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1 CONICET - Centro Atómico Bariloche and Instituto Balseiro (UNCu) - (8400) Bariloche, Argentina
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Abstract – We analyse by numerical simulations and scaling arguments the avalanche statistics
of 1-dimensional elastic interfaces in random media driven at a single point. Both global and
local avalanche sizes are power-law distributed, with universal exponents given by the depinning
roughness exponent ζ and the interface dimension d, and distinct from their values in the uniformly
driven case. A crossover appears between uniformly driven behaviour for small avalanches, and
point-driven behaviour for large avalanches. The scale of the crossover is controlled by the ratio
between the stiffness of the pulling spring and the elasticity of the interface; it is visible both
in the global and local avalanche-size distributions, as in the average spatial avalanche shape.
Our results are relevant to model experiments involving locally driven elastic manifolds at low
temperatures, such as magnetic domain walls or vortex lines in superconductors.

Copyright c⃝ EPLA, 2016

Introduction. – An elastic interface in a random po-
tential is a paradigmatic model for the depinning of many
apparently unrelated complex nonlinear systems. Typical
examples are weakly pinned vortex lattices in supercon-
ductors driven by a super-current, charge-density waves
driven by an external electric field and stick-slip motion
of seismic faults driven by tectonic loading [1–3].

Usually homogeneous driving is considered, either by
applying a constant force on each point of the interface,
or by attaching a spring to each point and moving its
other end at a fixed velocity. In both cases, the dynamics
proceeds by a sequence of avalanches of size S, power-law
distributed with exponent τ and large-size cutoff Smax,

P (S) ∼ S−τ
g(S/Smax), (1)

where g(x) decays rapidly to zero as x ≫ 1. The value
of τ depends on the interface dimension d and its rough-
ness exponent ζ. It is robust against many details of the
system, for example whether it is driven at constant force
or at constant velocity. For uniformly driven harmonic
elastic interfaces, τ is around 1.11 in 1D, and 1.27 in 2D.
Avalanche exponents and observables have been recently
calculated beyond mean-field using renormalization-group
methods [4–6], mostly for homogeneous driving.

When driven homogeneously at constant velocity
(fig. 1(b)), for sufficiently large systems, the external
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Fig. 1: (a) A discrete elastic line with stiffness c. The pinning
potential Wi shown in gray consists of narrow wells. (b), (c): a
sequence of configurations for a 1D interface on a disordered
potential, for uniform (b) and localized (c) driving. For the
latter the tip is pulled with a spring of stiffness m2. In (c) an
average parabolic profile has been subtracted from the picture.
In both cases, the shaded regions represent an avalanche of
length ℓ and size S =

∫
ℓ
dx Sx.
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springs of stiffness m2 thus not only drive the system,
but also provide a “mass” m2 which cuts fluctuations be-
yond a scale Lm ≃ 1/m. Therefore, the cutoff scales
as Smax ∼ m−(1+ζ) which means that the system dis-
plays a power law (and thus a “critical” state) only in
the limit m2 → 0 [7]. As a consequence, it may not be
the best model to describe experiments in which a self-
organized critical state is present, and the system size is
the only large-scale cutoff. This includes most notably
earthquakes, whose size is only limited by the extension
of the tectonic plates [8].

Here we study the evolution of elastic interfaces under
inhomogeneous driving. To do so, we pull at the tip of
a finite one-dimensional string of length L through a sin-
gle spring of stiffness m2 (fig. 1(c)). Once a stationary
state is reached, the string has on average to move at the
same velocity as the driving point, which means that as
L is increased progressively larger avalanches occur, in-
dependent of the value of m2. Hence this model displays
criticality for any value of m2, in contrast with the normal
homogeneous case, that requires m2 → 0.

From an experimental point of view, localized driving
appears in many systems: In the seismic context, the
relative motion of plates in subduction zones is mainly
driven by the movement of the plates at regions remote
from the seismogenic zone, i.e. from a border of the
system [9]. Another realization are vortex lines trapped
along a twin boundary plane in a superconductor [10].
This effectively 1-dimensional elastic interface can be ma-
nipulated through a scanning microscope in a way similar
to our driving at a single point. Another experiment is
a sandpile, where sand grains are deposited at a given
position, leading to a sandpile with a stationary slope,
evolving through a sequence of avalanches [11]. Such self-
organized critical systems are further studied with cellu-
lar automata like the Oslo [12] and Manna [13] models,
driven at the boundary. In ref. [14] the Oslo model for
sandpiles was mapped onto a discrete model of an elastic
interface pulled at one end, and it was proposed that it be-
longs to the same universality class as the inhomogeneous
Burridge-Knopoff model [15] for earthquakes. A stochas-
tic version of this friction model was then mapped back
to the Oslo model [16]. Further exact connections be-
tween Manna sandpiles and disordered elastic interfaces
have been demonstrated recently [17,18]. These boundary-
driven models have an avalanche size distribution given
by eq. (1) with an exponent τ ≈ 1.55 in 1D [13–16], clearly
higher than the value 1.11 obtained in the homogeneously
driven case [7,13].

In this letter we study not only global avalanches, but
also local jumps and the average spatial avalanche shape
obtained when pulling a 1D interface from the tip. Inter-
estingly, when changing the stiffness of the pulling spring,
we observe a crossover between two regimes character-
ized by the homogeneously driven exponents at small
scales, and by the boundary-driven exponents at large
scales.

Model and methods. – We model an elastic interface
driven on a disordered substrate at zero temperature as a
discrete string composed of L particles whose positions
ui are coupled by elastic springs with Hooke constant c,
as depicted in fig. 1(a). We consider an infinitely long
disordered medium in the direction of displacements and
open boundary conditions in the perpendicular direction.
The pinning to the substrate is modeled by a set of nar-
row potential wells, separated a typical distance δu. Each
well is characterized by the maximum force it can sustain,
which is a positive bounded random value, uncorrelated
for different pinning wells (see [19] for details).

We consider two driving protocols: i) Homogenous driv-
ing with a driving force σi(t) = m2[w(t)−ui(t)] for each of
the L positions ui(t), see fig. 1(b). ii) Inhomogenous driv-
ing only at the tip of the string, σ1(t) = m2[w(t) − u1(t)]
and all other σi = 0, see fig. 1(c). All springs have the
same Hooke constant m2. While the homogenous case is
well studied, here we focus on the tip-driven case, and
compare it to the former. The system is in a metastable
static configuration, with all particles sitting on individual
pinning wells as long as the elastic forces on every particle
are lower than the pinning forces fpin

i
in a given configu-

ration of the string. When this condition breaks down, an
avalanche occurs, see the shaded areas in figs. 1(b), (c),
until equilibrium is restored in a new static configuration
compatible with the partially new set of pinning thresh-
olds and elastic forces. We consider quasi-static driving
by fixing the position of the driving springs during the
avalanche, which is thus the fastest process.

An avalanche is characterized by its total spatial
extension ℓ (number of sites involved) and its size S. The
latter is the sum of all displacements Si during the rear-
rangement process, namely, S =

∑

i
Si. We also study

the displacement S1 of the tip of the interface, as depicted
in fig. 1(c). We analyze the steady state, where the se-
quence of metastable configurations advances in the di-
rection of the driving and is unique for a given realization
of thresholds [20].

We present results obtained by choosing an exponen-
tial distribution for the separation δu between the pinning
wells, and a Gaussian distribution for the threshold forces
fpin

x [19]. We consider the position of the driving spring
endpoint to increase linearly with time, w(t) = V t, with
V = 1. Results depend on the ratio m2/c of elastic con-
stants. We set c = 1, and give the results directly in terms
of m2.

Results. – We start by computing the global
avalanche-size distribution P (S) for tip-driven interfaces,
see fig. 2. This is equivalent to the distribution of the
shaded areas depicted in fig. 1(c), generated by the move-
ment of the tip. First we analyze the limit m2 → ∞, when
the driving spring is much harder than the inter-particle
springs. We observe that P (S) decays as a power law over
more than 6 orders of magnitude for the largest system,
with a well-defined exponent τ ≈ 1.55 and a cutoff Smax
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Fig. 2: (Color online) Distribution of avalanche sizes P (S) for
different system sizes L when driving the system by one end.
Results are for a driving spring of stiffness m2 = 1 (dark blue)
and m2 = 10−4 (light orange). By dotted and dashed lines we
show the contributions from avalanches that reach or do not
reach the full system size, respectively. Inset: scaling of the
cutoff Smax with systme size. Squares (circles) ara data from
avalanches with ℓ < L (ℓ = L).

in eq. (1). This avalanche exponent is compatible with the
formula

τ = 2 −
1

1 + ζ
, (2)

where ζ = 1.25 is the well-known roughness exponent
of metastable configurations at depinning, taken from
measurements for a uniformly driven interface [21–24]
(such as those depicted in fig. 1(b). As shown by ref. [13]
in the context of sandpiles, the same roughness exponent
appears here in the tip-driven case. It can be obtained by
subtracting from the metastable configurations the aver-
age parabolic profile1, and then calculating the structure
factor which scales as |u(q)|2 ∼ |q|−1−2ζ . The subtracted
average profile is due to the localized driving, and bal-
ances elastic and pinning forces, ∂2

xu ∼ fpin
x . An ar-

gument in favor of the scaling relation (2) was given in
refs. [13,14]. We have verified that this formula also holds
for tip-driven static avalanches connecting stable equilib-
rium states where ζ = 2/3 [25,26].

The avalanche exponent of eq. (2) is distinct from the
value

τ = 2 −
2

1 + ζ
, (3)

valid for uniformly driven interfaces, see fig. 1(b). Using
ζ = 1.25 one obtains τ ≈ 1.11. Interestingly, as shown
in fig. 2, the exponent τ ≈ 1.11 is recovered in the limit
m2 → 0 of the tip-driven interface. As we show below, for
finite values of m2 a crossover takes place between these
two limiting cases.

Both for m2 → ∞ and m2 → 0, we observe in fig. 2
that the avalanche-size distribution has a cutoff for large
avalanches that is controlled by the system size L, and

1The so-called statistical tilt symmetry (STS) allows to justify
that this subtraction yields the standard roughness.

scales as Smax ∼ L1+ζ . In contrast, for uniformly driven
interfaces the avalanche size is controlled by the driving
spring: Smax ∼ 1/m1+ζ (in the usual situation in which
m−1 < L). This difference is a consequence of the fact that
in the steady state the system moves uniformly on average.
As a consequence, since under localized driving the driv-
ing point is part of every avalanche, there are system-
spanning avalanches. If we separate avalanches of length
ℓ < L from those with ℓ = L and plot the two separate
distributions (dashed and dotted lines shown in fig. 2), we
see that the “bump” observed at large sizes for the whole
distribution comes from system-spanning avalanches. If
we consider the distribution of avalanche sizes restricted
to the ensemble of avalanches with ℓ < L, as shown by
the squares in the inset of fig. 2, we observe a cutoff scal-
ing as Smax ∼ L2.25 both in the soft- and hard-spring
limit. Since in the uniformly driven case L1+ζ ≈ L2.25 is
the average size of avalanches of length L, this confirms
that the roughness exponent ζ = 1.25 for both driving
protocols, even though metastable configurations in the
tip-driven case are not flat on average as those of the uni-
formly driven case, but parabolic. This is the quenched
Edwards-Wilkinson depinning universality class.

Now consider the scaling of the cutoff of system-
spanning avalanches (circles in the inset of fig. 2), for
which we obtain a different behaviour in each limit. When
m2 → 0, the system moves rigidly2 some fixed distance
S/L, and Smax ∼ Lζ, thus system-spanning avalanches
have the same statistics as a particle (d = 0) in an ef-
fective potential with characteristic scale Lζ . In contrast,
when pulling the system with a stiff spring Smax ∼ L1+ζ ,
showing that system-spanning avalanches still behave as a
1-dimensional system. We leave a more detailed analysis
of this dimensional crossover for future work.

The cases m2 → 0 and m2 → ∞ can also be dis-
tinguished by the average spatial profile ⟨Sx⟩ℓ of the
avalanches. For avalanches of the same length ℓ and
points belonging to the avalanche x < ℓ, we verify
⟨Sx⟩ℓ ∼ ℓζs(x/ℓ) for large enough ℓ. In fig. 3 we show for
both limits the reduced shape s(x/ℓ), choosing ℓ ≈ 2500.
For comparison, the case of uniform driving is included
(m2L = 100). Within our numerical precision the aver-
age spatial profile for uniform driving displays a form in-
distinguishable from a parabola, vanishing linearly at the
avalanche’s extremes. To our knowledge this result has
not been reported previously in the literature.

In the tip-driven case, the value of m2 has a strong
influence on the avalanche shape. When m2 → 0, the
tip can move freely during an avalanche, the maximum
displacement takes place at or near the driven bound-
ary, and the average profile is half the parabolic profile
of the uniformly driven case previously described3. This

2Actually, the points next to the tip move slightly less than others
but this is negligible.

3A small difference is observed at the maximum due to the fact
that we are pulling on the edge and not on an inner site of the
system.
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Fig. 3: (Color online) Reduced avalanche shape s(x/ℓ) =
⟨Sx⟩ℓ/ℓζ for uniformly driven (dashed green line), tip-driven
with m2 → ∞, (solid dark-blue line) and tip-driven with
m2 → 0, (solid light-orange line) cases, respectively. Inset:
tip driven m2 → ∞ case in log scale, showing ∼ xθ behaviour
with θ = 0.85.

is consistent with the observation of the avalanche size ex-
ponent τ ≈ 1.11 (fig. 2), corresponding to the uniformly
driven case, eq. (3). This seems natural since this situa-
tion is like a localized constant-force driving σ1 = m2w, as
one may neglect the tip position u1 compared to the driv-
ing position w. Localizing the driving when m2 → 0 thus
only imposes the starting point of the avalanche, but does
not change the physics as compared to a homogeneously
driven system.

In contrast, when m2 → ∞ the above argument fails,
and one must consider σ1 = m2(w−u1). Such a stiff driv-
ing imposes a constant displacement at the tip during the
quasi-static dynamics, and strongly restricts the tip dis-
placement during an avalanche, resulting in an avalanche
profile that vanishes at this point. Interestingly, the corre-
sponding avalanche profile has an asymmetry, in contrast
to the symmetric shape for uniform driving. Moreover, our
results show that the avalanche profile for small x starts
as ∼ xθ, with θ ≃ 0.85. We have no clear understanding
of the origin of this behaviour, and whether the exponent
θ can be expressed in terms of the roughness exponent ζ.
To summarize: Although ⟨Sx⟩ℓ ∼ ℓζ in all cases, with the
same roughness exponent ζ = 1.25, the avalanche shapes
have distinct shape functions s(x/ℓ) = ⟨Sx⟩ℓ/ℓζ .

We now discuss the case of finite m2, and the crossover
from m2 → 0 to m2 → ∞ for a tip-driven interface. For
intermediate values of m2 we expect to see a crossover
between the two limiting values of the exponent τ (from
τ ≈ 1.11 to τ ≈ 1.55 of fig. 2), and between the two
limiting reduced avalanche shape functions s(y): From a
parabolic shape with the maximum at zero to an asym-
metric profile with the maximum at x < ℓ/2, see fig. 3. In
fig. 4 we present the avalanche-size distribution P (S) for
different values of m2 at fixed system size L = 3980. Only
avalanches smaller than the total system size are consid-
ered (ℓ < L). As in the extreme cases, for any value of m2

the avalanche-size cutoff is controlled by the system size.
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Fig. 4: (Color online) Avalanche size distributions P (S) on
a system of size L = 3980, for different values of m2. The
value of the crossover Scross

m is indicated on the green curve
which corresponds to m2 = 10−2. Inset: scaled form using
Scross

m ∼ m−4.5.

Approximate power law decays for P (S) are observed, but
the exponent τ does not vary continuously from τ ≈ 1.11
to τ ≈ 1.55. Rather, it develops two power-law regimes
separated by a characteristic m-dependent crossover scale
Scross

m : for S < Scross
m , τ ≈ 1.11, while for S > Scross

m ,
τ ≈ 1.55. As shown in the inset of fig. 4, Scross

m ∼ m−4.5.
The limit m2 → ∞ is thus an attracting fixed point for
the asymptotic behaviour at any finite m2.

The crossover scaling can be understood as follows: For
an avalanche of extension ℓ, the maximum displacement
scales as ℓζ , and the typical elastic force as cℓζ−1. At the
crossover scale, the displacement of the tip is of the order
of the maximum displacement ℓζ , and the force of the
driving spring is m2ℓζ . Balancing these two forces yields
Lm ∼ m−2. Hence, the crossover is expected at

Scross
m ∼ L1+ζ

m ∼ m−2(1+ζ). (4)

which gives Scross
m ∼ m−4.5 This scaling matches well our

numerical results. It should be exact, as indicated by the
following argument: The total elastic force is c

∫

dx∇2u(x)
and the total driving force is

∫

dxm2δ(x)[u(x)−w]. It can
be proven that due to the statistical tilt symmetry c and
m2 are not renormalized, validating the above argument.
It is worth noting that for the uniformly driven system,
a characteristic length scaling as m−1 rather than m−2

controls the avalanche-size cutoff whenever m−1 < L.
To better understand this crossover, in fig. 5 we plot

the average spatial profile ⟨Sx⟩ℓ of avalanches for differ-
ent extensions ℓ using m2 = 10−2. We observe that
the avalanche shape has its maximum at the boundary
for small avalanches, whereas the maximum moves to in-
creasing values of x for increasing ℓ. As indicated by the
bold dashed line in fig. 5, this transition occurs when the
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Fig. 5: (Color online) Average avalanche shape ⟨Sx⟩ℓ for
avalanches of different lengths ℓ on a system of size L = 1584
and a driving spring m2 = 10−2 at the boundary. The crossover
avalanche length Lm is indicated.

extension ℓ reaches the crossover scale Lm identified pre-
viously, i.e. for avalanches of size Scross

m ∼ L1+ζ
m , see fig. 4.

In addition to global avalanches, we can look at
local jumps. Let us first consider a typical position φ
within the bulk of an avalanche which jumps a distance
Sφ ∼ ℓζ . Using that avalanche extensions scale as P (ℓ) ∼
1/ℓ(τ−1)(1+ζ)−1, and equating P (ℓ)dℓ ≃ P (Sφ)dSφ we
obtain that the local jump distribution satisfies

P (Sφ) ∼ S
−τφ

φ , τφ = τ +
(τ − 1)

ζ
. (5)

The value of τ depends on the size S of the avalanche
to which the displacement Sφ belongs. Note that the
exponent is distinct from the one for bulk driving given
in [6]; the difference is that here the point φ is inside the
avalanche, since it is driven, whereas in [6] it is an arbi-
trary point.

We have shown that avalanches with ℓ < Lm < L have
τ = 2 − 2/(1 + ζ) while for Lm < ℓ < L they have τ =
2 − 1/(1 + ζ), both with ζ = 1.25, and Lm ∼ m−2 (see
fig. 4). Using these exponents we find

P (Sφ) ∼ S
−τφ

φ

⎧

⎨

⎩

τφ = 2 −
1

ζ
≈ 1.2, if S1/ζ

φ < Lm < L,

τφ = 2, if Lm < S1/ζ
φ < L.

(6)
Interestingly, local jumps driven by a hard spring are dis-
tributed with an exponent independent of ζ. In fig. 6, we
verify these predictions by taking the limits m2 → ∞ and
m2 → 0. We also verified that a typical point belonging
to a uniformly driven avalanche is power-law distributed
with an exponent τφ = 1.2 (not shown).

For m2 → 0, the driven point with displacement S1,
is a typical site of the avalanche and its displacement is
thus distributed with an exponent τφ = 1.2. However,
for m2 → ∞, the tip is not a typical point, and its dis-
placement is sensitive to the spatial avalanche profile near
the border. Using that points near the boundary have
Sx ∼ ℓζ(x/ℓ)θ ∼ ℓζ−θxθ (see fig. 3), and that P (ℓ) ∼ ℓ1+ζ

we get

P (S1) ∼ S
−

2ζ−θ
ζ−θ

1 . (7)
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Fig. 6: (Color online) Local avalanche size distributions for typ-
ical and boundary sites, P (Sφ) and P (S1), respectively. The
power laws indicated are those given by eqs. (6) and (7). Note
that for m2 → 0 the boundary site is also a typical site.

Using θ = 0.85 and ζ = 1.25 results in P (S1) ∼ S−4.1
1 . The

numerical results in fig. 6 seem to indicate an even steeper
decay of P (S1) than the predicted power-law form. We
believe that this behavior is due to rather strong finite-
size effects, and that the exponent will converge to the
correct asymptotic value for larger ℓ. However, at present
the verification of this statement is beyond our numerical
capacities.

The statistics of the tip displacement is accessible
experimentally. For example, when vortices are confined
to a twin boundary of a superconductor and driven by a
STM tip [10], the stress on the tip is σ1(t) = m2[w(t)−u1],
and the distribution of stress drops ∆σ1 = m2S1 can be
measured by the driving device.

Key features of our results are consistent with recent
exact calculations for the Brownian force model (BFM)
driven at a boundary [27]. In this model, the disorder
forces are Brownian walks, and the exponent ζ takes the
value 4 − d, hence ζ = 3 for d = 1. For m2 = ∞ the BFM
has an avalanche-size exponent τ = 7/4 in agreement with
eq. (2), setting ζ = 3. For m2 → 0 it yields τ = 3/2, the
usual mean-field exponent for bulk driving. The crossover
between the two scenarios occurs at Sm ∼ m−8, hence
Lm ∼ m−2, in agreement with the above. The local jump
exponent τφ takes the value τφ = 5/3 for finite m2, in
agreement with eq. (6) setting ζ = 3, and d = 1.

Conclusions. – In this letter we studied the avalanche
dynamics of an elastic line in a random medium driven
at a point by a spring of stiffness m2 moving at constant
velocity, and compared it with the well-known homoge-
neously driven case, where springs are attached to every
point of the interface. In both cases, universal scale-free
power laws with a large-size cutoff are observed in the
distribution of avalanche sizes. When driving the system
homogeneously, the scale controlling the cutoff is given
by the ratio between the elastic constants of the inter-
face, c and m2, namely, Lm ∼ c/m, displaying criticality
only in the limit m2 → 0. In contrast, when localizing
the driving, the cutoff is controlled by the system size,
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L. E. Aragón et al.

and avalanches with an extent ℓ larger than Lm occur.
This makes the locally driven elastic line a paradigm
for driven self-organized critical systems. Now Lm scales
as ∼ (c/m)2 and becomes a crossover scale between two
distinctive behaviours. We showed that small avalanches
(ℓ < Lm) behave as in the homogeneously driven case with
an exponent τ ≈ 1.11, while large avalanches (ℓ > Lm)
present a new behaviour, with a higher avalanche expo-
nent τ ≈ 1.55.

In these two regimes we measured the mean spatial
shape of avalanches, a novel result for both homogeneously
and locally driven elastic lines. They are distinct, chang-
ing from a seemingly universal symmetric parabolic shape
to an asymmetric one, non-linearly growing at the driven
point. Further work is needed to understand the origin
of these shapes, and to clarify whether the characteris-
tic exponents are related to the roughness exponent ζ of
the interface. Interestingly, both regimes have the same
value ζ = 1.25, corresponding to the quenched Edwards-
Wilkinson depinning universality class. We also measured
the local distribution of jumps at different points of the
interface, which exhibit new critical exponents in each
regime. We consistently find a small slope at small jump
lengths crossing over to a much steeper value at larger
jump lengths.

This motivates to search for a similar crossover in exper-
iments and suggests new measurements. For instance, vor-
tices driven by an STM tip show a marked hysteresis [10]
a signature of the non-equilibrium effects studied here,
as well as a crossover in the jump-size distributions. We
suggest to simultaneously measure jumps on the far side
of the sample to distinguish system-spanning avalanches
from smaller ones, a distinction which proved to be im-
portant in our analysis.

Finally, let us stress that most of the present results,
and in particular scaling relations, can be generalized to
arbitrary spatial dimension d. For sandpiles, driving at a
single point has been studied [13]. Note, however, that the
Oslo model is defined a priori only in d = 1. Other bound-
ary driving mechanisms can be considered for different ap-
plications. In particular, the case d = 2, with appropriate
modifications to the elastic kernel, may be applied to the
study of stick-slip motion observed in friction experiments
and its relation to the dynamics of edge-driven tectonic
faults [9].
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