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Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations
〈x(t1)x(t2)〉 = D

`
t2H1 + t2H2 − |t1 − t2|2H

´
, where H, with 0 < H < 1 is called the Hurst exponent.

For H = 1/2, x(t) is a Brownian motion, while for H 6= 1/2, x(t) is a non-Markovian process.
Here we study x(t) in presence of an absorbing boundary at the origin and focus on the probability
density P+(x, t) for the process to arrive at x at time t, starting near the origin at time 0, given that
it has never crossed the origin. It has a scaling form P+(x, t) ∼ t−HR+(x/tH). Our objective is to
compute the scaling function R+(y), which up to now was only known for the Markov case H = 1/2.
We develop a systematic perturbation theory around this limit, setting H = 1/2+ε, to calculate the
scaling function R+(y) to first order in ε. We find that R+(y) behaves as R+(y) ∼ yφ as y → 0 (near
the absorbing boundary), while R+(y) ∼ yγ exp(−y2/2) as y → ∞, with φ = 1 − 4ε + O(ε2) and
γ = 1− 2ε+O(ε2). Our ε-expansion result confirms the scaling relation φ = (1−H)/H proposed in
Ref. [29]. We verify our findings via numerical simulations for H = 2/3. The tools developed here
are versatile, powerful, and adaptable to different situations.

I. INTRODUCTION

Survival of a species of bacteria, translocation of DNA
through a nano-pore, and diffusion in presence of an ab-
sorbing boundary are only few out of many situations,
where the central question is the survival, or persistence
of the underlying stochastic process. More precisely, per-
sistence, or survival probability S(t) of a process is the
probability that the process, starting from an initial pos-
itive position, stays positive over a time interval [0, t].
For many stochastic processes arising in non-equilibrium
systems, persistence decays as a power law S(t) ∼ t−θ,
where θ is called the persistence exponent [1]. For a sim-
ple Markov process such as one-dimensional Brownian
motion, θ = 1/2 [2]. On the other hand, the exponent
θ is non-trivial whenever the process is non-Markovian,
i.e., has a memory. In addition to theoretical studies (for
a brief review see [3]), the exponent θ has been mea-
sured in a number of experiments [4–10]. Even for Gaus-
sian non-Markovian processes, θ is non-trivial [11]. For
the latter processes that are close to a Markov process
(i.e., whose correlators are close to that of a Gaussian
Markov process) the exponent θ was computed perturba-
tively [12, 13]. This perturbation theory has been used
for various out-of-equilibrium systems, as the global per-
sistence at the critical point of the Ising model in d = 4−ε
dimensions [14], in simple diffusion close to dimension 0
[15], and in fluctuating fields such as interfaces [16–18].

A quantity that contains more spatial information than
persistence S(t) is the probability density P+(x, t) of the
particle at position x and at time t, given that it has
survived (stayed positive) up to time t. To investigate
P+(x, t), one can equivalently think of a process on the
positive semi-infinite line [0,∞] with absorbing boundary
condition at the origin x = 0 (see Fig. 1). The question
is, how does P+(x, t) depend on x? In other words, how
does the presence of an absorbing boundary at the origin
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FIG. 1: (Color online) The fractional Brownian motion dis-
cussed in the main text.

change the spatial dependence of the probability density
of the particle at time t? In particular, it is clear that
P+(x, t) must vanish as x→ 0 and x→∞. But how do
they vanish there? One of the main messages of our pa-
per is that for generic non-Markovian processes, P+(x, t)
vanishes near its boundaries at x = 0 and x → ∞ in a
non-trivial way, characterized by non-trivial exponents.

As the persistence S(t), the probability P+(x, t) can be
computed exactly for a Gaussian Markov process, as e.g.
one-dimensional Brownian motion. For non-Markovian
processes, even if they are Gaussian, P+(x, t) was not
known. In this work, we consider P+(x, t) for a class of
one-dimensional Gaussian processes known as fractional
Brownian motion (fBm), which are parametrized by their
Hurst exponent H, with 0 < H < 1. The case H = 1/2
corresponds to ordinary Brownian motion, which is a
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FIG. 2: Left: Translocation of a polymer chain through a
pore. Right: The translocation coordinate s(t) denotes the
number of the monomer that is crossing the pore at time t.

Markov process, while for H 6= 1/2 the process is non-
Markovian. The purpose of this paper is to develop a
systematic perturbation theory to compute P+(x, t) for
non-Markovian fBm’s with H = 1/2+ε, where ε is the ex-
pansion parameter for the perturbation theory. Here we
present the result for P+(x, t) to O(ε). It can be written
as a combination of special functions, i.e. error and hy-
pergeometric functions, see Eq. (10). To our knowledge,
this is the first systematic (exact up to O(ε2)) calculation
of P+(x, t) for fractional Brownian motion with H 6= 1/2.

Before detailing our results, let us position them into
a broader context: Fractional Brownian motion with
H 6= 1/2 is relevant for polymer translocation through
a nanopore. Consider a polymer chain composed of N
monomers passing through a pore (translocation) from
left to right, as drawn on Fig. 2. The dynamics of this
translocation process has been investigated intensively
due to its central role in understanding, e.g., viral in-
jection of DNA into a host, or RNA transport through
nano-pores, and mastering such applications as fast DNA
or RNA sequencing through engineered channels [19–22].
The translocation coordinate s(t), namely the label of the
monomer crossing the pore at time t, is key to quantita-
tively describing the translocation process [23–26], which
begins when s = 1, and ends when s = N , i.e., when the
first and the last monomer of the chain enter the pore,
respectively, see Fig. 2. For large N , when the transloca-
tion is not yet complete, one can view s(t) as a stochastic
process on the semi-infinite line with absorbing boundary
conditions at s = 0. The absorbing boundary at s = 0
models that if the chain falls back to the left, i.e., on
the starting side, it will diffuse away and not try again.
The quantity P+(s(t) = x, t) then represents the prob-
ability that x monomers have translocated to the right
at time t. To model the process s(t), one observes the
following facts: (i) scaling arguments and numerical sim-
ulations show that s(t) is subdiffusive [27]; (ii) in absence
of boundaries, numerical simulations indicate that s(t) is
a Gaussian process [28]. Based on these observations it

was proposed in Ref. [29] that a good candidate for s(t)
is a fractional Brownian motion with H = 1/(1 + 2ν),
where the exponent ν describes the growth of the radius
of gyration with the number of monomers (Rg ∼ Nν)
[30]. Thus for ν 6= 1/2, H < 1/2 and hence s(t) is generi-
cally a non-Markovian process, with absorbing boundary
conditions at s = 0 and at s = N . Here we consider
the limit of N → ∞. Thus our results for P+(x, t) of
a fBm with H 6= 1/2 are directly relevant for polymer
translocation.

Directions for further applications are numerous: Re-
cently a relation was established between the statistics
of avalanches associated with the motion of a driven par-
ticle in a disordered potential and persistence proper-
ties of the latter [31]. Higher-dimensional generalizations
are avalanches of extended elastic objects, for which sys-
tematic field-theoretic treatments exist [32–35]. In few
cases, no-hitting probabilities can be calculated for ex-
tended (non-directed) objects, as self-avoiding random
walks avoiding extended objects [36]. Other approaches
use real-space renormalization [37, 38].

This article is organized as follows: Since some of the
computations are rather technical, we first provide in Sec-
tion II a brief summary of the main definitions and our
principal results. In Section III, we introduce basic nota-
tions and reproduce the known results forH = 1

2 . Section
IV explains the basic ideas of our perturbative approach,
sketches the calculation, and discusses some of the sub-
tle points. Our predictions are compared to numerical
simulations in Section V. Conclusions are presented in
Section VI. More technical points are relegated to two
appendices: In Appendix A the correction to the action
is derived. Appendix B contains the explicit calculation
of the perturbation theory. Finally, Appendix C reviews
the arguments for the scaling law φ = (1−H)/H.

II. SUMMARY OF DEFINITIONS AND MAIN
FINDINGS

Consider a particle, located at time t = 0 at the origin
x = 0 and free to propagate on the real axis. For Gaus-
sian processes, the probability to find the particle inside
the interval (x, x+ dx) at time t is given by

P (x, t) dx =
1√

2π〈x2(t)〉
e
− x2

2〈x2(t)〉 dx , (1)

where 〈x2(t)〉 is the particle’s mean square displacement.
A natural scaling variable is

y =
x√
〈x2(t)〉

, (2)

and most of the properties of the process are a function of
this single variable. For example, the distribution prob-
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ability in Eq. (1) becomes

P (x, t) dx = R(y) dy (3)

R(y) =
1√
2π
e−

y2

2 . (4)

In many problems the motion is confined to an interval,
finite or semi-infinite. In presence of absorbing bound-
aries, the probability distribution of the particle position,
subject to the condition that the particle has survived,
has no longer a simple Gaussian form since it has to van-
ish at the boundaries. However, one can still express it as
a function of the sole scaling variable y defined in Eq. (2),
where 〈x2(t)〉 is the particle’s mean square displacement
in the unconstrained (without boundaries) process over
the full real line. In particular, here we discuss the case
where the particle can move on the positive semi-axis
and is absorbed whenever x(t) < 0. We call P+(x, t) and
R+(y) with y given in Eq. (2) the normalized probability
distribution and the scaling function of the problem in
presence of an absorbing boundary at the origin,

P+(x, t) dx = R+(y) dy . (5)

In contrast to the free case, the functional form of R+(y)
is not the same for all Gaussian processes, but depends
on the precise nature of the latter. Here we study a par-
ticular class of processes, the fractional Brownian motion
(fBm), for which the autocorrelation function in absence
of boundaries is

〈x(t1)x(t2)〉 = D
(
t2H1 + t2H2 − |t1 − t2|2H

)
, (6)

where H with 0 < H < 1 is the Hurst exponent. For
H = 1/2, the fBm identifies with Brownian motion

〈x(t1)x(t2)〉 = 2Dmin(t1, t2) , (7)

where D is the diffusion constant. Note that only for
H = 1/2, the Gaussian process x(t) is Markovian. For
other values of H, the process is non-Markovian.

For Brownian motion (H = 1/2), the form of R+(y)
can be obtained using the method of images (see Section
III),

R
(0)
+ (y) = ye−

y2

2 . (8)

The superscript (0) identifies the caseH = 1/2. For other
values of H, due to the non-Markovian nature of the
process, the method of images no longer works and the
computation of R+(y) becomes a challenging problem. In
this paper we compute this function, using a perturbative
approach for H = 1/2 + ε, to first order in ε. The final
result is

R+(y) = R
(0)
+ (y)

[
1 + εW (y) +O(ε2)

]
(9)

W (y) =
1
6
y4

2F2

(
1, 1;

5
2
, 3;

y2

2

)
+π(1− y2) erfi

( y√
2

)
+
√

2πe
y2

2 y

+
(
y2 − 2

) [
ln
(
2y2
)

+ γE

]
− 3y2 , (10)
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FIG. 3: (Color online) The function W (y) defined in Eq. (10).
The solid blue line is the result of the series expansion (11),
while the dashed red line is the result of the asymptotic ex-
pansion (12). We note that W (1.01694) = 0.

where γE is Euler’s constant, 2F2 a hypergeometric func-
tion, and erfi the imaginary error-function. We can write
a convergent series-expansion

W (y) = 4y4
∞∑
n=0

2nn! y2n

(2n+ 4)!

−
∞∑
n=0

√
π2

3
2−ny2n+1

(2n− 1)(2n+ 1)n!

+
(
y2 − 2

) [
ln
(
2y2
)

+ γE

]
− 3y2 (11)

where each line is equivalent to the corresponding line in
Eq. (10). Both sums converge for all y, but problems of
numerical precision appear for y > 7. In that region, one
can use the asymptotic expansion

W (y) = 1−γE−ln(2y2)+
1

2y2
− 1

2y4
+

5
4y6

+O(y−8) (12)

At y = 7, the difference between (11) and (12) is smaller
than 10−6.

We obtain, at first order in ε, the asymptotic expan-
sions of R+(y),

R+(y)
y→0−−−→ y [1− 4ε ln y − 2ε(γE + ln 2) + . . . ]

R+(y)
y→∞−−−→ ye−y

2/2 [1− 2ε ln y + ε(1− ln 2− γE)]
+ . . . (13)

These asymptotics can be recast into

R+(y) ∼ yφ for y → 0

R+(y) ∼ yγe−
y2

2 for y →∞ , (14)

where the two exponents φ and γ are at first order in ε
given by

φ = 1− 4ε+O(ε2) , γ = 1− 2ε+O(ε2) . (15)
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In a recent publication [29] (reviewed in Appendix C),
a general scaling relation, valid for arbitrary self-affine
processes with stationary increments, was proposed be-
tween the exponent φ, the persistence exponent θ, and
the Hurst exponent H,

φ =
θ

H
. (16)

For fBm, it is known rigorously that θ = 1−H [16]. This
result predicts that for fBm,

φ =
1−H
H

. (17)

One of the objectives of this paper was to verify this
scaling relation up to O(ε) in a perturbation theory
around H = 1/2. Using H = 1/2 + ε, one expects
φ = (1 − H)/H = 1 − 4ε + O(ε2) for fBm. This is in
agreement with our result (15), putting the scaling argu-
ments on a firmer footing.

It is interesting to note that the scaling function R+(y)
given in Eq. (4) has, at least to O(ε), the same lead-
ing large-y behavior ∼ e−y

2/2 as in the unconstrained
case (4). This behavior can be understood by a simple
heuristic argument: far from the boundary the process
is not “aware” of the latter. Our calculation reveals that
the process nevertheless knows about the boundary, and
R+(y) has a subleading power-law prefactor yγ where γ
is a new (independent) exponent, whose result to order ε
is given in Eq. (15).

Our analytical results are then verified via numerical
simulations for H = 2/3.

III. PRELIMINARIES: BROWNIAN CASE
(H = 1/2)

To simplify notations, we set D = 1 in the following.
The final result (9), expressed in the variable y, is of
course independent of this choice.

The spreading of a Brownian particle is given by the
Fokker-Planck equation

∂tZ
(0)
+ (x0, x, t) = ∂2

xZ
(0)
+ (x0, x, t) (18)

Z
(0)
+ (x0, x, t = 0) = δ(x− x0) (19)

The propagator Z(0)
+ (x0, x, t) times dx gives the proba-

bility to find the Brownian particle inside the interval
(x, x+ dx) at time t, knowing that the particle was at x0

at time t = 0. With absorbing boundary conditions at
the origin we have, using the method of images

Z
(0)
+ (x0, x, t) =

1√
4πt

[
e−(x−x0)

2/4t − e−(x+x0)
2/4t
]
.

(20)
This propagator is not a probability distribution because
it is not normalized. Its normalization, the so-called sur-
vival probability,

S(x0, t) =
∫ ∞

0

dxZ(0)
+ (x0, x, t) = erf

(
x0

2
√
t

)
(21)

gives the probability that the particle is not yet absorbed
by the boundary at x = 0. The survival probability van-
ishes when x0 → 0; however, in that limit, the probability
distribution for the non-absorbed particles remains well-
defined:

P
(0)
+ (x, t) = lim

x0→0

Z
(0)
+ (x0, x, t)∫∞

0
dxZ(0)

+ (x0, x, t)
. (22)

Another quantity with a finite limit for x0 = 0 is

Z
(0)
+ (x, t) = lim

x0→0

1
x0
Z

(0)
+ (x0, x, t) =

xe−
x2
4t

2
√
πt3/2

. (23)

This allows to write the probability P (0)
+ (x, t) as

P
(0)
+ (x, t) =

Z
(0)
+ (x, t)∫∞

0
dxZ(0)

+ (x, t)
=

x

2t
e−

x2
4t . (24)

Using in Eq. (24) the scaling variable defined in (2),
y = x/

√
2t, we recover (8). Eq. (24) is simpler than

Eq. (22) because the x0 dependence is discarded from
the beginning. We will use this definition to compute
Z+(x, t) for H = 1/2 + ε.

IV. PERTURBATION THEORY (H 6= 1/2)

The process x(t) is Gaussian for all values of H, but
it is Markovian only for H = 1/2. For all other val-
ues of H, the process is non-Markovian and this makes
the problem difficult to solve. Our idea is to expand
around H = 1/2. In a first step, we construct an action,
which calculates expectation values of the Gaussian pro-
cess x(t), with bulk expectation values (6). In a second
step, we obtain the propagator with absorbing boundary
conditions at x = 0. In a third step we calculate the
probability P+(x, t) perturbatively, using the action con-
structed in step 1. In the fourth step, we put together
all pieces and interpret our result.

A. Step 1: The Action

For all H, x(t) is a Gaussian process, therefore the
statistical weight of a path x(t′) without any boundary
is proportional to exp(−S[x]) where the action S[x] is
quadratic in x and given by

S[x] =
∫ t

0

dt1

∫ t

0

dt2
1
2
x(t1)G(t1, t2)x(t2). (25)

Note that we use standard field-theoretic notation, noting
f(x) a function of the variable x, and S[x] a functional,
depending on the function x(t′), with 0 < t′ < t.

The kernel G(t1, t2) of the action is related to the auto-
correlation function of the process via

G−1(t1, t2) = 〈x(t1)x(t2)〉. (26)
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For H = 1/2, the action is simple. In this case, setting
D = 1,

[G(0)]−1(t1, t2) = 〈x(t1)x(t2)〉 = 2 min(t1, t2). (27)

Using the result (A7) in Eq. (25), we recover the standard
Brownian action

S(0)[x] =
1
4

∫ t

0

dt′ (∂t′x)2 . (28)

For a generic value of H the kernel G(t1, t2) becomes
non-local. For H = 1/2 + ε one can write

S[x] = S(0)[x] + εS(1)[x] + . . . (29)

where S(0)[x] is the action (28) and S(1)[x] has been com-
puted in Appendix A

S(1)[x] = −1
2

∫ t

0

dt1

∫ t

t1

dt2
∂t1x(t1)∂t2x(t2)
|t1 − t2|

−2S(0)[x](1 + ln τ) . (30)

Note that we have introduced a regularization for coin-
ciding times t1 = t2 → ln |t1 − t2| = ln τ where τ > 0 is
the UV cutoff. A first-principle definition would necessi-
tate a discretization in time. It is however sufficient to
check that the law (6) is correctly reproduced, and that
the final result is cutoff independent.

B. Step 2: The Propagator with an Absorbing
Boundary

For a generic value of H, the propagator Z+(x0, x, t),
denoting the probability that the particle reaches x at
time t, starting from x0 at time 0, and staying positive
over the interval [0, t], can be written using standard path
integral notation as

Z+(x0, x, t) =
∫ x(t)=x

x(0)=x0

D[x] e−S[x] Θ[x] . (31)

Here Θ[x] is an indicator function that is 1 if the path
x(t′) stays positive over the interval [0, t] and 0 other-
wise. The action S[x] is given in (25). In the limit
x0 → 0, we expect, as in the Brownian case (H = 1/2),
the propagator to vanish as xφ0

0 where the yet unknown
exponent φ0 depends on H. Note that for H = 1/2,
φ0 = 1 (see Eq. (23)). For H = 1/2 + ε, we expect that
φ0 = 1+a1ε+O(ε2), where a1 is yet unknown. Analogous
to Eq. (23) for H = 1/2 we define Z+(x, t) as

Z+(x, t) = lim
x0→0

1

xφ0
0

∫ x(t)=x

x(0)=x0

D[x] e−S[x] Θ[x] . (32)

Using the expansion of the action given in Eq. (29) and
φ0 = 1 + a1ε, we write to leading order in ε

Z+(x, t)

= lim
x0→0

1
x1+a1ε

0

∫ x(t)=x

x(0)=x0

D[x]
(

1− εS(1)[x]
)
e−S

(0)[x] Θ[x]

= lim
x0→0

{
Z

(0)
+ (x, t) [1− a1ε ln(x0)]

− ε

x0

∫ x(t)=x

x(0)=x0

D[x]S(1)[x] e−S
(0)[x] Θ[x]

}
= Z

(0)
+ (x, t) + εZ

(1)
+ (x, t) , (33)

where Z(0)
+ (x, t) is defined in Eq. (23) and Z

(1)
+ (x, t) is

Z
(1)
+ (x, t) = lim

x0→0

{ −1
x0

∫ x(t)=x

x(0)=x0

D[x]S(1)[x] e−S
(0)[x] Θ[x]

−a1 ln(x0)Z(0)
+ (x, t)

}
(34)

We will see that for φ0 = 1− 4ε, i. e. a1 = −4, Z(1)
+ (x, t)

is independent of x0.

C. Step 3: Calculation of Z
(1)
+ (x, t)

The main achievement of this paper is the calcula-
tion of Z(1)

+ (x, t) defined in Eq. (34). This calculation
is rather involved, both conceptually and technically.
Therefore, we will relegate several technical calculations
to Appendix B. Eq. (34) can be devided into three pieces:

Z
(1)
+ (x, t) = ZA+(x, t) (35)

+ lim
x0→0

[
ZB+ (x0, x, t)− a1 ln(x0)Z(0)

+ (x, t)
]

ZA+(x, t) = 2(1 + ln τ) (36)

× lim
x0→0

1
x0

∫ x(t)=x

x(0)=x0

D[x]S(0)[x] e−S
(0)[x] Θ[x]

ZB+ (x0, x, t) =
1
4

∫ t

0

∫ t

0

dt1dt2 (37)

× 1
x0

∫ x(t)=x

x(0)=x0

D[x]
˙x(t1) ˙x(t2)
|t1 − t2|

e−S
(0)[x] Θ[x]

The first term, ZA+(x, t) is simple, and is evaluated in
appendix B 1. We now come to the evaluation of the
contribution ZB+ (x0, x, t), defined in Eq. (37). In Fig. 4
we show a path which contributes to ZB+ (x0, x, t). The
sum of all these paths is a product of transition proba-
bilities. Explicitly, it reads, ordering t1 < t2, which gives
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FIG. 4: Graphical representation of the path-integral for
ZB+ (x0, x, t) given in Eq. (34).

an extra factor of 2 compared to (37):

ZB+ (x0, x, t)

=
1

2x0

t∫
0

dt2

t2∫
0

dt1
∫

x1>0

∫
x̃1>0

∫
x2>0

∫
x̃2>0[

Z
(0)
+ (x0, x̃1, t1)D(x̃1, x1)

Z
(0)
+ (x1, x2, t2 − t1)
|t2 − t1|

×D(x2, x̃2)Z(0)
+ (x̃2, x, t− t2)

]
. (38)

Z
(0)
+ (x̃1, x0, t1), Z(0)

+ (x1, x2, t2− t1) and Z(0)
+ (x̃2, x, t− t2)

are defined in (20). The factors D(x1, x̃1) and D(x2, x̃2)
take into account the terms ∂t1x(t1) and ∂t2x(t2) in the
action S1[x].

D(x̃1, x1) = lim
dt→0

(x1 − x̃1)
dt

Z
(0)
+ (x1, x̃1,dt)

= lim
dt→0

(x1 − x̃1)
dt

e−
(x̃1−x1)2

4dt

√
2πdt

= −2δ′(x1 − x̃1). (39)

Finally, we have set t̃1 = t1, and t̃2 = t2, since we
have taken the limit of their differences to 0. In or-
der to perform the six integrations in Eq. (38) it turns
out to be convenient to evaluate its Laplace transform,
Z̃B+ (x0, x, s). From now on, we will always denote with
f̃(s) the Laplace transform of a function f(t), defined as

f̃(s) :=
∫ ∞

0

dt e−st f(t) . (40)

This Laplace transform leads to two important simplifi-
cations: The first simplification is that now the nested
time-integrals over t1 and t2 become a product. To see
this, we remind that if f1 and f2 are two functions which
depend on t, then the Laplace transform of their convo-

lution is simply the product of their Laplace transforms,∫ ∞
0

dt e−ts
[∫ t

0

dt1f1(t1)f2(t− t1)
]

=
∫ ∞

0

dt
∫ ∞

0

dt1
∫ ∞

0

dt2 δ(t− t1 − t2)

×f1(t1)e−t1sf2(t2)e−t2s

=
[∫ ∞

0

dt1f1(t1)e−t1s
] [∫ ∞

0

dt2f2(t2)e−t2s
]

= f̃1(s)f̃2(s) . (41)

This consideration generalizes to 3 and more times.
We obtain for the Laplace transform of (38)

Z̃B+ (x0, x, s) = − 2
x0

∫
x1>0

∫
x2>0

Z̃
(0)
+ (x0, x1, s)Z̃

(0)
+ (x2, x, s)

×∂x1∂x2

[∫ ∞
0

dt e−st
Z

(0)
+ (x1, x2, t)

t

]
(42)

The second simplification is even more important, and
is most easily understood on the example of the bulk
propagator

Z(0)(x, y, t) :=
e−(x−y)2/4t
√

4πt
. (43)

Its Laplace-transform is

Z̃(0)(x, y, s) =
1

2
√
s
e−
√
s|x−y| . (44)

While integrals over x > 0 involving (B19) give error-
functions, which are hard to integrate further, the same
integrals over (44) remain similar exponential functions;
the only complication is that one has to distinguish be-
tween x smaller or larger than y.

To evaluate (42), we now have to calculate the Laplace-
transforms of its factors:

Z̃
(0)
+ (x, y, s) =

e−
√
s|x−y| − e−

√
s(x+y)

2
√
s

. (45)

Finally, the term in brackets in Eq. (42) can be rewritten,
using a Fourier decomposition for Z(0)

+ (x2, x1, t), as∫ ∞
0

dt e−st
Z

(0)
+ (x1, x2, t)

t

=
∫ ∞
−∞

dk
2π

∫ ∞
0

dt
e−(s+k2)t

t

[
eik(x1−x2) − eik(x1+x2)

]
= −

∞∫
−∞

dk
2π

[
eik(x1−x2) − eik(x1+x2)

] [
ln([s+k2]τ) + γE

]
(46)

Note that the time integral in the second line of Eq. (46)
is diverging at small times. Since the path integral is
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defined as discretized in time, a natural approach con-
sist in discretizing this integral, with a step-size τ . This
would indeed be the only possible approach for stronger
divergences, like 1/t2. However, since our integral is only
logarithmically diverging, we can take an easier path, by
using a small-time cutoff τ :∫ ∞

0

e−(s+k2)t

t
dt (47)

→
∫ ∞
τ

e−(s+k2)t

t
dt = − ln([s+ k2]τ)− γE +O(τ) .

We note that the regularization by discretization gives
the same result apart from the term −γE. We will check
later that it only contributes to the normalization, which
will drop from the final result.

Collecting the results of Eqs. (45) and (46) in Eq. (42),
and doing the remaining space-derivatives we find

Z̃B+ (x0, x, s) =
2
x0

∞∫
−∞

dk
2π
k2
[
ln(τ(s+ k2)) + γE

]
×
∫

x1>0

∫
x2>0

[
eik(x1−x2) + eik(x1+x2)

]

×e
−
√
s|x−x2| − e−

√
s(x2+x)

2
√
s

×e
−
√
s|x0−x1| − e−

√
s(x1+x0)

2
√
s

(48)

Performing the space-integrations, we find

Z̃B+ (x0, x, s)

=
4
x0

√
s

∞∫
−∞

dk
2π

[
cos(kx0)− e−

√
sx0

] [
cos(kx)− e−

√
sx
]

×k
2[ln(τ(s+ k2)) + γE]

(s+ k2)2
(49)

Note that this is (rescaling k →
√
sk)

Z̃B+ (x0, x, s) =
4
x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

×
[
cos(kx0

√
s)− e−x0

√
s
]

×
k2
[
ln
(
τs(1 + k2)

)
+ γE

]
√
s(1 + k2)2

(50)

The next step is to invert this Laplace transform which
is performed in Appendix B 3.

D. Step 4: The Probability P+(x, t)

The final result for Z(1)
+ (x, t) is given in Eqs. (B60) and

(B65) of Appendix B 4, expressed in terms of the scaling

variable z = x/
√

2t. Note that setting φ0 = 1− 4ε, i. e.
a1 = −4, the term Z

(1)
+ (x, t) does not depend on x0:

Z
(1)
+ (z, t)

Z
(0)
+ (z, t)

= (z2 − 2)
[
ln(2z2t) + γE

]
− 2 + I(z) + c(t)

c(t) = ln(t)− 2γE + 2 (51)

where I(z) is defined in Eq. (B53). The first line is ar-
ranged as to not contribute to the normalization, whereas
c(t) is independent of z and will not appear in the final
conditional probability. γE is Euler’s constant. The prob-
ability distribution, P+(x, t), to find a non-yet-absorbed
particle in the interval (x, x + dx) can be computed fol-
lowing the lines of Eq. (24) to order ε as

P+(x, t) =
Z

(0)
+ (x, t) + εZ

(1)
+ (x, t)

∞∫
0

dx
(
Z

(0)
+ (x, t) + εZ

(1)
+ (x, t))

)

=
Z

(0)
+ (x, t)

∞∫
0

dxZ(0)
+ (x, t)

1 + ε

Z(1)
+ (x, t)

Z
(0)
+ (x, t)

−

∞∫
0

dxZ(1)
+ (x, t)

∞∫
0

dxZ(0)
+ (x, t)




(52)

Note that the term proportional to c(t) cancels in nor-
malized objects such as P+(x, t). Therefore, we obtain

P+(x, t) dx = R
(0)
+ (z)dz (53)

×
{

1 + ε
[
(z2 − 2)

(
γE + ln(2z2t)

)
− 2 + I(z)

]}
where R

(0)
+ (z) = z exp(−z2/2), and I(z) is given in

Eq. (B53). The result in Eq. (53) still involves both z
and t. The reason is that for H 6= 1/2 the natural scal-
ing variable is y = x/(

√
2t1/2+ε) instead of z = x/

√
2t,

as can be seen from Eq. (2). To rewrite Eq. (53) in terms
of y = ztε, we note that

R
(0)
+ (z)dz = R

(0)
+ (ytε)tεdy

= R
(0)
+ (y)

{
1 + ε

[
y∂yR

(0)
+ (y)

R
(0)
+ (y)

+ 1

]
ln t

}
= R

(0)
+ (y)

{
1− ε

[
y2 − 2

]
ln t
}
. (54)

This gives for Eq. (53) up to terms of order ε2

P+(x, t) dx = R
(0)
+ (y)dy (55)

×
{

1 + ε
[
(y2 − 2)

(
γE + ln(2y2)

)
− 2 + I(y)

]}
This is the final result announced in equation (9), with
I(y) calculeted in (B53) and below.

V. COMPARISON TO NUMERICS

In this Section, we compare our analytical results with
numerical simulations. More specifically, we consider the
super-diffusive process with H = 2

3 .
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FIG. 5: (Color online) R+(y). Analytical result for Brown-

ian motion R
(0)
+ (y) = ye−y

2/2(solid blue line), and simulation

data for L = 20000, and H = 1
2

(red dots), as well as for

the fBm with H = 2
3

(black diamonds). Histograms are per-

formed over 4× 105 paths.

A. Methodology of simulations

We aim to sample a fBm processes x(t) at discrete
times t1 = 1, t2 = 2, . . . , tL = L. The covariance matrix
of {x1, . . . , xi, . . . , xL} coincides with the autocorrelation
function of the original fBm process in Eq. (6), setting
D = 1,

Ci,j = 〈xixj〉 = i2H + j2H − |i− j|2H . (56)

The L × L covariance matrix C is symmetric and has
positive eigenvalues; it is thus possible to find a matrix
A, positive and symmetric, such that C = A2. Matrix A
is called the square root of C.

One can simulate paths of a fBm using the stan-
dard procedure for Gaussian correlated processes: (i)
Determine A, the square root of C. (ii) Each path
~x = {x1, . . . , xi, . . . , xL} is given by the matrix multi-
plication ~x = A~η. The vector ~η = {η1, η2, . . . , ηL} is
a set of L independent Gaussian numbers with unitary
variance and zero mean. It is easy to check that these
paths are characterized by the correct covariance matrix
(56).

Unfortunately this procedure is time consuming, as for
step (i) it requires the full diagonalization of C. Better
results are obtained by making use of the stationarity of
the increments ξi = xi − xi−1 (we set x1 = ξ1). Using
Eq. (56) we can compute C̃, the covariance matrix of the
increments,

C̃i,i+k := 〈ξiξi+k〉 = |k−1|2H +(k+1)2H −2 k2H , (57)

where k = 0, . . . , L− i, and C̃i+k,i = C̃i,i+k. The matrix
C̃ is symmetric and positive definite like the matrix C,
but it also is a Toeplitz matrix. For Toeplitz matrices
efficient numerical methods allow to avoid the full diag-
onalization of C̃. In particular, the Levinson algorithm
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FIG. 6: (Color online) R+(y). Analytical result for Brown-

ian motion R
(0)
+ (y) = ye−y

2/2(solid blue line), and simulation

data for L = 20000, and H = 1
2

(red dots), as well as for

the fBm with H = 2
3

(black diamonds). Histograms are per-

formed over 4× 105 paths.

(for a practical implementation of Levinson’s algorithm
see [39] and [40]) is suitable for first passage problems, as
it recursively generates the increment ξi+1 given ξ1, ..., ξi.
The points of the fBm path are given by xi =

∑i
j=1 ξj .

In our simulation we are interested only in positive paths
(xi > 0 for all i). The Levinson method allows to discard
negative paths whenever a xi < 0 is generated, without
building the full path.

B. Simulation results

For each positive path we record the final position xL.
The histogram of the rescaled variable y := xL/(2LH) is
the scaling function R+(y). The results for H = 2/3 and
the Markovian case H = 1/2 are presented on Figs. 5 and
6. For small y the scaling function, R+(y) behaves as a
power-law, with an exponent φ. For H = 1/2 we expect
φ = 1, for H = 2/3 we expect φ = 1/2. Inspired by
our perturbative calculation we predict that for y →∞,
R+(y) behaves like ∼ yγe−y2/2. In order to facilitate the
comparison, we define the scaling function

r+(y) := e
y2

2 R+(y) . (58)

The numerical data for the scaling funtion r+(y) defined
in Eq. (58) are shown on Fig. 7 for H = 2/3. They
clearly show two distinctive power-law behaviors: For
small y this power law is ∼ yφ with φ = 1

2 , predicted
by the scaling relation φ = 1−H

H . For large y a larger
exponent γ = 0.7 ± 0.03 is measured. This is consistent
with the perturbative calculation, which suggests γ > φ
for H > 1/2 and γ < φ for H < 1/2.

A more accurate comparison between the numerical
data and the perturbation theory is possible. Our per-
turbative result given in Eq. (9) is equivalent to r+(y) =
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FIG. 7: (Color online) The numerically determined function
r+(y), defined in Eq. (58) for the fBm with H = 2

3
(black

diamonds), using L = 20000 and 4× 105 paths. The asymp-
totic small-y behavior is consistent with φ = 1−H

H
= 1

2
. The

large-y asymptotics (including the amplitude) was taken from
(59), with slope γ ≈ 1− 2ε = 2

3
.

y
[
1 + εW (y) +O(ε2)

]
. In order to compare to numerics,

we use

rε+(y) = y eεW (y) +O(ε2) . (59)

While the two expressions are equivalent to order ε, the
latter (59) has the merit to resum the logarithms for small
and large y into the power-law behavior

rε+(y) ∼
{
yφε for y → 0
yγε for y →∞ , (60)

where the exponents are the order-ε results

φε = 1− 4ε , γε = 1− 2ε . (61)

For H = 2/3, i.e. ε = 1/6, we predict a scaling ∼ yγε ,
γε = 2

3 , using (61). Note that the curve drawn is exatly
the asymptotic behavior of our analytical result (59), us-
ing (10), thus also the amplitude and not only the ex-
ponent are estimated. This can more clearly be seen on
Fig. 8, where the solid (blue) line represents the theoreti-
cal order-ε prediction, and the dashed line the asymptotic
behaviors given in Eq. (60).

Conversely, relation (59) can be used to extract W (y)
from r+(y),

W (y) ≈ 1
ε

ln
(
r+(y)
y

)
. (62)

This relation should work the better, the smaller ε is.
Using our numerical results for H = 2

3 , we obtain the
curve presented on Fig. 9. The agreement is quite good
for 1 ≤ y ≤ 2.5. It breaks down for larger y due to
numerial problems. For y < 1, the deviations can be
attributed to the large value of ε.
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FIG. 8: (Color online) Blue solid line: The function rε+(y),
defined in Eq. (59) for H = 2

3
, i.e. ε = 1

6
. The dashed lines

are the predicted asymptotic behaviors, ∼ yφ (for small y)
and ∼ yγ (for large y). Superimposed are the simulation data
shown on Fig. 7. Note that there is no fitting parameter. The
deviation at small y is due to the fact that ε is rather large,
so the order-ε slope φ ≈ 1− 4ε = 1

3
is smaller than the exact

result φ = 1−H
H
≡ 1/2−ε

1/2+ε
, which evaluates to 1

2
. For large y,

but smaller than 3, the effective cutoff of the simulation, both
amplitude and slope are correctly predicted.
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FIG. 9: (Color online) Blue solid line: The function W (y),
defined in Eq. (10). Black diamonds: Estimation of W (y)
from the numerical data for H = 2

3
, using relation (62). The

agreement is quite good for 1 ≤ y ≤ 3. It breaks down for
y > 3 due to numerial problems. For y < 1, the deviations
can be attributed to the large value of ε.

VI. CONCLUSIONS

In this article, we develop a systematic scheme to cal-
culate the corrections to the universal scaling function
R+(y) for fractional Brownian motion, in an ε = H − 1

2
expansion. We compute the full scaling function R+(y)
to first order in ε. In particular we find that R+(y)
behaves as R+(y) ∼ yφ as y → 0 (near the absorbing
boundary), while R+(y) ∼ yγ exp(−y2/2) as y → ∞
(far from the boundary), with, at the first order in ε,
φ = 1 − 4ε + O(ε2) and γ = 1 − 2ε + O(ε2). For
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small ε our results confirm the scaling relation found in
Ref. [29]: R+(y) ∼ yφ with φ = θ/H. For fractional
Brownian motion it is known that θ = 1 − H, so that
φ = (1−H)/H ≈ 1−4ε+ . . .. Far from the boundary, i.e.
for large y, the leading behavior R+(y) ∼ exp(−y2/2) re-
covers the Gaussian propagator (4) in absence of bound-
aries; our approach shows that R+(y) has a subleading
power law prefactor yγ , where γ is a new (independent)
exponent.

Our numerical simulations show that the predictions of
the asymptotic behavior of R+(y) hold at H = 2/3. In
particular the two exponents γ and φ have been measured
and shown in Fig. 7.

Let us stress that few results are known about non-
Markovian processes in presence of boundaries. Pertur-
bation theory developed in this paper can provide sub-
stantial new insight here. The method is versatile and
can in principle be extended to the calculation of other
quantities such as the propagator for a process confined
to a finite interval with absorbing boundaries, or alter-
natively with other, e.g. reflecting boundary conditions.
Particularly interesting for applications would be the hit-
ting probability Q(x, L), the probability that a generic
stochastic process starting at x and evolving in a box
[0, L] hits the upper boundary at L before hitting the
lower boundary at 0 [41]. In the context of polymer
translocation, the hitting probability is the probability
that a finite polymer chain will ultimately succeed in
translocating through a pore.

In the more general framework of anomalous diffusion,
the presence of boundaries has been especially studied
for non-Gaussian processes. For instance, Lévy flights
are Markovian superdiffusive processes whose increments
obey a Lévy stable (symmetric) law of index 0 ≤ µ ≤ 2.
The Hurst exponent is H = 1/µ [42]. By virtue of the
Sparre Andersen theorem [43], the persistence exponent
is θ = 1/2, independent of µ. The Laplace Transform of
the scaling function R+(y) has been computed in [44] for
a generic value of µ. A scaling analysis of this Laplace
Transform shows that R+(y) behaves as R+(y) ∼ y1/(2µ)

as y → 0 (this in in agreement with the scaling relation
φ = θ/H), while far from the boundary the Lévy-stable
behavior is recovered.

An increasing interest is devoted to Gaussian processes
with self-affine anomalous displacements 〈x2(t)〉 ∼ t2H

with 0 < H < 1 [16, 45–47, 49]. Our current results
apply only to fractional Brownian motion, i.e. self-affine
Gaussian processes defined by the autocorrelation func-
tion (6). In particular for fBm it is known that (i) the
process has stationary increments, (ii) θ = 1−H, and (iii)
φ = θ/H. For all other Gaussian processes with Hurst
exponent H, (i) the increments are non-stationary, (ii)
θ 6= 1 − H and we particularly emphasize that, (iii) no
scaling relation is known between φ and θ (unlike in fBm
where φ = θ/H). Among such processes it is possible to
show that the one, defined by the autocorrelation func-
tion

〈x(t1)x(t2)〉 ∼ (t1 + t2)2H − |t1 − t2|2H (63)

describes the subdiffusive behavoir of a tagged monomer
in an elastic interface which initially was flat [16]. For
this process the persistence exponent is known only to
first order in ε [16], whereas neither the exponents φ,
nor γ are known analytically. It would be interesting to
determine the full scaling function R+(y) for this process
within our perturbative framework.
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Appendix A: The action

The aim of this Appendix is to determine the ac-
tion S(1)[x], the first correction to the Brownian action,
S(0)[x], in the expansion of S[x] in Eq. (29). As a first
step we expand the autocorrelation function (6) around
H = 1/2, setting D = 1,

〈x(t1)x(t2)〉 = G−1(t1, t2) (A1)

= [G(0)]−1(t1, t2) + εK(t1, t2) +O(ε2).

The first term is the autocorrelation function for H =
1/2,

[G(0)]−1(t1, t2) = 2 min(t1, t2), (A2)

the second term gives the correction at first order in ε,

K(t1, t2) = 2
[
t1 ln(t1) + t2 ln(t2)− |t1 − t2| ln |t1 − t2|

]
.

(A3)
Inverting Eq. (A1) and expanding up to order ε one gets

G = G(0) + εG(1) +O(ε2) (A4)

G(1) = −G(0)KG(0) , (A5)

where G(0)(t1, t2) is defined as∫ ∞
0

dt′G(0)(t1, t′)[G(0)]−1(t′, t2) = δ(t1 − t2). (A6)

One can check that the kernel of the Brownian action,
S(0)[x], i. e.,

G(0)(t1, t2) = −1
2
δ′′(t1 − t2), (A7)

satisfies Eq. (A6), namely,

− 1
2

∫ ∞
0

dt′ δ′′(t1 − t′)[G(0)]−1(t′, t2)

= −
∫ ∞

0

dt′ δ′′(t1 − t′)min(t′, t2)

= −∂2
t1 min(t1, t2) = δ(t1 − t2) . (A8)
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It remains to compute the term G(1). Integrating by
parts one has

G(1)(t1, t2)

= −1
4

∫ t

0

∫ t

0

dt′ dt′′ δ′(t1 − t′)δ′(t2 − t′′)∂t′∂t′′K(t′, t′′)

=
1
2

∫ t

0

∫ t

0

dt′ dt′′ δ′(t1 − t′)δ′(t2 − t′′)

× ∂t′∂t′′ (|t′ − t′′| ln |t′ − t′′|) , (A9)

using that the first two terms in (A3) do not contribute
since they only depend on one of the times. The deriva-
tive is

∂t′∂t′′ (|t′ − t′′| ln |t′ − t′′|)

= − 1
|t′ − t′′|

− 2δ(t′ − t′′)
(
1 + ln |t′ − t′′|

)
. (A10)

The second term is not well-defined. We decide to in-
troduce a regularization for coinciding times t = t′ →
ln |t− t′| = ln τ where τ > 0 should be thought of as the
time-discretization of the path-integral. Let us first give
the final result, before commenting on this approxima-
tion:

G(1)(t1, t2)

= −1
2

∫ t

0

∫ t

0

dt′ dt′′ δ′(t1 − t′)
1

|t′ − t′′|
δ′(t2 − t′′)

−2(1 + ln τ)[G(0)]. (A11)

This yields for the action

S(1)[x] =
∫ t

0

dt1

∫ t

0

dt2
1
2
x(t1)G(1)(t1, t2)x(t2)

= −1
4

∫ t

0

dt1

∫ t

0

dt2
∂t1x(t1)∂t2x(t2)
|t1 − t2|

−2S(0)[x](1 + ln τ). (A12)

We see that the only possibly ambiguous term, the term
of order ln τ , is proportional to the zeroth-order action
S(0)[x], thus equivalent to a change in the diffusion con-
stant D. Thus its effect is easy to check in the final result,
when looking at observables in a domain unaffected by
the boundary.

Appendix B: Evaluation of Z
(1)
+ (x, t)

1. Evaluation of ZA+(x, t)

This term is easily evaluated. Indeed, Eq. (36) can be
recast in the following form

ZA+(x, t)
= −2(1 + ln τ)

× lim
x0→0

1
x0

∂

∂a

∣∣∣∣
a=1

∫ x(t)=x

x(0)=x0

D[x]e−aS
(0)[x] Θ[x]

= −2(1 + ln τ)

× lim
x0→0

1
x0

∂

∂a

∣∣∣∣
a=1

√
a

4πt

[
e−

a
4t (x−x0)

2
− e− a

4t (x+x0)
2
]

= (1 + ln τ)
x√
4πt3

e−
x2
4t

(
x2

2t
− 3
)
. (B1)

In going from the first to the second line we have used
the expression of the propagator in the Brownian case in
Eq. (20), introducing the factor of a from the observation
that the latter appears together with x2, and readjusting
the normalization.

In terms of the variable z = x/
√

2t this gives

ZA+(z, t) = Z
(0)
+ (z, t)A(z) (B2)

where Z(0)
+ (z, t) = ze−z

2/2/(
√

2πt) is defined in (23) and

A(z) = (1 + ln τ)
(
z2 − 3

)
. (B3)

2. Z̃B+ (x0, x, s): The integration over k

We split Z̃B+ (x0, x, s) into two parts

Z̃B+ (x0, x, s) = Ĩ1(x0, x, s) + Ĩ2(x0, x, s) (B4)

Ĩ1(x0, x, s) =
4
x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

×
[
cos(kx0

√
s)− e−x0

√
s
]

×k
2 ln(1 + k2)√
s(1 + k2)2

(B5)

Ĩ2(x0, x, s) =
4
x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

×
[
cos(kx0

√
s)− e−x0

√
s
]

×k
2 [ln(τs) + γE]√
s(1 + k2)2

(B6)

a. Ĩ1(x0, x, s)

The expansion of this term for small x0 must be done
with care; when x0 acts as a regulator, one cannot simply
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expand in it. We claim, and show below that

Ĩ1(x0, x, s) = ĨA1 (x0, x, s) + ĨB1 (x, s) +O(x0) (B7)

with

ĨA1 (x0, x, s) = −4e−x
√
s

x0
√
s

∞∫
−∞

dk
2π
[
cos(kx0

√
s)− 1

]
×k

2 ln(1 + k2)
(1 + k2)2

(B8)

ĨB1 (x, s) = 4

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

×k
2 ln(1 + k2)
(1 + k2)2

(B9)

In order to prove this, we group the four terms in (B5)
into two times two terms; the first combination is

−4e−x0
√
s

x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
] k2 ln(1 + k2)

(1 + k2)2

=
[
− 4
x0

+ 4
√
s+O(x0)

]

×
∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
] k2 ln(1 + k2)

(1 + k2)2

= Ĩdiv
1 (x0, x, s) + ĨB1 (x, s) +O(x0) (B10)

where the divergent contribution is

Ĩdiv
1 (x0, x, s) = − 4

x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

×k
2 ln(1 + k2)
(1 + k2)2

. (B11)

This expansion in x0 is justified since e−x0
√
s

x0
stands out-

side the integrand, thus does not act as a regulator.
The second contribution to (B5) is

4
x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s
]

cos(kx0

√
s)
k2 ln(1 + k2)

(1 + k2)2

=
2
x0

∞∫
−∞

dk
2π

[
cos(k(x+ x0)

√
s) + cos(k(x− x0)

√
s)

−2e−x
√
s cos(kx0

√
s)
]k2 ln(1 + k2)

(1 + k2)2
(B12)

Since x � x0, we can Taylor-expand cos(k(x + x0)
√
s)

and cos(k(x− x0)
√
s), leading to

4
x0

∞∫
−∞

dk
2π

[
cos(kx

√
s)− e−x

√
s cos(kx0

√
s)
]

×k
2 ln(1 + k2)
(1 + k2)2

+O(x0)

= −Ĩdiv
1 (x0, x, s) + ĨA1 (x0, x, s) +O(x0) (B13)

The contributions proportional to Ĩdiv
1 cancel between

(B10) and (B13), and we arrive at the decomposition
(B7).

We now treat the two contributions to (B7). The first
contribution ĨA1 (x0, x, s) can be evaluated analytically.
After integration over k we find a Bessel function, which
can be expanded in x0 as

ĨA1 (x0, x, s) = (B14)

= −4e−
√
sx

[
ln(x0) +

1
2

ln(s) + γE − 1
]

+O(x0)

The second contribution ĨB1 (x, s) can be evaluated us-
ing the relation

k2

(1 + k2)2
ln(1 + k2) =

[
d

du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

]
1

(1 + k2)u+1
.

(B15)
We rewrite ĨA1 (x, s) as

ĨB1 (x, s) = 4
[

d
du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] ∞∫
−∞

dk
2π

eikx
√
s − e−x

√
s

(1 + k2)u+1
.

(B16)
It can be split into two parts,

ĨB1 (x, s) = Ĩ1a(x, s) + Ĩ1b(x, s) (B17)

Ĩ1a(x, s)

= −4 e−x
√
s

[
d

du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] ∞∫
−∞

dk
2π

1
(1 + k2)u+1

= − [1 + ln(4)] e−x
√
s (B18)

Ĩ1b(x, s)

=
[

d
du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

]
4

∞∫
−∞

dk
2π
eikx

√
s(1 + k2)−(u+1)

(B19)

To do the k-integral in Ĩ1b(x, s), it is useful to introduce
the integral representation

(1 + k2)−(u+1) =
1

Γ(1 + u)

∫ ∞
0

dz zue−(1+k2)z. (B20)

This gives

Ĩ1b(x, s) = 4
[

d
du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] [
1

Γ(1 + u)

×
∫ ∞
−∞

dk
2π
eikx

√
s

∫ ∞
0

dz zue−(1+k2)z

]
, (B21)
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and performing the Gaussian integral over k yields

Ĩ1b(x, s) = 4
[

d
du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] [
1

Γ(1 + u)

×
∫ ∞

0

dz
2
√
π
zu−1/2e−

sx2
4z −z

]
. (B22)

b. Ĩ2(x0, x, s)

Ĩ2(x0, x, s) can be calculated using residue calculus.
We use x0 < x to expand the expression, choosing every
pole in the half-plane in which the corresponding expo-
nential factor converges. The result is

Ĩ2(x0, x, s) =
γE + ln(τs)

2
√
sx0

[ √
s(x0 + x)− 1
e
√
s(x+x0)

−
√
s(x− x0)− 1
e
√
s(x−x0)

]
(B23)

Expanding for small x0 yields

Ĩ2(x0, x, s) = e−
√
sx
(
2−
√
sx
)

[ln(τs) + γE] +O (x0)
(B24)

c. Summary of all terms contributing to Z̃B+ (x0, x, s)

It is useful to re-organize

Z̃B+ (x0, x, s) = ĨA1 (x0, x, s) + Ĩ1a(x, s) + Ĩ1b(x, s)

+Ĩ2(x, s) +O(x0) (B25)

as the sum of three contributions:

Z̃B+ (x0, x, s) = J̃0(x0, x, s) + J̃1(x, s) + J̃2(x, s) +O(x0) .
(B26)

The first term depends on x0,

J̃0(x0, x, s) = e−x
√
s [3− 2γE + 2 ln(τ/2)− 4 ln(x0)] ,

(B27)
while the other two terms are

J̃1(x, s) = 4
[

d
du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] [
1

Γ(1 + u)

×
∫ ∞

0

dz
2
√
π
zu−1/2e−

sx2
4z −z

]
(B28)

J̃2(x, s) = −x
√
se−x

√
s [γE + ln(τs)] (B29)

3. ZB+ (x, t): The inverse Laplace transform of

Z̃B+ (x, s)

The inversion of J̃0(x0, x, s) is done by observing that

Z̃
(0)
+ (x, s) = lim

x0→0

1
x0
Z+(x0, x, s) = e−

√
sx . (B30)

This yields

J0(x0, x, t) = Z
(0)
+ (x, t)B0(x0) , (B31)

where Z(0)
+ (x, t) = x

2
√
πt3/2

e−
x2
4t , and

B0(x0) = 3− 2γE + 2 ln(τ/2)− 4 lnx0 . (B32)

The inverse Laplace transform of the second term can
be done directly,

J1(x, t) := L−1
s

[
J̃1(x, s)

]
= 2

[
d

du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] [
1

Γ(1 + u)

×
∫ ∞

0

dz√
π
zu−1/2e−zδ

(
x2

4z
− t
)]

.(B33)

We observe that δ
(
x2

4z − t
)

= δ
(
x2

4t − z
)
z/t and obtain

J1(x, t) =
2√
πt
e−

x2
4t

[
d

du

∣∣∣∣
u=1

− d
du

∣∣∣∣
u=0

] (x2

4t

)u+1/2

Γ(1 + u)
.

(B34)
Finally

J1(x, t) =
1√
2πt

x√
2t
e−

x2
4t

×
[
x2

2t

(
γE − 1− ln 2 + ln

(
x2

2t

))
−2
(
γE + ln

(
x2

2t

)
− ln 2

)]
. (B35)

Introducing the variable z = x/
√

2t we have:

J1(z, t) =
z√
2πt

e−z
2/2B1(z) = Z

(0)
+ (z, t)B1(z) , (B36)

where Z(0)
+ (z, t) = z exp(−z2/2)/

√
2πt, see Eq. (23), and

B1(z) = (z2 − 2)(γE − 1 + 2 ln z − ln 2)− 2 . (B37)

This completes the Laplace inversion of J̃1(x, s).

a. J̃2(x, s)

The Laplace inversion of the second term J̃2(x, s) is
more complicated, and we split it as

J̃2(x, s) = −
[

ln(τs) + γE

]
x
√
se−x

√
s

= x(ln τ + γE)
d

dx
e−x
√
s + x

d
dx

(
ln s e−x

√
s
)

= J̃2a(x, s) + J̃2b(x, s). (B38)

It is easy to perform the Laplace inversion of the first
term:

J2a(x, t) = (ln τ + γE)
x√
4πt3

d
dx
xe−

x2
4t

= (ln τ + γE)
x√
4πt3

e−
x2
4t

(
1− x2

2t

)
. (B39)
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The inverse Laplace transform of the second term can be
written as

J2b(x, t) = x
d

dx
f(x, t) , (B40)

where∫ ∞
0

e−stf(x, t)dt = e−x
√
s ln s = g̃1(s)g̃2(s) (B41)

g̃1(s) =
√
se−x

√
s (B42)

g̃2(s) =
ln s√
s
. (B43)

The idea is to inverse-Laplace transform g̃1(s) and g̃2(s),
and then to calculate f(x, t) as convolution of g1(t) and
g2(t), using (41). These inverses are

g1(t) =
1

2
√
πt3

(
x2

2t
− 1
)
e−

x2
4t (B44)

g2(x, t) = − ln(4t) + γE√
πt

(B45)

The convolution is

f(x, t) =
∫ t

0

g1(t′)g2(t− t′)dt′ (B46)

= −
∫ t

0

dt′

2πt′3/2

(
x2

2t′
− 1
)
e−

x2

4t′
ln(4[t− t′]) + γE√

t− t′
.

Using (B40) we have

J2b(x, t) =
x2

4π

∫ t

0

dt′

t′5/2

[
x2

2t′
− 3
]
e−

x2

4t′
ln(4[t− t′]) + γE√

t− t′
(B47)

Making a change of variables t′ = ut, and using z =
x/
√

2t, this gives

J2b(z, t) =
z2

2πt

∫ 1

0

du
u5/2
√

1− u

[
z2

u
− 3
]

×e− z
2

2u [ln(4t) + γE + ln(1− u)] (B48)

The integral contains two pieces, which we note

J2b(z, t) =
(ln(4t) + γE)F2(z) + F3(z)

t
. (B49)

The first piece is

F2(z) :=
z2

2π

∫ 1

0

du
u5/2
√

1− u

(
z2

u
− 3
)
e−

z2
2u

= e−
z2
2

z√
2π

(z2 − 1). (B50)

The second integral

F3(z) :=
z2

2π

∫ 1

0

du
u5/2
√

1− u
ln(1− u)

(
z2

u
− 3
)
e−

z2
2u

(B51)

is more difficult, but can be performed using Mathemat-
ica. A convenient substitution α = z2(1/u− 1) allows to
write

F3(z) = e−
z2
2

z√
2π
I(z) , (B52)

where

I(z) =
1√

2πz2

∫ ∞
0

dα√
α

ln
( α

z2+α

)
(z2+α)(z2+α−3)e−

α
2

=
z4

6 2F2

(
1, 1;

5
2
, 3;

z2

2

)
+ π(1− z2)erfi(z/

√
2)

−3z2 +
√

2πe
z2
2 z + 2 . (B53)

erfi is the imaginary error-function,

erfi(x) :=
2√
π

∫ x

0

dz ez
2
. (B54)

The hypergeometric function 2F2

(
1, 1; 5

2 , 3; z2/2
)

can be
defined by its series expansion

2F2

(
1, 1;

5
2
, 3;

z2

2

)
= 24

∞∑
n=0

n!(2z2)n

(2n+ 4)!
. (B55)

The error-function and the exponential function can be
combined in another converging series,

e
z2
2 z −

√
π

2
(
z2 − 1

)
erfi
( z√

2

)
= −

∞∑
n=0

21−nz2n+1

(2n− 1)(2n+ 1)n!
(B56)

While problems of numerical precision appear for y > 7,
we can use the asymptotic expansion

I(z) = 1−γE−ln(2z2)+
1

2z2
− 1

2z4
+

5
4z6

+O(z−8) (B57)

At z = 7, the relative numerical agreement of (B57) and
(B53) is about 10−6.

Note that
∫∞
0

dz ze−z
2/2I(z) = 0, thus I(z) does not

contribute to the normalization.

b. J2(x, t) = J2a(x, t) + J2b(x, t)

The sum J2(x, t) = J2a(x, t) + J2b(x, t) can be ex-
pressed using the variable z = x/

√
2t as

J2(z, t) = Z
(0)
+ (z, t)B2(z, t) (B58)

where Z(0)
+ (z, t) = ze−z

2/2/(
√

2π t) and

B2(z) =
(
z2 − 1

)
ln(4t/τ) + I(z). (B59)
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4. Summary of all terms

In summary,

Z
(1)
+ (z, t) = Z

(0)
+ (z, t)

[
A(z) +B0(x0) +B1(z) +B2(z)

−a1 lnx0

]
(B60)

where Z(0)
+ (z, t) = ze−z

2/2/(
√

2πt) is defined in Eq. (23).
The terms in question are given in Eqs. (B3), (B32),
(B37) and (B59), and repeated here:

A(z) = (1 + ln τ)
(
z2 − 3

)
(B61)

B0(x0) = 3− 2γE + 2 ln(τ/2)− 4 lnx0 (B62)
B1(z) = (z2 − 2)(γE − 1 + 2 ln z − ln 2)− 2 (B63)
B2(z) =

(
z2 − 1

)
ln(4t/τ) + I(z). (B64)

Their sum is

A(z) +B0 +B1(z) +B2(z)− a1 lnx0

=
{

(z2 − 2)
[
ln(2z2t) + γE

]
− 2
}

+ I(z)
−(4 + a1) lnx0 + c(t)

c(t) = ln(t) + 2− 2γE . (B65)

The result is arranged such that the term in the curly
brackets, when multiplied by Z

(0)
+ (z, t), integrates to

zero, as does Z(0)
+ (z, t) I(z). The propagator Z(1)

+ (z, t)
becomes independent of x0 if a1 = −4, equivalent to
φ0 = 1− 4ε+O(ε2). As expected, φ0 = φ, see Eq. (15).

Since c(t) only contributes to the (time-dependent)
normalization, it does not enter the scaling function
R+(y).

On the other hand, the only contribution to the nor-
malization of the propagator Z+(x, t) comes from c(t).
Since Z(0)

+ (x, t) integrated over x equals 1, we conclude
that the survival-probability is

S(x0, t) = t−
1
2

[
1 + ε

(
2− 2γE + ln t

)]
∼ t−θ , θ =

1
2
− ε+O(ε2) (B66)

in agreement with θ = 1−H. This is a non-trivial check
of our calculations.

Appendix C: Scaling arguments

Consider a process x(t′), starting at x(0) = x0, and
arriving at x at time t, without having crossed zero, i.e.
x(t′) > 0 for all t′ < t. Denote Z+(x0, x, t) its arrival
probability density at x. Further denote

S(x0, t) :=
∫ ∞

0

dxZ+(x0, x, t) (C1)

the survival probability or the persistence up to time t.
At late times and fixed x0, for many processes, this sur-
vival probability decays algebraically

S(x0, t) ∼ t−θ , (C2)

where θ is the persistence exponent [3]. Let us now as-
sume that the process x(t) is self-affine. This simply
means that the process is characterized by a single grow-
ing length scale x ∼ tH where H is the Hurst exponent
of the process. For example, ordinary Brownian motion
is a self-affne process with H = 1/2. Since the only
length scale is x ∼ tH , the survival probability S(x0, t)
is a function of only the scaled variable y0 = x0/t

H , i.e,
S(x0, t) = G

(
x0
tH

)
. In order that S(x0, t) ∼ t−θ for large

t and fixed x0, the scaling function G(y), for small y,
must behave as

G(y0) ∼ yφ0 , where φ =
θ

H
. (C3)

We next define px0(x, t) as the conditional probability
density of finding the walker, given that it has not been
absorbed at any previous time:

px0(x, t) =
Z+(x0, x, t)∫∞

0
dxZ+(x0, x, t)

=
Z+(x0, x, t)
S(x0, t)

. (C4)

Note that following Eq. (22), the probability distribution
of a non-adsorbed particle is for x0 → 0

P+(x, t) = p0(x, t) = lim
x0→0

Z+(x0, x, t)∫∞
0

dxZ+(x0, x, t)
. (C5)

We anticipate the following scaling form for Z+(x0, x, t)

Z+(x0, x, t) =
1
tH
F
(x0

tH
,
x

tH

)
. (C6)

In terms of the scale variables y = x/tH and y0 = x0/t
H

we get from (C4) and (C6)

F (y, y0) = G(y0)py0(y) (C7)

where py0(y) is the conditional probability density (C4)
expressed in terms of the rescaled variables. In the long-
time limit, y0 → 0 and F (y, y0) can be factorized as

F (y, y0) ∼ yθ/H0 p0(y) = y
θ/H
0 R+(y). (C8)

Let us now consider the limit y → 0 and suppose that
p0(y) = R+(y) ∼ yφ. The process is time-reversible in-
variant, since its increments are stationary, i.e., a path
from x0 to x forward in time plays the same role as a
path from x to x0 backward in time. As a consequence,
F (y, y0) is a symmetric function, F (y, y0) = F (y0, y).
Factorization of probabilities for x and x0 to zero and
symmetry thus implies F (y, y0) ∼ (y0y)θ/H and it fol-
lows the proposed scaling relation φ = θ/H.
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