rescaled disorder correlator Y = ∆/∆(0) of the statics, from numerics in [KW46], for random bond
(RB) and random field (RF) disorder. Solid lines are one loop predictions (inset: the cusp). Right: Y − Y1loop for the
depinning, from [KW52]. Scale is much enhanced and one loop prediction is substracted to compare with two loop
(shown). Difference with statics is resolved.

of components N →∞ which makes the Gaussian variational method exact — then cusp, supersymmetry
breaking and replica-symmetry breaking all appear at the same scale [KW41, KW57].

2.3 Measuring the cusp
Central to the functional RG approach is the disorder correlation function R(u), which defines the cor-
relations of the disorder potential V (x, u), and which may be taken to be smooth. Functional RG states
that after some finite renormalization, at the Larkin length, the effective R(u) acquires a cusp in its sec-
ond derivative, and that this cusp is central to overcoming the seemingly exact predictions of dimensional
reduction [12, 13, 14]. However it was unclear how R(u) could be measured. Only recently, a precise
definition as an observable has been given [15]. Since this method will prove central for the following, let
us briefly explain it.

The energy of a configuration u(x) is given by

Hw[u] =

∫
x

1

2

[
∇u(x)

]2

+
m2

2

[
u(x)− w

]2

+ V
(
x, u(x)

)
. (2)Hw

The first term is the elastic energy, the last one the disorder. In order to render the problem well-defined,
one needs a confining potential m2[u(x) − w]2/2, where w can be chosen freely. Thermal fluctuations
play no role at large distances, so one needs to find the configuration uw(x) which minimizes Hw[u]. Its
center of mass uw := 1

Ld

∫
x
uw(x) explicitly depends on the chosen w. Quite remarkably, uw can easily be

measured in an experiment and encodes much of the physics of the model, as we demonstrate now:
As mentioned above, the central object of functional RG is the renormalized disorder correlator. Not-

ing ∆0(u) the bare disorder-force correlator, defined by ∆0(u − u′)δ(x − x′) := V ′(x, u)V ′(x′, u′), the
renormalized one ∆(u) can be obtained via functional RG as the solution of a differential flow-equation
for ∆(u), starting with initial condition ∆0(u); see (1) for this equation at 1-loop order. Quite remarkably,
the renormalized disorder-force correlator satisfies the following exact relation:

∆(w − w′) =
Ld

m4
(uw − w)(uw′ − w′) . (3)2

This relation holds both for the statics, and at depinning (one has to use the connected expectations there).
It allows for very precise measurements.
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With A. Middleton we have applied powerful algorithms to find exact ground states for interfaces (i.e.
N = 1) [KW46] and measured from them the FRG function ∆(u). The result is presented on figure 1 (left).
The agreement with the 1-loop prediction is spectacular, and can further be improved, with high numerical
statistics, using the analytic 2-loop result. The difference between statics and depinning is resolved and
compares well with the prediction. The hallmark of the FRG, the linear cusp, is observed and confirmed.

We proceeded similarly for the driven case and measured numerically, with A. Rosso [KW52], the FRG
function at the depinning fixed point. The deviations from the 1-loop result for ∆(w), calculated from the
field theory, and the 2-loop correction are shown in figure 1.

These high-precision tests of the FRG give confidence that this unconventional field theory correctly
describes glass phases of disordered elastic systems. This is further confirmed in toy models for a particle
dragged through disorder of various correlations [KW51, KW62].

In the next section, we will discuss an experimental test.

2.4 Contact-line depinning: First experimental confirmation of the cusp, and re-
maining challenges
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Figure 2: Left: a contact line in a wetting experiment at LPSENS (courtesy E. Rolley). Avalanches are shown in
colors; they are reproducible. Right, inset: The disorder correlator ∆(w) for H2/Cs, with error bars estimated from
the experiment. Main plot: The rescaled disorder correlator ∆(w)/∆(0) (green/solid) with error bars (red). The
dashed line is the 1-loop result; from [KW67].

Interestingly, the setting with a confining parabolic potential, which allows to test the FRG in numerical
simulations, is realized in many experiments, e.g. magnetic domain walls in a magnetic field with a gradient,
or submitted to dipolar demagnetizing fields, or fracture with imposed external deformations.

Together with my experimental colleagues from LPS-ENS, E. Rolley and Sebastien Moulinet, I have
studied contact line depinning [KW67]. In this system, capillarity, i.e. gravity and surface tension, act as a
quadratic well pulling the elastic contact line of the fluid. We considered three experimental systems: Water
climbing on a glass plate as the level of the fluid is raised in the reservoir, where controlled disorder can be
built in by lithography. This experiment is hampered by apparent long-range correlations of the disorder,
induced by the glass plate. A better system is isobutanol on a silicon wafer with silanized patches, where the
patch positions are chosen randomly in the computer, and then transferred via lithographic techniques. The
advantage of this setup is that it is easily implemented. However the ratio of capillary length to disorder
length, which determines how far the FRG flow has advanced towards the fixed point, is rather small.
The best experimental system therefore turned out to be liquid hydrogen on a rough Cesium substrate.
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Figure 3: Left: Size distribution P (S) of static avalanches in d = 2 showing the scale-free regime S−τ with τ = 1.25
from numerics, compared to the FRG prediction [KW60]. Inset: vertical blow-up of main plot. Right: Comparison
of theory and simulations for depinning in d = 1. The solid red curve is a scale-free comparison to P (s) ∼ s−τe−s,
with τ = 1.08, whereas the dashed line is a scale-free comparison to the 1-loop result with the same τ . One sees
that even the shoulder (left plot) and the predicted tail exponent δ ≈ 7/6 in d = 1 (right figure) agrees with the
simulations [KW66].

Avalanche motion is observed, see left of Fig. 2. On the right of the same figure is presented the first ever
experimental measurement [KW67] of ∆(u). Both the raw data (inset) as the rescaled scale-free function
(main plot) are shown. The data (solid green line with error bars) and the 1-loop result (dashed line) are in
quite good agreement. (2-loop corrections are smaller than the error bars, thus can not be resolved.)

Understanding this experiment has been a longstanding challenge, notably because the measured rough-
ness exponent ζ ≈ 0.5, is larger than both the two-loop FRG and the numerics [7]. Hence, with E. Raphael
and R. Golestanian, we have included the next-order correction to the Joanny-de-Gennes theory and found
that indeed it can, if it is sufficiently large, yield a larger roughness; although we have not been able to
find, via extended FRG, a stable fixed point [KW40]. Understanding better the non-linearities in this prob-
lem may thus be crucial, and in collaboration with Costas Bachas we have developed a method, based on
conformal transformations, to obtain these corrections in a systematic way [KW47]. This model is also of
interest to string theory. Surprisingly, a thorough review of the literature reveals that the elastic energy to
quadratic order in deformations appears to have been treated only neglecting gravity [16], or in presence of
gravity only in the case where the equilibrium configuration of the interface is flat and horizontal, as for a
vertical wall and a contact angle θ of 90◦ [17, 18]. My work [KW69] closes this gap.

In the same work [KW69] is observed a strong dependence of the avalanche-size distribution (see next
section) on the precise form of the elastic energy. In view of these observations it would be important
to reanalyze all existing experiments. Are they really in the scaling regime? To reinforce this question,
let us mention that a smaller roughness of about 0.4, consistent with the simplest theory, has indeed been
observed in two experiments on fracture which should be in the same universality class [19, 20].

2.5 Distributions of avalanches
The cuspy nature of ∆(w) at w = 0, visible in analytical calculations and in experiments, see figure 2, is
a direct consequence of the existence of avalanches. Indeed, since fluctuations of the interface away from
the parabola position are bounded, and since there is no renormalization of the elastic part of the eneryg,
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their center of mass satisfies the exact result [KW60]

Sm :=
〈S2〉
2 〈S〉 =

|∆′(0+)|
m4

. (4)

It had been a challenge for many years to extract the avalanche-size distribution from the field theory, and
thus to go beyond toy-models of a single degree of freedom, or ABBM [21, 22]: a particle in a force-field
which itself is a random walk. We obtained analytically the distribution of avalanche sizes and its cumulants
within an ε = 4− d expansion from a tree and 1-loop resummation, using FRG techniques [KW65]. These
results have now been tested both for the statics [KW60] and the driven dynamics [KW66]. Due to the
efficiency of the algorithm in the latter case, even the compacted exponential tail with δ ≈ 7

6
in d = 1

agrees with the numerical data, see figure 3. In order to compare to experiments [KW67], it was important
to have a precise formula for the interface energy in presence of gravity. To my astonishment, this had only
be done for the case of a flat equilibrium profile, i.e. when the fluid does not climb up on the wall. The
general case is much more complicated, but amenable to an analytical solution [KW69].

2.6 Further developments for statistics of avalanches for pinned elastic objects
Extending the results mentioned in the previous section, I have obtained several further results for the
statistics of avalanches:

The first realization was that at the upper critical dimension, avalanches behave as in the Brownian force
model (BFM), introduced in [KW76]: In this model, each degree of freedom (each point on the elastic
manifold) sees an independent random-force field, which itself is a random walk. It is the generalization
of the the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model [21, 22] a model of a single
degree of freedom, to an elastic manifold. I have shown that the center of mass of the elastic manifold has
the same statistics as in the ABBM model. It also generalizes classical results on the Burgers equation by
the mathematicians Carraro and Duchon [23, 24, 25] to extended objects.

Second, one can generalize the elastic energy in equation (2) to an N -component field ~u(w) [KW74]. I
have calculated the avalanche-size distribution for this case at the tree level. The result becomes exact for
an isotropic random-force field with correlations [~F (w1)− ~F (w2)]2 = |w1 − w2|, for which one obtains
the full avalanche-size distribution (e.g. in the transverse direction) [KW74].

2.7 Dynamcis of avalanches for pinned elastic objects, and avalanche shape
The other topic in which a break-through has been achieved is the dynamics of an avalanche. Previously,
this was only possible for a toy-model, i.e. a particle in a force field which itself is a random walk (ABBM
model [21, 22]). We can now address a plethora of observables, as e.g. the distribution of durations in
an avalanche given its size, or the velocity after a kick [KW77]. Below the upper critical dimension,
calculations become much more involved [KW73, KW82] (the long version has 61 pages in PRE).

In recent years, the question of the temporal velocity average shape of an avalanche has gained im-
portance, and was studied both in experiments and in simulations, see e.g. [26]. While this function is
well-known for the ABBM model, a simple parabola (for small mass), no analytical results were available
beyond mean-field [27]. Its temporal symmetry is actually quite surprising: From numerical simulations
for, say, a discrete spin model, we know that an avalanche starts with a single spin flip, which then triggers
more and more adjacent spins, until a whole region is active. At a later stage these active regions may split
and become disjoint. Still, for BFM type disorder, the shape is time-reversal symmetric. It should though
be mentioned that local observables are not time-inversion symmetric [KW82]. It was a major achieve-
ment of my PhD student Alexander Dobrinevski to tackle this question analytically [KW87]. Together, we
calculated the O(ε), i.e. 1-loop, correction to the avalanche shape at fixed duration T , both for SR and LR
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Figure 4: Scaling collapse of the average shape at fixed avalanche size 〈u̇(t)〉S , according to our theoretical results
[KW87] plotted on Fig. 5, in the FeSiB thin film. The continuous line is the prediction for the universal SR scaling
function, in the limit of short avalanches. The insets show comparisons of the tails of the data with the predicted
asymptotic behaviors. For details see [KW94].
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Figure 5: Left: (Universal) normalized shape of an avalanche (of short duration T � τm), for an interface (d = 2)
with SR elasticity. Plotted is the total velocity u̇(t) at time t = xT , normalized to unit maximum (black thick
solid line), compared to: (i) the MF shape 4x(1 − x) (blue, dashed, thin line); (ii) a symmetric scaling-ansatz u̇ ∼
[Tx(1−x)]1−

ε
9 (orange, dot-dashed, thick); (iii) the approximation 〈u̇(t = xT )〉T ' [Tx(1−x)]γ−1 exp(A[1

2 −x])
(green dots), close to the exact result. Inset: ibid. with the MF shape subtracted. Right: The shape at fixed size. Mean
field (black solid line). The remaining curves are for d = 2: small S/Sm = 0+ limit (red dashed) and S/Sm = 1,
10, 30 (green dot-dashed, cyan dotted, and blue dashed).

elasticity. The exact expression,[KW87] is asymmetric. The asymmetryA ≈ −0.336(1−d/dc) is negative
for d close to dc, skewing the avalanche towards its end, as observed in numerical simulations in d = 2
and 3 [L. Larson, private communication], see figure 5 (left). We finally introduced and calculated the
shape at fixed avalanche size, which was for the first time measured experimentally in [KW94], a beautiful
verification of the theory.

We have also studied the motion of an elastic object driven in a disordered environment in presence of
both dissipation and inertia [KW78]. Inertia renders the system history dependent due to oscillations and
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Figure 6: Left: The shape 〈S(x/`)〉` /`3 for ` between 40 and 400. To reduce statistical errors, we have symmetrized
this function. Right: The symmetrized ratio

〈
S2
` (x)

〉
`=1

/ 〈S`(x)〉2`=1.

backward motion, which prevents a full analytical solution.
While inertia induces memory (the manifold not only remembers its position, but also its velocity, i.e.

how it arrived), more realistic models with memory for magnetic systems typically contain apart from the
interface velocity u̇(t) a “pressure term”, modeling the instantaneous induced current, which decays by
Ohmic dissipation [28]. Astonishingly, this model can still be solved analytically [KW84]. While in the
standard ABBM model an avalanche stops if the instantaneous velocity u̇ goes to zero, here, due to the
pressure term, the avalanche can “revive”, leading to a considerable change in the shape of an avalanche:
Instead of a finite well-defined stopping time, velocities typically decay exponentially in time.

2.8 Spatial shape and extension of avalanches, aftershocks
Another important problem is the spatial shape and extension of an avalanche. Let us start with the spatial
shape. For the Brownian Force Model, this problem can be tackled analytically, and one can write down
the full probability distribution P [S(x)] for the shape S(x) (advance in an avalanche at point x) [KW91].
Since this is a functional, already the evaluation of the mean shape 〈S(x)〉 is difficult, but can be achieved
in a saddle-point analysis for large aspect ratio S`4, where S is the size and ` the spatial extension of an
avalanche [KW91].

I further considered the joint distribution of avalanche sizes and extensions in the BFM model [KW95],
as well as several size distributions and driving protocols, i.e. whether one drives a single point or the
whole interface, whether one restricts the ensemble of avalanches to those of fixed global size, etc. Driving
dependence also exists for short-range correlated disorder, see [KW93], where we considered tip-driven
motion.

Finally, these efforts were crowned by an analytic result for the shape 〈S(x)〉 [KW104] of an avalanche
of given extension `, as well as of its fluctuations encoded in the second moment 〈S(x)2〉. While the analytic
expressions are cumbersome (they involve the Weierstrass P and ζ functions, their numerical verification
including all amplitudes is quite precise, see figure 6.

An important question is whether avalanches are correlated, or independent. In earthquakes the ex-
perimentally observed Omori law states that the probability to find an earthquake of a certain size decays
algebraically with the time spent since the main earthquake. On the other hand, in mean-field models, as
the ABBM model, avalanches are completely uncorrelated. For short-range correlated disorder, avalanches
are anti-correlated, which is intuitive: After a big avalanche, the system has much relaxed and one expects
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smaller once to come next. [KW98]. This implies that laws such as the Omori law cited above need addi-
tional physical ingredients. Indeed, most attempts of earthquake modeling indeed introduce an additional,
slowly relaxing dynamic variable, see e.g. [29, 30].

2.9 An efficient algorithm to simulate disordered elastic manifolds, and their equiv-
alence to stochastic Manna sandpiles

Sampling an elastic manifold in a disordered environment usually demands to store the random force seen
by each degree of freedom over a certain distance, in a discretized form. This is computationally intensive;
a more important drawback is that when the manifold is moving slowly, the disorder force does not change
during long times, inciting the programmer to go to finer grids in space.

These problems can be avoided by considering the coupled equation of motion for the velocity, and
force, where the latter evolves according to [KW84]

∂tF(x, t) = −u̇(x, t)F(x, t) + η(x, t)
√
u̇(x, t) (5)9

with η(x, t) a white noise, uncorrelated in space and time. One indeed shows that this is equivalent to a
disorder correlator decaying exponentially in u [KW84][31]. Since the force is now a dynamic variable,
the two problems mentioned above disappear, and simulations become much more efficient.

The remaining problem, namely that the noise-term η(x, t)
√
u̇(x, t) only decreases as

√
δt with the

time-discretization step δt, can be circumvented by solving exactly the stochastic equation of motion for a
finite time-interval [32] [KW84]. We have already used this process with good success [KW84,KW104][31],
and are employing it again in collaboration with Alejandro Kolton.

It had been conjectured for a long time that disordered elastic manifolds and Manna sandpiles are
equivalent, but only circumstantial evidence had been given [33, 34, 35, 36, 37]. To prove the first part
of this connection, namely the equivalence between disordered elastic manifolds and the so-called C-DP
field theory, I found [KW89] that one simply has to identify the velocity u̇ of disordered elastic manifolds
with the activity ρ in Manna-sandpiles ρ ≡ u̇, and the difference between activity and the number of grains
n = φ per site (the conserved field) with the force F(x, t) = n(x, t) − ρ(x, t) + const, to arrive at the
field theory for conserved-directed percolation (C-DP), which is believed to be the effective field theory of
the Manna model [36, 38, 39, 40, 35, 37, 41, 42, 43, 44]. Remained to show the equivalence between the
Manna-model itself, and the C-DP field theory. I succeeded to do this in [KW90]; this will be discussed in
more detail in section 9.2.

2.10 Other applications of FRG, and surprises
Together with my PhD student Alexander Dobrinevski [KW72], we considered a particle in one dimension
submitted to amplitude and phase disorder. It can be mapped onto the complex Burgers equation, and
provides a toy model for problems with interplay of interferences and disorder, such as the NSS model of
hopping conductivity in disordered insulators and the Chalker-Coddington model for the (spin) quantum
Hall effect. The model has three distinct phases.

A surprising application of FRG deals with loop-erased random walks (LERW, Lawler 1980), i.e.
random walks in which loops are erased as they form; LERWs have applications in combinatorics, self-
organized criticality, conformal field theory and SLE. We found [KW61] that the Functional RG developed
for periodic systems provides a field theory for LERWs, where the dynamic exponent z encodes the fractal
dimension of LERWs. The predicted subleading logarithmic corrections in d = 4 were recently tested
numerically by P. Grassberger [45] and David Wilson [46]. Our recent insights are discussed in more detail
in section 9.1.
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Finally, to go beyond elastic descriptions and include plastic effects, we studied [KW59] two elastic
layers coupled viscously. To one-loop FRG we found hysteresis in the velocity-force characteristics, i.e.
two dynamically meta-stable branches, a situation forbidden in elastic depinning (Middleton’s theorem).
The 2-loop extension strongly hints at new phenomena and suggests that more work is needed to conclude.

2.11 Random-field O(N) model, and LR interactions
By contrast to the random-field Ising model, the random-field O(N) non-linear sigma model (hard-spin
version) is amenable to studies via FRG at zero temperature [47]. For N = 2 there is a fixed point to one
loop in d = 4 − ε describing a quasi-ordered phase while for N = 3, 4, . . . the fixed point is in d = 4 + ε
[48, 49, 50, 51], describing the ferromagnetic-paramagnetic transition. Hence something must happen for
2 < N < 3, with a lowering of the lower critical dimension. This was elucidated in a two-loop FRG
calculation for this model [KW44]. Lowering N below Nc = 2.83, the transition fixed point in 4 + ε
dimensions plunges below d = 4, and becomes stable. Combining exact RG with our functional RG,
which can only be done numerically, Tarjus and Tissier [52, 53], finally succeeded to see the RF fixed point
for the Ising model.

Another interesting observation made in [54] is that for N > 18 the RF model recovers dimensional
reduction, hence its large-N limit must be trivial. We studied the random anisotropy version of this model
[KW54] and found there a non-trivial large-N limit with a non-analytic fixed point for any N . Thus the
recovery of “dimensional reduction” seems to be rather specific for the random-field universality class. It
also does not exist for disordered elastic manifolds discussed above.

Long-range correlated disorder occurs in some systems such as superconductors subjected to ion ir-
radiation or liquids in aerogels. We therefore applied with my former postdoc A. Fedorenko the FRG to
manifolds in long-range correlated disorder in [KW50] to one loop. A. Fedorenko later generalized this to
2 loops [55], establishing an interesting weak Bose glas phase, and to spin systems [56].

2.12 Replica Symmetry Breaking: Confrontations FRG-RSB, and avalanches in
the SK model

Figure 7: Example of a replica-symmetry broken matrix.

In some cases other analytical methods are available to study disordered elastic systems. It is thus important
to confront and, if possible, reconcile the FRG with these methods. Studying the problem for a large
number of components N [KW23, KW36, KW38, KW57], we have been able to make contact with the
replica symmetry breaking (RSB) method, whose validity is restricted to the large-N limit. We have been
able to show that the two methods calculate almost the same 2-point function at zero momentum. The
difference can be traced to the different ways of preparing the system, allowing for spontaneous RSB in the
case of the RSB-method, and for explicit RSB in the functional RG calculation. (The difference is quite
similar to a pure magnet cooled down below the Curie-temperature, which can either be prepared in zero
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Figure 8: The two order parameters defined in Eq. (6) both go to zero at the transition temperature T = Tc..

magnetic field, leading to spontaneous symmetry breaking in the magnetization, or in an infinitesimaly
small magnetic field, with which the magnetization will align. The RSB-method compares to the first case,
and FRG to the latter.) Recently, we have been able to make this connection precise [KW57]: For manifolds
embedded in a N -dimensional space, the Mézard-Parisi mean-field theory, based on Parisi’s scheme of
replica symmetry breaking (RSB) should become “exact” in a sense to be determined for N → ∞. With
Markus Müller [KW57] we understood this point and found that in presence of RSB there are two distinct
scaling regions in the large-N limit, one which reproduces the full Mézard-Parisi result with u2 = O(1)
and the other, u2 = O(N), which yields the previous FRG equation at large N . They are related to the
appearance either of the first shock in the system as a response to an external field or of a thermodynamic
number of shocks (one per independent volume element) in the two respective regimes.

A further direction of research has been the application of our formalism to avalanches in mean-field
spin glasses [KW70, KW75], where full replica-symmetry breaking prevails, and the avalanche exponent
τ decreases from the value τ = 3/2 for the Brownian force model to τ = 1, which we were able to extract
from a full RSB solution.

3 RNA-folding
Together with Michael Lässig and François David, I have developed a field theoretical treatment for the
RNA glass transition [KW45, KW49, KW68]. This project heavily relies on the techniques developed for
self-avoiding membranes discussed in the next section.

RNA molecules (mostly) fold in planar configurations (in the sense of field theory). We are interested
in the pairing statistics for large molecules. The RNA glass transition appears upon decrease of the tem-
perature, and is due to sequence disorder. It corresponds to an increase in the roughness of the height-field
from the random-walk exponent 1/2 for homopolymers to about 2/3 for the glass phase, equivalent to a
decrease in the exponent ρ for the paring probability as a function of distance from 3/2 to 4/3. This has
numerically be seen in [57].

Our field theory uses an analytical continuation of the homopolymer problem, by modifying the pairing
probability of two monomers at a distance s, from s−3/2 to s−ρ0 , represented by polymers imbedded into
d = 2ρ0-dimensional space. Choosing ρ0 = 1 + ε/2, we construct a systematic ε-expansion, by treating
sequence disorder in a perturbative expansion. As in the 2 + ε expansions of the non-linear sigma model
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or KPZ, our RG-treatment finds a continuous phase transition (i.e. an IR-repulsive fixed point), and allows
us to calculate the critical exponents at this transition. As a side-effect we find that already at the transition
the critical exponents are given by those in the low-temperature phase (“locking scenario”).

While together with R. Bundschuh and W. Baez, we have finally localized the transition, the problem
remains difficult due to enormous finite-size effects. The key idea is to define order parameters ∆g in the
low-temperature (glass) phase, and ∆m in the high-temperature (molten) phase,

∆g ' lim
`→∞

〈p(`)2〉
〈p(`)〉 , ∆m ' lim

`→∞

〈p(`)〉2
〈p(`)2〉 . (6)eq:lowTemp˙ratio

These ratios are constructed to both yield 1 at T = 0 and T → ∞, due to the locking at T = 0, and the
decorrelation of copies at T → ∞. As can be seen on Fig. 8, they both disappear with a characteristic
power-law (with known exponent) at the critical temperature Tc.

With François David [KW49] we have been able to construct a field theory and an action for the RNA-
folding problem, a long outstanding problem. We have also proven that the theory is renormalizable to all
orders. Using this breakthrough, we have been able to calculate the exponents ρ to 2-loop order [KW49].
A detailed account (93 pages) of these calculations was published recently [KW68].

Together with PhD-student Christian Hagendorf, we have also included the effect of an external applied
force [KW55].

We have further studied a toy-model, similar in spirit to a greedy algorithm in computer science
[KW56], where the energetically most favorable bond is made first, then considering the remaining possible
pairings. This model can be solved analytically; e.g. the roughness exponent is ζ = (

√
17− 3)/2 ≈ 0.561,

and we have obtained higher correlation functions as well. Interestingly, our model can be reformulated as
a dual tree growth process, opening the door to a completely different community. I hope that this insight
will spur further progress for growth models. A first example was indeed proposed in [58].

A representation of RNA folding in the Poincaré plan has been the starting point of an outreach project
with Jean-Pierre Hébert, artist in residence at the KITP, UCSB, Santa Barbara, USA. Our work, of which
an example is displayed on the cover of this report, has been shown at SciArt 2011.

4 Self-avoiding membranes
Polymers and membranes have played an essential role in my research of the first ten years [KW3–KW9,
KW11, KW13-KW15, KW17-KW19, KW21, KW22, KW24, KW29, KW37, KW39]. Two major classes
of membranes can be distinguished: Fluid membranes, and polymerized (tethered) membranes. The last
class is characterized by a fixed internal connectivity, i.e. the underlying lattice is regular. Nature uses these
membranes in so different systems as cell walls, or graphene. More precisely, cell walls contain actin-
filaments which can be isolated and studied in experiments. More abstractly, polymerized membranes are
lattices made out of beads, connected by springs. They thus constitute a generalization of polymers, which
can be viewed as a long chain of beads. As for polymers there are a couple of interesting questions: free
movement, incorporation of hydrodynamic interactions, frozen or dynamic disorder, and more.

Polymerized membranes can be treated by field-theoretic methods. This is theoretically novel: The
usual local field theories have to be generalized to multi-local ones. Besides a better understanding of
membranes, it also leads to a deeper insight into field theory itself.

The subject was started in 1987 by Kardar and Nelson, and by Aronowitz and Lubensky [59, 60], who
introduced D-dimensional polymerized membranes embedded into d dimensions. Self-avoidance can then
be treated in an ε-expansion in ε = 2D − (2−D)d/2. It took some time until methods were developed to
treat the model more systematically. They resulted in a proof of perturbative renormalizability by David,
Duplantier and Guitter [61, 62, 63, 64]. During my PhD-thesis [KW7], I developed methods to perform
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perturbative calculations. Already self-avoidance at the 3-critical point and at leading order demands for
its treatment to rely on numerical techniques for the evaluation of some of the integrals. However, I found
out that expanding about a membrane with inner dimension D = 4/3 allows for a complete analytical
treatment, as a result of an operator crossover between 3-point self-avoidance and modified 2-point self-
avoidance (a second derivative of the delta-interaction) [KW3].

That the theory of tethered membranes is rather rich was shown in [KW5].
Experimentally relevant is the question whether polymerized tethered membranes will be seen flat or

crumpled. Experimental realizations are graphene, or the spectrin network extracted from red blood cells.
In a tour de force calculation [KW4, KW6], I succeeded to show that contrary to earlier studies [65], 2-loop
results are quite reliable, and lead to a predicted Hausdorff-dimension of about 2.5. This result still awaits
experimental and numerical confirmation, due to important finite-size problems in the latter.

When I went for my first postdoc position in Essen, both Lothar Schäfer and Hans-Werner Diehl were
very interested in the dynamics of self-avoiding polymers. They suggested that I look at the dynamics
of self-avoiding membranes as a generalization. For polymers, De Gennes had given in 1976 [66, 67]
scaling arguments for the dynamical exponents, which however had never been rigorously been proven to
be correct, even for polymers. I was able to show, both for selfavoiding polymers and for the generalization
to polymerized membranes, that there is no proper dynamic renormalization to all orders in perturbation
theory. This allowed me to relate the dynamic exponent to the static one, and thus to prove De Gennes’
scaling analysis of 1976 to all orders in perturbation theory [KW8, KW9].

Together with Pierre Le Doussal, we looked at the dynamics in presence of quenched disorder. We
were able to establish an RG framework, and found a new fixed point for a polymer or membrane living
in a static random-force field, which is not purely the derivative of a random potential. Contrary to the
latter case, there is a perturbatively accessible fixed point, with subleading velocity-force characteristics,
leading to (weak) trapping and a dynamical exponent z only slightly larger than 2 [KW11, KW17]. (As a
side remark, this means that numerical simulations are well feasible; they would be more than welcome to
check the predictions.)

One of the most beautiful tricks in the treatment of polymers goes back to De Gennes [68]: Partition
function and 2-point function for self-avoiding polymers are equivalent to analogous quantities in a N -
component φ4 theory, in which the limit N → 0 has been taken. Stated differently, the φ4-theory is a
generalization of selfavoiding polymers. A different generalization has been discussed above, the general-
ization to polymerized membranes with inner dimension D 6= 1. The question arises, whether a common
generalization exists. Together with Mehran Kardar, I succeeded to construct such a generalization [KW13,
KW14]. Our theory of N -colored membranes allows for an intriguing conjecture for the nature of droplets
dominating the 3d-Ising model at criticality, which is satisfied by our numerical results. Generalizing φ4

theory with “cubic anisotropy” we find an inverse Coleman-Weinberg phenomenon.
Self-avoiding polymerized membranes represent a new class of field theories. It is important to under-

stand them beyond perturbation theory. While this goal is still elusive, together with François David we
have succeeded to properly understand the behavior at large orders in perturbation theory [KW15, KW39].
Interestingly, the large-order behavior is as in φ4-theory given by an instanton; however the latter lives in
an auxiliary space. It can be viewed as the critical potential necessary to collapse the membrane. We have
been able to solve the theory at large embedding dimension d, and give an expansion in 1/d. The calcu-
lations are a tour de force, and at this stage it is not clear how much they can improve our existing 2-loop
results.

For the case of a manifold interacting with a single point, which was the first model studied by David,
Duplantier and Guitter [61, 62], I have been able to make much progress with my PhD-student Henryk
Pinnow. Starting from the observation that diagrams can be calculated analytically in the limit of inner
dimension D → 2, we have been able to resum the perturbation theory in the limit of D → 2 to all orders,
and to construct an expansion about D = 2 to fourth order [KW24, KW29, KW37]. While we have not
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been able to fully understand the crossover function necessary to extrapolate down toD = 1 (a case against
which we can check), our all-order results and using the simplest crossover function were quite promising,
and let us hope that one day one will be able to solve the self-avoiding case in the physically relevant limit
of D = 2.

This work (up to 1999) has been reviewed in [KW18], published as volume 19 in the series “Domb-
Lebowitz”, Phase Transitions and Critical Phenomena. It is subject of my habilitation, granted in 1999.

5 Multifractality, and Conformal field theory

5.1 Multifractality
Multifractality is an intriguing property of system which have a dimensionless field. It is a common feature,
and tool of analysis, in localization in electronic systems [69, 70, 71, 72]. These are quantum systems, and
the question arizes whether the same phenomenology appears in classical disordered systems. While the
intuitive answer is in the affirmative, we did not know of any analytical result. For this reason, I decided to
study this problem, both for the 2d sine-Gordon model using methods of conformal perturbation theory, as
for a charge-density wave, using FRG.

To this aim, in [KW83] we consider the random-phase sine-Gordon model in two dimensions. We
calculate all higher cumulants and show that they grow with an amplitude containing the Riemann zeta
function. This should be visible in Bragg scattering experiments of the dual fermion model.

For charge-density waves in d = 4− ε dimensions, we develop a method based on functional determi-
nants and the Gel’fand-Yaglom method [73], equivalent to summing an infinite set of diagrams. We obtain,
in dimension d = 4 − ε, the even As a corollary, we obtain an analytic expression for a class of n-loop
integrals in d = 4, which appear in the perturbative determination of Konishi amplitudes, also accessible
via AdS/CFT using integrability.

5.2 CFTs with current-current interactions
An intriguing way to arrive at disordered systems is to perturb a conformal field theory. The idea of this
approach is that the starting model is highly constraining and so one hopes to be able to go further when
perturbing it. Together with Andreas Ludwig, I have analyzed 2D conformal field theories with a “Kac-
Moody current algebra” symmetry, which are perturbed by a left-right bilinear in the Noether-currents. An
interesting conjecture has recently been advanced by Gerganov, LeClair and Moriconi [74], who consider
a general current-algebra conformal field theory at level k, perturbed by right-left current bilinears, and
proposed a β-function supposed to be exact to all orders in perturbation theory (in a specific regularization
scheme). We have checked this proposal with a direct calculation at 4-loop order. We find the conjecture
to be incompatible with our calculation in all possible regularization schemes [KW30].

5.3 Interfaces in the Random-Bond Potts Model and Relation to SLE
Here I consider interfaces in the random-bond Potts model. Formally, the random-bond Potts model is a
perturbed conformal field theory [75, 76]. Using methods of conformal perturbation theory, I calculated the
anomalous dimension of curve-creating operators, and described by Stochastic Löwner Evolution (SLE).
We obtained [KW63] the fractal dimension of FK clusters in the random-Potts system analytically, and
compared them favorably to numerics. Numerically also the putative SLE duality κspinκFK = 16 seems to
hold for the disordered model.
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5.4 Roughness in the sine-Gordon model
Using the renormalization group to two-loop order [KW79, KW80] we obtained analytically the roughness
in the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-
breaking fields and without vortices. These results compare favorably to numerical simulations [KW79].
This result differs at two-loop order, i.e., O(τ 3), from the prediction based on results from the “nearly
conformal” field theory of a related fermion model [77].

6 Fractional Brownian motion and its extreme value statistics

0.5 1.0 1.5 2.0
t

-1

1

2

Xt

Figure 9: Left: The fractional Brownian motion discussed in the main text, for different values of H , using the
algorithm of [78], from H = 0.25 (red) to H = 1 (blue, almost straight line).

6.1 Introduction
For a diffusing particle the mean-sqaured distance of its position Xt grows linearly in time, 〈X2

t 〉 ∼ t, and
one knows many things about its extreme value statistics: Its survival probability, maximal excursion, the
time at the maximal excursion (the famous arc-sine law), the time the walk is above its initial position,
and many more. On the other hand, not much is known for the anomalous diffusion of more complex
objects. E.g. what is the effective theory of a single monomer which is part of a polymer? How does
an RNA-molecule translocate through a nano-pore? How does a colloid diffuse in interaction with other
colloids? Their motion is non-Markovian, i.e. has memory, a feature which is also seemingly important for
the analysis of financial markets. Demanding that the process be Gaussian, translational-invariant both in
time and space, and self-affine defines a class of processes called fractional Brownian motion (fBm). More
precisely,

〈XtXs〉 = s2H + t2H − |t− s|2H . (7)fBm

An example, constructed with the same random numbers in a Fourier decomposition [78] is given on the
left of figure 9. All higher cumulants vanish (Gaussian process). For H < 1/2 the process is sub-diffusive,
while for H > 1/2 it is super-diffusive. In the former case its velocity is anti-correlated, whereas in the
latter case it is correlated, as can be seen from 〈∂tXt ∂sXs〉 = 2H(2H − 1)|s − t|2(H−1). In this project,
we are interested in the extremal behavior of fBm, which is often more relevant than the mere knowledge
of expecations.
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Figure 10: A comparison for the three F2(ϑ) obtained analytically (black dashed lines) and their measurement using
formula (5) with ε = ±1

6 . From left to right: (a) positive time, (b) time of the last visit to the origin, and (c) time for
the maximum. The scattered dots are the raw data from trajectories of N = 213 time steps, averaged over 5 × 109

samples, which are coarse grained by a factor of 100 to give the green curve. Approximations of our analytical results
are given in the supplementary material.

The theory I developed is based on an expansion around Brownian motion, setting

H =
1

2
+ ε . (8)

The idea behind is that for Brownian motion one knows the propagator with absorbing boundaries, which
allows to impose bounds on the motion. For a Brownian, it is also possible to keep track of other observ-
ables, as the time a process remains positive. The parameter ε then quantifies the “non-Markovianity”.
After some initial fruitless attempts, my current technology is well developed: It works with the Laplace-
transform in time, which allows to do all space-integrations, and avoids integration over intermediate time
points. The reader interested in the technical details can consult [KW97].

6.2 Main results
Let us now sketch the main results. A classic object of extreme value statistics is the probability that a
fractional Brownian motion which starts close to the origin, remains positive up to time t, at which time it
arrives at position x [KW71].

Levy’s arcsine laws say that for a Brownian starting at the origin, three observables have the same
probability distribution: the time the process is positive, the time it achieves its maximum (or minimum),
and the time it last visits the origin.

In our formalism, the probability for the time to reach the maximum at time θ at total time T = 1 is
given by

p+(ϑ) =
N+

[ϑ(1− ϑ)]H
eεF

+
1 (ϑ)+ε2F+

2 (ϑ)+O(ε3) . (9)MaxPosDistrib

In a first step, we obtained F+
1 (ϑ), as well as the joined distribution of maximum and time when it is

achieved [KW92, KW97]. Repeating similar calculations for the other two observables, we realized that
only the last visit to the origin has a different law at leading order in ε, which prompted us to go to second
order in ε [KW101]. This was a tour-de-force calculation. The results obtained and plotted on figure 10
compare favorably to the numerical verification, itself difficult since we have to extract a sub-subleading
correction in the ε-expansion [KW101].
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Figure 11: Comparison of numerical data of [85] (red dots), interpolation (green solid line where data quality is good,
and dashed elsewhere) and our order-ε result (blue, dot-dashed). The remaining points are an estimation of Pickands
constant using the distribution of the maximum of a fBm bridge.

We performed a similar analysis for fBm bridges, which are defined as processes which start and end
at zero. While the last visit to the origin is always at the end, the two other probabilities, for the time when
the maximum is achieved, as well as for the positive time, are distinct at order ε [KW99].

For generic Gaussian Random Processes, the tail of the distribution for large values of the maximum
has attracted a lot of attention following the seminal work by Pickands [79], followed by Piterbarg [80, 81],
and others [82, 83, 84]. It is now well proven that the tails of the probability contain a Gaussian factor, a
subleading power-law, and a universal amplitude, termed the Pickands constant (or at least simply related
to it)H2H . Curiously, this constant is analytically known only forH = 1/2 (Brownian motion), andH = 1
(a straight line). Using the techniques presented above, I was able to show that [KW100]

H2H = 1− γE(2H − 1) +O(2H − 1)2 , (10)us-Pickands

where γE is Euler’s constant. This is in agreement with the most precise estimations of Pickands’ constant
presented on figure 11. We have also been able to show rigorously that the fractional dimension of the
record set of fBm with Hurst-exponent H is H [KW102].

Our last work deals with the 2-sided exit problem of fBm [KW107]. We were able to evaluate analyt-
ically the probability that an fBm starting at x ∈ [0, 1] exists either at the upper end 1, or the lower end 0,
and what expectation and variance of its exit time are. We confirmed our analytical findings with extensive
numerical simulations (27 CPU years).

7 Graphene and Carbone Nanotubes

7.1 Carbon Nano-Tubes
Consider transport properties of a single-walled metallic carbon nano-tube with nearly perfect contacts to
the electrodes. Experiments have shown that such systems can transport electrons ballistically, with only
weak back-scattering, which mostly takes place at the two contact-points with the wires. The measured
conductance as function of applied voltage and gate-potential shows a pattern of quantum interference due
to resonant tunneling, which we calculate analytically using a 2-channel Luttinger liquid with backscatter-
ing in the contacts, using the Keldysh-formalism to capture non-equilibrium effects due to the finite applied
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Figure 12: Double logarithmic plot for the rescaled energy Ẽ(k) := k∆̃(k) as a function of k. The solid black line
is our solution of the FRG fixed-point equation; the thick dashed lines show the asymptotic slopes ±3. The thin
grey-blue dashed line is the guessed function from which the numerical solution starts.

voltage. A variety of experimentally relevant predictions are made, including scattering at magnetic impu-
rities and in presence of an external magnetic field [KW34].

7.2 Rippling transition in graphene
Together with Paco Guinea, we consider [KW86] a model of Dirac fermions coupled to flexural phonons to
describe a graphene sheet fluctuating in dimension 2 +d. We derive the self-consistent screening equations
for the quantum problem, exact in the limit of large d. We first treat the membrane alone, and work out the
quantum to classical, and harmonic to anharmonic crossover. For the coupled electron-membrane problem
we calculate the dressed two-particle propagators of the elastic and electron interactions and find that it
exhibits a collective mode which becomes unstable at some wave-vector qc for large enough coupling g.
The saddle point analysis, exact at large d, indicates that this instability corresponds to spontaneous and
simultaneous appearance of gaussian curvature and electron puddles. The relevance to ripples in graphene
is discussed.

8 Turbulence, and turbulent Advection

8.1 Passive Advection: Passive Scalar and Passive Polymer
In the context of turbulence, passive advection is an important testing ground for ideas, since it has been
shown that higher moments of the density-density correlation function show multiscaling even in an advect-
ing medium with correlations which are Gaussian and short-ranged in time. I have been able to generalize
this “passive scalar” model to extended elastic objects like polymers and membranes (“passive polymer”).
With – surprisingly – the same rigor as for particles, properties for polymers and membranes can be calcu-
lated, leading to some significant differences [KW19].

8.2 Fully developed turbulence
To understand fully developed turbulence with the methods of RG is challenging, not only due to the intrin-
sic unsolved problems of turbulence, but also due to its calculational complexity. We applied the functional
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renormalization-group (FRG) approach to decaying Navier-Stokes and Surface-Quasi-Geostrophic turbu-
lence [KW81]. The method is based on a renormalized small-time expansion, equivalent to a loop expan-
sion, and naturally produces a dissipative anomaly and a cascade after a finite time. A breakdown of energy
conservation due to shocks and the appearance of a direct energy cascade corresponds to the failure of di-
mensional reduction in disordered systems. For Navier-Stokes in three dimensions, the velocity-velocity
correlation function acquires a linear dependence on the distance, ζ2 = 1, in the inertial range, instead of
Kolmogorov’s ζ2 = 2/3; however the possibility remains for corrections at two- or higher-loop order. In
two dimensions, we obtain a numerical solution which conserves energy and exhibits an inverse cascade,
with explicit analytical results both for large and small distances, in agreement with the scaling proposed
by Batchelor (see figure 12). In large dimensions, the one-loop FRG equation for Navier-Stokes converges
to that of Burgers.

9 Recent excitements on various subjects

9.1 Field Theories for loop-erased Random Walks, and their equivalence to CDWs
at depinning

Self-avoiding walks (SAWs) and loop-erased random walks (LERWs) are two ensembles of random paths
with numerous applications in mathematics, statistical physics and quantum field theory. While SAWs are
described by the n → 0 limit of φ4-theory with O(n)-symmetry, LERWs have no obvious field-theoretic
description. I analysed [KW106] two candidates for a field theory of LERWs, and discovered a connection
between the corresponding and a priori unrelated theories. The first such candidate is the O(n)-symmetric
φ4 theory at n = −2 whose link to LERWs was known in two dimensions due to conformal field theory.
Here it is established via a perturbation expansion in the coupling constant in arbitrary dimension. The
second candidate is a field theory for charge-density waves pinned by quenched disorder, whose relation
to LERWs had been conjectured earlier using analogies with Abelian sandpiles. We explicitly show that
both theories yield identical results to 4-loop order and give both a perturbative and a non-perturbative
proof of their equivalence. For the fractal dimension of LERWs in d = 3 our theory gives at 5-loop order
z = 1.624± 0.002, in agreement with the estimate z = 1.62400± 0.00005 of numerical simulations [46].

9.2 Coherent-state path integral, imaginary noise, reaction diffusion systems, and
an effective field theory for the Manna model

The coherent-state path integral is one of the central methods used to study stochastic systems in a field-
theoretic setting, i.e. to construct a dynamic action, (a.k.a. Martin-Siggia-Rose, MSR). There are, however,
severe problems in the literature on its applications: Decoupling of quartic vertices is done with a real
instead of an imaginary noise. What are occupation probabilities for complex coherent states? How can
one derive effective stochastic equations of motion with real noise? Is there a Mean-Field limit, and how
is it constructed? Since all these questions were not, or only badly discussed in the literature, I decided to
find answer to these questions. The result are comprehensive lecture notes [KW90] which I plan on incor-
porating into the class I am going to teach next term. As a corollary, I was able to give the first microscopic
derivation of the stochastic equations of motion for the Manna-model. The latter is a stochastic model for a
sandpile: if on a given site there are two or more grains, then move them to randomly chosen neighbors. A
mean-field approximation for this model consists in moving the grains not to nearest neighbors, but to any
other site. The resulting equations for the i-times occupation probability then close, and the steady state can
be found analytically. Starting from this solution, one has to add diffusion terms plus noise terms, which
come from the fact that the number of grains changes by an integer, but we want to write effective equa-
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Figure 13: The function V0(φ), for φ4 theory (top, red, dashed), and a bounded potential (bottom, blue, solid).

tions of motion for a continuous variable. The latter are fixed by demanding that are correctly reproduced
both the mean amd the fluctuations of the i-times occupation probabilities. The latter being the relevant
dynamic variables also allows us to understand why one needs more than one dynamical variable, contrary
to the coherent-state path integral which only has one (complex) variable. It turns out that for the Manna
model close to the transition one can get away with two variables. This allowed me to finally derive, with
the same rigor as one derives the Mean-Field approximation for the Ising model, the effective stochastic
description corresponding to the Manna model, known as the C-DP field theory.

9.3 Non-trivial fixed points of the Renormalization Group
Evaluating the partition function of a field theory in presence of a potential V0(u), one typically gets a flow
equation of the form [86, 2, 87, 88], (confusingly) also referred to as exact RG:

−m∂mV(u) = −m∂m
∫ Λ ddk

(2π)d
ln

(
1 +

V ′′0 (u)

k2 +m2

)
. (11)4

Keeping only the leading non-linear term [KW96] leads to the simple flow equation for the dimensionless
potential R(u) := −m4ζ−εV(um−ζ)

−m∂mR(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 + ... . (12)flow-rescaled

This equation is similar to the FRG flow equation (1) for disordered elastic manifolds. It reproduces the
standard RG-equation for φ4 theory, setting R(u) = −gu4. Renormalization of the propagator can be
avoided for n = −2 components (field theory for loop-erased random walks).

The question now arises what happens if one starts with a smooth bounded potential, as the one given
on Fig. 13, where R(u) > 0? I showed that

(i) R(u) develops a cusp at u = 0, and a cubic singularity at u = uc > 0.

(ii) The flow equation (12) has an infinity of fixed points, indexed by ζ ∈ [ ε
4
,∞].

(iii) The solution chosen dynamically when starting from smooth initial conditions is ζ = ε
3
. Its analytic

expression for 0 ≤ u ≤ 1 reads

Rζ= ε
3
(u) = ε

[
1

18
(1− u)3 − 1

72
(1− u)4

]
. (13)R-zeta=1/3

It vanishes for u > 1, and is continued symmetrically to u < 0.
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This scenario is quite unusual: While there is a family of perturbatively accessible fixed points, only one of
them is chosen dynamically. It is yet not clear to which physical system it applies. A possible candidate is
wetting, but as discussed in the literature [89, 90, 91, 92, 93, 94], experiments can be described by a flow
equation linear in R(u).

10 Other topics

10.1 Casimir forces
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Figure 14: The probability to avoid a wall starting from (`, 1) to (∞, 1). Inset: the geometry in question.

Due to new experiments, Casimir physics has seen a revival in recent years, both for the quantum
mechanical as for the classical version, known as the critical Casimir effect. Stimulated by a workshop at
the KITP in Santa Barbara, which I attended in summer 2009, I asked myself what the fluctuation-induced
forces of a self-avoiding polymer would be [KW64]. Interestingly, recent results from Schramm-Löwner
evolution (SLE) allow to calculate analytically the force exerted by one or several polymers on a small
impenetrable disk, in various 2-dimensional domain geometries. Contrary to the quantum version, Casimir
forces can be repulsive, and allow e.g. for a stable position of the disk, “trapped” between two polymers.

The method also allows to give a closed expression for the probability that a self-avoiding walk starting
at the origin does not intersect a given line, see figure 14, a question often asked for directed random walks
in the context of extremal value statistics. However the standard methods of extremal value statistics can
not handle this situation, where the polymer can return towards the axis from which it started.

10.2 KPZ-equation
A fascinating phenomenon is the growth of surfaces. One of the most interesting models is the KPZ-
equation, which describes non-linear surface growth. I have been able to clarify some controversial issues
in the literature, pertaining to the 2-loop and all-order β-functions for the roughening transition in d = 2+ε
dimensions [KW10, KW12].

10.3 KPZ and qKPZ for self-sustained reaction fronts
Self-sustained reaction fronts in a disordered flow display self-affine roughening, pinning and depinning
transitions, as depicted on figure 15. In collaboration with my experimental colleagues Séverine Atis,
Dominique Salin, and Laurent Talon, we measure spatial and temporal fluctuations which are consistent
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Figure 15: Left: Successive experimental fronts at constant time intervals. Color represents local front velocity. Top
left: upward propagating front near F+

c . Bottom left: backward propagating front near F−c .
Right: Front velocity Vf versus the applied force F , in adverse flow. a) experiments (black dots with error bars),
b) numerics. Dashed lines are a linear extrapolation of the advancing branch. To put all data on one plot, axes are
rescaled according to F → F/|F |1/2, Vf → Vf/|Vf |1/2. Insert: log-log plot of front velocity versus F̂ − F̂c+ . The
continuous line corresponds to v(F̂ ) ∝ (F̂ − F̂c+)0.8±0.05.

with three distinct universality classes in d = 1 + 1, controlled by a single parameter, the mean (imposed)
flow velocity [KW88]. The three distinct universality classes are

1. the Kardar-Parisi-Zhang (KPZ) class for fast advancing or receding fronts, with a roughness exponent
of ζ ≈ 0.5.

2. the quenched Kardar-Parisi-Zhang class (positive-qKPZ) when the mean-flow velocity almost can-
cels the reaction rate. It has roughness ζ ≈ 0.63, in agreement with values from directed percolation
[95, 96, 97]. A depinning transition with non-linear velocity-force characteristics, v ∼ |F − Fc|α is
observed, see figure 15.

3. the negative-qKPZ equation for transitory receding fronts, close to the lower depinning threshold
F̂c− . One observes characteristic saw-tooth shapes, see Fig. 15, bottom left.

To my knowledge, this system is the first where all three KPZ universality classes have been observed in a
single experiments.

10.4 Reaction-diffusion equation
Together with Sanjay Puri [KW28], we have developed an efficient perturbative expansion to obtain solu-
tions for the initial-value problem of the Fisher equation, and the time-dependent Ginzburg-Landau equa-
tion. The starting point of our expansion is an improvement of the corresponding singular-perturbation
solution, for which we give a 5-line derivation (as compared to the original derivation, resumming series
of diagrams and making 3 steps of approximation.) This approach transforms the solution of non-linear
reaction-diffusion equations into the solution of a hierarchy of linear equations. Our numerical results show
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that this hierarchy rapidly converges to the exact solution. (I currently use these techniques for different
avalanche observables for which a closed solution cannot be given.)

10.5 Supersymmetric non-linear sigma model
In my diploma thesis, I showed that for supersymmetric non-linear sigma-models there are no corrections
at 3-loop order to the dimension of relevant operators [KW1, KW2], contrary to bosonic non-linear sigma-
models.
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reduces to the O(N)-field theory. We analyze the scaling properties of the model at criticality by a one-loop perturbative
renormalization group analysis around an upper critical line. The freedom to optimize with respect to the expansion
point on this line allows us to obtain the exponent ν of standard field theory to much better precision that the usual 1-loop
calculations. Some other field theoretical techniques, such as the large N limit and Hartree approximation, can also be
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applied to this model. By comparison of low and high temperature expansions, we arrive at a conjecture for the nature of
droplets dominating the 3d-Ising model at criticality, which is satisfied by our numerical results. We can also construct
an appropriate generalization that describes cubic anisotropy, by adding an interaction between manifolds of the same
color. The two parameter space includes a variety of new phases and fixed points, some with Ising criticality, enabling
us to extract a remarkably precise value of 0.6315 for the exponent ν in d = 3. A particular limit of the model with
cubic anisotropy corresponds to the random bond Ising problem; unlike the field theory formulation, we find a fixed
point describing this system at 1-loop order.

pdf

[KW14] K.J. Wiese and M. Kardar, A geometric generalization of field theory to manifolds of arbitrary
dimension, Eur. Phys. J. B 7 (1998) 187–190, cond-mat/9803279.
We introduce a generalization of the O(N) field theory to N -colored membranes of arbitrary inner dimension D. The
O(N) model is obtained for D → 1, while N → 0 leads to self-avoiding tethered membranes (as the O(N) model
reduces to self-avoiding polymers). The model is studied perturbatively by a 1-loop renormalization group analysis, and
exactly as N → ∞. Freedom to choose the expansion point D, leads to precise estimates of critical exponents of the
O(N) model. Insights gained from this generalization include a conjecture on the nature of droplets dominating the
3d-Ising model at criticality; and the fixed point governing the random bond Ising model.

pdf

[KW15] F. David and K.J. Wiese, Large orders for self-avoiding membranes, Nucl. Phys. B 535 (1998)
555–595, cond-mat/9807160.
We derive the large order behavior of the perturbative expansion for the continuous model of tethered self-avoiding
membranes. It is controlled by a classical configuration for an effective potential in bulk space, which is the analog
of the Lipatov instanton, solution of a highly non-local equation. The n-th order is shown to have factorial growth
as (−cst)n(n!)1−ε/D, where D is the “internal” dimension of the membrane and ε the engineering dimension of the
coupling constant for self-avoidance. The instanton is calculated within a variational approximation, which is shown to
become exact in the limit of large dimension d of bulk space. This is the starting point of a systematic 1/d expansion.
As a consequence, the epsilon-expansion of self-avoiding membranes has a factorial growth, like the epsilon-expansion
of polymers and standard critical phenomena, suggesting Borel summability. Consequences for the applicability of the
2-loop calculations are examined.

pdf

[KW16] S. Kehrein, C. Münkel and K.J. Wiese, The finite one–dimensional wire problem, physics/9808038
(1998).
We discuss an elementary problem in electrostatics: What does the charge distribution look like for a free charge on a
strictly one-dimensional wire of finite length? To the best of our knowledge this question has so far not been discussed
anywhere. One notices that a solution of this problem is not as simple as it might appear at first sight.

pdf

[KW17] K.J. Wiese and P. Le Doussal, Polymers and manifolds in static random flows: a RG study, Nucl.
Phys. B 552 (1999) 529–598, cond-mat/9808330.
We study the dynamics of a polymer or a D-dimensional elastic manifold diffusing and convected in a non-potential
static random flow (the “randomly driven polymer model”). We find that short-range (SR) disorder is relevant for d < 4

for directed polymers (each monomer sees a different flow) and for d < 6 for isotropic polymers (each monomer sees the
same flow) and more generally for d < dc(D) in the case of a manifold. This leads to new large scale behavior, which
we analyze using field theoretical methods. We show that all divergences can be absorbed in multilocal counter-terms
which we compute to one loop order. We obtain the non trivial roughness ζ, dynamical z and transport exponents φ in
a dimensional expansion. For directed polymers we find ζ about 0.63 (d = 3), ζ about 0.8 (d = 2) and for isotropic
polymers ζ about 0.8 (d = 3). In all cases z > 2 and the velocity versus applied force characteristics is sublinear, i.e.
at small forces v(f) ∼ fφ with φ > 1. It indicates that this new state is glassy, with dynamically generated barriers
leading to trapping, even by a divergenceless (transversal) flow. For random flows with long-range (LR) correlations, we
find continuously varying exponents with the ratio gL/gT of potential to transversal disorder, and interesting crossover
phenomena between LR and SR behavior. For isotropic polymers new effects (e.g. a sign change of ζ−ζ0) result from the
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competition between localization and stretching by the flow. In contrast to purely potential disorder, where the dynamics
gets frozen, here the dynamical exponent z is not much larger than 2, making it easily accessible by simulations. The
phenomenon of pinning by transversal disorder is further demonstrated using a two monomer “dumbbell” toy model.

pdf

[KW18] K.J. Wiese, Polymerized membranes, a review. Volume 19 of Phase Transitions and Critical Phe-
nomena, Acadamic Press, London, 1999.
Membranes are of great technological and biological as well as theoretical interest. Two main classes of membranes can
be distinguished: Fluid membranes and polymerized, tethered membranes. Here, we review progress in the theoretical
understanding of polymerized membranes, i.e. membranes with a fixed internal connectivity. We start by collecting basic
physical properties, clarifying the role of bending rigidity and disorder, theoretically and experimentally as well as nu-
merically. We then give a thorough introduction into the theory of self-avoiding membranes, or more generally non-local
field theories with δ-like interactions. A couple of tools is developed. Based on a proof of perturbative renormalizability
for non-local field-theories, renormalization group calculations can be performed up to 2-loop order, which in 3 dimen-
sions predict a crumpled phase with fractal dimension of about 2.4; this phase is however seemingly unstable towards
the inclusion of bending rigidity. The tricritical behavior of membranes is discussed and shown to be quite different from
that of polymers. Dynamical properties are studied in the same frame-work. Exact scaling relations, suggested but not
demonstrated long time ago by De Gennes for polymers, are established. Along the same lines, disorder can be included
leading to interesting applications. We also construct a generalization of the O(N)-model, which in the limit N → 0

reduces to self-avoiding membranes in analogy with theO(N)-model, which in the limitN → 0 reduces to self-avoiding
polymers. Since perturbation theory is at the basis of the above approach, one has to ensure that the perturbation expan-
sion is not divergent or at least Borel-summable. Using a suitable reformulation of the problem, we obtain the instanton
governing the large-order behavior. This suggests that the perturbation expansion is indeed Borel-summable and the pre-
sented approach meaningful. Some technical details are relegated to the appendices. A final collection of various topics
may also serve as exercises.

pdf

[KW19] K.J. Wiese, The passive polymer problem, J. Stat. Phys. 101 (2000) 843–891, chao-dyn/9911005.
In this article, we introduce a generalization of the diffusive motion of point-particles in a turbulent convective flow with
given correlations to a polymer or membrane. In analogy to the passive scalar problem we call this the passive polymer
or membrane problem. We shall focus on the expansion about the marginal limit of velocity-velocity correlations which
are uncorrelated in time and grow with the distance x as |x|ε, and ε small. This relation gets modified for polymers
and membranes (the marginal advecting flow has correlations which are shorter ranged.) The construction is done in
three steps: First, we reconsider the treatment of the passive scalar problem using the most convenient treatment via field
theory and renormalization group. We explicitly show why IR-divergences and thus the system-size appear in physical
observables, which is rather unusual in the context of ordinary field-theories, like the φ4-model. We also discuss, why
the renormalization group can nevertheless be used to sum these divergences and leads to anomalous scaling of 2n-
point correlation functions as e.g. S2n(x) :=

〈
[Θ(x, t)−Θ(0, t)]2n

〉
. In a second step, we reformulate the problem in

terms of a Langevin equation. This is interesting in its own, since it allows for a distinction between single-particle and
multi-particle contributions, which is not obvious in the Focker-Planck treatment. It also gives an efficient algorithm to
determine S2n numerically, by measuring the diffusion of particles in a random velocity field. In a third and final step,
we generalize the Langevin treatment of a particle to polymers and membranes, or more generally to an elastic object
of inner dimension D with 0 ≤ D ≤ 2. These objects can intersect each other. We also analyze what happens when
self-intersections are no longer allowed.

pdf

[KW20] P. Chauve, P. Le Doussal and K.J. Wiese, Renormalization of pinned elastic systems: How does it
work beyond one loop?, Phys. Rev. Lett. 86 (2001) 1785–1788, cond-mat/0006056.
We examine, beyond one loop, the candidate field theories for equilibrium and driven dynamics of elastic systems pinned
by disorder. To escape dimensional reduction, the action is non-analytic at T=0. We show two-loop renormalizability of
(quasi-static) depinning and compute roughness ζ and dynamical exponents z for periodic systems and interfaces. We
prove that random field disorder attracts shorter range disorder and find a O(ε2) violation of the conjecture ζ = ε/3, in
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agreement with simulations. We then discuss the issues arising in the statics. Depinning and static β-functions differ at
two loop and contain novel anomalous terms due to the non-analytic nature of the theory.

pdf

[KW21] K.J. Wiese, Polymerisierte Membrane. Jahrbuch der Göttinger Akademie der Wissenschaften,
Vandenhoeck & Ruprecht in Göttingen, Göttingen, 2000.
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[KW22] K.J. Wiese, Principles of non-local field theories and their application to polymerized membranes,
in W. Janke, A. Pelster, H.-J. Schmidt and M. Bachmann, editors, Fluctuating paths and fields, World
Scientific, Singapore, 2001. cond-mat/0106361.
In these lecture notes, we give an overview about non-local field-theories and their application to polymerized mem-
branes, i.e. membranes with a fixed internal connectivity. The main technical tool is the multi-local operator product
expansion (MOPE), generalizing ideas from local field theories to the multi-local situation. Dedicated to Hagen Kleinert
at the occasion of his 60th birthday.

pdf

[KW23] P. Le Doussal and K.J. Wiese, Functional renormalization group at large N for random manifolds,
Phys. Rev. Lett. 89 (2002) 125702, cond-mat/0109204.
We introduce a method, based on an exact calculation of the effective action at large N , which aims to bridge the gap
between mean field theory and renormalization in complex systems. We apply it to a d-dimensional manifold in a random
potential for large embedding space dimension N . This yields a functional renormalization group equation valid for any
d, which contains both theO(ε) results of Balents-Fisher and some of the non-trivial results of the Mezard-Parisi solution
thus shedding light on both. Corrections are computed at order O(1/N). Applications to the problems of KPZ, random
field and mode coupling in glasses are mentioned.

pdf

[KW24] H.A. Pinnow and K.J. Wiese, Interacting crumpled manifolds, J. Phys. A 35 (2002) 1195–1229,
cond-mat/0110011.
In this article we study the effect of a δ-interaction on a polymerized membrane of arbitrary internal dimension D.
Depending on the dimensionality of membrane and embedding space, different physical scenarios are observed. We
emphasize on the difference of polymers from membranes. For the latter, non-trivial contributions appear at the 2-loop
level. We also exploit a “massive scheme” inspired by calculations in fixed dimensions for scalar field theories. Despite
the fact that these calculations are only amenable numerically, we found that in the limit of D → 2 each diagram can be
evaluated analytically. This property extends in fact to any order in perturbation theory, allowing for a summation of all
orders. This is a novel and quite surprising result. Finally, an attempt to go beyond D = 2 is presented. Applications to
the case of self-avoiding membranes are mentioned.

pdf

[KW25] P. Le Doussal, K.J. Wiese and P. Chauve, 2-loop functional renormalization group analysis of the
depinning transition, Phys. Rev. B 66 (2002) 174201, cond-mat/0205108.
We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition
for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the
dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static
depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop
β-function and show the generation of “irreversible” anomalous terms, originating from the non-analytic nature of the
theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent ζ and
dynamical exponent z to order ε2. This allows to test several previous conjectures made on the basis of the 1-loop result.
First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the
conjecture ζ = ε/3 is incorrect, and allows to compute the violations, as ζ = ε

3 (1 + 0.14331ε), ε = 4− d. This solves a
longstanding discrepancy with simulations. For long-range elasticity it yields ζ = ε

3 (1 + 0.39735ε), ε = 2 − d (vs. the
standard prediction ζ = 1/3 for d = 1), in reasonable agreement with the most recent simulations. The high value of
ζ ≈ 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.

pdf
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[KW26] K.J. Wiese, Disordered systems and the functional renormalization group: A pedagogical introduc-
tion, Acta Physica Slovaca 52 (2002) 341, cond-mat/0205116.
In this article, we review basic facts about disordered systems, especially the existence of many metastable states and and
the resulting failure of dimensional reduction. Besides techniques based on the Gaussian variational method and replica-
symmetry breaking (RSB), the functional renormalization group (FRG) is the only general method capable of attacking
strongly disordered systems. We explain the basic ideas of the latter method and why it is difficult to implement. We
finally review current progress for elastic manifolds in disorder.

pdf

[KW27] P. Le Doussal and K.J. Wiese, Functional renormalization group for anisotropic depinning and
relation to branching processes, Phys. Rev. E 67 (2003) 016121, cond-mat/0208204.
Using the functional renormalization group, we study the depinning of elastic objects in presence of anisotropy. We
explicitly demonstrate how the KPZ-term is always generated, even in the limit of vanishing velocity, except where
excluded by symmetry. This mechanism has two steps: First a non-analytic disorder-distribution is generated under
renormalization beyond the Larkin-length. This non-analyticity then generates the KPZ-term. We compute the β-function
to one loop taking properly into account the non-analyticity. This gives rise to additional terms, missed in earlier studies.
A crucial question is whether the non-renormalization of the KPZ-coupling found at 1-loop order extends beyond the
leading one. Using a Cole-Hopf-transformed theory we argue that it is indeed uncorrected to all orders. The resulting
flow-equations describe a variety of physical situations: We study manifolds in periodic disorder, relevant for charge
density waves, as well as in non-periodic disorder. Further the elasticity of the manifold can either be short-range (SR)
or long-range (LR). A careful analysis of the flow yields several non-trivial fixed points. All these fixed points are
transient since they possess one unstable direction towards a runaway flow, which leaves open the question of the upper
critical dimension. The runaway flow is dominated by a Landau-ghost-mode. For LR elasticity, relevant for contact line
depinning, we show that there are two phases depending on the strength of the KPZ coupling. For SR elasticity, using
the Cole-Hopf transformed theory we identify a non-trivial 3-dimensional subspace which is invariant to all orders and
contains all above fixed points as well as the Landau-mode. It belongs to a class of theories which describe branching
and reaction-diffusion processes, of which some have been mapped onto directed percolation.

pdf

[KW28] SS. Puri and K.J. Wiese, Perturbative linearization of reaction-diffusion equations, J. Phys. A 36
(2003) 2043–2054, cond-mat/0209524.
We develop perturbative expansions to obtain solutions for the initial-value problems of two important reaction-diffusion
systems, viz., the Fisher equation and the time-dependent Ginzburg-Landau (TDGL) equation. The starting point of
our expansion is the corresponding singular-perturbation solution. This approach transforms the solution of nonlinear
reaction-diffusion equations into the solution of a hierarchy of linear equations. Our numerical results demonstrate that
this hierarchy rapidly converges to the exact solution.
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[KW29] H.A. Pinnow and K.J. Wiese, Interacting crumpled manifolds: Exact results to all orders of pertur-
bation theory, Europhys. Lett. 64 (2003) 371–377, cond-mat/0210007.
In this letter, we report progress on the field theory of polymerized tethered membranes. For the toy-model of a manifold
repelled by a single point, we are able to sum the perturbation expansion in the strength g0 of the interaction exactly in
the limit of internal dimension D → 2. This exact solution is the starting point for an expansion in 2−D, which aims at
connecting to the well studied case of polymers (D = 1). We here give results to order (2−D)4, where again all orders
in g0 are resummed. This is a first step towards a more complete solution of the self-avoiding manifold problem, which
might also prove valuable for polymers.

pdf

[KW30] A.W.W. Ludwig and K.J. Wiese, The 4-loop β-function in the 2D non-abelian Thirring model, and
comparison with its conjectured exact form, Nucl. Phys. B 661 (2003) 577–607, cond-mat/0211531. pdf

[KW31] A. Rosso, W. Krauth, P. Le Doussal, J. Vannimenus and K.J. Wiese, Universal interface width dis-
tributions at the depinning threshold, Phys. Rev. E 68 (2003) 036128, cond-mat/0301464.
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We compute the probability distribution of the interface width at the depinning threshold, using recent powerful algo-
rithms. It confirms the universality classes found previously. In all cases, the distribution is surprisingly well approx-
imated by a generalized Gaussian theory of independant modes which decay with a characteristic propagator G(q) =

1/qd+2ζ ; ζ, the roughness exponent, is computed independently. A functional renormalization analysis explains this
result and allows to compute the small deviations, i.e. a universal kurtosis ratio, in agreement with numerics. We stress
the importance of the Gaussian theory to interpret numerical data and experiments.
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[KW32] P. Le Doussal and K.J. Wiese, Higher correlations, universal distributions and finite size scaling in
the field theory of depinning, Phys. Rev. E 68 (2003) 046118, cond-mat/0301465.
Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic manifolds
in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions
of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than
anticipated. This is applied to the universal scaled width-distribution. The expansion in d = 4− ε predicts that the scaled
distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q) = 1/qd+2ζ , ζ being
the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions,
which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We
perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is ω = −ε
and not−ε/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given,
where the roughness of interfaces grows as a power of a logarithm instead of a pure power.
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[KW33] K.J. Wiese, The functional renormalization group treatment of disordered systems: a review, Ann.
Henri Poincaré 4 (2003) 473–496, cond-mat/0302322.
We review current progress in the functional renormalization group treatment of disordered systems. After an elementary
introduction into the phenomenology, we show why in the context of disordered systems a functional renormalization
group treatment is necessary, contrary to pure systems, where renormalization of a single coupling constant is sufficient.
This leads to a disorder distribution, which after a finite renomalization becomes non-analytic, thus overcoming the pre-
dictions of the seemingly exact dimensional reduction. We discuss, how a renormalizable field theory can be constructed,
even beyond 1-loop order. We then discuss an elastic manifold imbedded inN dimensions, and give the exact solution for
N → ∞. This is compared to predictions of the Gaussian replica variational ansatz, using replica symmetry breaking.
We finally discuss depinning, both isotropic and anisotropic, and the scaling function for the width distribution of an
interface.
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[KW34] S. Peca, L. Balents and K.J. Wiese, Fabry-Perot interference and spin filtering in carbon nanotubes,
Phys. Rev. B 68 (2003) 205423, cond-mat/0304496.
We study the two-terminal transport properties of a metallic single-walled carbon nanotube with good contacts to elec-
trodes, which have recently been shown [W. Liang et al, Nature 441, 665-669 (2001)] to conduct ballistically with
weak backscattering occurring mainly at the two contacts. The measured conductance, as a function of bias and gate
voltages, shows an oscillating pattern of quantum interference. We show how such patterns can be understood and cal-
culated, taking into account Luttinger liquid effects resulting from strong Coulomb interactions in the nanotube. We
treat back-scattering in the contacts perturbatively and use the Keldysh formalism to treat non-equilibrium effects due
to the non-zero bias voltage. Going beyond current experiments, we include the effects of possible ferromagnetic polar-
ization of the leads to describe spin transport in carbon nanotubes. We thereby describe both incoherent spin injection
and coherent resonant spin transport between the two leads. Spin currents can be produced in both ways, but only the
latter allow this spin current to be controlled using an external gate. In all cases, the spin currents, charge currents,
and magnetization of the nanotube exhibit components varying quasiperiodically with bias voltage, approximately as a
superposition of periodic interference oscillations of spin- and charge-carrying “quasiparticles” in the nanotube, each
with its own period. The amplitude of the higher-period signal is largest in single-mode quantum wires, and is somewhat
suppressed in metallic nanotubes due to their sub-band degeneracy.
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[KW35] P. Le Doussal, K.J. Wiese and P. Chauve, Functional renormalization group and the field theory of
disordered elastic systems, Phys. Rev. E 69 (2004) 026112, cond-mat/0304614.
We study elastic systems such as interfaces or lattices, pinned by quenched disorder. To escape triviality as a result
of “dimensional reduction”, we use the functional renormalization group. Difficulties arise in the calculation of the
renormalization group functions beyond 1-loop order. Even worse, observables such as the 2-point correlation function
exhibit the same problem already at 1-loop order. These difficulties are due to the non-analyticity of the renormalized
disorder correlator at zero temperature, which is inherent to the physics beyond the Larkin length, characterized by many
metastable states. As a result, 2-loop diagrams, which involve derivatives of the disorder correlator at the non-analytic
point, are naively “ambiguous”. We examine several routes out of this dilemma, which lead to a unique renormalizable
field-theory at 2-loop order. It is also the only theory consistent with the potentiality of the problem. The β-function
differs from previous work and the one at depinning by novel “anomalous terms”. For interfaces and random bond
disorder we find a roughness exponent ζ = 0.20829804ε + 0.006858ε2, ε = 4 − d. For random field disorder we find
ζ = ε/3 and compute universal amplitudes to order O(ε2). For periodic systems we evaluate the universal amplitude of
the 2-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large scale.
All predictions are in good agreement with numerical and exact results, and an improvement over one loop. Finally we
calculate higher correlation functions, which turn out to be equivalent to those at depinning to leading order in ε.
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[KW36] P. Le Doussal and K.J. Wiese, Functional renormalization group at large N for disordered elas-
tic systems, and relation to replica symmetry breaking, Phys. Rev. B 68 (2003) 174202, cond-
mat/0305634.
We study the replica field theory which describes the pinning of elastic manifolds of arbitrary internal dimension d in
a random potential, with the aim of bridging the gap between mean field and renormalization theory. The full effective
action is computed exactly in the limit of large embedding space dimensionN . The second cumulant of the renormalized
disorder obeys a closed self-consistent equation. It is used to derive a Functional Renormalization Group (FRG) equation
valid in any dimension d, which correctly matches the Balents Fisher result to first order in ε = 4 − d. We analyze in
detail the solutions of the large-N FRG for both long-range and short-range disorder, at zero and finite temperature. We
find consistent agreement with the results of Mezard Parisi (MP) from the Gaussian variational method (GVM) in the
case where full replica symmetry breaking (RSB) holds there. We prove that the cusplike non-analyticity in the large N
FRG appears at a finite scale, corresponding to the instability of the replica symmetric solution of MP. We show that the
FRG exactly reproduces, for any disorder correlator and with no need to invoke Parisi’s spontaneous RSB, the non-trivial
result of the GVM for small overlap. A formula is found yielding the complete RSB solution for all overlaps. Since our
saddle-point equations for the effective action contain both the MP equations and the FRG, it can be used to describe
the crossover from FRG to RSB. A qualitative analysis of this crossover is given, as well as a comparison with previous
attempts to relate FRG to GVM. Finally, we discuss applications to other problems and new perspectives.

pdf

[KW37] H.A. Pinnow and K.J. Wiese, Scaling behavior of tethered crumpled manifolds with inner dimension
close to d=2: Resumming the perturbation theory, Nucl. Phys. B 711 (2005) 530–564, cond-
mat/0403734.
The field theory of self-avoiding tethered membranes still poses major challenges. In this article, we report progress on
the toy-model of a manifold repelled by a single point. Our approach allows to sum the perturbation expansion in the
strength g0 of the interaction exactly in the limit of internal dimension D → 2, yielding an analytic solution for the
strong-coupling limit. This analytic solution is the starting point for an expansion in 2−D, which aims at connecting to
the well studied case of polymers (D = 1). We give results to fourth order in 2−D, where the dependence on g0 is again
summed exactly. As an application, we discuss plaquette density functions, and propose a Monte-Carlo experiment to
test our results. These methods should also allow to shed light on the more complex problem of self-avoiding manifolds. pdf

[KW38] P. Le Doussal and K.J. Wiese, Derivation of the functional renormalization group β-function at order
1/N for manifolds pinned by disorder, Nucl. Phys. B 701 (2004) 409–480, cond-mat/0406297.
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In an earlier publication, we have introduced a method to obtain, at large N , the effective action for d-dimensional
manifolds in a N -dimensional disordered environment. This allowed to obtain the Functional Renormalization Group
(FRG) equation for N = ∞ and was shown to reproduce, with no need for ultrametric replica symmetry breaking, the
predictions of the Mézard-Parisi solution. Here we compute the corrections at order 1/N . We introduce two novel com-
plementary methods, a diagrammatic and an algebraic one, to perform the complicated resummation of an infinite number
of loops, and derive the β-function of the theory to order 1/N . We present both the effective action and the corresponding
functional renormalization group equations. The aim is to explain the conceptual basis and give a detailed account of the
novel aspects of such calculations. The analysis of the FRG flow, comparison with other studies, and applications, e.g. to
the strong-coupling phase of the Kardar-Parisi-Zhang equation are examined in a subsequent publication.
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[KW39] F. David and K.J. Wiese, Instanton calculus for the self-avoiding manifold model, J. Stat. Phys. 120
(2005) 875–1035, cond-mat/0409765.
We compute the normalisation factor for the large order asymptotics of perturbation theory for the self-avoiding manifold
(SAM) model describing flexible tethered (D-dimensional) membranes in d-dimensional space, and the ε-expansion for
this problem. For that purpose, we develop the methods inspired from instanton calculus, that we introduced in a previous
publication (Nucl. Phys. B 534 (1998) 555), and we compute the functional determinant of the fluctuations around the
instanton configuration. This determinant has UV divergences and we show that the renormalized action used to make
perturbation theory finite also renders the contribution of the instanton UV-finite. To compute this determinant, we
develop a systematic large-d expansion. For the renormalized theory, we point out problems in the interplay between
the limits ε → 0 and d → ∞, as well as IR divergences when ε = 0. We show that many cancellations between IR
divergences occur, and argue that the remaining IR-singular term is associated to amenable non-analytic contributions in
the large-d limit when ε = 0. The consistency with the standard instanton-calculus results for the self-avoiding walk is
checked for D = 1.

pdf

[KW40] P. Le Doussal, K.J. Wiese, E. Raphael and Ramin Golestanian, Can non-linear elasticity explain
contact-line roughness at depinning?, Phys. Rev. Lett. 96 (2006) 015702, cond-mat/0411652.
We examine whether cubic non-linearities, allowed by symmetry in the elastic energy of a contact line, may result in a
different universality class at depinning. Standard linear elasticity predicts a roughness exponent ζ = 1/3 (one loop),
ζ = 0.388± 0.002 (numerics) while experiments give ζ ≈ 0.5. Within functional RG we find that a non-local KPZ-type
term is generated at depinning and grows under coarse graining. A fixed point with ζ ≈ 0.45 (one loop) is identified,
showing that large enough cubic terms increase the roughness. This fixed point is unstable, revealing a rough strong-
coupling phase. Experimental study of contact angles θ near π/2, where cubic terms in the energy vanish, is suggested. pdf

[KW41] K.J. Wiese, Supersymmetry breaking in disordered systems and relation to functional renormaliza-
tion and replica-symmetry breaking, J. Phys.: Condens. Matter. 17 (2005) S1889–S1898, cond-
mat/0411656.
In this article, we study an elastic manifold in quenched disorder in the limit of zero temperature. Naively it is equivalent
to a free theory with elasticity in Fourier-space proportional to k4 instead of k2, i.e. a model without disorder in two
space-dimensions less. This phenomenon, called dimensional reduction, is most elegantly obtained using supersymme-
try. However, scaling arguments suggest, and functional renormalization shows that dimensional reduction breaks down
beyond the Larkin length. Thus one equivalently expects a break-down of supersymmetry. Using methods of functional
renormalization, we show how supersymmetry is broken. We also discuss the relation to replica-symmetry breaking,
and how our formulation can be put into work to lift apparent ambiguities in standard functional renormalization group
calculations. Dedicated to Lothar Schäfer at the occasion of his 60th birthday.

pdf

[KW42] K.J. Wiese, Why one needs a functional renormalization group to survive in a disordered world,
Pramana 64 (2005) 817–827, cond-mat/0511529.
In these proceedings, we discuss why functional renormalization is an essential tool to treat strongly disordered systems.
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More specifically, we treat elastic manifolds in a disordered environment. These are governed by a disorder distribution,
which after a finite renormalization becomes non-analytic, thus overcoming the predictions of the seemingly exact di-
mensional reduction. We discuss how a renormalizable field theory can be constructed even beyond 2-loop order. We
then consider an elastic manifold embedded in N dimensions, and give the exact solution for N →∞. This is compared
to predictions of the Gaussian replica variational ansatz, using replica symmetry breaking. Finally, the effective action at
order 1/N is reported.
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[KW43] P. Le Doussal and K.J. Wiese, 2-loop functional renormalization for elastic manifolds pinned by
disorder in N dimensions, Phys. Rev. E 72 (2005) 035101 (R), cond-mat/0501315.
We study elastic manifolds in a N -dimensional random potential using functional RG. We extend to N > 1 our previous
construction of a field theory renormalizable to two loops. For isotropic disorder with O(N) symmetry we obtain the
fixed point and roughness exponent to next order in ε = 4 − d, where d is the internal dimension of the manifold.
Extrapolation to the directed polymer limit d = 1 allows some handle on the strong coupling phase of the equivalent
N -dimensional KPZ growth equation, and eventually suggests an upper critical dimension du ≈ 2.5.
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[KW44] P. Le Doussal and K.J. Wiese, Random field spin models beyond one loop: a mechanism for decreas-
ing the lower critical dimension, Phys. Rev. Lett. 96 (2006) 197202, cond-mat/0510344.
The functional RG for the random field and random anisotropy O(N ) sigma-models is studied to two loop. The ferro-
magnetic/disordered (F/D) transition fixed point is found to next order in d = 4 + ε for N > Nc (Nc = 2.8347408

for random field, Nc = 9.44121 for random anisotropy). For N < Nc the lower critical dimension d = dlc plunges
below dlc = 4: we find two fixed points, one describing the quasi-ordered phase, the other is novel and describes the F/D
transition. dlc can be obtained in an (Nc −N)-expansion. The theory is also analyzed at large N and a glassy regime is
found.

pdf

[KW45] M. Lässig and K.J. Wiese, The freezing of random RNA, Phys. Rev. Lett. 96 (2006) 228101,
arXiv:q-bio/0511032.
We study secondary structures of random RNA molecules by means of a renormalized field theory based on an expansion
in the sequence disorder. We show that there is a continuous phase transition from a molten phase at higher temperatures
to a low-temperature glass phase. The primary freezing occurs above the critical temperature, with local islands of stable
folds forming within the molten phase. The size of these islands defines the correlation length of the transition. Our
results include critical exponents at the transition and in the glass phase.

pdf

[KW46] A.A. Middleton, P. Le Doussal and K.J. Wiese, Measuring functional renormalization group fixed-
point functions for pinned manifolds, Phys. Rev. Lett. 98 (2007) 155701, cond-mat/0606160.
Exact numerical minimization of interface energies is used to test the functional renormalization group (FRG) analysis
for interfaces pinned by quenched disorder. The fixed-point function R(u) (the correlator of the coarse-grained disorder)
is computed. In dimensions D = d + 1, a linear cusp in R′′(u) is confirmed for random bond (d = 1, 2, 3), random
field (d = 0, 2, 3), and periodic (d = 2, 3) disorders. The functional shocks that lead to this cusp are seen. Small, but
significant, deviations from 1-loop FRG results are compared to 2-loop corrections. The cross-correlation for two copies
of disorder is compared with a recent FRG study of chaos.

pdf

[KW47] C. Bachas, P. Le Doussal and K.J. Wiese, Wetting and minimal surfaces, Phys. Rev. E 75 (2007)
031601, hep-th/0606247.
We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce
the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple
diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation
theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength
deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on
two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these
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ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to
the mixed Dirichlet-Neumann problem.
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[KW48] A. Fedorenko, P. Le Doussal and K.J. Wiese, Universal distribution of threshold forces at the depin-
ning transition, Phys. Rev. E 74 (2006) 041110, cond-mat/0607229.
We study the distribution of threshold forces at the depinning transition for an elastic system of finite size, driven by an
external force in a disordered medium at zero temperature. Using the functional renormalization group (FRG) technique,
we compute the distribution of pinning forces in the quasi-static limit. This distribution is universal up to two parameters,
the average critical force, and its width. We discuss possible definitions for threshold forces in finite-size samples. We
show how our results compare to the distribution of the latter computed recently within a numerical simulation of the
so-called critical configuration.

pdf

[KW49] F. David and K.J. Wiese, Systematic field theory of the RNA glass transition, Phys. Rev. Lett. 98
(2007) 128102, q-bio.BM/0607044.
We prove that the Laessig-Wiese (LW) field theory for the freezing transition of the secondary structure of random RNA
is renormalizable to all orders in perturbation theory. The proof relies on a formulation of the model in terms of random
walks and on the use of the multilocal operator product expansion. Renormalizability allows us to work in the simpler
scheme of open polymers, and to obtain the critical exponents at 2-loop order. It also allows to prove some exact exponent
identities, conjectured in LW.

pdf

[KW50] A. Fedorenko, P. Le Doussal and K.J. Wiese, Statics and dynamics of elastic manifolds in media with
long-range correlated disorder, Phys. Rev. E 74 (2006) 061109, cond-mat/0609234.
We study the statics and dynamics of an elastic manifold in a disordered medium with quenched defects correlated
as ∼ r−a for large separation r. We derive the functional renormalization group equations to one-loop order which
allow to describe the universal properties of the system in equilibrium and at the depinning transition. Using a double
ε = 4− d and δ = 4− a expansion we compute the fixed points characterizing different universality classes and analyze
their regions of stability. The long-range disorder-correlator remains analytic but generates short-range disorder whose
correlator exhibits the usual cusp. The critical exponents and universal amplitudes are computed to first order in ε and
δ at the fixed points. At depinning a velocity-versus-force exponent β larger than unity can occur. We discuss possible
realizations using extended defects.
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[KW51] P. Le Doussal and K.J. Wiese, How to measure Functional RG fixed-point functions for dynamics
and at depinning, EPL 77 (2007) 66001, cond-mat/0610525.
We show how the renormalized force correlator ∆(u), the function computed in the functional RG (FRG) field theory,
can be measured directly in numerics and experiments on the dynamics of elastic manifolds in presence of pinning
disorder. For equilibrium dynamics we recover the relation obtained recently in the statics between ∆(u) and a physical
observable. Its extension to depinning reveals interesting relations to stick-slip models of avalanches used in dry friction
and earthquake dynamics. The particle limit (d = 0) is solved for illustration: ∆(u) exhibits a cusp and differs from the
statics. We propose that the FRG functions be measured in wetting and magnetic interfaces experiments.
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[KW52] A. Rosso, P. Le Doussal and K.J. Wiese, Numerical calculation of the functional renormalization
group fixed-point functions at the depinning transition, Phys. Rev. B 75 (2007) 220201, cond-
mat/0610821.
We compute numerically the sequence of successive pinned configurations of an elastic line pulled quasistatically by a
spring in a random bond (RB) and random field (RF) potential. Measuring the fluctuations of the center of mass of the
line allows one to obtain the functional renormalization group (FRG) functions at the depinning transition. Following
this procedure we are able to directly test the main predictions of FRG calculations. In particular, the universal form of
the second cumulant ∆(u) is found to have a linear cusp at the origin, to be identical for RBs and RFs, different from
the statics and in good agreement with two-loop FRG calculations. The cusp is due to avalanches, which we visualize.
Avalanches also produce a cusp in the third cumulant, whose universal form is obtained, as predicted by FRG functions.

pdf
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[KW53] K.J. Wiese and P. Le Doussal, Functional renormalization for disordered systems: Basic recipes and
gourmet dishes, Markov Processes Relat. Fields 13 (2007) 777–818, cond-mat/0611346.
We give a pedagogical introduction into the functional renormalization group treatment of disordered systems. After
a review of its phenomenology, we show why in the context of disordered systems a functional renormalization group
treatment is necessary, contrary to pure systems, where renormalization of a single coupling constant is sufficient. This
leads to a disorder distribution, which after a finite renormalization becomes non-analytic, thus overcoming the predic-
tions of the seemingly exact dimensional reduction. We discuss, how the non-analyticity can be measured in a simulation
or experiment. We then construct a renormalizable field theory beyond leading order. We discuss an elastic manifold
embedded in N dimensions, and give the exact solution for N to infinity. This is compared to predictions of the Gaussian
replica variational ansatz, using replica symmetry breaking. We further consider random field magnets, and supersym-
metry. We finally discuss depinning, both isotropic and anisotropic, and universal scaling function.

pdf

[KW54] P. Le Doussal and K.J. Wiese, Stability of random-field and random-anisotropy fixed points at large
N , Phys. Rev. Lett. 98 (2007) 269704, cond-mat/0612310.
In this note, we clarify the stability of the large-N functional RG fixed points of the order/disorder transition in the
random-field (RF) and random-anisotropy (RA) O(N ) models. We carefully distinguish between infinite N , and large
but finite N . For infinite N , the Schwarz-Soffer inequality does not give a useful bound, and all fixed points found
in cond-mat/0510344 (Phys. Rev. Lett. 96, 197202 (2006)) correspond to physical disorder. For large but finite N
(i.e. to first order in 1/N ) the non-analytic RF fixed point becomes unstable, and the disorder flows to an analytic fixed
point characterized by dimensional reduction. However, for random anisotropy the fixed point remains non-analytic
(i.e. exhibits a cusp) and is stable in the 1/N expansion, while the corresponding dimensional-reduction fixed point is
unstable. In this case the Schwarz-Soffer inequality does not constrain the 2-point spin correlation. We compute the
critical exponents of this new fixed point in a series in 1/N and to 2-loop order.
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[KW55] F. David, C. Hagendorf and K.J. Wiese, Random RNA under tension, EPL 78 (2007) 68003, q-
bio.BM/0701049.
The Lässig-Wiese (LW) field theory for the freezing transition of random RNA secondary structures is generalized to
the situation of an external force. We find a second-order phase transition at a critical applied forcef = fc. For f < fc

forces are irrelevant. For f > fc, the extension L as a function of pulling force f scales as L(f) ∼ (f − fc)1/γ−1. The
exponent γ is calculated in an ε-expansion: At 1-loop order γ = 1/2, equivalent to the disorder-free case. At 2-loop
order γ = 0.6. Using a locking argument, we speculate that this result extends to the strong-disorder phase.
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[KW56] F. David, C. Hagendorf and K.J. Wiese, A growth model for RNA secondary structures, J. Stat.
Mech. (2007) P04008, arXiv:0711.3421.
A hierarchical model for the growth of planar arch structures for RNA secondary structures is presented, and shown to
be equivalent to a tree-growth model. Both models can be solved analytically, giving access to scaling functions for large
molecules, and corrections to scaling, checked by numerical simulations of up to 6500 bases. The equivalence of both
models should be helpful in understanding more general tree-growth processes.
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[KW57] P. Le Doussal, M. Müller and K.J. Wiese, Cusps and shocks in the renormalized potential of glassy
random manifolds: How functional renormalization group and replica symmetry breaking fit to-
gether, Phys. Rev. B 77 (2007) 064203, arXiv:0711.3929.
We compute the Functional Renormalization Group (FRG) disorder-correlator function R(v) for d-dimensional elastic
manifolds pinned by a random potential in the limit of infinite embedding space dimension N . It measures the equi-
librium response of the manifold in a quadratic potential well as the center of the well is varied from 0 to v. We find
two distinct scaling regimes: (i) a “single shock” regime, v2 ∼ L−d where Ld is the system volume and (ii) a “ther-
modynamic” regime, v2 ∼ N . In regime (i) all the equivalent replica symmetry breaking (RSB) saddle points within
the Gaussian variational approximation contribute, while in regime (ii) the effect of RSB enters only through a single
anomaly. When the RSB is continuous (e.g., for short-range disorder, in dimension 2 ≤ d ≤ 4), we prove that regime (ii)
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yields the large-N FRG function obtained previously. In that case, the disorder correlator exhibits a cusp in both regimes,
though with different amplitudes and of different physical origin. When the RSB solution is 1-step and non-marginal
(e.g., d < 2 for SR disorder), the correlator R(v) in regime (ii) is considerably reduced, and exhibits no cusp. Solutions
of the FRG flow corresponding to non-equilibrium states are discussed as well. In all cases the regime (i) exhibits a cusp
non-analyticity at T = 0, whose form and thermal rounding at finite T is obtained exactly and interpreted in terms of
shocks. The results are compared with previous work, and consequences for manifolds at finite N , as well as extensions
to spin glasses and related models are discussed.
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[KW58] K.J. Wiese and P. Le Doussal, How to measure the effective action for disordered systems, in
Wolfhard Janke and Axel Pelster, editors, Path Integrals - New Trends and Perspectives, World Sci-
entific, 2008, arXiv:0712.4286.
In contrast to standard critical phenomena, disordered systems need to be treated via the Functional Renormalization
Group. The latter leads to a coarse grained disorder landscape, which after a finite renormalization becomes non-analytic,
thus overcoming the predictions of the seemingly exact dimensional reduction. We review recent progress on how the
nonanalytic effective action can be measured both in simulations and experiments, and confront theory with numerical
work.

pdf

[KW59] P. Le Doussal, M.C. Marchetti and K.J. Wiese, Depinning in a two-layer model of plastic flow, Phys.
Rev. B 78 (2008) 224201, arXiv:0801.0137.
We study a model of two layers, each consisting of a d-dimensional elastic object driven over a random substrate, and
mutually interacting through a viscous coupling. For this model, the mean-field theory (i.e. a fully connected model)
predicts a transition from elastic depinning to hysteretic plastic depinning as disorder or viscous coupling is increased.
A functional RG analysis shows that any small inter-layer viscous coupling destablizes the standard (decoupled) elastic
depinning FRG fixed point for d ≤ 4, while for d > 4 most aspects of the mean-field theory are recovered. A one-
loop study at non-zero velocity indicates, for d < 4, coexistence of a moving state and a pinned state below the elastic
depinning threshold, with hysteretic plastic depinning for periodic and non-periodic driven layers. A 2-loop analysis of
quasi-statics unveils the possibility of more subtle effects, including a new universality class for non-periodic objects. We
also study the model in d = 0, i.e. two coupled particles, and show that hysteresis does not always exist as the periodic
steady state with coupled layers can be dynamically unstable. It is also proved that stable pinned configurations remain
dynamically stable in presence of a viscous coupling in any dimension d. Moreover, the layer model for periodic objects
is stable to an infinitesimal commensurate density coupling. Our work shows that a careful study of attractors in phase
space and their basin of attraction is necessary to obtain a firm conclusion for dimensions d = 1, 2, 3.
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[KW60] P. Le Doussal, A.A. Middleton and K.J. Wiese, Statistics of static avalanches in a random pinning
landscape, Phys. Rev. E 79 (2009) 050101 (R), arXiv:0803.1142.
We study the minimum-energy configuration of a d-dimensional elastic interface in a random potential tied to a harmonic
spring. As a function of the spring position, the center of mass of the interface changes in discrete jumps, also called
shocks or “static avalanches”. We obtain analytically the distribution of avalanche sizes and its cumulants within an
ε = 4− d expansion from a tree and 1-loop resummation, using functional renormalization. This is compared with exact
numerical minimizations of interface energies for random field disorder in d = 2, 3. Connections to the Burgers equation
and to dynamic avalanches are discussed.

pdf

[KW61] A.A. Fedorenko, P. Le Doussal and K.J. Wiese, Field theory conjecture for loop-erased random
walks, J. Stat. Phys. 133 (2008) 805–812, arXiv:0803.2357.
We give evidence that the functional renormalization group (FRG), developed to study disordered systems, may provide
a field theoretic description for the loop-erased random walk (LERW), allowing to compute its fractal dimension in a
systematic expansion in ε = 4 − d. Up to two loop, the FRG agrees with rigorous bounds, correctly reproduces the
leading logarithmic corrections at the upper critical dimension d = 4, and compares well with numerical studies. We
obtain the universal subleading logarithmic correction in d = 4, which can be used as a further test of the conjecture.

pdf
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[KW62] P. Le Doussal and K.J. Wiese, Driven particle in a random landscape: disorder correlator, avalanche
distribution and extreme value statistics of records, Phys. Rev. E 79 (2009) 051105, arXiv:0808.3217.
We review how the renormalized force correlator ∆(u), the function computed in the functional RG field theory, can
be measured directly in numerics and experiments on the dynamics of elastic manifolds in presence of pinning disorder.
We show how this function can be computed analytically for a particle dragged through a 1-dimensional random-force
landscape. The limit of small velocity allows to access the critical behavior at the depinning transition. For uncorrelated
forces one finds three universality classes, corresponding to the three extreme value statistics, Gumbel, Weibull, and
Fréchet. For each class we obtain analytically the universal function ∆(u), the corrections to the critical force, and the
joint probability distribution of avalanche sizes s and waiting times w. We find P (s) = P (w) for all three cases. All
results are checked numerically. For a Brownian force landscape, known as the ABBM model, avalanche distributions
and ∆(u) can be computed for any velocity. For 2-dimensional disorder, we perform large-scale numerical simulations to
calculate the renormalized force correlator tensor ∆ij(~u), and to extract the anisotropic scaling exponents ζx > ζy . We
also show how the Middleton theorem is violated. Our results are relevant for the record statistics of random sequences
with linear trends, as encountered e.g. in some models of global warming. We give the joint distribution of the time s
between two successive records and their difference in value w.

pdf

[KW63] Jesper L. Jacobsen, Pierre Le Doussal, Marco Picco, Raoul Santachiara and Kay Jörg Wiese, Critical
interfaces in the random-bond Potts model, Phys. Rev. Lett. 102 (2009) 070601, arXiv:0809.3985.
We study geometrical properties of interfaces in the random-temperature q-states Potts model as an example of a con-
formal eld theory weakly perturbed by quenched disorder. Using conformal perturbation theory in q − 2 we compute
the fractal dimension of Fortuin Kasteleyn domain walls. We also compute it numerically both via the Wolff cluster
algorithm for q = 3 and via transfer-matrix evaluations. We also obtain numerical results for the fractal dimension of
spin clusters interfaces for q = 3. These are found numerically consistent with the duality κspinκFK = 16 as expressed
in putative SLE parameters.

pdf

[KW64] P. Le Doussal and K.J. Wiese, Fluctuation force exerted by a planar self-avoiding polymer, EPL 86
(2009) 22001, arXiv:0812.1700.
Using results from Schramm Loewner evolution (SLE), we give the expression of the fluctuation-induced force exerted
by a polymer on a small impenetrable disk, in various 2-dimensional domain geometries. We generalize to two polymers
and examine whether the fluctuation force can trap the object into a stable equilibrium. We compute the force exerted
on objects at the domain boundary, and the force mediated by the polymer between such objects. The results can
straightforwardly be extended to any SLE interface, including Ising, percolation, and loop-erased random walks. Some
are relevant for extremal value statistics.

pdf

[KW65] P. Le Doussal and K.J. Wiese, Size distributions of shocks and static avalanches from the functional
renormalization group, Phys. Rev. E 79 (2009) 051106, arXiv:0812.1893.
Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We study static
avalanches, or shocks, defined here as jumps between distinct global minima upon changing an external field. We show
how the full statistics of these jumps is encoded in the functional-renormalization-group fixed-point functions. This
allows us to obtain the size distribution P (S) of static avalanches in an expansion in the internal dimension d of the inter-
face. Near and above d = 4 this yields the mean-field distribution P (S) ∼ S−3/2e−S/4Sm where Sm is a large-scale cut-
off, in some cases calculable. Resumming all 1-loop contributions, we findP (S) ∼ S−τ exp

(
C(S/Sm)1/2 − B

4 (S/Sm)δ
)

where B,C, δ, τ are obtained to first order in ε = 4 − d. Our result is consistent to O(ε) with the relation τ = τζ :=

2− 2
d+ζ , where ζ is the static roughness exponent, often conjectured to hold at depinning. Our calculation applies to all

static universality classes, including random-bond, random-field and random-periodic disorder. Extended to long-range
elastic systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible
with τ = 2 − 1

d+ζ to O(ε = 2 − d). We discuss consequences for avalanches at depinning and for sandpile models,
relations to Burgers turbulence and the possibility that the relation τ = τζ be violated to higher loop order. Finally, we
show that the avalanche-size distribution on a hyper-plane of co-dimension one is in mean-field (valid close to and above
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d = 4) given by P (S) ∼ K 1
3
(S)/S, where K is the Bessel-K function, thus τhyper plane = 4

3 . pdf

[KW66] A. Rosso, P. Le Doussal and K.J. Wiese, Avalanche-size distribution at the depinning transition: A
numerical test of the theory, Phys. Rev. B 80 (2009) 144204, arXiv:0904.1123.
We calculate numerically the sizes S of jumps (avalanches) between successively pinned configurations of an elastic
line (d = 1) or interface (d = 2), pulled by a spring of (small) strength m2 in a random-field landscape. We obtain
strong evidence that the size distribution, away from the small-scale cutoff, takes the form P (S) = 〈S〉

S2
m
p(S/Sm) where

Sm :=
〈S2〉
2〈S〉 ∼ m−d−ζ is the scale of avalanches, and ζ the roughness exponent at the depinning transition. Measurement

of the scaling function f(s) := sτp(s) is compared with the predictions from a recent Functional RG (FRG) calculation,
both at mean-field and one-loop level. The avalanche-size exponent τ is found in good agreement with the conjecture
τ = 2 − 2/(d + ζ), recently confirmed to one loop via the FRG. The function f(s) exhibits a shoulder and a stretched
exponential decay at large s, ln f(s) ∼ −sδ , with δ ≈ 7/6 in d = 1. The function f(s), universal ratios of moments, and
the generating function

〈
eλs
〉

are found in excellent agreement with the one-loop FRG predictions. The distribution of
local avalanche sizes Sφ, i.e. of the jumps of a subspace of the manifold of dimension dφ, is also computed and compared
to our FRG predictions, and to the conjecture τφ = 2− 2/(dφ + ζ).

pdf

[KW67] P. Le Doussal, K.J. Wiese, S. Moulinet and E. Rolley, Height fluctuations of a contact line: A direct
measurement of the renormalized disorder correlator, EPL 87 (2009) 56001, arXiv:0904.4156.
We have measured the center-of-mass fluctuations of the height of a contact line at depinning for two different systems:
liquid hydrogen on a rough cesium substrate and isopropanol on a silicon wafer grafted with silanized patches. The
contact line is subject to a confining quadratic well, provided by gravity. From the second cumulant of the height
fluctuations, we measure the renormalized disorder correlator ∆(u), predicted by the Functional RG theory to attain a
fixed point, as soon as the capillary length is large compared to the Larkin length set by the microscopic disorder. The
experiments are consistent with the asymptotic form for ∆(u) predicted by Functional RG. The observed small deviations
could be used as a probe of the underlying physical processes. The third moment, as well as avalanche-size distributions
are measured and compared to predictions from Functional RG.

pdf

[KW68] F. David and K.J. Wiese, Field theory of the RNA freezing transition, J. Stat. Mech. (2009) P10019,
arXiv:0906.1472.
Folding of RNA is subject to a competition between entropy, relevant at high temperatures, and the random, or random
looking, sequence, determining the low-temperature phase. It is known from numerical simulations that for random as
well as biological sequences, high- and low-temperature phases are different, e.g. the exponent ρ describing the pairing
probability between two bases is ρ = 3

2 in the high-temperature phase, and ρ ≈ 4
3 in the low-temperature (glass) phase.

Here, we present, for random sequences, a field theory of the phase transition separating high- and low-temperature
phases. We establish the existence of the latter by showing that the underlying theory is renormalizable to all orders in
perturbation theory. We test this result via an explicit 2-loop calculation, which yields ρ ≈ 1.36 at the transition, as well
as diverse other critical exponents, including the response to an applied external force (denaturation transition).

pdf

[KW69] P. Le Doussal and K.J. Wiese, Elasticity of a contact-line and avalanche-size distribution at depin-
ning, Phys. Rev. E 82 (2010) 011108, arXiv:0908.4001.
Motivated by recent experiments, we extend the Joanny-deGennes calculation of the elasticity of a contact line to an
arbitrary contact angle and an arbitrary plate inclination in presence of gravity. This requires a diagonalization of the
elastic modes around the non-linear equilibrium profile, which is carried out exactly. We then make detailed predictions
for the avalanche-size distribution at quasi-static depinning: we study how the universal (i.e. short-scale independent)
rescaled size distribution and the ratio of moments of local to global avalanches depend on the precise form of the elastic
kernel.

pdf

[KW70] P. Le Doussal, M. Müller and K.J. Wiese, Avalanches in mean-field models and the Barkhausen noise
in spin-glasses, EPL 91 (2010) 57004, arXiv:1007.2069.
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We obtain a general formula for the distribution of sizes of “static avalanches”, or shocks, in generic mean-field glasses
with replica-symmetry-breaking saddle points. For the Sherrington-Kirkpatrick (SK) spin-glass it yields the density
ρ(∆M) of the sizes of magnetization jumps ∆M along the equilibrium magnetization curve at zero temperature. Con-
tinuous replica-symmetry breaking allows for a power-law behavior ρ(∆M) ∼ 1/(∆M)τ with exponent τ = 1 for SK,
related to the criticality (marginal stability) of the spin-glass phase. All scales of the ultrametric phase space are impli-
cated in jump events. Similar results are obtained for the sizes S of static jumps of pinned elastic systems, or of shocks
in Burgers turbulence in large dimension. In all cases with a one-step solution, ρ(S) ∼ Se−AS2

. A simple interpretation
relating droplets to shocks, and a scaling theory for the equilibrium analog of Barkhausen noise in finite-dimensional
spin glasses are discussed.

pdf

[KW71] K.J. Wiese, S.N. Majumdar and A. Rosso, Perturbation theory for fractional Brownian motion in
presence of absorbing boundaries, Phys. Rev. E 83 (2011) 061141, arXiv:1011.4807.
Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations 〈x(t1)x(t2)〉 =

D
(
t2H1 + t2H2 − |t1 − t2|2H

)
, where H , with 0 < H < 1 is called the Hurst exponent. For H = 1/2, x(t) is a

Brownian motion, while for H 6= 1/2, x(t) is a non-Markovian process. Here we study x(t) in presence of an absorbing
boundary at the origin and focus on the probability density P+(x, t) for the process to arrive at x at time t, starting near
the origin at time 0, given that it has never crossed the origin. It has a scaling form P+(x, t) ∼ t−HR+(x/tH). Our
objective is to compute the scaling function R+(y), which up to now was only known for the Markov case H = 1/2.
We develop a systematic perturbation theory around this limit, setting H = 1/2 + ε, to calculate the scaling function
R+(y) to first order in ε. We find that R+(y) behaves as R+(y) ∼ yφ as y → 0 (near the absorbing boundary), while
R+(y) ∼ yγ exp(−y2/2) as y → ∞, with φ = 1 − 4ε + O(ε2) and γ = 1 − 2ε + O(ε2). Our ε-expansion result con-
firms the scaling relation φ = (1 −H)/H proposed in PRL 102, 120602 (2009). We verify our findings via numerical
simulations for H = 2/3. The tools developed here are versatile, powerful, and adaptable to different situations.

pdf

[KW72] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Interference in disordered systems: A particle in a
complex random landscape, Phys. Rev. E 83 (2011) 061116, arXiv:1101.2411.
We consider a particle in one dimension submitted to amplitude and phase disorder. It can be mapped onto the complex
Burgers equation, and provides a toy model for problems with interplay of interferences and disorder, such as the NSS
model of hopping conductivity in disordered insulators and the Chalker-Coddington model for the (spin) quantum Hall
effect. The model has three distinct phases: (I) a high-temperature or weak disorder phase, (II) a pinned phase for strong
amplitude disorder, and (III) a diffusive phase for strong phase disorder, but weak amplitude disorder. We compute
analytically the renormalized disorder correlator, equivalent to the Burgers velocity-velocity correlator at long times. In
phase III, it assumes a universal form. For strong phase disorder, interference leads to a logarithmic singularity, related
to zeroes of the partition sum, or poles of the complex Burgers velocity field. These results are valuable in the search for
the adequate field theory for higher-dimensional systems.

pdf

[KW73] P. Le Doussal and K.J. Wiese, Distribution of velocities in an avalanche, EPL 97 (2012) 46004,
arXiv:1104.2629.
For a driven elastic object near depinning, we derive from first principles the distribution of instantaneous velocities in
an avalanche. We prove that above the upper critical dimension, d ≥ duc, the n-times distribution of the center-of-mass
velocity is equivalent to the prediction from the ABBM stochastic equation. mean field. Our method allows to compute
space and time dependence from an instanton equation. We extend the calculation beyond mean field, to lowest order in
ε = duc − d.

pdf

[KW74] P. Le Doussal, A. Rosso and K.J. Wiese, Shock statistics in higher-dimensional Burgers turbulence,
EPL 96 (2011) 14005, arXiv:1104.5048.
We conjecture the exact shock statistics in the inviscid decaying Burgers equation in D > 1 dimensions, with a special
class of correlated initial velocities, which reduce to Brownian for D = 1. The prediction is based on a field-theory
argument, and receives support from our numerical calculations. We find that, along any given direction, shocks sizes
and locations are uncorrelated.

pdf
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[KW75] P. Le Doussal, M. Müller and K.J. Wiese, Equilibrium avalanches in spin glasses, Phys. Rev. B 85
(2012) 214402, arXiv:1110.2011.
We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature
upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick model we present a detailed
derivation of the density ρ(∆M) of the magnetization jumps ∆M . It is obtained by introducing a multi-component
generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We
find that ρ(∆M) ∼ ∆M−τ with an avalanche exponent τ = 1 for the SK model, originating from the marginal stability
(criticality) of the model. It holds for jumps of size 1 � ∆M < N1/2 being provoked by changes of the external
field by δH = O(N−1/2) where N is the total number of spins. Our general formula also suggests that the density of
overlap q between initial and final state in an avalanche is ρ(q) ∼ 1/(1 − q). These results show interesting similarities
with numerical simulations for the out-of-equilibrium dynamics of the SK model. For finite-range models, using droplet
arguments, we obtain the prediction τ = (df + θ)/dm where df , dm and θ are the fractal dimension, magnetization
exponent and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered
systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations,
as well as experimental studies of the Barkhausen noise in spin glasses.

pdf

[KW76] P. Le Doussal and K.J. Wiese, First-principle derivation of static avalanche-size distribution, Phys.
Rev. E 85 (2011) 061102, arXiv:1111.3172.
We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the
position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an
efficient and systematic method to compute the statistics of avalanche sizes and manifold dis- placements. The tree-level
calculation, i.e. mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as a the
sum of all tree graphs. The 1-loop corrections are computed using re- sults from the functional renormalization group. At
the upper critical dimension the shock statistics is described by the Brownian Force model (BFM), the static version of
the so-called ABBM model in the non-equilibrium context of depinning. This model can itself be treated exactly in any
dimension and its shock statistics is that of a Levy process. Contact is made with classical results in probability theory
on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution
equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.

pdf

[KW77] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Non-stationary dynamics of the Alessandro-Beatrice-
Bertotti-Montorsi model, Phys. Rev. E 85 (2012) 031105, arXiv:1112.6307.
We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force landscape, the
Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasi-static driving of elastic interfaces
(Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter) exhibit the same universal be-
havior as this model. It also appears as a limit in the field theory of elastic manifolds. Here we discuss predictions of the
ABBM model for monotonous, but otherwise arbitrary, time-dependent driving. Our main result is an explicit formula
for the generating functional of particle velocities and positions. We apply this to derive the particle-velocity distribution
following a quench in the driving velocity. We also obtain the joint avalanche size and duration distribution and the
mean avalanche shape following a jump in the position of the confining spring. Such non-stationary driving is easy to
realize in experiments, and provides a way to test the ABBM model beyond the stationary, quasi-static regime. We study
extensions to two elastically coupled layers, and to an elastic interface of internal dimension d, in the Brownian force
landscape. The effective action of the field theory is equal to the action, up to 1-loop corrections obtained exactly from a
functional determinant. This provides a connection to renormalization-group methods.

pdf

[KW78] P. Le Doussal, A. Petković and K.J. Wiese, Distribution of velocities and acceleration for a particle
in Brownian correlated disorder: Inertial case, Phys. Rev. E 85 (2012) 061116, arXiv:1203.5620.
We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia.
We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom.
It is the extension of the mean field ABBM model in presence of an inertial mass m. While the ABBM model can be
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solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion.
The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical
progress we consider two variants which coincide with the original model whenever the particle moves only forward.
Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of
instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity,
all three models share the same large-deviation function for positive velocities, which is obtained analytically for small
and large m, as well as for m = 6/25. The effect of small additional thermal and quantum fluctuations can be treated
within an approximate method.

pdf

[KW79] A. Perret, A. Ristivojevic, P. Le Doussal, Grégory Schehr and K. J. Wiese, Super-rough glassy
phase of the random field xy model in two dimensions, Phys. Rev. Lett. 109 (2012) 157205,
arXiv:1204.5685.
We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an ex-
act polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random
symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e. below the critical temperature Tc,
the disorder and thermally averaged correlation function B(r) of the phase field θ(x), B(r) = 〈[θ(x)− θ(x + r)]2〉
behaves, for r � a, as B(r) ' A(τ) ln2(r/a) where r = |r| and a is a microscopic length scale. We derive the RG
equations up to cubic order in τ = (Tc − T )/Tc and predict the universal amplitude A(τ) = 2τ2 − 2τ3 + O(τ4). The
universality of A(τ) results from nontrivial cancellations between nonuniversal constants of RG equations. Using an
exact polynomial algorithm on an equivalent dimer version of the model we compute A(τ) numerically and obtain a
remarkable agreement with our analytical prediction, up to τ ≈ 0.5.

pdf

[KW80] Z. Ristivojevic, P. Le Doussal and K.J. Wiese, Super-rough phase of the random-phase sine-Gordon
model: Two-loop results, Phys. Rev. B 86 (2012) 054201, arXiv:1204.6221.
We consider the two-dimensional random-phase sine-Gordon and study the vicinity of its glass transition temperature Tc,,
in an expansion in small τ = (Tc−T )/Tc , where T denotes the temperature. We derive renormalization group equations
in cubic order in the anharmonicity, and show that they contain two universal invariants. Using them we obtain that the
correlation function in the super-rough phase for temperature T < Tc behaves at large distances as 〈[θ(x)− θ(0)]2〉 =

A ln2(|x|/a)+O(ln(x/a)), where the amplitudeA is a universal function of temperatureA = 2τ2−2τ3 +O(τ4). This
result differs at two-loop order, i.e., O(τ3), from the prediction based on results from the “nearly conformal” field theory
of a related fermion model. We also obtain the correction-to-scaling exponent.

pdf

[KW81] A. Fedorenko, P. Le Doussal and K.J. Wiese, Functional renormalization-group approach to decay-
ing turbulence, J. Stat. Mech. (2013) P04014, arXiv:1212.2117.
We reconsider the functional renormalization-group (FRG) approach to decaying Burgers turbulence, and extend it to
decaying Navier-Stokes and Surface-Quasi-Geostrophic turbulence. The method is based on a renormalized small-time
expansion, equivalent to a loop expansion, and naturally produces a dissipative anomaly and a cascade after a finite time.
We explicitly calculate and analyze the one-loop FRG equations in the zero-viscosity limit as a function of the dimension.
For Burgers they reproduce the FRG equation obtained in the context of random manifolds, extending previous results of
one of us. Breakdown of energy conservation due to shocks and the appearance of a direct energy cascade corresponds
to failure of dimensional reduction in the context of disordered systems. For Navier-Stokes in three dimensions, the
velocity-velocity correlation function acquires a linear dependence on the distance, ζ2 = 1, in the inertial range, instead
of Kolmogorov’s ζ2 = 2/3; however the possibility remains for corrections at two- or higher-loop order. In two dimen-
sions, we obtain a numerical solution which conserves energy and exhibits an inverse cascade, with explicit analytical
results both for large and small distances, in agreement with the scaling proposed by Batchelor. In large dimensions, the
one-loop FRG equation for Navier-Stokes converges to that of Burgers.

pdf

[KW82] P. Le Doussal and K.J. Wiese, Avalanche dynamics of elastic interfaces, Phys. Rev. E 88 (2013)
022106, arXiv:1302.4316.
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Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a non-homogenous sub-
strate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a
field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an
avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d ≥ duc (duc = 2, 4 respectively
for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion
of a point particle in a random-force landscape, which is itself a random walk (ABBM model). Furthermore, the full
spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the
interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension
d (for monotonous driving) by summing tree graphs, equivalent to solving a (non-linear) instanton equation. We focus
on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in
short-ranged disorder, up to the renormalization of two parameters at d = duc. We calculate a number of observables of
direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations
and probability distribution functions (PDF’s) of the velocity inside an avalanche, as well as the avalanche shape and
its fluctuations (second shape). Within MFT we find that velocity correlations at non-zero q are asymmetric under time
reversal. Next we calculate, beyond MFT, i.e. including loop corrections, the 1-time PDF of the center-of-mass velocity
u̇ for dimension d < duc. The singularity at small velocity P(u̇) ∼ 1/u̇a is substantially reduced from a = 1 (MFT)
to a = 1 − 2

9 (4 − d) + ... (short-ranged elasticity) and a = 1 − 4
9 (2 − d) + ... (long-ranged elasticity). We show

how the dynamical theory recovers the avalanche-size distribution, and how the instanton relates to the response to an
infinitesimal step in the force.
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[KW83] P. Le Doussal, Z. Ristivojevic and K.J. Wiese, Exact form of the exponential correlation function in
the glassy super-rough phase, Phys. Rev. B 87 (2013) 214201, arXiv:1304.4612.
We consider the random-phase sine-Gordon model in two dimensions. It describes two-dimensional elastic systems with
random-periodic disorder, such as pinned flux-line arrays, random-field XY models, and surfaces of disordered crystals.
The model exhibits a super-rough glass phase at low temperature T < Tc with relative displacements growing with
distance r as 〈[θ(r)− θ(0)]2〉 ' A(τ) ln2(r/a), whereA(τ) = 2τ2−2τ3+O(τ4) near the transition and τ = 1−T/Tc.
We calculate all higher cumulants and show that they grow as 〈[θ(r)− θ(0)]2n〉c ' [2(−1)n+1(2n)!ζ(2n − 1)τ2 +

O(τ3)] ln(r/a), n ≥ 2, where ζ is the Riemann zeta function. By summation, we obtain the decay of the exponential
correlation function as 〈eiq[θ(r)−θ(0)]〉 ' (a/r)η(q) exp

(
− 1

2A(q) ln2(r/a)
)

where η(q) and A(q) are obtained for
arbitrary q ≤ 1 to leading order in τ . The anomalous exponent is η(q) = cq2 − τ2q2[2γE + ψ(q) + ψ(−q)] in terms
of the digamma function ψ, where c is non-universal and γE is the Euler constant. The correlation function shows a
faster decay at q = 1, corresponding to fermion operators in the dual picture, which should be visible in Bragg scattering
experiments.
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[KW84] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Statistics of avalanches with relaxation and Barkhausen
noise: A solvable model, Phys. Rev. E 88 (2013) 032106, arXiv:1304.7219.
We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a Brownian force
landscape, including retardation effects. We show that under monotonous driving the particle moves forward at all times,
as it does in absence of retardation (Middleton’s theorem). This remarkable property allows us to develop an analytical
treatment. The model with an exponentially decaying memory kernel is realized in Barkhausen experiments with eddy-
current relaxation, and has previously been shown numerically to account for the experimentally observed asymmetry of
Barkhausen-pulse shapes. We elucidate another qualitatively new feature: the breakup of each avalanche of the standard
ABBM model into a cluster of sub-avalanches, sharply delimited for slow relaxation under quasi-static driving. These
conditions are typical for earthquake dynamics. With relaxation and aftershock clustering, the present model includes
important ingredients for an effective description of earthquakes. We analyze quantitatively the limits of slow and fast
relaxation for stationary driving with velocity v > 0. The v-dependent power-law exponent for small velocities, and
the critical driving velocity at which the particle velocity never vanishes, are modified. We also analyze non-stationary
avalanches following a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size,
the duration distribution of the first sub-avalanche, and the time dependence of the mean velocity. We propose to study
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these observables in experiments, allowing to directly measure the shape of the memory kernel, and to trace eddy current
relaxation in Barkhausen noise.

pdf

[KW85] A.A. Fedorenko, P. Le Doussal and K.J. Wiese, Non-Gaussian effects and multifractality in the Bragg
glass, EPL 105 (2014) 16002, arXiv:1309.6529.
We study, beyond the Gaussian approximation, the decay of the translational order correlation function for a d-dimensional
scalar periodic elastic system in a disordered environment. We develop a method based on functional determinants, equiv-
alent to summing an infinite set of diagrams. We obtain, in dimension d = 4 − ε, the even n-th cumulant of relative
displacements as 〈[u(r)− u(0)]n〉c ' An ln r with An = −(ε/3)nΓ(n− 1

2 )ζ(2n− 3)/
√
π, multifractal dimension xq

of the exponential field equ(r). As a corollary, we obtain an analytic expression for a class of n-loop integrals in d = 4,
which appear in the perturbative determination of Konishi amplitudes, also accessible via AdS/CFT using integrability.
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[KW86] F. Guinea, P. Le Doussal and K.J. Wiese, Collective excitations in a large-d model for graphene,
Phys. Rev. B 89 (2014) 125428, arXiv:1312.2854.
We consider a model of Dirac fermions coupled to flexural phonons to describe a graphene sheet fluctuating in dimension
2 + d. We derive the self-consistent screening equations for the quantum problem, exact in the limit of large d. We first
treat the membrane alone, and work out the quantum to classical, and harmonic to anharmonic crossover. For the coupled
electron-membrane problem we calculate the dressed two-particle propagators of the elastic and electron interactions and
find that it exhibits a collective mode which becomes unstable at some wave-vector qc for large enough coupling g.
The saddle point analysis, exact at large d, indicates that this instability corresponds to spontaneous and simultaneous
appearance of gaussian curvature and electron puddles. The relevance to ripples in graphene is discussed.
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[KW87] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Avalanche shape and exponents beyond mean-field
theory, EPL 108 (2014) 66002, arXiv:1407.7353.
Elastic systems, such as magnetic domain walls, density waves, contact lines, and cracks, are all pinned by substrate
disorder. When driven, they move via successive jumps called avalanches, with power-law distributions of size, duration
and velocity. Their exponents, and the shape of an avalanche, defined as its mean velocity as function of time, have
recently been studied. They are known approximatively from experiments and simulations, and were predicted from
mean-field models, such as the Brownian force model (BFM), where each point of the elastic interface sees a force field
which itself is a random walk. As we showed in EPL 97 (2012) 46004, the BFM is the starting point for an ε = dc − d
expansion around the upper critical dimension, with dc = 4 for short-ranged elasticity, and dc = 2 for long-ranged
elasticity. Here we calculate analytically the O(ε), i.e. 1-loop, correction to the avalanche shape at fixed duration T , for
both types of elasticity. The exact expression is well approximated by 〈u̇(t = xT )〉T ' [Tx(1− x)]γ−1 exp(A[ 12 − x]),
0 ≤ x ≤ 1. The asymmetry A ≈ −0.336(1 − d/dc) is negative for d close to dc, skewing the avalanche towards its
end, as observed in numerical simulations in d = 2 and 3. The exponent γ = (d+ ζ)/z is given by the two independent
exponents at depinning, the roughness ζ and the dynamical exponent z. We propose a general procedure to predict other
avalanche exponents in terms of ζ and z. We finally introduce and calculate the shape at fixed avalanche size, not yet
measured in experiments or simulations.
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[KW88] S. Atis, A.K. Dubey, D. Salin, L. Talon, P. Le Doussal and K.J. Wiese, Experimental evidence for
three universality classes for reaction fronts in disordered flows, Phys. Rev. Lett. 114 (2015) 234502,
arXiv:1410.1097.
Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine roughening, pinning
and depinning transitions. We measure spatial and temporal fluctuations of the front in 1+1 dimensions, controlled by
a single parameter, the mean flow velocity. Three distinct universality classes are observed, consistent with the Kardar-
Parisi-Zhang (KPZ) class for fast advancing or receding fronts, the quenched KPZ class (positive-qKPZ) when the mean
flow approximately cancels the reaction rate, and the negative-qKPZ class for slowly receding fronts. Both quenched
KPZ classes exhibit distinct depinning transitions, in agreement with the theory.
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[KW89] P. Le Doussal and K.J. Wiese, An exact mapping of the stochastic field theory for Manna sandpiles
to interfaces in random media, Phys. Rev. Lett. 114 (2014) 110601, arXiv:1410.1930.
We show that the stochastic field theory for directed percolation in presence of an additional conservation law (the C-DP
class) can be mapped exactly to the continuum theory for the depinning of an elastic interface in short-range correlated
quenched disorder. On one line of parameters commonly studied, this mapping leads to the simplest overdamped dynam-
ics. Away from this line, an additional memory term arises in the interface dynamics; we argue that it does not change
the universality class. Since C-DP is believed to describe the Manna class of self-organized criticality, this shows that
Manna stochastic sandpiles and disordered elastic interfaces (i.e. the quenched Edwards-Wilkinson model) share the
same universal large-scale behavior.

pdf

[KW90] K.J. Wiese, Coherent-state path integral versus coarse-grained effective stochastic equation of mo-
tion: From reaction diffusion to stochastic sandpiles, Phys. Rev. E 93 (2016) 042117,
arXiv:1501.06514.
We derive and study two different formalisms used for non-equilibrium processes: The coherent-state path integral,
and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the
corresponding field theory, using the annihilation process A+A→ A as an example. The field theory contains counter-
intuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the
coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders
it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an
effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in
spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective
field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral
is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we
then use to construct a coarse-grained stochastic equation of motion with real noise.

pdf

[KW91] T. Thiery, P. Le Doussal and K.J. Wiese, Spatial shape of avalanches in the Brownian force model,
J. Stat. Mech. 2015 (2015) P08019, arXiv:1504.05342.
We study the Brownian force model (BFM), a solvable model of avalanche statistics for an interface, in a general discrete
setting. The BFM describes the overdamped motion of elastically coupled particles driven by a parabolic well in indepen-
dent Brownian force landscapes. Avalanches are defined as the collective jump of the particles in response to an arbitrary
monotonous change in the well position (i.e. in the applied force). We derive an exact formula for the joint probability
distribution of these jumps. From it we obtain the joint density of local avalanche sizes for stationary driving in the
quasi-static limit near the depinning threshold. A saddle-point analysis predicts the spatial shape of avalanches in the
limit of large aspect ratios for the continuum version of the model. We then study fluctuations around this saddle point,
and obtain the leading corrections to the mean shape, the fluctuations around the mean shape and the shape asymmetry,
for finite aspect ratios. Our results are finally confronted to numerical simulations.
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[KW92] M. Delorme and K.J. Wiese, Maximum of a fractional Brownian motion: Analytic results from
perturbation theory, Phys. Rev. Lett. 115 (2015) 210601, arXiv:1507.06238.
Fractional Brownian motion is a non-Markovian Gaussian process Xt, indexed by the Hurst exponent H . It generalises
standard Brownian motion (corresponding to H = 1/2). We study the probability distribution of the maximum m of the
process and the time tmax at which the maximum is reached. They are encoded in a path integral, which we evaluate
perturbatively around a Brownian, setting H = 1/2 + ε. This allows us to derive analytic results beyond the scaling
exponents. Extensive numerical simulations for different values of H test these analytical predictions and show excellent
agreement, even for large ε.

pdf

[KW93] L.E. Aragon, A.B. Kolton, P. Le Doussal, K.J. Wiese and E. Jagla, Avalanches in tip-driven interfaces
in random media, EPL 113 (2016) 10002, arXiv:1510.06795.
We analyse by numerical simulations and scaling arguments the avalanche statistics of 1-dimensional elastic interfaces
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in random media driven at a single point. Both global and local avalanche sizes are power-law distributed, with universal
exponents given by the depinning roughness exponent ζ and the interface dimension d, and distinct from their values
in the uniformly driven case. A crossover appears between uniformly driven behaviour for small avalanches, and point-
driven behaviour for large avalanches. The scale of the crossover is controlled by the ratio between the stiffness of the
pulling spring and the elasticity of the interface; it is visible both in the global and local avalanche-size distributions,
as in the average spatial avalanche shape. Our results are relevant to model experiments involving locally driven elastic
manifolds at low temperatures, such as magnetic domain walls or vortex lines in superconductors.
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[KW94] G. Durin, F. Bohn, M.A. Correa, R.L. Sommer, P. Le Doussal and K.J. Wiese, Quantitative scaling
of magnetic avalanches, Phys. Rev. Lett. 117 (2016) 087201, arXiv:1601.01331.
We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the
theory of avalanches for pinned interfaces, both in and beyond mean-field. We study different classes of soft magnetic
materials: polycrystals and amorphous samples, characterized by long-range and short-range elasticity, respectively;
both for thick and thin samples, i.e. with and without eddy currents. The temporal avalanche shape at fixed size, and
observables related to the joint distribution of sizes and durations, are analyzed in detail. Both long-range and short-
range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range
samples provide the first reliable test of the theory beyond mean-field. The thick samples show systematic deviations
from the scaling theory, providing unambiguous signatures for the presence of eddy currents.
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[KW95] M. Delorme, P. Le Doussal and K.J. Wiese, Distribution of joint local and total size and of extension
for avalanches in the Brownian force model, Phys. Rev. E 93 (2016) 052142, arXiv:1601.04940.
The Brownian force model (BFM) is a mean-field model for the local velocities during avalanches in elastic interfaces
of internal space dimension d, driven in a random medium. It is exactly solvable via a non-linear differential equation.
We study avalanches following a kick, i.e. a step in the driving force. We first recall the calculation of the distributions
of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation
to the joint density of local and global sizes within a single avalanche, in the limit of an infinitesimal kick. When the
interface is driven by a single point we find new exponents τ0 = 5/3 and τ = 7/4, depending on whether the force or
the displacement is imposed. We show that the extension of a single avalanche along one internal direction (i.e. the total
length in d = 1) is finite and we calculate its distribution, following either a local or a global kick. In all cases it exhibits
a divergence P (`) ∼ `−3 at small `. Most of our results are tested in a numerical simulation in dimension d = 1.
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[KW96] K.J. Wiese, Dynamical selection of critical exponents, Phys. Rev. E 93 (2016) 042105,
arXiv:1602.00601.
In renormalized field theories there are in general one or few fixed points which are accessible by the renormalization-
group flow. They can be identified from the fixed-point equations. Exceptionally, an infinite family of fixed points exists,
parameterized by a scaling exponent ζ, itself function of a non-renormalizing parameter. Here we report a different
scenario with an infinite family of fixed points of which seemingly only one is chosen by the renormalization-group flow.
This dynamical selection takes place in systems with an attractive interaction V(φ), as in standard φ4 theory, but where
the potential V at large φ goes to zero, as e.g. the attraction by a defect.
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[KW97] M. Delorme and K.J. Wiese, Perturbative expansion for the maximum of fractional Brownian motion,
Phys. Rev. E 94 (2016) 012134, arXiv:1603.00651.
Brownian motion is the only random process which is Gaussian, stationary and Markovian. Dropping the Markovian
property, i.e. allowing for memory, one obtains a class of processes called fractional Brownian motion, indexed by the
Hurst exponent H . For H = 1/2, Brownian motion is recovered. We develop a perturbative approach to treat the non-
locality in time in an expansion in ε = H − 1/2. This allows us to derive analytic results beyond scaling exponents
for various observables related to extreme value statistics: The maximum m of the process and the time tmax at which
this maximum is reached, as well as their joint distribution. We test our analytical predictions with extensive numerical
simulations for different values of H . They show excellent agreement, even for H far from 1/2.
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[KW98] T. Thiery, P. Le Doussal and K.J. Wiese, Universal correlations between shocks in the ground state
of elastic interfaces in disordered media, Phys. Rev. E 94 (2016) 012110, arXiv:1604.05556.
The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation of external
parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface to a parabolic
potential centered at w, we study the avalanches which occur as w is varied. We are interested in the correlations
between the avalanche sizes S1 and S2 occurring at positions w1 and w2. Using the Functional Renormalization Group
(FRG), we show that correlations exist for realistic interface models below their upper critical dimension. Notably, the
connected moment 〈S1S2〉c is up to a prefactor exactly the renormalized disorder correlator, itself a function of |w2−w1|.
The latter is the universal function at the center of the FRG; hence correlations between shocks are universal as well. All
moments and the full joint probability distribution are computed to first non-trivial order in an ε-expansion below the
upper critical dimension. To quantify the local nature of the coupling between avalanches, we calculate the correlations
of their local jumps. We finally test our predictions against simulations of a particle in random-bond and random-force
disorder, with surprisingly good agreement.
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[KW99] M. Delorme and K.J. Wiese, Extreme-value statistics of fractional Brownian motion bridges, Phys.
Rev. E 94 (2016) 052105, arXiv:1605.04132.
Fractional Brownian motion is a self-affine, non-Markovian and translationally invariant generalization of Brownian
motion, depending on the Hurst exponent H . Here we investigate fractional Brownian motion where both the starting
and the end point are zero, commonly referred to as bridge processes. Observables are the time t+ the process is positive,
the maximum m it achieves, and the time tmax when this maximum is taken. Using a perturbative expansion around
Brownian motion (H = 1

2 ), we give the first-order result for the probability distribution of these three variables, and
the joint distribution of m and tmax. Our analytical results are tested, and found in excellent agreement, with extensive
numerical simulations, both for H > 1

2 and H < 1
2 . This precision is achieved by sampling processes with a free

endpoint, and then converting each realization to a bridge process, in generalization to what is usually done for Brownian
motion.
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[KW100] M. Delorme, A. Rosso and K.J. Wiese, Pickands’ constant at first order in an expansion around
Brownian motion, J. Phys. A 50 (2017) 16LT04, arXiv:1609.07909.
In the theory of extreme values of Gaussian processes, many results are expressed in terms of the Pickands constant
Hα. This constant depends on the local self-similarity exponent α of the process, i.e. locally it is a fractional Brownian
motion (fBm) of Hurst index H = α/2. Despite its importance, only two values of the Pickands constant are known:
H1 = 1 and H2 = 1/

√
π. Here, we extend the recent perturbative approach to fBm to include drift terms. This allows

us to investigate the Pickands constant Hα around standard Brownian motion (α = 1) and to derive the new exact result
Hα = 1− (α− 1)γE +O(α− 1)

2.
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[KW101] T. Sadhu, M. Delorme and K.J. Wiese, Generalized arcsine laws for fractional Brownian motion,
Phys. Rev. Lett. 120 (2018) 040603, arXiv:1706.01675.
The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a Brownian Bt starting
from the origin, and evolving during time T , one considers the following three observables: (i) the duration t+ the process
is positive, (ii) the time tlast the process last visits the origin, and (iii) the time tmax when it achieves its maximum (or
minimum). All three observables have the same cumulative probability distribution expressed as an arcsine function,
thus the name of arcsine laws. We show how these laws change for fractional Brownian motion Xt, a non-Markovian
Gaussian process indexed by the Hurst exponent H . It generalizes standard Brownian motion (i.e. H = 1

2 ). We obtain
the three probabilities using a perturbative expansion in ε = H − 1

2 . While all three probabilities are different, this
distinction can only be made at second order in ε. Our results are confirmed to high precision by extensive numerical
simulations.
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[KW102] L. Benigni, C. Cosco, A. Shapira and K.J. Wiese, Hausdorff dimension of the record set of a frac-
tional Brownian motion, Electron. Commun. Probab. 23 (2018) 1–8, arXiv:1706.09726.
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We prove that the Hausdorff dimension of the record set of a fractional Brownian motion with Hurst parameter H equals
H .
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[KW103] C. Husemann and K.J. Wiese, Field theory of disordered elastic interfaces to 3-loop order: Results,
Nucl. Phys. B 932 (2018) 589–618, arXiv:1707.09802.
In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of
the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the
waiting-time between them. Avalanches also have a finite extension ` in space, i.e. only a part of the interface of size
` moves during an avalanche. Here we study their spatial shape 〈S(x)〉` given `, as well as its fluctuations encoded
in the second cumulant

〈
S2(x)

〉c
`
. We establish scaling relations governing the behavior close to the boundary. We

then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom
is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the
influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us
to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape,
its fluctuations, including all amplitudes.
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[KW104] Z. Zhu and K.J. Wiese, The spatial shape of avalanches, Phys. Rev. E 96 (2017) 062116,
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