
OFFPRINT

Distribution of velocities in an avalanche

P. Le Doussal and K. J. Wiese

EPL, 97 (2012) 46004

Please visit the new website
www.epljournal.org



February 2012

EPL, 97 (2012) 46004 www.epljournal.org
doi: 10.1209/0295-5075/97/46004

Distribution of velocities in an avalanche

P. Le Doussal and K. J. Wiese(a)
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Abstract – For a driven elastic object near depinning, we derive from first principles the
distribution of instantaneous velocities in an avalanche. We prove that above the upper critical
dimension, d! duc, the n-times distribution of the center-of-mass velocity is equivalent to the
prediction from the ABBM stochastic equation. Our method allows to compute space and time
dependence from an instanton equation. We extend the calculation beyond mean field, to lowest
order in ε= duc− d.
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Obtaining a quantitative description of the dynamics
during an avalanche is of great importance for systems
whose dynamics is governed by jumps, such as magnets,
superconductors, earthquakes, the contact line of fluids,
or fracture [1–6]. In particular the motion of domain walls
(DW) in magnets is important for many applications,
such as magnetic recording. It can be measured from
the Barkhausen (magnetization) noise [7,8], which is a
complicated time-dependent signal.
A major step forward was accomplished by Alessan-

dro, Beatrice, Bertotti and Montorsi (ABBM) [9] who
introduced, on a phenomenological basis, a stochastic
equation approximating the DW motion by a single
degree of freedom submitted to a random-force landscape
with long-range (Brownian) correlations. Although a
crude description, this model has been used extensively
to compare with experiments on magnets, with success in
some “mean-field–like” cases, and failure in others [10,11].
Since microscopic disorder is usually short ranged, it can
only hold as an effective “mean-field” model, and until
now its validity was only established in the infinite-range
limit [11,12]. No microscopic foundation for the validity
of this model for an interface in a realistic disorder exists.
On the other hand, a sophisticated field theory was

developed for systems with quenched disorder. In partic-
ular, for elastic interfaces, relevant for DW motion,
functional RG methods (FRG) [1,13–15] recently allowed
to derive the distribution of quasi-static avalanche
sizes [16,17]. Until now, no description of the dynamics
during an avalanche was available. In fact, since it involves
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much faster motion than the average driving velocity, it
led to difficulties in the early FRG approaches [14].
The aim of this letter is to compute from first prin-

ciples the distribution of instantaneous velocities in an
avalanche. We study a single elastic interface, of internal
dimension d (total space dimension is D= d+1) at zero
temperature, near the depinning threshold. We expand
around the upper critical dimension duc, with duc = 4
for standard elasticity, and duc = 2 in the presence of
long-range elasticity, e.g. arising from dipolar forces.
Remarkably, we find that for d= duc (and above) and
in the scaling limit, the n-time probability distribution
(with n arbitrary) of the center of mass of the interface
is equivalent to that of the ABBM stochastic equation,
in terms of renormalized parameters which in some
cases can be estimated. The two methods are rather
different in spirit, and the identification non-trivial. Our
result establishes the universality of the ABBM model
for d! duc. In addition it allows to resolve the spatial
structure, and gives the corrections to ABBM for d < duc.
Here we sketch a very simple derivation, for details and

various subtleties involved we refer to [18]. Consider the
equation of motion, in the comoving frame, for the local
velocity of an interface driven at velocity v:

(η0∂t−∇2x)u̇xt = ∂tF (vt+uxt, x)−m2u̇xt. (1)

It is obtained by time derivation (noted indifferently u̇ or
∂tu) of the standard overdamped equation of motion. x is
the d-dimensional internal coordinate, vt+uxt the space-
and time-dependent displacement field and η0 the friction
coefficient. F (u, x) is the quenched random pinning force
from the impurities, with, e.g., Gaussian distribution and
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variance F (u, x)F (u′, x′) = δd(x−x′)∆0(u−u′), where
overbars denote disorder averages. m2 is the strength
of the restoring force −m2(uxt− vt) (i.e., the mass, or
spring constant), which flattens the interface beyond a
scale Lm ∼ 1/m. In the small-m, large-Lm, limit, studied
here, the interface has the roughness exponent ζ of the
depinning transition, with u∼ xζ for x"Lm and u∼Lζm
for L>Lm. For simplicity we chose standard elasticity
∼∇2x, but it can be replaced by an arbitrary elastic kernel
as needed in applications [2,4,10].
Near the depinning transition, i.e. at small v, the

interface proceeds via avalanches. This is easiest seen in
the center-of-mass position ut =L−d

∫

x uxt. There is a
well-defined quasi-static limit v= 0+ where ut = u(w),
with w= vt the well position. The process u(w) jumps
at discrete locations wi, i.e., u(w) =L−d

∑

i Siθ(w−wi),
with Si the avalanche sizes. Their statistics was predicted
via FRG, and checked numerically [16,17,19]. There,
the bare disorder correlator ∆0(u) flows, under coarse
graining, to the renormalized one ∆(u). The latter has
an interpretation as a physical observable, proportional
to the fluctuations of the restoring force, or equivalently
center-of-mass position. It was calculated numerically
in [20,21], and measured in experiments [4]. At the depin-
ning transition it exhibits a linear cusp −∆′(0+)> 0. This
cusp is directly related to the moments of the normalized
avalanche size distribution P (S), via [17]

Sm :=
〈S2〉
2〈S〉

=
|∆′(0+)|
m4

. (2)

The confining well suppresses large avalanches, and sets
the large-scale cutoff of P (S) to be Sm ∼m−(d+ζ). Here
we study the dynamics inside these avalanches, which
occur for small v on a time scale τm ∼Lzm&∆w/v,
where ∆w is the typical separation of avalanches in the
same space region, and z the dynamical exponent of the
depinning transition. Hence we consider small v so that
avalanches remain separated, a condition equivalent to
Lm& ξv, where ξv is the correlation length induced by
driving with velocity v [13,14] near depinning (for m= 0).
This is illustrated in fig. 1.
The information about the dynamics in an avalanche is

contained in the n-times cumulants Cn = u̇t1 . . . u̇tn
c
, n! 2

(with u̇t = 0). In the limit v→ 0+ the product u̇t1 . . . u̇tn
vanishes unless all times are inside the same avalanche.
The probability that exactly one avalanche occurs in a
time interval T <∆w/v is ρ0vT , with ρ0 =Ld/〈S〉 the
avalanche density per unit w. Since the movement is non-
smooth, Cn is O(v), rather than O(vn). As the total
displacement is by definition the avalanche size, Cn satis-
fies the sum rule Lnd

∫

[−T/2,T/2]n dt1 . . . dtn u̇t1 . . . u̇tn =

ρ0vT 〈Sn〉+O(v2). It can be computed perturbatively in
the (renormalized) disorder. For n= 2 and to lowest order

u̇t1 u̇t2
c
=−L−d∆′(0+)

v

m2η
e−

m2

η |t1−t2|, (3)

Fig. 1: (Colour on-line) Schematic plot of the instantaneous
velocity (divided by v) as a function of vt for different v. The
area under the curve is the avalanche size, hence is constant as
v→ 0+. The quasi-static avalanche positions wi are indicated.

where η is the renormalized friction1. Integrating over time
one recovers (2).
To obtain all moments at once, as well as the velocity

distribution, we compute the generating function

Z[λ] =L−d∂ve
∫
xt
λxt(v+u̇xt)

∣

∣

∣

v=0+
. (4)

The average over disorder (and initial conditions) is
obtained from the dynamical action S = S0+Sdis of (1):

S0 =

∫

xt
ũxt(η∂t−∇2x+m2)u̇xt, (5)

Sdis =−
1

2

∫

xtt′
ũxtũxt′∂t∂t′∆(v(t− t′)+uxt−uxt′). (6)

This yields

Z[λ] =L−d∂v

∫

D[u̇]D[ũ] e−S+
∫
xt
λxt(v+u̇xt)

∣

∣

∣

v=0+
(7)

with Z[0] = 0. We write

∂t∂t′∆(v(t− t′)+uxt−uxt′) =
(v+ u̇xt)∂t′∆

′(v(t− t′)+uxt−uxt′) =
(v+ u̇xt)∆

′(0+)∂t′sgn(t− t′)+ · · · , (8)

where we have used that the interface is only moving
forward (Middleton theorem [22]). We can thus rewrite
the disorder term as S = Streedis + · · · , where

Streedis =∆
′(0+)

∫

xt
ũxtũxt(v+ u̇xt) (9)

is the tree level or mean-field action (see footnote 1). The
terms neglected are O(∆′′(0+)) and higher derivatives,

1We use the improved action, where η0→ η and ∆0→∆ in order
to obtain the correct result for d! duc, see [17]. Note that m2 and
v are not corrected.
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and we have shown that they contribute only to order
O(ε) to Z[λ], hence can be neglected at tree level.
We now study the tree approximation for Z[λ], i.e.

(7) with Sdis replaced by (9). Thus, the highly non-linear
action (6) has been reduced to a much simpler cubic
theory! Even more remarkably, u̇xt appears only linearly
in (9), and viewing u̇ as a response field, the tree level
theory is equivalent to the following non-linear equation:

(η∂t+∇2x−m2)ũxt−∆′(0+)ũ2xt+λxt = 0. (10)

We denote ũλxt the solution of this equation for a given
source λxt. Performing the derivative with respect to v in
(7) gives

Z[λ] = L−d
∫

xt
λxt−∆′(0+)(ũλxt)2

= L−d
∫

xt
(−η∂t−∇2x+m2)ũλxt =m2L−d

∫

xt
ũλxt,

(11)

where we have used eq. (10) and, in the last equality,
assumed that ũλxt vanishes at large t and x. To analyze
the result, it is convenient to use dimensionless equa-
tions, replacing x→ x/m, L→L/m, t→ τmt, v→ vvm,
λ→ λ/Sm and ũxt→ ũxt/m2Sm, where vm = Smmd/τm,
and τm = η/m2. From now on we will use these units,
and consider the center-of-mass velocity, thus choosing
λxt = λt uniform.
The 1-time probability at time t= 0 is given by λt =

λδ(t) through its Laplace transform

Z̃(λ) =L−d∂veL
dλ(v+u̇)

∣

∣

∣

v=0+
. (12)

u̇= u̇t=0 and the notation Z̃ reminds us that we use
dimensionless units. ũxt = ũt and we need to solve

(∂t− 1)ũt+ ũ2t =−λδ(t) (13)

with ũt→ 0 at t=±∞. The solution is

ũt =
λ

λ+(1−λ)e−t
θ(−t). (14)

Inserting into (12) gives

Z̃(λ) =

∫

t
ũt =− ln(1−λ). (15)

Calling τi, i= 1, . . . , N , the duration of the i-th avalanche
out of N , and defining 〈τ〉 := 1

N

∑N
i=1 τi the mean dura-

tion, the probability pa that t= 0 belongs to an avalanche
is pa = ρ0v〈τ〉. Hence the total 1-time velocity prob-
ability is

P (u̇) = (1− pa)δ(v+ u̇)+ paP̃ (u̇), (16)

where P̃ (u̇) is the probability given that t= 0 belongs to
an avalanche. Both P̃ and P are normalized to unity.

One notes the two (always) exact relations 〈u̇〉P = 0,
pa〈u̇+ v〉P̃ = v. Hence for v= 0+ one has ρ0〈τ〉〈u̇〉P̃ = 1
and, in dimensionful units

Z(λ) =
1

mdvm
Z̃(mdvmλ)

= L−dρ0〈τ〉
∫

du̇ P̃ (u̇)(eL
dλu̇− 1). (17)

We obtain, in the slow-driving limit, the instantaneous
velocity distribution in the range v0& u̇∼ ṽm (v0 is a
small-velocity cutoff):

P̃ (u̇) =
1

ρ0〈τ〉ṽ2m
p
( u̇

ṽm

)

, p(x) =
1

x
e−x. (18)

We defined ṽm = (mL)−dvm =L−dSm/τm. Hence 〈u̇〉P̃ ≈
ṽm/ ln(

ṽm
v0
). Note that p(x) is not a probability, but is

normalized by
∫

dxx p(x) = 1.
Similarly one obtains the n-time distribution

of the center-of-mass velocity solving (13) with
λt =

∑n
j=1 λjδ(t− tj), noting zij := 1− e−|ti−tj |/τm ,

Z̃n(λ1, . . . , λn) =− ln





∑

Λ⊂{1,...,n}

∏

i∈Λ

[−λi]
∏

{i,j}⊂Λ,i<j

zij



.

(19)

For n= 2 one finds Z̃2 =− ln(1−λ1−λ2+λ1λ2z) with
z = 1− e−|t2−t1|/τm . From this we obtain the probabil-
ity q12 = vq′12 that both t1 and t2 belong to the same
avalanche, and the velocity distribution P̃ conditioned to
this event:

q′12P̃ (u̇1, u̇2) =
1

ṽ3m
p

(

u̇1
ṽm
,
u̇2
ṽm

)

, (20)

p(v1, v2) =
e
− t
2
−
v1+v2
1−e−t

(1− e−t)√v1v2
I1

(

2 e−t/2
√
v1v2

1− e−t

)

(21)

with t= |t2− t1|/τm, q′12ṽm = ln(1/z), and I1(x) is the
Bessel-I function of the first kind. The probability that
t1 but not t2 belongs to an avalanche is

q′1P̃1(u̇1) =
1

ṽ2m
p
( u̇1
ṽm

)

, p(u̇1) =
e−u̇1/z

u̇1
(22)

with p′a = q
′
1+ q

′
12. Since the probability that there exists

an avalanche starting in [t1, t1+dt1] and ending in [t2, t2+
dt2] is −dt1dt2∂t1∂t2q12, we obtain the distribution of
durations τ as

P (τ) =
1

ρ0ṽmτ2m

e−τ/τm

(1− e−τ/τm)2
. (23)

For small durations τ & τm, P (τ)≈ 1
ρ0ṽmτ2

, for τ > τ0,
where we denote τ0 the lower time cutoff not to be
confused with τi above. This gives 〈τ〉= 1

ρ0ṽm
ln( τmτ0 ) in

good agreement with the above, using ln( τmτ0 )≈ ln(
ṽm
v0
).
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Fig. 2: (Colour on-line) Pulse shape: the normalized velocity at
time t in an avalanche of duration τ for τ # τm (lower curve)
to τ $ τm (upper curve).

Note that q′12P̃ (0
+, 0+) is proportional to the probability

that an avalanche starts at t1 and ends at t2.
The shape of an avalanche with duration τ can then

be extracted from the probabilities at 3 times (t1, t2, t3) =
(0, t, τ) setting u̇1 = u̇3 = 0+. From the generating function
(19) for 3 times, the velocity probability distribution for
the intermediate time is P (u̇2) = b2u̇2e−u̇2b, with ṽmb :=
1
z12
+ 1
z23
− 1 resulting in the average shape

u̇2 =
2

b
= ṽm

4 sinh
(

t
2τm

)

sinh
(

τ
2τm

[

1− t
τ

]

)

sinh
(

τ
2τm

) . (24)

This interpolates from a parabola for small τ & τm to a
flat shape for the longest avalanches (see fig. 2). For long
avalanches, the velocity reaches a steady state, the plateau
in fig. 2. This result holds for an interface at or above its
upper critical dimension, which previously was used [8] on
the basis of the ABBM model.
We now clarify the relation to the phenomenolog-

ical ABBM theory [9]. The latter models the inter-
face as a single point driven in a long-range–correlated
random-force landscape, F (u), with Brownian statistics.
It amounts to suppressing the space dependence in (1),
hence corresponds in our general model to the special
case d= 0 and ∆0(0)−∆0(u) = σ|u|. The instantaneous
velocity v= u̇t+ v satisfies the stochastic equation ηdv=
m2(v− v)dt +dF where dF 2 = 2σvdt, with associated
Fokker-Planck equation

η∂tQ= ∂v

[

σ

η
∂v(vQ)+m

2(v− v)Q
]

(25)

for the velocity probability Q≡Q(v, t|v1, 0). For v > 0
it evolves to the stationary distribution Q0(v) =

v−v/vmm v
v/vm−1e−v/vm/Γ(v/vm) with vm = Sm/τm and

here Sm = σ/m4 and τm = η/m2. For v= 0+ one recovers
(18), up to a normalization which entails a small-scale
cutoff. Similarly for v= 0+ one finds the propagator

Fig. 3: (Colour on-line) Main plot: vP (v) as a function of v= u̇.
The dashed line is the mean-field result (18). The red (solid)
line is obtained from an ε= 4− d expansion, extrapolated to
ε= 3. Inset: the same as a log-log plot.

Q(v, t|v1, 0) = v−1m Q̃( vvm ,
t
τm
| v1vm , 0) with

Q̃(v2, t|v1, 0) = v1ev1
[

p(v1, v2)+
1

v1
e
−

v1
1−e−t δ(v2)

]

, (26)

and p(v1, v2) given in eq. (21). Q̃(v2, t|v1, 0) is solution of
(25) with Q(v2, 0+|v1, 0) = δ(v2− v1). The piece ∼ δ(v2)
corresponds to avalanches which have already terminated
at time t, and is necessary for Q to conserve probabil-
ity. The joint distribution Q̃(v2, t|v1, 0) 1v1 e

−v1 reproduces
the 1-time and 2-times probabilities given in eqs. (20)
and (22), up to a global normalization. More gener-
ally, since v(t) is a Markov-process, the n-time veloc-
ity probability obtained from (10) is q′1pP̃ (u̇1, . . . , u̇n) =
1
u̇1
e−u̇1

∏n−1
j=1 Q(u̇j+1tj+1|u̇jtj).

Several remarks are in order: Applying the dynamical-
action method to the case where the force landscape
is exactly Brownian, for an interface in any d or for a
point (ABBM model), we find at v= 0+ that the tree
approximation is exact. In the field theory it means that
there are no loop corrections. Hence ∆′(u) =∆′0(u) =
−σ sgn(u) is an exact FRG fixed point (with ζ = 4− d) as
noted in [17]. This remarkable property is not valid for any
other, e.g., shorter-ranged, force landscape. In that sense,
the model proposed by ABBM [9] appears very judicious.
Second, since a realistic interface in a short-ranged

random force is described for d! duc by the tree approx-
imation, we proved that the temporal correlations of its
center-of-mass velocity for v→ 0 are given by the ABBM
model. Only two parameters enter, η and Sm, which at
d= dc acquire a logarithmic dependence on m [17], that
could be searched for in experiments.
Third, for the Brownian-force landscape the present

method extends to v > 0 [23], and leads to the famous
dependence of the exponent τ on v [9]. For realistic SR
disorder, however, it is known that beyond the scale ξv the
interface crosses over to the Edwards-Wilkinson regime.
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It remains to be seen whether that can account for the
data for τ(v) presented, e.g., in [11].
Fourth, the present theory allows to go beyond the

ABBM model in several ways: In d! 4, the non-linear
equation (10) allows to study the full time and space
dependence of velocity correlations, as in the statics [17].
Second, including loop corrections allows to compute
corrections in a systematic expansion in d= 4− ε [18].
Since the calculations are much more technical than those
presented here, we restrict to some key results: The small-
v behavior of the 1-time velocity distribution for v0& v&
ṽm is to first order in ε

P (v)∼ 1/va, a= 1− ε(1− ζ1)/3+O(ε2), (27)

i.e., a= 1− 29ε for a non-periodic interface, and a= 1−
ε
3

for a charge density wave (CDW). The scaling function
also changes, see fig. 3. At small velocity, the divergence
is smoothened, as the short-ranged nature of the disorder
is more important in lower dimension. At large velocity,
the decay becomes faster than the pure exponential of
the ABBM model. The decay occurs at velocity scale ṽm
with ηm ∼m2−z, determined by the dynamical exponent
z = 2− 29ε of the depinning transition for non-periodic
disorder and z = 2− ε3 for CDW [13–15].
To conclude, we introduced a method to compute

both spatial and temporal velocity correlations in an
avalanche. Its tree approximation is exact at and above
the upper critical dimension d! duc. There, the center-of-
mass motion is equivalent to the phenomenological ABBM
model, establishing the range of validity of the latter. For
d < duc corrections are calculated in a controlled expansion
in ε= duc− d. Other observables such as local velocities,
measured in [3], should be computable.
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