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Abstract – Elastic systems, such as magnetic domain walls, density waves, contact lines, and
cracks, are pinned by substrate disorder. When driven, they move via avalanches, with power law
distributions of size, duration and velocity. Their exponents, and the shape of an avalanche, defined
as its mean velocity as a function of time, were studied. They are known approximatively from
experiments and simulations, and were predicted from mean-field models, such as the Brownian
force model (BFM), where each point of the elastic interface sees a force field which itself is a
random walk. As we showed in EPL, 97 (2012) 46004, the BFM is the starting point for an
ε = dc − d expansion around the upper critical dimension, with dc = 4 for short-ranged elasticity,
and dc = 2 for long-ranged elasticity. Here we calculate analytically the O(ε), i.e. 1-loop, correction
to the avalanche shape at fixed duration T , for both types of elasticity. The exact expression,
though different from the phenomenological form presented by Laurson et al. in Nat. Commun.,
4 (2013) 2927, is well approximated by ⟨u̇(t = xT )⟩T ≃ [Tx(1−x)]γ−1 exp

`

A
ˆ

1
2 − x

˜´

, 0 < x < 1.
The asymmetry A ≈ −0.336(1−d/dc) is negative for d close to dc, skewing the avalanche towards
its end, as observed in numerical simulations in d = 2 and 3. The exponent γ = (d + ζ)/z is given
by the two independent exponents at depinning, the roughness ζ and the dynamical exponent z.
We propose a general procedure to predict other avalanche exponents in terms of ζ and z. We
finally introduce and calculate the shape at fixed avalanche size, not yet measured in experiments
or simulations.

Copyright c⃝ EPLA, 2014

Introduction. – An elastic interface driven through a
disordered medium is an efficient mesoscopic model for a
number of different physical systems, such as the motion
of domain walls in soft magnets [1], fluid contact lines on a
rough surface [2], or strike-slip faults in geophysics; see [3]
for a review. Their response to external driving is not
smooth, but exhibits collective jumps called avalanches,
extending over a broad range of space and time scales.
They can be detected, e.g., as pulses of Barkhausen noise
in magnets [4,5], slip instabilities leading to earthquakes
on geological faults, or in fracture experiments [6]. While
the microscopic details of the dynamics are specific to
each system, an important question is whether the large-
scale features are universal. A prominent example are the
exponents of the power-law distribution function (PDF)
of avalanche sizes P (S) ∼ S−τ (for earthquakes, the
Gutenberg-Richter law) and durations. Beyond scaling ex-
ponents, the question of whether the shape of an avalanche
is universal is of great current interest in theory and ex-
periments [7,8]. Understanding how universality arises,
which quantities are universal, and how to make quan-
titative predictions beyond phenomenological models are
some of the main challenges in the field.

Historically, the elastic-interface model allowed for
analytical progress thanks to a powerful method, the Func-
tional Renormalization group (FRG). It was first devel-
oped to calculate the static (equilibrium) deformations of
an interface pinned by a random potential (e.g., the rough-
ness exponent), or the critical dynamics at and beyond
the depinning transition, applying an external force f ≥
fc [9–12]. These results were obtained in an expansion
in the internal space dimension d of the interface around
the upper critical dimension dc, equivalent to a loop ex-
pansion. Despite these successes, the study of avalanches
in elastic systems has remained centered on toy mod-
els [3,13,14], scaling arguments, and numerics [11,15–18].
Other important models used to describe avalanches
are the random-field Ising model [19], mean-field spin
glasses [20], and discrete automata alias sandpile models,
with some analytical results [21–23]. However, exact re-
sults on the avalanche statistics are notably hard to obtain.
Recently, we have extended the FRG-based field theory to
calculate the avalanche-size distribution [24,25] in dimen-
sion d < dc, with excellent agreement to numerics [24,26].
We then extended the theory to the dynamics and ob-
tained the velocity distribution within an avalanche [27].
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In this letter, we use this theory to propose several novel
scaling relations for avalanche exponents, and calculate
the shape of an avalanche, both at fixed duration and
at fixed size. Since the calculations are very technical,
we only sketch the main ingredients of the method and
present the key results; the details are given in a separate
publication [28]. For an early presentation of this work
see [29].

Avalanche densities and dynamical action. –
Consider the equation of motion for a driven elastic in-
terface in presence of quenched disorder1,

η∂tuxt = ∇2
xuxt − m2uxt + ft + F (uxt, x). (1)

We denote by subscript the dependence on space and time.
Choosing ft = m2wt the interface is bound by a parabolic
well of curvature m2 (the mass) to an external degree of
freedom wt. The pinning force F (u, x) is chosen Gaus-
sian with (microscopic) correlator (overlines denote disor-
der averages),

F (u, x)F (u′, x′) = δd(x − x′)∆0(u − u′). (2)

Intermittent avalanche motion occurs for slow driving, ei-
ther at small constant velocity wt = vt, or upon a small
force step, i.e. a kick ẇt = wδ(t). Avalanche-size and du-
ration distributions, as well as the shape, can be retrieved
from the generating function, i.e. the disorder average of

G[λ, f ] := e
R

x,t λxtu̇xt
f

, (3)

in presence of a source λxt and a driving force ft = m2wt.
For instance, the PDF of the size of an avalanche, S :=
∫

x,t>0 u̇xt, following a kick ft = m2wδ(t), is the inverse

Laplace transform, Pw(S) = LT−1
−λ→SG[λ, f ] for a uniform

source λxt = λ. From it one defines a size density (per unit
displacement w), ρ(S) := ∂wPw(S)|w=0+ , which equals
the size density defined from stationary motion2 at fixed
v = 0+. Similarly one defines the density for the avalanche
duration T . All these densities, for sizes S ≪ Sm and
times T ≪ τm, obey power laws with exponents

ρ(S) ∼ S−τ , ρ(T ) ∼ T−α, (4)

where Sm and τm are set by the mass (and η for τm) and
are used as convenient units below3. To calculate G[λ, f ],
one takes a time derivative of eq. (1),

η∂tu̇xt = ∇2
xu̇xt + ft − m2u̇xt + ∂tF (uxt, x), (5)

and constructs the dynamical field theory by multiplying
this equation with a response field ũxt. Averaging over
disorder leads to the path integral representation

G[λ, f ] =

∫

D[u̇]D[ũ]e−Sλ,f [u,ũ]. (6)

1We use indifferently ∂t or a dot for time derivatives.
2We take advantage of the Middleton theorem [30] which ensures

forward-only motion for forward driving, and prepare the system in
the Middleton attractor, as discussed in refs. [27,31].

3Both can be measured, Sm := ⟨S2⟩/(2⟨S⟩) from the moments of
the size PDF [25], and τm from the response function [27,32].

The dynamical action reads

Sλ,f [u, ũ] = S0[u, ũ] + Sdis[u, ũ] +

∫

xt
λxtu̇xt, (7)

S0[u, ũ] =

∫

xt
ũxt

[

η∂tu̇xt −∇2u̇xt + m2u̇xt − ft

]

, (8)

Sdis[u, ũ] = −1

2

∫

x,t,t′
ũxtũx,t′∂t∂t′∆0(uxt − uxt′). (9)

Upon coarse-graining, the action becomes the effective ac-
tion Sdis → Seff

dis, with a renormalized disorder correlator
∆(u), which takes a non-analytic form with a linear cusp
at u = 0,

∆0(u) → ∆(u) = ∆(0) − σ|u|− g

2
u2 + . . . (10)

with σ = −∆′(0+), and g = −∆′′(0+). Hence one can
rewrite [27]

Seff
dis[u, ũ] = −σ

∫

x,t
ũ2

xtu̇xt

− g

2

∫

x,t,t′
ũxtu̇xt ũxt′ u̇xt′ + . . . . (11)

While the disorder interaction is non-local in time, the
first term, proportional to σ, is local, since d2

du2 |u| = 2δ(u);
a simplifying feature exploited below.

Mean-field theory: the Brownian force model. –
Further, suppose that the microscopic force correlator (10)
only contains the term −σ|u|, realized if for each x the
forces F (u, x) are chosen as Brownian motions in u uncor-
related in x. One then shows that ∆(u) does not change
under renormalization [27,31], i.e. the renormalized model
is also given by eq. (10) with g = 0. This is the Brownian
force model (BFM) introduced in [27]. It has a very simple
local action, given by eq. (11) with only the first term ∼ σ.
Since the velocity u̇xt appears linearly in eqs. (7), (8)
and (11), the field theory is exactly solvable [27,31],

G[λ, f ] = e
R

x,t ftũ
λ
xt . (12)

Here ũλ
xt is the solution of the (exact) saddle point or

instanton equation δSλ,f

δu̇xt
= 0, namely

η∂tũ
λ
xt + (∇2 − m2)ũλ

xt + σ(ũλ
xt)

2 = −λxt. (13)

The superscript λ indicates that ũλ
xt depends on λxt. This

allows to calculate many observables exactly [27,31]. To
simplify the calculations, one can express all observables
in units of Sm = σ/m4 and τm = η/m2, equivalent to
setting m2 = σ = η = 1. For a uniform source λxt = λ
one finds ũλ

xt = 1
2

(

1 −
√

1 − 4λ
)

which leads for a kick

ft = m2wδ(t) to Pw(S) = wLd

2
√

πS3/2 e−(S−m2w)2/4S and,

in the limit of w → 0, to the famous [13,14] mean-field

size density ρ(S) = Ld

2
√

πSτMF e−S/4 with τMF = 3
2 . In-

deed, all observables containing only the center of mass are
equivalent [27] to those of the phenomenological ABBM
model [13,14], which is nothing but the BFM in d = 0.
However, the BFM can go further and allows to obtain the
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dependence on system size L, kick amplitude w, as well
as local observables, such as the motion of a small piece
of the interface, or the response to a local kick. Splitting
x = (x∥, x⊥) with x∥ ∈ Rdφ , x⊥ ∈ Rd−dφ , we focus on the
submanifold φ of dimension dφ given by x = (x∥, 0). The
local size of an avalanche on φ is

Sφ =

∫

dt

∫

ddφx∥ u̇(x∥,x⊥=0),t. (14)

It is expressed in units of Sφ
m = Smmd−dφ , see below.

Explicit solution of (13) for the corresponding source
λxt = λδd−dφ(x⊥) is possible for dφ = d − 1, leading to

ρ(Sφ) = 2Ldφ

πSφ
K1/3(2Sφ/

√
3) ∼ S

−τMF
φ

φ in terms of a Bessel

function [25], with (in that case) τMF
φ = 4

3 .
Dynamical observables can be obtained from the solu-

tion ũλ
xt = λθ(T−t)

λ+(1−λ)eT−t of (13) with the source λxt =

λδ(T − t) [27,31]. Applying a kick at time t = 0 and
taking λ → −∞ selects u̇x,T = 0, i.e. the avalanches of
duration smaller than T . From ũλ

x,0 and using eqs. (3)
and (12) one obtains the PDF of durations as Pw(T ) =

wLd

(2 sinh T/2)2 e−wLd/(eT −1). It converges to a Gumbel dis-

tribution for wLd ≫ 1 (longest duration among many
independent avalanches), while for wLd ≪ 1 it leads to
the known mean-field duration density [14] with exponent
αMF = 2. Calculating instead

∫

t ũλ
xt = − ln(1 − λ) for a

constant driving ẇt = v, one obtains the stationary PDF
of the total instantaneous velocity,

u̇t :=

∫

x
u̇xt, (15)

as Pv(u̇) = u̇
−1+vLd

e−u̇/Γ(vLd), in units of vm = Sm/τm.

For vLd ≪ 1 it yields the density ρ(u̇) = Ld

u̇
e−u̇, in agree-

ment with the d = 0 velocity distribution [13,14].

Field theory beyond the Brownian force model. –
It was shown in [27] that the BFM is the mean-field limit
of the field theory defined by eqs. (6), (7), i.e. it gives
the joint multi-space-time-point velocity PDF in a single
avalanche for d ≥ dc (see footnote 4). Moreover, including
the term ∼ g in eq. (10) is sufficient to obtain the complete
1-loop corrections, i.e. to calculate these distributions to
first order in an expansion in ε = dc − d, with g = O(ε)
at the fixed point. The velocity density was obtained to
one loop [27], with a non-trivial tail for u̇ ≫ 1, and a
power-law singularity5,

ρ(u̇) ≃u̇≪1
CLd

u̇
a

, a = 1 − 2

9
ε + O(ε2), (16)

with C = 1 − ε
9 (4γE + 1

2 − 2 ln 2).

Exponent relations. – At the level of the field the-
ory of depinning, i.e. eq. (7) to two loops, and for

4With suitably renormalized values for σ and η, including correc-
tions in ln(1/m) for d = dc see [27].

5It holds for depinning of an interface; the O(ε) results can be
extended to a periodic object in d = dc − ε by the replacement
ε → 3

2 ε in all formulas; generally ε → 3
2 (ε − ζ).

avalanches, eq. (11) to one loop, until now we have found
only two independent renormalizations, one for the disor-
der6 σ → σm, and one for the friction η → ηm, leading to
two independent scales in any dimension d:

Sm = σm/m4 ∼ m−(d+ζ), τm = ηm/m2 ∼ m−z. (17)

This suggests that avalanche exponents, such as τ , α
and a are not independent, but related to the rough-
ness ζ and dynamical exponent z. Starting with the
Narayan Fisher (NF) conjecture [11] for τ , this has been
a recurrent question in the field [18], and, for the veloc-
ity exponent a, an outstanding one. We now reexam-
ine and extend the NF conjecture using dimensional and
field theoretic arguments. Restoring units (i.e. all fac-
tors of m), the size density (per unit w) takes the form
ρ(S) = LdS−2

m (Sm/S)τf(S/Sm) with f(0) a finite con-
stant. The NF conjecture is equivalent to stating that the
size density per unit force, ρf (S) = m−2ρ(S), has a finite
(infrared-cutoff independent) limit m → 0, i.e.

ρf (S) ∼ LdS−τf(S/Sm), (18)

up to a constant prefactor. This implies S2−τ
m ∼ m2, i.e.

τ = 2 − 2

d + ζ
. (19)

In the field theory, one can use the exact relation7

∫

dS(eλS − 1)ρf (S) = Ld⟨ũx,t=0⟩λ. (20)

Upon the assumption (18) the result (19) can also be
obtained from eq. (20): In the action (7) the term
∫

xt ũxtm2u̇xt is protected by the statistical tilt symmetry,
hence the response field has dimension ũxt ∼ md−2+ζ .
Matching the l.h.s. at −λ = 1/Sm yields (−λ)τ−1 ∼
S1−τ

m ∼ md−2+ζ recovering8 eq. (19). The field theory
confirms that the quantity which must have a m → 0
limit is ρf (S), and not ρ(S), in order that (19) holds.

Consider now the distribution of the total velocity u̇

defined in eq. (15), and define the density per unit force
change ḟ = m2v,

ρf (u̇) = ∂ḟPv(u̇)|ḟ=0+ . (21)

It diverges as m2ρf (u̇) ∼ Ld

(vm)2 (vm/u̇)a by dimensional

analysis, where vm = Sm/τm. The existence of a massless
limit for ρf (u̇) implies (vm)a−2 ∼ m2; hence, from eq. (17)
we obtain the new relation

a = 2 − 2

d + ζ − z
. (22)

6Since the whole function ∆(u) is relevant for d < dc, in principle
one needs an infinity of renormalizations [9,12], however those are
not independent at the fixed point.

7⟨. . .⟩λ denotes averages with respect to the action Sλ,f=0+ in
eq. (7).

8The r.h.s. takes the form ⟨ũxt=0⟩λ = md−2+ζg(λm−(d+ζ)). For
1 < τ < 2 it has a finite m → 0 limit ∼ (−λ)τ−1.
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Table 1: Scaling relations.

ρ(S) ρ(Sφ) ρ(T ) ρ(u̇) ρ(u̇φ)

S−τ S
−τφ

φ T−α u̇−a u̇
−aφ

φ

short-ranged elasticity (SR) τ = 2 − 2
d+ζ τφ = 2 − 2

dφ+ζ α = 1 + d−2+ζ
z a = 2 − 2

d+ζ−z aφ = 2 − 2
dφ+ζ−z

long-ranged elasticity (LR) τ = 2 − 1
d+ζ τφ = 2 − 1

dφ+ζ α = 1 + d−1+ζ
z a = 2 − 1

d+ζ−z aφ = 2 − 1
dφ+ζ−z

In the field theory, this identity can be derived from

∫

du̇(eλu̇ − 1)ρf (u̇) = Ld

∫

t
⟨ũxt⟩λ (23)

with the source λxt = λδ(t) and an integral over the time
where the avalanche was triggered. Assuming that a mass-
less limit exists for ρf (u̇) ∼ u̇

−a, we can match the l.h.s.
of eq. (23) at u̇ ∼ vm, as (−λ)a−1 ∼ v1−a

m and identify its
mass dimension as ∼ md−2+ζ−z from the r.h.s., leading
again to eq. (22).

This can be generalized to local avalanche observables.
Assuming again a massless limit for densities per unit force
one finds (Sφ

m)τφ−2 ∼ m2 and the local avalanche-size den-
sity

ρ(Sφ) ∼Sφ≪Sφ
m

S
−τφ

φ , τφ = 2 − 2

dφ + ζ
. (24)

For the local velocity density one finds (vφ
m)aφ−2 ∼ m2

where vφ
m = Sφ

m/τm is the natural unit, and consequently9

ρ(u̇φ) ∼
u̇φ≪vφ

m
u̇
−aφ

φ , aφ = 2 − 2

dφ + ζ − z
. (25)

Similar arguments for the duration distribution lead to

ρ(T ) ∼T≪τm T−α, α = 1 +
d − 2 + ζ

z
, (26)

recovering the result of [18] obtained by simple scaling
from (17) and the variable change dS ρ(S) = dT ρ(T ).
The mean avalanche size at fixed duration is likewise given
by

⟨S⟩T ∼T≪τm T γ , γ =
d + ζ

z
. (27)

For LR elasticity q2 → |q| (in Fourier) the predictions
change as indicated in table 1, where all results are sum-
marized. (The formula for γ remains the same.)

In summary these scaling relations should hold, pro-
vided only two independent renormalizations are sufficient
to render the field theory of depinning finite. The fact

9The denominator in eq. (25) results from scaling u̇φ ∼ ℓdφ+ζ−z ,
where ℓ is the spatial extension of the avalanche. Whenever dφ +
ζ − z < 0 (equivalently aφ > 2) eq. (25) can break down since u̇φ

becomes UV-cutoff dominated. In the field theory eqs. (20) and (23)
are UV divergent for exponents τ , a, τφ or aφ > 2 showing an explicit
UV-cutoff dependence in the instanton solution [28].

Table 2: Critical exponents obtained via the scaling relations
using standard values for ζ, z [33]. For the local avalanche
exponent we consider a point, dφ = 0.

d ζ z τ τφ α a γ

1 1.25 1.433 1.11 0.4 1.17 −0.45 1.57
SR 2 0.75 1.56 1.27 −0.67 1.48 0.32 1.76

3 0.35 1.75 1.40 −3.71 1.77 0.75 1.91
LR 1 0.39 0.77 1.28 −0.56 1.51 0.39 1.81

that ḟxt and λxt are linear perturbations of the depinning
action suggests that they cannot induce other renormal-
izations. Numerical values predicted by these conjectures
are indicated in table 2; it is important to check them in
numerics and experiments10,11.

The shape at fixed duration. – The shape of an
avalanche conditioned on its duration T is obtained from
our field theory in an expansion in ε = dc − d. The calcu-
lation is involved, and we only sketch its diagrammatic
representation in fig. 1. The general result is lengthy,
hence we only display its universal12 limit for short du-
ration T ≪ τm,

⟨u̇ (t = xT )⟩T = 2N
[

Tx(1 − x)
]γ−1

× exp

(

−16ε

9dc

[

Li2(1 − x) − Li2
(1 − x

2

)

+
x log(2x)

x − 1
+

(x + 1) log(x + 1)

2(1 − x)

])

,

(28)

with dc = 4 for SR and dc = 2 for LR elasticity. The scal-

ing ∼ T γ−1 is expected from the sum rule
∫ T
0 dt ⟨u̇(t)⟩T =

⟨S⟩T ∼ T γ and our calculated value γ = 2 − 4
9dc

ε is

consistent to O(ε) with eq. (27)13. The exponential factor

10Their validity may not extend to all cases: in d = 0 for SR disor-
der the NF conjecture fails since τ = 0, ζ = 2 (plus logarithms) [34],
a case dominated by extreme value statistics.

11One can define alternative local avalanche-size ρ1(Sφ) ∼ S
−τ ′

φ
φ

and velocity densities ρ1(u̇φ) ∼ u̇
−a

′
φ

φ , sampled with a fixed number

of data points per avalanche. The exponents τ ′

φ and a′φ are obtained

from τ via scaling, i.e. from a change of the measure, dS/Sτ , S ∼
ℓd+ζ , using Sφ ∼ ℓdφ+ζ , u̇φ ∼ ℓdφ+ζ−z and eq. (19). They differ
from the exponents τφ, aφ defined above by the probability that a

given point ∼ ℓd−dφ , or space-time point ∼ ℓz+d−dφ , belongs to an

avalanche, leading to τ ′

φ = τφ +
d−dφ

dφ+ζ
and a′φ = aφ +

z+d−dφ

dφ+ζ−z
.

12In eqs. (16) and (28), T and u̇ are in units of τm, vm. Restoring
units and using (17) and (27) all factors of m cancel in eq. (28).
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Fig. 1: Diagrammatic representation of the 1-loop corrections
to the shape at fixed duration (28) (similarly for (35)). Solid
lines are response functions, doubled lines are dressed response
functions, defined in [27]; they account for the non-vanishing
expectation of ũxt in eq. (13). Dashed lines are g-vertices, the
other vertices are σ. Internal times and the loop momentum
are integrated over.

in (28) is regular at x = 0 and x = 1. The singular
part of the shape, [x(1 − x)]γ−1, is thus symmetric, as
anticipated on phenomenological grounds [8], and derived
here from first principles. We chose to display eq. (28)
in an exponentiated form so that the amplitudes, NSR =

e−
ε
9
[γE−1−2(ln 2)2−π2

3
], NLR = e−

2ε
9

[γE−2−2(ln 2)2−π2

3
] can-

cel if one plots the normalized shape as in fig. 2. The
result (28) is exact5 up to terms of order O(ε2). Note
that, at variance with mean field (ε = 0), the full shape
is not symmetric under x → 1 − x. In fact, the com-
plicated factor in the exponential in (28) turns out to be
almost linear, hence a good approximation (ignoring con-
stant prefactors) is

⟨u̇(t = xT )⟩T ∼
[

Tx(1 − x)
]γ−1

exp

(

Ad

(

1

2
− x

))

.

(29)

The asymmetry Ad is defined, e.g. as the slope at x = 1
2

of the exponential in eq. (28). Close to d = dc we obtain

Ad ≈ −0.336

(

1 − d

dc

)

. (30)

An extrapolation of eq. (28) to d = 2 for SR elasticity, and
d = 1 for LR elasticity, is plotted in fig. 2.

Hence we find a negative asymmetry near the upper
critical dimension. This is consistent with numerical simu-
lations for SR elasticity in dimensions d = 2, 3, which sug-
gest that avalanches are skewed towards the end, i.e. with
eq. (29) for Ad=2 ≈ −0.065±0.01 [35]. In contrast, numer-
ical results in d = 1 for both SR and LR elasticity suggest
skewing towards the beginning [8] with positive asymme-
tries Ad=1 ≈ 0.08±0.02 (SR) and Ad=1 ≈ 0.02±0.02 (LR).
To check whether this sign change could be accounted for
at 1-loop order, we performed a fixed-d, weak-disorder
expansion; it does not seem to predict this effect [28].
Hence this sign change, if confirmed, would be a higher-
loop effect14. Note that the approximate time-reversal
symmetry is hard to explain intuitively since “active”

13Using ζ = ε
3 and z = 2 − 2ε

9 to one loop [10,12].
14Other differences, such as in the roughness exponents between

equilibrium and driven dynamics are also due to two loops [12].
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Fig. 2: (Colour on-line) (Universal) normalized shape of an
avalanche (of short duration T ≪ τm), for an interface (d = 2)
with SR elasticity. Plotted is the total velocity u̇(t) at time
t = xT from eq. (28), normalized to unit maximum (black
thick solid line), compared to: i) the MF shape ∼ x(1 − x)
(blue, dashed, thin line); ii) a symmetric scaling-ansatz u̇ ∼
[Tx(1 − x)]1−

ε
9 (orange, dot-dashed, thick line); iii) the ap-

proximation (29) (green dots), close to the exact result. Inset:
the same with the MF shape subtracted.
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t

0.2
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f t

Fig. 3: (Colour on-line) The shape at fixed size, as given by
eq. (37). The mean-field result field is indicated by the black
solid line. The remaining curves are for ε = 2: small S/Sm =
0+ limit (red dashed line) and S/Sm = 1, 10, 30 (green dot-
dashed, cyan dotted, and blue dashed lines).

regions within an avalanche split over time and become
disjoint in space (see, e.g., fig. 1 in [8]). Nevertheless, the
ensemble-averaged velocity is almost time-reversal sym-
metric. The small asymmetries thus result from a delicate
balance of several d-dependent effects15. It would be
important to thoroughly test our predictions in d = 2, 3.

The shape at fixed size. – We propose to measure a
new observable, depending only minimally on the criterion
to define the end of an avalanche. It is the mean velocity
as a function of time, given that the avalanche size is S.
Scaling suggests that

⟨u̇(t)⟩S =
S

τm

( S

Sm

)− 1
γ
f

(

t

τm

(Sm

S

)
1
γ

)

(31)

15Note that non-zero wave vector observables exhibit a positive
asymmetry even within the mean-field theory [27].
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with
∫ ∞
0 dt f(t) = 1, where f(t) may depend on S/Sm.

In mean field [32] (also for a single degree of freedom
toy model [3]) the scaling function f(t) is independent of
S/Sm,

f0(t) = 2te−t2 , γ = 2. (32)

To one loop, i.e. O(ε), for SR elasticity, we obtain

f(t) = f0(t) −
ε

9
δf(t), γ = 2 − ε

9
, (33)

consistent with (27). Expressions for arbitrary S/Sm are
lengthy; the universal small-avalanche limit is

δf(t) =
f0(t)

4

[

π
(

2t2 + 1
)

erfi(t) + 2γE

(

1 − t2
)

− 4

− 2t2
(

2t2 + 1
)

2F2

(

1, 1;
3

2
, 2; t2

)

− 2et2
(√

πt erfc(t) − Ei
(

−t2
)

)

]

. (34)

It satisfies
∫ ∞
0 dt δf(t) = 0. The asymptotic behaviors are

f(t) ≃t→0 2Atγ−1, (35)

f(t) ≃t→∞ 2A′tβe−Ctδ

, δ = 2 +
ε

9
, β = 1 − ε

18
, (36)

with A′ = 1 + ε
36 (5 − 3γE − ln 4) and C = 1 + ε

9 ln 2. The
amplitude A = 1 + ε

9 (1 − γE) leads to the same universal
short-time behavior as in (28), near the avalanche begin-
ning t ≪ T . Extrapolation for the function f(t) in d = 2
is plotted in fig. 3. We use

f(t) ≈ 2te−Ctδ

B exp

(

−ε

9

[

δf(t)

f0(t)
−t2 ln(2t)

])

, (37)

with B chosen such that
∫ ∞
0 dtf(t) = 1. Equation (37) is

exact to O(ε) and obeys (36), (37). As one sees in fig. 3,
all avalanches start similarly, while for larger (scaled) sizes
they flatten out and extend to longer times.

In conclusion, based on the FRG field theory of dis-
ordered elastic interfaces, we have derived new avalanche
scaling relations, and calculated the shape of an avalanche,
both at fixed duration and at fixed size. We hope our pre-
dictions stimulate new experiments and simulations.
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