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Abstract – The Lässig-Wiese (LW) field theory for the freezing transition of random RNA
secondary structures is generalized to the situation of an external force. We find a second-order
phase transition at a critical applied force f = fc. For f < fc forces are irrelevant. For f > fc, the
extension L as a function of pulling force f scales as L(f)∼ (f − fc)

1/γ−1. The exponent γ is
calculated in an ε-expansion: At 1-loop order γ = ε/2 = 1/2, equivalent to the disorder-free case.
2-loop results yielding γ = 0.6 are briefly mentioned. Using a locking argument, we speculate that
this result extends to the strong-disorder phase.

Copyright c© EPLA, 2007

Introduction. – RNA is a heteropolymer constructed
from four different nucleotides A, C, G and U located
on a sugar-phosphate polymer backbone. In solution,
a single RNA strand bends back onto itself and folds
into a configuration of loops, stems and terminating
bonds, due to formation of Watson-Crick pairs A-U and
C-G from bases located on different parts of the strand.
Together with environmental conditions like tempera-
ture and ionic concentration, the primary structure (base
sequence) determines the most probable base-pairings,
known as secondary structure, which then determines
the most probable spatial conformation (tertiary struc-
ture) [1, 2]. Unlike protein folding, which exhibits a strong
interdependence between secondary and tertiary struc-
ture [3], RNA folding may be studied at the level of
secondary structures due to a clear separation of energy
scales.
Since the pioneering work of Bundschuh and Hwa [4],

several authors have studied the statistical physics of
RNA secondary structures for random sequences [5–8].
It is commonly believed that these systems undergo a
freezing transition upon lowering the temperature. Based
on a replica approach, Lässig and Wiese [9], and David
and Wiese [10] have recently developed a systematic
field-theory formulation for this phase transition in

(a)E-mail: Francois.David@cea.fr
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(c)E-mail: wiese@lpt.ens.fr

terms of interacting random walks (RW). The critical
exponents characterizing pairing statistics and replica
overlap were computed within a 2-loop renormalization
analysis, and found to be remarkably close to numerical
simulations [4,11].
An interesting way to probe RNA chains is to study its

behavior under an external pulling force (see fig. 1a for an
illustration). Recently, force-extension curves have been
measured, by attaching beads to the RNA-molecule and
pulling on it, using an optical trap [12,13]. For homopoly-
mers, the competition between structure formation and
denaturation of the RNA strand leads to a second-order
phase transition at a critical force f = fc [11]. For f < fc
the strand is still in a collapsed phase, while for f > fc
it is in a extended “necklace phase” with a macroscopic
extension (end-to-end distance). While quite some litera-
ture exists about the subject (see, e.g. [14,15]) there is up
to today no theory to compute the characteristic exponent
γ of the force-extension characteristics for disordered RNA
strands at the transition. In this letter we fill this gap. We
propose an extension of the RW field theory for random
RNA by including an external pulling force f . We show
that within our theory the force is renormalized by the
quenched disorder, hence the exponent γ is modified with
respect to its mean-field value γ0 = 1/2. Conversely, we
argue that the disorder coupling is not renormalized by the
force at any order in perturbation theory. We use pertur-
bative renormalization of the new theory to compute γ to
1-loop order. Finally, we comment on 2-loop results.
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Fig. 1: (a) Illustration of the planar structure of RNA under
tension, (b) rainbow diagram and (c) corresponding height
relief.

The model. – We consider an RNA strand with L
bases labeled with indices s= 1, ..., L. Similarly, we use
the index s to label a backbone segment between adjacent
bases s and s+1. A secondary structure S is a set of
base pairs (s, t), s < t. We only retain so-called planar
structures S: any two different base pairs (s, t), (s′, t′)
are either independent s < t < s′ < t′ or nested s < s′ <
t′ < t. S can be represented by a diagram of arches
(fig. 1b). Planarity implies that the arches do not cross
each other. We introduce the contact operator Φ defined
by Φ(s, t) = 1 if (s, t)∈ S, and 0 otherwise [9]. Moreover
we define the height field h on the segment r by h(r) :=
∑

s�r

∑L
t>r Φ(s, t), counting the number of arches over

r. This leads to an identification of each open planar
secondary structure S with a height function subject to
boundary conditions h(0) = h(L) = 0. A segment between
the bases r and r+1 belongs to the free part of the
structure if and only if h(r) = 0 (fig. 1c).
In order to develop a statistical-mechanics model, we

have to assign to each structure S an energy E[S].
We assume that it may be written as a sum of the
contributions from the formation of base pairs Epair[S]
and from the external force Eforce[S]. Bond formation
between the bases at s and t involves a pairing energy
η(s, t) which in general depends on the nature of the
pairing partners. We sum over all pairing energies of base
pairs in S and obtain Epair[S] =

∑

s<t η(s, t)Φ(s, t) [4].
The energy due to the external force, Eforce[S], depends on
the spatial configuration of the free part of the strand and
its elasticity. We assume that every free backbone segment
aligns with the force, hence the energy is proportional to
the force f times the number of monomers in the free
strand [6]. Thus, we neglect any elasticity and entropic

effects for the free segments and for the bonds which
terminate loop structures (fig. 1a). By analogy with
the contact operator Φ(s, t), we introduce a free-strand
operator ∆(r) such that ∆(r) = 1 if h(r) = 0, and 0
otherwise. This allows to write Eforce[S] =−f

∑

r∆(r).
Having defined the energy of a given secondary struc-

ture, we proceed to study the partition function

Z =
∑

S∈S(L)

exp

[

−
∑

s<t

η(s, t)Φ(s, t)+ f
∑

s

∆(s)

]

, (1)

where S(L) denotes the set of all possible planar secondary
structures with L bases. Before considering random RNA
chains, we briefly review the properties of the partition
function in the case of uniform pairing energies η(s, t) = η0
(that we may take = 0). For f = 0 one deduces from the
height picture that the problem is equivalent to the
statistics of a RW on the positive real axis h� 0.
The partition function is ZL ∝L

−ρ0 with ρ0 = 3/2 the
characteristic exponent of first return. This leads to a
pairing probability for the base pair (s, t) scaling
like p(s, t) = 〈Φ(s, t)〉 ∝ [|t− s|(L− |t− s|)]−ρ0 . Switching
on the force f > 0 amounts to adding an attractive
short-range potential at the origin h= 0. This is a well-
known problem of statistical mechanics. For instance, it
describes surface wetting transitions in 1+1 dimensions
(see, e.g. [16]). For forces f larger than a critical force fc,
the RW is bound to the origin h= 0 whereas for f < fc it
is unbound (i.e., free to wander far away from h= 0).
In fact, the f = 0 problem can be mapped onto a free

RW r(s) in d= 2ρ0 = 3 dimensions; the height field is the
modulus h(s) = |r(s)|. The inclusion of the short-ranged
attraction in the case f > 0 corresponds to a short-ranged
attractive potential at r= 0. In the continuum limit,
the action of this model reads

S3D[r(s)] =

∫ L

0

ds

(

1

4
[ṙ(s)]

2
− fδ3(r(s))

)

, (2)

and describes the pinning of a RW by an attractive
impurity at the origin.
We now exploit this analogy to extend our analysis

to random RNA structures. Numerical simulations [4]
suggest to model sequence disorder by independent
Gaussian random binding energies η(s, t),

η(s, t) = η0, η(s, t)η(u, v)− η
2
0 = σ

2δ(s−u)δ(t− v).
(3)

Following [9, 10], we construct a field theory in the contin-
uum limit L→∞. We perform a perturbative expan-
sion in the disorder amplitude g= σ2 > 0, and the force
strength f . To model disorder, we use the replica trick.
Each replica α= 1, . . . , n is represented by a RW rα(s)
in an embedding space Rd (with dimension d= 2ρ0 = 3).
In fact, the explicit form of the pairing probability for
uniform RNA suggests to consider closed RWs rα(s).
Nevertheless, we can (and shall) use open RWs because
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(a) (b)

Fig. 2: Non-planar diagrams.

they have been proven to lie in the same universal-
ity class and considerably simplify the calculations [10].
Within the RW representation, the contact operator reads
Φα(s, t) = δ

d(rα(s)− rα(t)). The average over the disorder
η generates an attractive interaction between the repli-
cas. It is described by the overlap operator Ψαβ(s, t) =
Φα(s, t)Φβ(s, t) (counting the common arches of the repli-
cas α and β in the original picture). By analogy with (2)
we represent the operator ∆ as ∆α(s) := δ

d(rα(s)). The
resulting action in the RW picture is

S[{rα}] =
∑

α

∫

1

4
[ṙα(s)]

2

−g
∑

α<β

∫∫

s<t

Ψαβ(s, t)− f
n
∑

α=1

∫

∆α(s), (4)

and generalizes the model of [10] (where f = 0). Before
using perturbation theory, we generalize the model to
dimensions 2� d� 3 [9,10]. Setting ε= d− 2 we find the
canonical scaling dimensions dim g= ε and dim f = ε/2.
The original theory corresponds to ε= 1. The generalized
model is renormalizable at ε= 0 as the f = 0 model [17].

Perturbation theory. – We represent the perturba-
tive expansion of Z in f , g in terms of Feynman diagrams.
The g-vertex Ψαβ (disorder interaction vertex) is denoted
by a double arch between a pair of replicas [9,10] and the
f -vertex ∆α (force interaction at r= 0) is depicted by a
force insertion on a single replica:

Ψαβ = , ∆α = . (5)

Non-planar diagrams involving the disorder interaction,
see fig. 2a, may be eliminated by introducing n×N pairs
of auxiliary fields γ and γ̃ in the action and by taking
the large-N limit [10]. Since the force term only acts on
the free part of the RNA strand, also diagrams of the type
given on fig. 2b must be excluded. This is achieved by
a similar “planarity constraint” that can be implemented
using the same auxiliary fields.
We now consider the partition function for a single

(bundle of replica) RW with fixed end-points, or rather
its Fourier transform Z({q′α}, {q

′′
α}; f, g), defined as

Z({q′α, q
′′
α}; f, g) =

∫

D[{rα}] e
−S[{rα}]

∏

α

V αq′α(0)V
α
q′′α
(L),

(6)

where the vertex operator V αq (s) = exp (iqrα(s)) injects
incoming external momenta {q′α}, {q

′′
α} to each end-

point of the replica α of the RW. The (regularized)
dimensionless integration measure is given by D[rα] =
∏

i d
d
rα,i/(4πa

2/m)d/2 where a is an ultraviolet cut-off
and m= 1/2 the mass of the Brownian particle associated
with the RW. We further simplify the model by setting
q
′
α ≡ q

′, q′′α ≡ q
′′ without loss of generality.

The perturbative expansion in g and f leads to
a systematic diagrammatic representation of Z. The
diagrams can be classified according to the number of
replicas with force insertions. The absence of force inser-
tions on the replica α leads to a momentum conservation
δd(q′α+ q

′′
α) (translation invariance rα(s)→ rα(s)+ r).

Thus, the set of all possible diagrams is classified according
to the number k of its external momentum conservations:
k= n conservations correspond to a diagram of the force-
free theory, k= n− 1 conservations to a single replica
subject to force insertions, etc. We group all diagrams
with k conservations into a restricted partition func-
tion Ξn−k(q

′, q′′; f, g), so that formally Z(q′, q′′; f, g) =
∑

k δ(q
′+ q′′)kΞn−k(q

′, q′′; f, g). Ξ0 describes the force-
free theory, Ξ1 the sector where the attractive short-range
potential only acts upon a single replica, Ξ2 the sector
where it acts upon two replicas, etc. In the following we
focus on Ξ1(q,−q), since this simplifies the calculations.
Perturbative expansion up to order two in f or g yields

Ξ1(q,−q; f, g) =

f n + f2 n

+ fg









n(n− 1)









+









+
n(n− 1)(n− 2)

2









+ · · · . (7)

There are four topologically different Feynman diagrams.
The first contribution is

=

∫

0<u<L

〈

∆1(u)

n
∏

α=1

V αq (0)V
α
−q(L)

〉

0

= Le−q
2Ln, (8)

where 〈 〉0 denotes the average w.r.t. the free RW action
S0[r] (f = g= 0), with a proper subtraction of the (n− 1)
translational zero modes. The second diagram is UV
divergent at ε= 0. Isolation of the corresponding pole
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yields

=

∫ ∫

0<u<v<L

〈

∆1(u)∆1(v)

n
∏

α=1

V αq (0)V
α
−q(L)

〉

0

=

∫ ∫

0<u<v<L

e−q
2(L−v+u)|v−u|−d/2e−q

2L (n−1)

=
ε→0

−
L2

ε
e−q

2Ln+O(1). (9)

The divergence comes from the short-distance behav-
ior of the product of two ∆ operators ∆(u)∆(v) =

u→v

|u− v|−d/2∆(v)+ · · · . The third contribution is also UV
divergent,

=

=

∫∫ ∫

0<u<v<w<L

〈

∆1(u)Ψ12(v, w)

n
∏

α=1

V αq (0)V
α
−q(L)

〉

0

=

∫∫ ∫

0<u<v<w<L

e−2q
2(L−w+v)|w− v|−de−q

2L (n−2)

=
ε→0

−
L

ε
(Lq2− 1) e−q

2Ln+O(1), (10)

as well as the fourth

=

∫ ∫

0<u<L

0<v<w<L

∫

〈

∆1(u)Ψ23(v, w)

n
∏

α=1

V αq (0)V
α
−q(L)

〉

0

=

∫ ∫

0<u<L

0<v<w<L

∫

e−2q
2(L−w+v)|w− v|−de−q

2L (n−2)

=
ε→0
−
L

ε
(2Lq2− 1) e−q

2Ln+O(1). (11)

Renormalization. – We remove the UV divergences
in the expansion (7) by formally taking ρ0 as analytical
regularization parameter. In order to eliminate the simple
poles in ε= 2ρ0− 2 at ε= 0, we define the renormalized
theory through the renormalized action

SR =
∑

α

∫

s

Z

4
ṙ
2
α− gRµ

−ε
Zg

∑

α<β

∫∫

0<s<t<L

Ψαβ(s, t)

−fRµ
−ε/2
Zf

∑

α

∫

s

∆α(s)+ 2nZ1. (12)

Here Z, Zg and Zf denote the wave function, the coupling
constant and the force counterterms, respectively. Z1
accounts for boundary effects since we deal with open
RWs [10]. The coefficients of their development in fR,
gR contain the leading poles in 1/ε. Furthermore, we
have introduced the renormalization mass scale µ∼ 1/L.
From dimensional analysis we deduce the relations
between renormalized and bare r, q, g and f : For
the field r=Z1/2rR, q=Z

−1/2
qR, for the couplings

g= gRµ
−ε
ZgZ

−d and f = fRµ
−ε/2
ZfZ

−d/2. The renor-
malized partition functions are related to the bare ones via

ΞRk (q
′
R, q

′′
R, fR, gR) =Z

−kd/2e−2nZ1Ξk(q
′, q′′, f, g). (13)

The prefactor on the r.h.s. takes into account the
(n− k) zero modes, boundary effects and the change of
normalization in the integration measure. Consistency
of the theory requires cancelation of all divergences
upon renormalization for each individual Ξk. In partic-
ular, renormalization of the force-free terms Ξ0 has
been performed previously [10] and yields the counter
terms Z= 1+ gR(n− 1)/ε, Zg = 1+ gR(7− 4n)/ε and
Z1 = 1+3g(n− 1)/4ε. They do not depend on f at any
order since they correspond to “bulk” divergences for the
random walk in interaction with the potential at the origin
(“boundary” term). For the counter term Zf we need Ξ1,
whose Feynman diagrams were computed in eqs. (8)–(11):

Ξ1 = nLfe
−(q′)2Ln

×

[

1+
g(n− 1)

2ε

(

n+2

2
− 2n(q′)2L

)

−
2f

ε

]

. (14)

We absorb the poles by the counter terms of the force-free
theory and Zf = 1+2f/ε. This expression depends
neither on the number of replicas n, nor on g. Thus at
first order there is no coupling between force and disorder.
A straightforward calculation gives the RG β-functions

βf (gR, fR) =−
dfR
d logµ

∣

∣

∣

∣

f

=−
ε

2
fR+ f

2
R, (15)

βg(gR, fR) =−
dgR
d logµ

∣

∣

∣

∣

g

=−εgR+(5− 2n)g
2
R. (16)

In the physical case of random RNA, n= 0, they yield
the RG flow depicted in fig. 3 with four fixed points.
The attractive Gaussian fixed point O= (0, 0) describes
the molten phase of [4]. D= (ε/5, 0) is the fixed point
of the glass transition found in [9, 10]. We identify F =
(0, ε/2) with the denaturation transition of a homopoly-
mer (wetting in 1+1 dimensions). More interesting, a new
bi-critical UV unstable fixed point B = (ε/2, ε/5) emerges
from our one-loop analysis. It leads to four phases sepa-
rated by the critical lines f ≡ ε/2 and g≡ ε/5. In particu-
lar, a new phase at both high force and strong disorder
emerges. Physically, it corresponds to isolated frozen
branched structures separated by free parts of the strand.
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Fig. 3: Schematic view of renormalization group flow in the
(g, f)-plane. The critical lines distinguish the molten phase (I),
the denatured homopolymer phase (II), a glass phase (III).
A new phase (IV) corresponds to RNA strands with isolated
frozen structures separated by free parts.

The extension L as a function of the force f is given by
the anomalous dimension of this force. The scaling ansatz
reads

L(f) =LαF ([f − fc]L
γ) , (17)

where F(z) is a scaling function. At the bi-critical fixed
point, we find

γ =−dim[f − fc] =
∂βf
∂fR

∣

∣

∣

∣

fc

=
ε

2
. (18)

Since L=
〈

∫ L

0
dx∆(x)

〉

, the exponent α= γ. Demanding

that for large systems the extension L become extensive,

i.e., ∼L, yields F(z)∼ z
1

γ
−1 for z
 1, so that for large

RNA molecules L(f)∼L(f − fc)
1

γ
−1. Setting ε= 1 yields

the exponent γ = 1/2 which is the same result as for
the homopolymer denaturation transition, first discussed
in [11]. This is consistent with the fact that the 1-loop
β-function for f does not depend on g, so that γ is not
changed by the quenched disorder. However, this result
does not hold at higher orders [17].

Conclusion. – To summarize, we have developed a
field-theoretic description of random RNA under applica-
tion of an external force, by extending the force-free field
theory. It permits to study the second-order denaturation
transition. At 1-loop order, the RG flow functions for force
f and disorder strength g decouple so that the denatu-
ration is not influenced by disorder. We have computed
the critical exponent γ = 1/2 for the force-extension char-
acteristic at the transition which agrees with previously
considered homopolymer models.
We have extended our calculations to second order

in perturbation theory [17]. The renormalization group
flow of f then depends on the disorder strength g.
The procedure yields a scaling exponent γ = 0.6 for

the force-extension characteristic, resulting in L(f)∼

L(f − fc)
1

γ
−1 ≈L(f − fc)

2/3.
We invoke the locking hypothesis [9] in order to conjec-

ture the critical exponents in the glass phase. The argu-
ment relies on the exact inequality dim[Ψ]� dim[Φ] for
the dimensions of contact and overlap operators. For ε= 1
consistency of the theory requires that the inequality is
satisfied. Physically, this means that different replicas
follow the same minimal-energy path already at the tran-
sition. This is quite unusual. Normally, one expects several
minimal-energy paths to exist at the transition, and the
strong-coupling phase to be characterized by a collapse
of these distinct paths into a single one, resulting into
different physical exponents. In a situation where at the
transition only a single minimal-energy path exists, we
cannot have a collapse of several paths, and the accom-
panying change of critical exponents. In the absence of a
different mechanism, the exponents will not change for a
small increase in disorder, and by renormalization argu-
ments in the whole strong-coupling phase. We conjecture
that this is what happens for the RNA freezing transition.
It is then tempting to suppose this hypothesis to hold even
in the presence of an external force, i.e., on the critical line
beyond the bi-critical fixed point. This assumption leads
us to extend our prediction α= γ = 0.6 to the glass phase.
Indeed, this prediction proves to be in reasonable agree-
ment with numerical simulations of Müller et al. [11,18].
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