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Abstract

The field theory of self-avoiding tethered membranes still poses major challenges. In this
we report progress on the toy-model of a manifold repelled by a single point. Our approach allo
summation of the perturbation expansion in the strengthg0 of the interactionexactlyin the limit of
internal dimensionD → 2, yielding an analytic solution for the strong-coupling limit. This analy
solution is the starting point for an expansion in 2− D, which aims to interpolate to the well studie
case of polymers (D = 1). We give results to fourth order in 2− D, where the dependence ong0
is again summed exactly. As an application, we discuss plaquette density functions, and pr
Monte Carlo experiment to test our results. These methods shed light on the more complex p
of self-avoiding manifolds.
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1. Introduction

One major problem in statistical physics is the effect of interactions on the the
dynamical properties of extended fluctuating geometric objects. In general, multi-p
attractive or repulsive interactions are involved. One may divide these into two cla
(i) The interaction of a single fluctuating object with itself: a well known example is
excluded volume interaction between any two monomers within a long polymer cha
good solvent, which results in the anomalous scaling of the mean squared end-to-e
tance. (ii) The interaction between different manifolds or between a single manifold
fixed non-fluctuating object. Thermal fluctuations then affect the depinning of the ma
from an attractive substrate as well as the steric repulsions from a wall. Finally, ca
and (ii) can appear together.

Whatever the situation is, it is usually well understood as long as the fluctuating o
are one-dimensional[1–4]. Referring to the example above, the long-distance prope
of self-avoiding polymers can be analyzed with renormalization group techniques[5–7],
either in the continuous Edwards Hamiltonian[8],

(1.1)H[�r] = 1

2

∫
x∈M

(∇�r(x)
)2 + b0

2

∫
x∈M

∫
y∈M

δd
(�r(x) − �r(y)

)
,

or by mapping this model on a localO(N) symmetricϕ4-theory in the limit ofN = 0 com-
ponents[1,3,9]. The critical exponents describing the long-distance properties are re
to the critical exponents of the correspondingN -vector model at the critical point. Wha
makes(1.1)a non-standard theory is that the interaction is non-local, and not a polyn
of the field.

Obtaining the corresponding results for membranes poses considerable challeng
generalization of polymers to 2D-surfaces are crystalline fixed-connectivity membra
they appear, for instance, in the spectrin network of cell membranes. Considering
tom” membranes which can freely fold into themselves, the existence of a bending r
induced phase transition separating a high rigidity, low temperature flat phase from
rigidity, high temperature crumpled phase is well established[10–15]. This in contrast to
polymers, which are always crumpled on large scales. The scaling properties of the
pled phase of phantom membranes are described by the 2D generalization of the fr
part in (1.1). Taking self-avoidance into account, which is modeled in(1.1) through the
short-range two-body interaction, we expect more swollen manifolds than those pre
by the free theory. This is expressed in a non-trivial radius of gyration exponentν:

(1.2)Rg ∼ Lν, 0� ν � 1,

whereL denotes the linear internal size of the membrane, and the radius of gyratiRg

is obtained from the effective extend of the membrane in external space. In the c
polymersRg scales like the end-to-end distance. Much effort has been spent on calcu
corrections to the radius of gyration exponent within an expansion in the deviationε from
the critical space dimension[16,17]. These calculations cannot be performed directly

the membrane-dimensionD = 2, since the naive scaling dimension of the coupling in(1.1)
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(1.3)ε(D,d) := [b0] = 2D − 2− D

2
d,

whered denotes the dimension of the embedding space, such thatε is always non-zero a
D → 2, for any embedding dimensiond . Equivalently, the critical embedding dimensi
defined throughε(D,dc(D)) = 0 becomes infinite in this limit. The reason is that the n
self-avoiding membrane densely fills out the embedding space, such that it always
the interaction. A way to circumvent this problem is to set up the expansion abou
point (D < 2, dc(D)) and to extrapolate along an appropriate path in the(D,d)-plane to
the physically interesting point(D,d) = (2,3) [18–24]. To second order inε the radius of
gyration exponent is then found to beν ≈ 0.86 [16,17]. This is a strong correction wit
respect to the only logarithmic dependence in the non-interacting theory, and indica
existence of a crumpled phase, for whichν � 2/3 follows from the fact that a membran
has a finite volume.

However, there is no evidence for a crumpled phase in experiments[25–28]. Latest
Monte Carlo simulations on plaquette-models[31,32]starting from a discretization of th
2D generalized Hamiltonian(1.1) with system sizes of up to≈ 17000 plaquettes sho
considerable evidence for a vanishing of the crumpling transition as soon as self-avo
is switched on, in contrast to the earlier references[29,30]. Even on large scales fixed
connectivity membranes seem to stay flat with a radius of gyration exponent ofν ≈ 1. It
is however not clear whether any of the existing simulations is large enough to set
problem.

The final goal is to develop techniques, which allow to go beyond the two-loop r
So far, we developed such techniques for a simplified model, which reduces the no
self-avoiding interaction in(1.1)to self-avoidance with only a single point, e.g., the origio

in the membrane:

(1.4)H[�r] = 1

2

∫
x∈M

(∇�r(x)
)2 + g0

∫
x∈M

δd
(�r(x) − �r(o)

)
.

This is a special case of a phantom tethered manifold interacting with a single po
embedding space and which is related to case (ii). The corresponding physical situa
the binding and unbinding of a long chain as, e.g., a polymer or a membrane from
or the wetting of an interface. More precisely, we study the interaction of a single f
fluctuating manifold with another non-fluctuating, fixed object. Depending on whethe
interaction is attractive or repulsive, one may observe two different scenarios: eith
manifold delocalizes from an attractive substrate as in wetting phenomena or it is ste
repelled from a fixed object (a wall). Both cases have in common that excluded vo
effects become important. We already discussed these scenarios in[33].

In [33] we performed a complete resummation of the perturbation series for the eff
coupling in the case of 2D-membranes. The long-distance behavior of the resumm
ory then turned out to be non-trivial in the sense that it emerged from the limiting beh
of a scale invariant theory. As a result of this the effective coupling grows logarithmi

instead of approaching some finite fixed-point value as one would expect. This and the
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extremely slow convergence of the perturbation series makes the analysis of the fu
summed theory indispensable: all finite loop calculations fail to extract the correct
distance properties. The importance of this result becomes evident as soon as on
pares it with extrapolations obtained from theε-expansion at the 2-loop level[33]. The
latter not only required the numerical calculation of diagrams, with considerably ra
effort as the loop order becomes higher, but also turned out to be unable to make r
predictions forD � 2. This problem persisted, though we exploited the freedom to s
the expansion about any point(D < 2, dc(D)), dc(D) = 2D

2−D
being the critical embeddin

dimension for given internal dimensionD and to expand both inD andd along any ap-
propriate extrapolation path to some physically interesting point(D = 2, d). As soon asD
was approaching 2, the result became strongly dependent on the selected expansio

The aim of this paper is two-fold: first, we reconsider the techniques to perform
calculations within a “massive scheme”, that is on a manifold of finite size and with
space dimension 0< D < 2 andd . We show that the perturbation series of the effec
coupling can be completely summed up inD = 2, and analyze the long-distance proper
in this limit. In addition to[33], instead of analytically continuing loop integrals toD = 2
from below we perform calculations directly in 2D, which need an explicit short-dist
(UV)-cutoff. It turns out that results inD = 2 are independent of the procedure, i.e., t
are universal.

Second, we construct a systematic expansion of the effective coupling in pow
2−D. It is based on our techniques to resum the perturbation series at each order in−D.
A first attempt to go beyondD = 2 has already been made in[33]. However, there, the
effect of the boundaries of the finite manifolds was not taken properly into account, a
lem that has now been circumvented by considering closed manifolds. We speciali
toroidal internal topology, which corresponds to imposing periodic boundary condi
Of course, the propagator of the perturbation series needs to be modified, and di
become more difficult to calculate. Slightly belowD = 2 we expect power-law behavio
of the effective coupling. We present a possible ansatz for the exact effective couplin
function of the internal dimensionD � 2, which is consistent with the expansion in 2−D.
However, it remains an open problem to extract more information about the powe
behavior in order to make this expansion unique.

A short account of this work has already appeared in[34].

2. Model and physical observables

2.1. The model

The problem of a membrane avoiding only a single point(1.4) may appear artificial
However, it not only provides a toy-model for the analysis of the full self-avoidance p
lem, but also specializes case (ii). We consider a phantom tethered membrane inte

with someδ-potential located at the origin of the configuration space: the Hamiltonian is
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(2.1)H[�r] = 1

2

∫
x∈M

(∇�r(x)
)2 + g0

∫
x∈M

δd
(�r(x)

)
,

where any point in the membrane is labeled by someD-component vectorx, and its posi-
tion in external space is given by thed-component field�r(x),

(2.2)�r :x ∈ R
D → �r(x) ∈ R

d .

The partition function is defined as

(2.3)Z =
∫

D[�r]exp
(−H[�r]).

To remove the translational 0-mode, we will consider

(2.4)Z� =
∫

D[�r]δ(�r(y)
)
exp

(−H[�r]).
Let us discuss(2.1)in more detail: the first term is the elastic energy of the manifold wh
is entropic in origin. Elasticity and temperature have been scaled to unity. The secon
models the interaction of the manifold with a single point at the origin in thed-dimensional
configurational space. The physical interpretation[33,35] depends on the dimensionalit
in the case thatRd is identical to the embedding space,(2.1)describes a phantom crumple
manifold interacting with a single defect as sketched inFig. 1. However, settingd = 1 (2.1)
may as well describe a solid-on-solid like fluctuating interface parameterized by
displacement field and interacting with a parallel plane (D = 2) as shown inFig. 1.

The coupling constantg0 may either be positive (repulsive interaction) or negative
tractive interaction). We now give the dimensional analysis: in internal space unit
engineering dimensions are

dim[x] = 1, ν := dim[�r] = 2− D

2
,

(2.5)ε := dim

[∫
M

dDx δd
(�r(x)

)]= D − νd.

(a) (b)

Fig. 1. (a) A D-dimensional manifold (D = 2) interacting with a point in the origin of the configuration

spaceRd . (b) A “directed” membrane (interface) interacting with a parallel subspace of same dimensionD.
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The interaction is naively relevant forε > 0, i.e.,d < dc with (seeFig. 2)

(2.6)dc = 2D

2− D
,

irrelevant forε < 0 and marginal forε = 0. It has been shown[35,36] that the model is
renormalizable for 0< D < 2 andε � 0. Results for negativeε are obtained via analytica
continuation. One can define the renormalized couplingg as

(2.7)g := N
VM

[
Z(0) −Z(g0)

]
Lε,

whereVM denotes the internal volume of the manifold. The normalizationN depends on
the definition of the path-integral (but not onL) and is chosen such that

(2.8)g = g0L
ε + O

(
g2

0

)
.

Universal quantities emerge at fixed-points of theβ-function, which is defined as

(2.9)β(g) := −L
∂g

∂L

∣∣∣∣
g0

.

The β-function describes, how the effective couplingg changes under scale transform
tions, while keeping the bare couplingg0 fixed. Let us state the 1-loop result, see, e.g.,[33,
35,36]: it reads

(2.10)β(g) = −εg + 1

2
g2 + O

(
g3),

whereg is the dimensionless renormalized coupling. Apart from the trivial solution,g = 0,
the flow equation given by(2.9) and(2.10)has a non-trivial fixed point at the zero of th
β-function

(2.11)g∗ = 2ε + O
(
ε2).

We will show below that the scaling behavior is encoded in the slope of the RG-funct
the fixed point, which is universal as a consequence of renormalizabilty. The long-di

Fig. 2. Critical line defined throughε = 0 ⇔ dc(D) = 2D
2−D

. The interaction is relevant for points that lie abo

that line.
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(a) (b) (c)

Fig. 3. RG-function and flow for increasing manifold sizeL for the dimensionless renormalized couplingg: (a) in
the caseε > 0; (b) in the caseε < 0; (c) in the caseε = 0.

behavior is then governed by theδ-interaction as considered in our model(2.1), which is
the most relevant operator at large scales. Let us now discuss possible physical sit
(seeFig. 3):

(a) ε > 0: The RG-flow has an infrared stable fixed point atg∗ > 0 and an IR-unstabl
fixed point atg = 0. The latter corresponds to an unbinding transition whose cri
properties are given by the non-interacting system, while the non-trivial IR stable
point determines the long-distance properties of the delocalized state, the long
repulsive force exerted by the fluctuating manifold on the origin—which we rem
may be a point, a line or a plane.

(b) ε < 0: Now, the long-distance behavior is Gaussian, while the unbinding trans
occurs at some finite value of the attractive potential,g∗ < 0, which corresponds t
an infrared unstable fixed point of theβ-function. Belowg∗ the RG-flow is to strong
coupling and the manifold is always attracted.

(c) ε = 0: This is the marginal situation, where the transition takes place atg∗ = 0; we
expect logarithmic corrections to scaling.

We discussed these scenarios and possible observables already in[33]. Here we specialize
to membranes avoiding a single point. It turns out that this situation allows to calc
observables staying non-singular even for 2D membranes and which can be measu
Monte Carlo experiment.

2.2. Plaquettes-density correlation functions

Interesting physical observables for a membrane avoiding a single point ar
plaquettes-density functions at the repelling point. Generally, these are defined as f

(2.12)
〈
n�
〉
� :=

〈
�∏

i=1

∫
xi∈M

δd
(�r(xi)

)〉
�
,

where the expectation value〈·〉� is taken within the pinned ensemble as defined in(2.4).
The quantity, which is accessible to perturbation theory, is the effective coupling as d
in (2.7). It is a generating function for observables like(2.12). Let us first show how to ob

tain the constrained partition function(2.4)from (2.7): since we consider closed manifolds,
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(2.13)Z� ≡ Z�(g0) = − 1

VM
∂

∂g0

∣∣∣∣
L

Z(g0) = 1

N
∂(gL−ε)

∂g0

∣∣∣∣
L

,

whereg is the renormalized or effective coupling defined in(2.7) andVM denotes the
internal volume of the membrane. Introducing the dimensionless bare coupling,

(2.14)z := g0L
ε,

(2.13)can be written in terms of dimensionless quantities as

(2.15)Z�(g0L
ε
)= ∂g

∂z
,

whereN has been set to unity. In the same way, all observables of the type(2.12)can be
easily derived fromg according to:

(2.16)
〈
n�
〉
� = L�ε

∂g/∂z

∂�

∂z�

(
∂g

∂z

)
.

Observables, which are to be measured in a Monte Carlo simulations, should be un
theβ-function written in terms of the bare coupling reads

(2.17)β(z) = −εz
∂g

∂z
.

(Note that in a slight abuse of notation, we writeβ(z) = β(g(z)).) The universal slope a
the fixed point, which is defined as

(2.18)ω := ∂β(g)

∂g

∣∣∣∣
g∗

,

is obtained from

(2.19)ω(z) = −εz

β(z)

∂β(z)

∂z

in the limit z → ∞. We furthermore need the second derivative of the RG-flow func
with respect to the effective coupling, which is defined as

(2.20)ω′ := ∂2β(g)

∂g2

∣∣∣∣
g∗

z→∞= −εz

β(z)

∂ω(z)

∂z
.

Let us now show that the universal slope(2.18) can be obtained from the measurem
of appropriate combinations of observables of type(2.12). For this purpose we need th
plaquettes-density (� = 1) and the density–density function (� = 2), which are obtained
after some straightforward, but tedious algebra from the above definitions:

〈n〉� = 1

g0

(
1+ ω(z)

ε

)
z→∞−→ 1

g0

(
1+ ω

ε

)
,

〈 2〉 1
(

3ω(z) ω2(z) ω′(z)β(z)
)

z→∞ 1
(

3ω ω2)

(2.21)n � =

g2
0

2+
ε

+
ε2

+
ε2

−→
g2

0

2+
ε

+
ε2

.
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These quantities depend on the bare couplingg0, which is not accessible. Instead, consi
the following ratio:

(2.22)
〈n〉�√〈n2〉�

z→∞=
√

1+ ω/ε

2+ ω/ε
,

which obviously is universal.

2.3. Delocalization transition

For completeness let us shortly discuss the physical situation at the UV-stable fixe
in Fig. 3. The fixed point corresponds to adelocalization transitionof the manifold, which
is at vanishing couplingg∗ = 0 for ε > 0 and at some finite attractive couplingg∗ < 0 for
ε < 0.

In the localized phaseg < g∗, correlation functions such as〈[�r(x) − �r(y)]2〉 and the
associated correlation lengthξ‖ (in the D-dimensional internal space) should be fin
as well as the radius of gyrationξ⊥. Approaching the transition these quantities dive
as[37]

(2.23)ξ‖ ∼ (
g∗ − g

)−ν‖ , ξ⊥ ∼ (
g∗ − g

)−ν⊥ .

Sinceξ⊥ ∼ ξν‖ , the exponentsν‖ andν⊥ are related through

(2.24)ν⊥ = ν‖ν,

ν being the dimension of the field(2.5).
Furthermore, they are related to the correction-to-scaling exponentω:

(2.25)ν‖ = − 1

ω(g∗)
, ν⊥ = − ν

ω(g∗)
.

Note thatω(g∗) < 0 at the transition. Specializing to(D,d) = (1,1), we find

(2.26)ν⊥ = 1, ν‖ = 2.

These exponents are also valid for the delocalization transition of a 1-dimension
terface from an attractive hard wall in 2-dimensional bulk space[33,37–39].

3. Complete summation of the perturbation series

3.1. Perturbation theory

In (2.2)we saw that physical observables can be derived from the renormalized co
g (2.7). To obtaing we need the perturbation series of the partition functionZ (2.3):

(3.1)Z =
∞∑ (−g0)

N+1

(N + 1)! ZN,
N=−1



H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530–564 539

ns-
where

(3.2)ZN =
〈

N+1∏
i=1

∫
xi

δ̃d
(
r(xi)

)〉
0

, N � 0,

and the normalization of theδ-distribution has been chosen to be

(3.3)δ̃d
(
r(x)

) := (4π)d/2δ
(
r(x)

)=
∫
k

eikr(x)

with

(3.4)
∫
k

:= π−d/2
∫

ddk.

The advantage of these normalizations is that

(3.5)
∫
k

e−k2 = 1.

Accordingly, the perturbation expansion of the effective coupling(2.7) reads

(3.6)g(z) = g0L
ε

VM

∞∑
N=0

(−g0)
N

(N + 1)!

〈
N+1∏
i=1

∫
xi

δ̃d
(
r(xi)

)〉
0

.

Performing the averages within the Gaussian theory with normalization

(3.7)
1

VM

∫
x

〈
δ̃d
(
r(x)

)〉
0 = 1,

one arrives at

(3.8)

g(z) = g0L
ε

VM

∞∑
N=0

(−g0)
N

(N + 1)!

(
N+1∏
i=1

∫
ki

∫
xi

)
δ̃d

(
N+1∑
i=1

ki

)
exp

{
1

2

N+1∑
i,j=1

kikjC(xi − xj )

}
,

where

(3.9)C(xi − xj ) := 1

2d

〈(
r(xi) − r(xj )

)2〉
0

denotes the correlator, and theδ̃d (
∑

i ki) stems from the integration over the global tra
lation. Shifting

(3.10)kN+1 → kN+1 −
N∑

i=1

ki,
the quadratic form in(3.8) transforms to
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run
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1

2

N+1∑
i,j=1

kikjC(xi − xj )

→
N∑

j=1

kN+1kjC(xN+1 − xj )

(3.11)−
N∑

i,j=1

kikj

C(xN+1 − xi) + C(xN+1 − xj ) − C(xi − xj )

2
.

Integrating out the momentak1, . . . , kN+1 in (3.8), one obtains

(3.12)g(z) = z

∞∑
N=0

(−z)N

(N + 1)!

(
N∏

�=1

∫
x�

)
(detD)−d/2,

where we have factored outLε from the loop integration (such that the integrals now
over a torus of size 1), and the matrix elementsDij are

(3.13)Dij = 1

2

[
C(xN+1 − xi) + C(xN+1 − xj ) − C(xi − xj )

]
.

3.2. Complete summation in fixed internal space dimensionD = 2

Let us compute theN -loop order of(3.12): the behavior of the propagatorC(x) for
argumentsx large compared toa is of the form

(3.14)C(x) = c0 + 1

2π
ln

x

a
,

wherec0 denotes some positive constant (noteC(x) � 0), and the logarithmic growth (fo
large x) is universal (seeAppendix A). In D = 2 we need an additional short-distan
cutoff a, which we want to take to 0. We can (somehow arbitrary) decompose

(3.15)detD =
(

N∏
i=1

Dii

)
detD̃.

In the limit of a → 0 eachC(x) = 1
2π

ln(L/a) + O(a0), such that

(3.16)D̃ij = 1

2

[
1+ C(xN+1 − xj ) − C(xi − xj )

C(xN+1 − xi)

]
a→0−→ 1

2
, i �= j,

D̃ii = 1.

(3.17)

(
N∏

�=1

∫
x�

)
(detD)−d/2 =: IN

(
L

a

)
= IN

1

(
L

a

)(
detD̃(0)

)−d/2
.

The matrixD̃(0) denotes the limita → 0 of (3.16). It can be written asD̃(0) = 1
2(I +
NP), whereI denotes the identity andP the projector onto(1,1, . . . ,1), whose image
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ake a
has dimension 1, such that detD̃(0) = 1+N
2N [33]. Furthermore, to one loopI1(L/a)

a→0=
c1(ln L

a
)−d/2, wherec1 denotes some (finite) constant. One then arrives at

(3.18)g(z) = z

∞∑
N=0

(−z(ln L
a
)−d/2)N

N !(1+ N)d/2+1
.

A factor c12d/2 has been absorbed into a rescaling of bothz andg.

3.3. Asymptotic scaling behavior

In the following we will analyze the limit of largez (strong repulsion), which also is th
scaling behavior of infinitely large membranes. We need an analytical expression fo
like (3.18)in the limit of largez. Later, it will turn out that allowing for small deviation
2− D > 0 only slightly more general sums will arise.

We claim that for allk, d > 0

(3.19)
∞∑

N=0

(−z)N

N !(k + N)d/2
= 1

�
(

d
2

)
∞∫

0

dr rd/2−1 exp
[−ze−r − kr

]
.

This can be proven as follows:

1

�
(

d
2

)
∞∫

0

dr rd/2−1 exp
(−ze−r − kr

)

= 1

�
(

d
2

) ∞∑
N=0

(−z)N

N !
∞∫

0

dr rd/2−1e−(N+k)r

= 1

�
(

d
2

) ∞∑
N=0

(−z)N

N !
�
(

d
2

)
(N + k)d/2

.

This integral-representation is not the most practical for our purpose. It is better
r → s := e−r which yields

(3.20)
∞∑

N=0

(−z)N

N !(k + N)d/2
= 1

�
(

d
2

)
1∫

0

ds sk−1(− ln s)d/2−1e−sz.

This formula is already very useful for some purposes. It is still advantageous to m
second variable-transformations → y := sz, yielding

(3.21)
∞∑ (−z)N

N !(k + N)d/2
= (ln z)d/2−1

�
(

d
)
zk

z∫
dy yk−1

(
1− lny

ln z

)d/2−1

e−y.
N=0 2 0
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Finally we remark that we usually have the following combination

(3.22)

f d
k (z) := zk

∞∑
N=0

(−z)N

N !(k + N)d/2
= (ln z)d/2−1

�
(

d
2

)
z∫

0

dy yk−1
(

1− lny

ln z

)d/2−1

e−y.

It satisfies the following simple recursion relation, which is helpful to calculate
β-function:

(3.23)z
d

dz
f d

k (z) = f d−2
k (z).

The derivative above can be rewritten as

(3.24)z
d

dz
f d

k (z) = kf d
k (z) − f d

k+1(z),

such that one obtains a useful formula in order to isolate the dominant behavior for laz:

(3.25)f d
k+1(z) = kf d

k (z) − f d−2
k (z).

From(3.19)f d
k (z) > 0 for all k, d > 0 and the behavior for largez is obtained by expand

ing (1− lny/ ln z)d/2−1 for small 1/ ln z

f d
k (z) = (ln z)d/2−1

�
(

d
2

)
[ ∞∫

0

dy yk−1e−y − 1

ln z

(
d

2
− 1

) ∞∫
0

dy yk−1 lnye−y

(3.26)+ O

(
1

(ln z)2

)]
+ O

(
e−z

)
.

The result is

(3.27)f d
k (z) = (ln z)d/2−1�(k)

�
(

d
2

) (
1− 1

ln z

d − 2

2

�′(k)

�(k)
+ · · ·

)
.

With the above notations, the sum(3.18)expressingg as a function ofz becomes

(3.28)g

(
z,

L

a

)
=
(

ln
L

a

)d/2

f d+2
1

[
z

(
ln

L

a

)−d/2]
in the limit D = 2.

It is now easy to analyze the long-distance behavior in this limit. First, we obs
that according to(3.27) the effective coupling diverges logarithmically for all extern
dimensionsd > 0:

(3.29)g

(
z,

L

a

)
z→∞−→

(
ln L

a

)d/2

�
(

d+2
2

) [ln

(
z

(
ln

L

a

)−d/2)]d/2

.

This is in contrast to the one-loop result as stated in(2.11), which is exact for polymer
(D = 1) and which stays qualitatively valid as long asD < 2. This follows from the renor

malizability of the theory[35] for sufficiently smallε > 0. A finite limit g(z → ∞) = g∗
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signals a scale invariant theory. In(3.29)we have found the limiting behavior of the latte
Consequently, we expect the correction-to-scaling exponentω to be always zero inD = 2.
In order to check that let us first compute the renormalizationβ-function in terms of the
bare coupling as in(2.17), which can be immediately derived with the help of relat
(3.23):1

(3.30)β(z′) = −εz′ ∂g′

∂z′ = −εf d
1 (z′) z′→∞−→ 1

�
(

d
2

)[ln(z′)
]d/2−1

,

where we have introduced rescaled couplingsz′ := g0L
ε(ln L

a
)−d/2 andg′ = g(ln L

a
)−d/2.

Its derivative with respect to the renormalized coupling is found as a function of the
coupling(2.19)to be

(3.31)ω(z′) = −εz′

β(z′)
∂β(z′)
∂z′ = −ε

z′ d
dz′ f d

1 (z′)
f d

1 (z′)
z′→∞−→ ε

2− d

2 ln(z′)
z′→∞−→ 0.

Note that the qualitative behavior of theβ-function changes depending on the exter
dimensiond , approaching asymptotically zero belowd = 2 and being divergent above.

In the limit of large bare couplings one may as well give the RG-function in terms o
effective (renormalized) coupling simply by inverting the asymptotic expression in(3.29)
and inserting it into(3.30), with the result:

(3.32)β(g)
z′→∞∼ −ε

(
�
(

d+2
2

))1−2/d

�
(

d
2

) g1−2/d .

It is interesting to compare the true asymptotic behavior of the completely resumme
turbation series as found above with predictions taking only finite loop orders into acc
if one tries to invert(3.18)and truncates it at some finite order, it is at least possible to r
the asymptotic regime(3.32)—however, for largeg the truncatedβ-function does not con
verge to the trueβ-function and thus strongly deviates from the true behavior. InFig. 4
the Padé-resummed truncatedβ-function up to orderg160 in d = 1 is compared with the
asymptotic flow-function. One notices that the truncatedβ-function even though improve
through a Padé-resummation hardly gets into touch with the asymptotic regime. The
applies to the slope-functionω(g), which is not shown inFig. 4. Let us finally state the
expected behavior of the plaquettes-density functions in the limit of large membrane
the plaquettes-density at the repelling fixed-point we find in this limit:

(3.33)〈n〉� = 1

g0

(
1+ 2− d

2 lnz

)
z→∞∼ 1

g0
.

1 Note that our definitionβ(z′) = −εz′ ∂g′
∂z′ is strictly speaking equivalent to defining theβ-function as

β(g) := (−L d
dL

− a d
da

)|g0g, instead of(2.9). (Note that the derivative w.r.t.a disappears forD < 2.) The

natural combination inD = 2 is z′ = g0Lε(ln L
a )−d/2 instead ofz = g0Lε , and normalizations such tha

g′(z′) = z′ + O(z′2) does not explicitly depend onL or a. The chosen definitions avoid unnecessary tec

cal complications, but do not change the physics of the problem.
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Fig. 4.β-function in terms of the renormalized couplingg truncated at order 160, Padé-resummed, and plo
only that part for which the truncated series converges. (This can, e.g., be tested by taking away the last f
of the series.) This is compared to the asymptotic behavior(3.32) (proportional to 1/g for largeg). d is set to
1, and we used the diagonal (80, 80)-Padé approximant, which was find to converge best. (The non-re
expression starts to diverge already atg ≈ 1.8 at this order.)

Note that in the absence of the repelling interaction this quantity would diverge in
limit. This follows from dimensional grounds, since then

(3.34)〈n〉� ∼ Lε.

In (3.33)we found the largest possible depopulation of monomers at the defect poten
the case of a relevant interaction (ε > 0). As we discussed in(2.2) a measurable quantit
should be the following ratio(2.22), which in the case of 2D-membranes becomes in
limit z → ∞:

(3.35)
〈n〉�√〈n2〉�

z→∞=
√

1

2
,

which can be compared with the 1-loop prediction (which is exact for polymers):

(3.36)
〈n〉�√〈n2〉�

z→∞=
√

2

3
, (1-loop).

4. Crossover to polymers

Let us now analyze the theory belowD = 2. Due to the renormalizability in 0< D < 2
and the existence of anε-expansion we expect the renormalized coupling to reach a fi
fixed point in the strong coupling limit as soon asD < 2. This approach is characteriz
by a power-law decay of the form

(4.1)g(z) = g∗ + S(ln z)z−ω/ε + O
(
z−ω1/ε

)
,

whereS is some scaling-function growing at most sub-exponentially andω1 > ω > 0, with

ω defined in(2.18).
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Our ultimate aim is to extract information from an expansion in powers of 2− D of
the effective coupling about the correction-to-scaling exponentω in (4.1) for D � 2. The
scale invariant behavior belowD = 2 results in a finite fixed point of the renormaliz
tion β-function as a function of the effective coupling. The qualitative behavior of
β-function is sketched inFig. 5.

4.1. (2− D)-expansion on the torus

In order to gain information aboutg belowD = 2 one has to expand the loop integra
(detD)−d/2 (3.12)in powers of 2− D. For convenience, we takea → 0. The propagato
takes in infiniteD-space the formC(x) = |x|2−D/(SD(2−D)), whereSD = 2πD/2/�(D

2 )

denotes the volume of theD-dimensional unit-sphere. The factor(SD(2− D))−1 replaces
ln(L

a
) and is absorbed into a rescaling of the field and the coupling according tor →

r(SD(2−D))1/2 andg0 → g0(SD(2−D))d/2, such that the factors of(ln L
a
)−d/2 in (3.18)

and(3.29)disappear. The propagator in the rescaled variable can then be written as

(4.2)C(x) = 1+ (2− D)C(x),

where for convenience of notation we allowC(x) to depend itself onD.
Of course, on a closed manifold of finite size,C(x) is modified, but the form(4.2) is

independent of the shape of the manifold. Accordingly, one may expand the matrixD as

(4.3)D = D̃(0) + (2− D)D,

whereD̃(0) is defined as before and coincides with the limitD → 2 when inserting the
aboveC(x) into D. Moreover,D is of the same form asD, but eachC(x) has been replace
with C(x):

(4.4)Dij = 1

2

[
C(xN+1 − xi) + C(xN+1 − xj ) + C(xi − xj )

]
.

Then,

(4.5)detD = detD̃(0) exp
{
Tr
[
ln
(
1+ (2− D)

[
D̃(0)

]−1
D
)]}

,

where[D̃(0)]−1 = 2(I − N
N+1P) denotes the inverse matrix ofD̃(0).

Denoting

(4.6)M := [
D(0)

]−1
D

Fig. 5. Qualitative behavior for theβ-function inD = 1, D = 2 and result anticipated forD ≈ 1.5.
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we expand the determinant in(4.5)up to fourth order in 2− D:[
det(D)

]−d/2

= [
det
(
D(0)

)]−d/2
[
1− d

2

[
(2− D)TrM − (2− D)2

2
TrM2

+ (2− D)3

2
TrM3 − (2− D)4

4
TrM4

]

+ d2

8

[
(2− D)2 Tr2 M − (2− D)3 TrMTrM2

+ (2− D)4
[

1

4
Tr2 M2 + 2

3
TrMTrM3

]]

− d3

48

[
(2− D)3 Tr3 M − (2− D)4 3

2
Tr2 MTrM2

]
+ d4

384
(2− D)4 Tr4 M

]
(4.7)+ O

(
(2− D)5).

The first step in the analysis will be to obtain the resummed perturbation series
effective coupling up to fourth order in 2− D. That is, we have to insert(4.7) into (4.5),
calculate the corresponding loop integrals at each order of perturbation theory, ins
result into(3.12)and sum the appearing series to all orders.

Let us start with the first-order term in 2−D from (4.7). We only needM = [D(0)]−1D,
which reads

(4.8)(Mij ) = ([
D(0)

]−1
D
)
ij

=
(

2Dij − 2

1+ N

N∑
k=1

Dik

)
L−2ν .

The trace of(4.8)can easily be performed, with the result

(4.9)TrM =
(

2N

1+ N

N∑
i=1

Dii − 2

1+ N

N∑
i=1

N∑
k=1

(1− δik)Dik

)
L−2ν .

In each order of perturbation theory we have to integrate the expression(4.7)over internal
distances. These integrals have to be regularized in the infrared through an approp
cut-off. We are considering a finite manifold of toroidal topology (Fig. 6). The precise form
of the correlator on the torus will only later enter into the calculation.

To simplify the calculations, we further introduce the following notation:

(4.10)f (xi1, . . . , xik ) :=
∫
x1

· · ·
∫
xN

f (xi1, . . . , xik )

with the internal integrations defined as

(4.11)
∫

= Lε

∫
,

∫
:= integral over the torus withL = 1,
x∈M x x
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Fig. 6. Regularization scheme for theN -loop diagrams on manifolds with toroidal topology (periodic bound
conditions). Here:D = 2.

such that the overbar in(4.10)can be thought of as an averaging procedure, and espe

(4.12)1= 1.

Thanks to our regularization prescription the integral of(4.9) over internal points can b
replaced byLND (for the integration measure) times

TrM = 2N2

1+ N
C(xN+1 − xi) −

(
2N(N − 1)

1+ N

)(
C(xN+1 − xi) − 1

2
C(xi − xj )

)

(4.13)= 2N

1+ N
C(xN+1 − xi) + N(N − 1)

1+ N
C(xi − xj ).

Due to the internal symmetry of the closed manifolds which we consider the expre
above can be further simplified, since

(4.14)C(xN+1 − xi) = C(xi − xj ) ≡ C(x).

Introducing a diagrammatic notation

(4.15):= C(x),

theN -loop integral reads up to first order in 2− D∫
(detD)−d/2 = µ−Nε

(
1+ N

2N

)−d/2

(4.16)×
[
1− d

2
(2− D)

(
N

)
+ O

(
(2− D)2)].

For the further analysis we will not only need(4.13), but also the terms appearing to high

order in 2− D in (4.7). We derived expressions like(4.13) for Tr 2M and TrM2 and all
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terms up to fourth order in 2− D with a MATHEMATICA ®-program. It is based on the fa
that all terms to appear in the expansion(4.7) are of the form TrnMm or products of the
latter and therefore can be written as P(N)/(N + 1)k , wheren,m,k ∈ N and P(N) is some
polynomial inN . It will turn out soon that it is convenient to expand the polynomial P(N)

in terms of the following base:

(4.17)

{
1,N,N(N − 1),N(N − 1)(N − 2), . . . ,

k∏
j=0

(N − j), . . .

}
.

We obtain:

TrM2 = −2N(N − 1) − N(N − 1)(N − 2)

1+ N
C(x)2

(4.18)+ 2N + 3N(N − 1) + N(N − 1)(N − 2)

1+ N
C2(x),

and

(4.19)Tr2 M = 4N(N − 1) + N(N − 1)(N − 2)

1+ N
C(x)2 + 2N

1+ N
C2(x).

Diagrammatically, the averages can be rewritten as

(4.20):= C(x)2,

and

(4.21):= C2(x).

Like in the case of the first order diagram(4.18)and(4.19)are highly simplified as com
pared to an open manifold, see our treatment in[33].

Let us shortly discuss the reason for(4.17): inserting(4.18)and(4.19)into the pertur-
bation series and summing all loop orders, the following series types will appear:

z

∞∑
N=0

∏k−1
i=0(N − i)(−z)N

N !(N + 1)d/2+j+1
= (−1)kzk

∞∑
N=0

(−z)N

N !(N + k)d/2+j+1

(4.22)≡ (−1)kf
d+2(j+1)
k (z).

We may therefore identify the resummed series with a function that we know already
well, in particular we know its strong coupling behavior. It is furthermore convenie
reduce all functionsf d+2(j+1)

k>1 (z) to sums of functionsf d+2(j+1)

1 (z) exploiting the formula
(3.25).

4.2. Resummed contributions to the expansion in2− D up to fourth order

We are now almost in the position to state all resummed contributions up to fourth

in 2− D. Let us first state all necessary diagrams:
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(4.23)= C(xi − xj ),

which contributes to first order in 2− D. To second order one needs in addition

(4.24)= C2(xi − xj ).

To third order diagrams with new topology are

= C3(xi − xj ),

(4.25)= C(xi − xj )C(xj − xk)C(xi − xk).

Finally, to fourth order arise:

= C4(xi − xj ),

= C2(xi − xj )C(xk − xj )C(xk − xi),

(4.26)= C(xi − xj )C(xk − xj )C(xl − xk)C(xi − xl).

If one calculates diagrams, it will turn out that it is to some extend more convenie
express the above averages in terms of averages over a connected correlation f
which is defined as

(4.27)Cc(x) := C(x) − C,

such that, for instance,

(4.28)C2
c = C2 − C

2.

Furthermore, we will need:

(4.29)C3
c = C3 − 3CC2 + 2C

3

and

C
�
c = Cc(xi − xj )Cc(xj − xk)Cc(xk − xi)

= C(xi − xj )C(xj − xk)C(xk − xi) + 3C
2
C(xi − xj )

− 3CC(xi − xj )C(xj − xk) − C
3

(4.30)= C� − C
3,

wherexi, xj , xk are distinct points, and the average is over their positions. In(4.30) we
exploited the symmetry of the closed manifold, and the definition ofC� is self-evident.
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Furthermore, we will need to fourth order in 2− D:

(4.31)C4
c = C4 + 12C2C

2 − 4C3C − 3C
4,

C�
c = Cc(xi − xj )Cc(xj − xk)Cc(xk − xl)Cc(xl − xi)

(4.32)= C� + 5C
4

and

Cc = C2
c(xi − xj )Cc(xi − xk)Cc(xk − xj )

(4.33)= C − 2C�C − C2C
2 + 2C

4.

Let us now state all terms which appear in the expansion of the renormalized co
g(z) up to fourth order in 2− D according to(4.7). We have to calculate at orderN of
perturbation theory:

(4.34)TrM = NC.

Inserting this into the perturbation series and summing up the resulting terms to all
in N generates the following contributions in the(2 − D)-expansion of the renormalize
coupling:

(4.35)
∞∑

N=1

(
detD(0)

)−d/2 TrM(−z)N+1

(N + 1)! = Cf d+2
1 (z) − Cf d

1 (z),

which contributes to first order in 2− D.
To second order in 2− D, we have(4.18)providing

∞∑
N=1

(
detD(0)

)−d/2 TrM2(−z)N+1

(N + 1)!

(4.36)
= 2C2

cf
d+4
1 (z) + (−4C2

c + C
2)f d+2

1 (z) + (−C
2 + 3C2

c

)
f d

1 (z) − C2
cf

d−2
1 (z),

and(4.19)providing

∞∑
N=1

(
detD(0)

)−d/2 Tr2 M(−z)N+1

(N + 1)!
(4.37)= 2C2

cf
d+4
1 (z) − (

2C2
c + C

2)f d+2
1 (z) + 2C

2f d
1 (z) − C

2f d−2
1 (z).

Let us now state the terms at third order in 2− D, which we derived with the help of
MATHEMATICA ®- program (N is the loop order):

∞∑
N=1

(
detD(0)

)−d/2 TrM3(−z)N+1

(N + 1)!
= 4

(
C3

c − 4C
�
c

)
f d+4

1 (z) + (−10C3
c + 36C�

c + 6CC2
c

)
f d+2

1 (z)( )
+ 9C3
c − 32C�

c − 12CC2
c + C

3 f d
1 (z)
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+ (
3C3

c − 17C�
c − 9CC2

c + C
3)f d−2

1 (z)

(4.38)− 3
(
2C

�
c + CC2

c

)
f d−4

1 (z) + C
�
c f d−6

1 (z),

∞∑
N=1

(
detD(0)

)−d/2 TrMTrM2(−z)N+1

(N + 1)!

= 4
(
C3

c − 4C
�
c

)
f d+6

1 (z) + (−8C3
c + 32C�

c + 2CC2
c

)
f d+4

1 (z)

+ (
6C3

c − 20C�
c + 2CC2

c − 6C
3)f d+2

1 (z)

+ (−2C3
c + 4C

�
c − 7CC2

c + 2C
3)f d

1 (z)

(4.39)− (
C

3 − 4CC2
c

)
f d−2

1 (z) − CC2
cf

d−4
1 (z),

∞∑
N=1

(
detD(0)

)−d/2 Tr3 M(−z)N+1

(N + 1)!

= 4
(
C3

c − 4C
�
c

)
f d+6

1 (z) + (−4C3
c + 24C�

c − 6CC2
c

)
f d+4

1 (z)

+ (−8C
�
c + 12CC2

c + C
3)f d+2

1 (z) − 3
(
C

3 + 2CC2
c

)
f d

1 (z)

(4.40)+ 3C
3f d−2

1 (z) − C
3f d−4

1 (z).

To fourth order in 2− D we obtain:

∞∑
N=1

(
detD(0)

)−d/2 Tr4 M(−z)N+1

(N + 1)!
= 8

(
222C4 + 6C

2
C2

c + 3C2
c

2 − C4
c + 24Cc − 36C�

c

)
f d+8

1 (z)

+ 4
(
804C4 + 12C2

C2
c + 3C2

c
2 − 2C4

c + 72Cc − 132C�
c − 4CC3

c

+ 16CC
�
c

)
f d+6

1 (z)

− 4
(
432C4 − 3C

2
C2

c − 6C2
c

2 + 24Cc − 72C�
c − 8CC3

c + 40CC
�
c

)
f d+4

1 (z)

+ (
287C4 − 36C2

C2
c − 12C2

c
2 − 48C�

c − 16CC3
c + 128CC

�
c

)
f d+2

1 (z)

+ (
4C

4 + 36C2
C2

c − 32CC
�
c

)
f d

1 (z)

(4.41)+ (−6C
4 − 2C

2
C2

c

)
f d−2

1 (z) + 4C
4f d−4

1 (z) − C
4f d−6

1 (z),

∞∑
N=1

(
detD(0)

)−d/2 TrM2 Tr2 M(−z)N+1

(N + 1)!
= 8

(
222C4 + 6C

2
C2

c + 3C2
c

2 − C4
c + 24Cc − 36C�

c

)
f d+8

1 (z)( )
+ 4 960C4 + 24C2
C2

c + C2
c

2 − 4C4
c + 100Cc − 156C�

c f d+6
1 (z)
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− 4
(
714C4 + 20C2

C2
c + 8C2

c
2 − 3C4

c + 70Cc − 116C�
c − 4CC3

c

+ 12CC
�
c

)
f d+4

1 (z)

+ (
889C4 + 36C2

C2
c − 2C2

c
2 − 28CC3

c − 4C4
c + 80Cc − 144C�

c

+ 88CC
�
c

)
f d+2

1 (z)

+ (−99C4 + 3C
2
C2

c + 8C2
c

2 + 16CC3
c − 8Cc + 16C�

c − 48CC
�
c

)
f d

1 (z)

+ (
3C

4 − 11C2
C2

c − 2C2
c

2 − 4CC3
c + 8CC

�
c

)
f d−2

1 (z)

(4.42)+ (−C
4 − 5C

2
C2

c

)
f d−4

1 (z) − C
2
C2

cf
d−6
1 (z),

∞∑
N=1

(
detD(0)

)−d/2 Tr2 M2(−z)N+1

(N + 1)!
= 8

(
222C4 + 6C

2
C2

c + 3C2
c

2 − C4
c + 24Cc − 36C�

c

)
f d+8

1 (z)

+ 4
(
1116C4 + 36C2

C2
c + 23C2

c
2 − 6C4

c + 128Cc − 180C�
c + 4CC3

c

− 16CC
�
c

)
f d+6

1 (z)

− 4
(
1080C4 + 47C2

C2
c + 28C2

c
2 − 8C4

c + 132Cc − 172C�
c + 8CC3

c

− 32CC
�
c

)
f d+4

1 (z)

+ (
2111C4 + 148C2

C2
c + 44C2

c
2 + 24CC3

c − 24C4
c + 272Cc − 328C�

c

− 80CC
�
c

)
f d+2

1 (z)

+ (−538C4 − 74C2
C2

c + 10C2
c

2 − 8CC3
c + 10C4

c − 72Cc + 80C�
c

+ 8CC
�
c

)
f d

1 (z)

+ (
59C4 + 20C2

C2
c − 15C2

c
2 − 2C4

c + 8Cc − 8C�
c

)
f d−2

1 (z)

(4.43)+ (−2C
2
C2

c + 6C2
c

2)f d−4
1 (z) − C2

c
2f d−6

1 (z),

∞∑
N=1

(
detD(0)

)−d/2 TrMTrM3(−z)N+1

(N + 1)!
= 8

(
222C4 + 6C

2
C2

c + 3C2
c

2 − C4
c + 24Cc − 36C�

c

)
f d+8

1 (z)

+ 4
(
1038C4 + 30C2

C2
c + 18C2

c
2 − 5C4

c + 114Cc − 168C�
c + 2CC3

c

− 8CC
�
c

)
f d+6

1 (z)

− 2
(
1818C4 + 54C2

C2
c + 39C2

c
2 + CC3

c − 9C4
c + 204Cc − 294C�

c

− 22CC
�
c

)
f d+4

1 (z)(
+ 1583C4 + 48C2
C2

c + 36C2
c

2 − CC3
c − 6C4

c + 186Cc − 258C�
c
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e
f
orm as
+ 8CC
�
c

)
f d+2

1 (z)

+ (−358C4 − 21C2
C2

c − 6C2
c

2 + 6CC3
c − 48Cc + 60C�

c − 37CC
�
c

)
f d

1 (z)

+ (
35C4 + 12C2

C2
c − 3CC3

c + 6Cc − 6C�
c + 23CC

�
c

)
f d−2

1 (z)

(4.44)+ (−3C
2 − 7CC

�
c

)
f d−4

1 (z) + CC
�
c f d−6

1 (z),

∞∑
N=1

(
detD(0)

)−d/2 TrM4(−z)N+1

(N + 1)!
= 8

(
222C4 + 6C

2
C2

c + 3C2
c

2 − C4
c + 24Cc − 36C�

c

)
f d+8

1 (z)

+ 4
(
1116C4 + 36C2

C2
c + 23C2

c
2 − 6C4

c + 128Cc − 180C�
c + 4CC3

c

− 16CC
�
c

)
f d+6

1 (z)

− 4
(
1110C4 + 39C2

C2
c + 31C2

c
2 + 10CC3

c − 7C4
c + 136Cc − 178C�

c

− 36CC
�
c

)
f d+4

1 (z)

+ (
2473C4 + 72C2

C2
c + 82C2

c
2 + 36CC3

c − 16C4
c + 304Cc − 396C�

c

− 128CC
�
c

)
f d+2

1 (z)

+ (−955C4 − 12C2
C2

c − 36C2
c

2 − 12CC3
c + 5C4

c − 92Cc + 154C�
c

+ 68CC
�
c

)
f d

1 (z)

+ (
288C4 + 12C2

c
2 − C4

c + 12Cc − 47C�
c − 24CC

�
c

)
f d−2

1 (z)

(4.45)+ (−60C4 − 2C2
c

2 + 10C�
c + 4CC

�
c

)
f d−4

1 (z) + (6C
4 − C�

c )f
d−6
1 (z).

4.3. Renormalized coupling

Combining(3.12), (4.7)and the results(4.35)–(4.45)from the preceding subsection w
may now give the exact renormalized coupling to fourth order in 2− D. For the sake o
compactness, we introduce a new notation: since all series contributions are of the f
stated in(4.22), we introduce vectorsM such that

∞∑
N=1

(
detD(0)

)−d/2
∏l

i=1(TrMni )mi (−z)N

(N + 1)!

(4.46)≡
max∑

j=min

M(
m1 m2 · · · ml
n1 n2 · · · nl

)f d+2j

1 (z) ≡ M
j(

m1 m2 · · · ml max
n1 n2 · · · nl min

)f d+2j

1 (z),

wheremaxandmin are some integers, and summation over the indexj is implicit. Inserting

the results for the resummed series contributions into(4.7) we find for the renormalized
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n-

n

s

coupling to fourth order in 2− D:

g(z) = f d+2
1 (z) − (2− D)

d

2
M

j(
1 1
1 0

)f d+2j

1 (z)

+ (2− D)2
(

d

4
M

j(
1 2
2 −1

)f d+2j

1 (z) + d2

8
M

j(
2 2
1 −1

)f d+2j

1 (z)

)

− (2− D)3
(

d

4
M

j(
1 2
3 −3

)f d+2j

1 (z) + d2

8
M

j(
1 1 3
1 2 −2

)f d+2j

1 (z)

+ d3

48
M

j(
3 3
1 −2

)f d+2j

1 (z)

)

+ (2− D)4
(

d

8
M

j(
4 4
1 −3

)f d+2j

1 (z)

+ d2

8

(
1

4
M

j(
2 4
2 −3

)f d+2j

1 (z) + 2

3
M

j(
1 1 4
1 3 −3

)f d+2j

1 (z)

)

(4.47)

+ d3

32
M

j(
2 1 4
1 2 −3

)f d+2j

1 (z) + d4

384
M

j(
4 4
1 −3

)f d+2j

1 (z)

)
+ O(2− D)5.

The vector entriesMj are to be taken from Section4.2.
It is more convenient to discuss instead ofg(z) an integral transform. From the expa

sion off d
k (z), namely

(4.48)f
d+2j

1 (z) = z

�
(

d
2

)
∞∫

0

dr rd/2+j−1 exp
[−ze−r − r

]
,

and the structure of the expansion ofg(z) in powers of 2−D and the integral representatio
of thef

d+2j

1 it follows that the exact renormalized coupling can be written as

(4.49)g(z) ≡ g(D, z) = z

∞∫
0

dr g̃(r)exp
[−ze−r − r

]
,

whereg̃(r) is of the form

(4.50)g̃(r) = rd/2

[
1

�
(

d+2
2

) + (2− D)

∞∑
n=0

n∑
j=−nmax

pnj
rj (2− D)n

]
.

4.4. Guessing the exactg̃(r)

Let us try to gain more information about the power-law behavior in(4.1), that is about
the expansion in 2−D of the correction-to-scaling exponentω. Power-law behavior force

the series(4.50)to turn into some exponentially decaying functiong̃(r) as can be seen from
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cou-
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the asymptotic form ofg(z):

(4.51)g(z) � A+Bz−ω/ε = z

∞∫
0

dr e−ze−r−r

(
A+ Be−rω/ε

�(1+ ω/ε)

)
+ O

(
e−z

)
.

In order to check the latter equation note that

f 2
1+ω/ε(z) = z1+ω/ε

∞∫
0

dr exp
[−ze−r − (1+ ω/ε)r

]= �

(
1+ ω

ε

)
+ O

(
e−z

)

(4.52)

⇒ z−ω/ε = z

�(1+ ω/ε)

∞∫
0

dr exp
[−ze−r − (1+ ω/ε)r

]+ O
(
e−z

)

= z

�(1+ ω/ε)

∞∑
n=0

∞∫
0

dr
(−ω/εr)n

n! exp
[−ze−r − r

]+ O
(
e−z

)

= 1

�(1+ ω/ε)

∞∑
n=0

(−ω/ε)n

n! f
2(n+1)
1 (z) + O

(
e−z

)
,

where it is understood thatω is expanded in powers of 2− D.
Let us now test a possible form of the exactg̃(r). It should satisfy the following prop

erties:

(i) In the limit of D = 2 the exact resultrd/2/�(d+2
2 ) emerges.

(ii) For D < 2 the correspondingg(z) has a finite fixed-point value together with a stro
coupling expansion. Especially, the ansatz should interpolate to the limitD = 1,
which corresponds to a Gaussian polymer closed to form a ring. The strong
pling expansion of the renormalized coupling of a closed chain interacting w
δ-potential is easily obtained from the factorizability of loop integrals inD = 1 (see,
for instance,[33]). The result is:

(4.53)g(z) = ε

[
1+

∞∑
n=1

(
− 1

�(ε)z

)n 1

�(1− nε)

]
.

(iii) It is consistent with the expansion(4.47).

The (non-unique) ansatz is

(4.54)g̃(r) = C
(

1− S(D, r)e− ω
ε
r

ω/ε

)d/2

,

whereS(D, r) is analytic inD = 2 of the form

(4.55)S(D, r) = 1+ ω

ε
r

∞∑
Sn(r)(2− D)n,
n=1



556 H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530–564

lly

d
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and eachSn(r) has a Laurent expansion

(4.56)Sn(r) =
nmax∑

j=−nmin

sn,j r
j .

Note, that in the limit ofD → 2, the expression(4.54) givesCrd/2, while for D < 2 it
yields upon integration the form(4.1), ensuring both properties (i) and (ii). Let us fina
check consistency with the expansion(4.47)up to the second order in 2− D: inserting

(4.57)
ω

ε
= ω2(2− D)2 + O(2− D)3

(the linear term in(2− D) has to vanish2) into the ansatz(4.54)and expanding to secon
order in 2− D provides

g̃(r) = Crd/2
[
1− d

2

(
S1(r)(2− D)

(4.58)+
(

ω2

2
r − d − 2

4
S1(r)

2 + S2(r)

)
(2− D)2 + · · ·

)]
.

Explicitly, (4.47)becomes to second order in 2− D

g(z) = f d+2
1 (z) − (2− D)

d

2

[
Cf d+2

1 (z) − Cf d
1 (z)

]
+ (2− D)2d

4

[
2C2

cf
d+4
1 (z) + (

C
2 − 4C2

c

)
f d+2

1 (z) + (
3C2

c − C
2)f d

1 (z)

− C2
cf

d−2
1 (z)

]
+ (2− D)2d2

8

[
2C2

cf
d+4
1 (z) − (

2C2
c + C

2)f d+2
1 (z) + 2C

2f d
1 (z)

(4.59)− C
2f d−2

1 (z)
]+ O(2− D)3.

From this, the first coefficients of the(2− D)-expansion of̃g(r) are obtained. They read

g̃(r) = rd/2

�
(

d+2
2

){1+ (2− D)
d

2
C

(
1− d

2r

)

− (2− D)2
[
d

2
C2

cr + d

4

(
C

2 − 4C2
c

)− d2

8

(
2C2

c + C
2)

(4.60)

+
(

d2

8

(−C
2 + 3C2

c

)+ d3

8
C

2
)

r−1 − d2

8

(
d

2
− 1

)(
C2

c + d

2
C

2
)

r−2
]}

.

Comparing(4.58)and(4.60), one identifiesC = 1/�(d+2
2 ), S1 = −C(1 − d

2
1
r
) andω2 =

2C2
c , whereCc(x) := C(x) − C. Note that the terms proportional toC2 in S2(r) mostly

cancel withS1(r)
2, a sign that the ansatz catches some structure.

2 This is due to the fact that the order(2 − D) term ing(z) scales identically inz as the leading term. Onl
the order(2− D)2 diverges more strongly.
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The diagrams to be calculated at this order areC andC2
c (seeAppendix B). On a man-

ifold of toroidal shape, which is equivalent to periodic boundary conditions, two dis
sums have to be evaluated:

C = SD

4π2

[ ∑
k∈ZD,k �=0

1
�k2

− 2π

(2− D)

]

(4.61)= −0.44956+ 0.3583(2− D) + O(2− D)2,

(4.62)C2
c = S2

D

16π4

∑
k∈ZD,k �=0

1
�k4

= 0.152661+ O(2− D).

With the results given above, this leads to

(4.63)ω = 2εC2
c(2− D)2 + O(2− D)3 = 0.305322ε(2− D)2 + O(2− D)3,

which can be compared to the exact result forD = 1 (polymers):ω = ε. As a caveat
note that the above scheme is not unambiguous in the sense that the second ord
proportional tor in (4.61)could in principle either be attributed toω2 or S2. However, any
ansatz in(4.54)will provide anω, whose expansion starts at least quadratically in 2− D.
Though(4.54) is the best ansatz that could yet be found ensuring properties (i)–(iii)
precise form of constraints on the scaling functionS remains to be discussed in order
settle this question.

5. Conclusion

In this work we refined the analysis of aD-dimensional elastic manifold interactin
by someδ-potential with a fixed point in embedding space. Starting from the perturb
expansion of the effective coupling of the problem, in a first step, we performed a
calculation using a modified regularization prescription: evaluating loop integrals in
space dimension on a manifold of finite size enforced the introduction of a microscop
off as soon asD = 2. This way, we recovered the complete summability of the perturba
theory in this limit and confirmed the strong coupling behavior as found previously
analytic continuation from belowD = 2. In the strong coupling limit, corresponding
strong repulsion or equivalently to large membrane sizes, the effective coupling div
logarithmically as a function of the bare couplingz yielding a vanishing correction-to
scaling exponentω. Analyzing the RGβ-function we found that it tends to zero at infini
bare couplingz as 0� d < 2. The renormalization group flow then tends to a fixed po
and the theory becomes scale invariant in this limit. Due to the logarithmic divergen
the effective coupling, however, the corresponding zero of theβ-function in terms of the
latter is, too, shifted to infinity. This is a quite remarkable result showing that the sc
behavior of the system is accessible only to an all order treatment and deviates quali
from any finite loop expansion, be it within a minimal subtraction scheme or at finiε.
Especially, the logarithmic growth of the effective coupling signals the limiting beha

of a scale-invariant theory.
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The result inD = 2 is completely independent of the regularization procedure.
does no longer hold true beyond the leading order, which should be accessible to
pansion in 2− D. We constructed its first order in a specific regularization scheme in[33].
While this reproduces qualitatively correctly the known result inD = 1, it suffers from
a renormalization scheme, which neglects the boundaries of a finite manifold. We
hard cutoff in position space, while working with the infiniteD-space correlator. It seem
that only in anε-expansion this procedure is systematic.

Now, in a second step of the analysis we overcame this problem by constructi
(2 − D)-expansion on a manifold of toroidal shape of finite size, thus imposing per
boundary conditions on the field. There is no further infrared cutoff necessary. We
carried out the expansion of the renormalized coupling up to fourth order in 2− D, reveal-
ing the general structure of the expansion. It is important to point out that in consideg
as a function of the bare coupling, the limitsD → 2 and strong coupling (z → ∞) cannot
be interchanged. Whileg tends to infinity asz does inD = 2, we expect finiteness of th
limit as soon as 2− D > 0 and the existence of a strong coupling expansion as foun
polymers (D = 1). We were able to guess an exactg(D, z) as a function ofz and the in-
ternal dimensionD, which satisfies these properties and which can be reconciled wit
available expansion in 2− D by an appropriate matching of its free parameters. Thou
turned out that due to an ambiguity in the matching of parameters the precise pow
behavior of the effective coupling belowD = 2 cannot yet be isolated, we found that
closed manifolds the expansion ofω in powers of 2− D starts at least quadratically a
D < 2.

The exponent is closely related to observables, which can be measured in Monte
experiments. These are, for instance, plaquettes-density functions at the repelling p
on a membrane avoiding a single point.

While results for the pinning problem are interesting on their own, the main mo
tion is certainly to obtain a better understanding of self-avoiding polymerized memb
Preliminary studies[40] indicate that this problem can also be attacked by the met
developed here. This would be welcome to settle the discrepancies between field th
results on one hand[16,17,41]and numerical results (e.g.,[32]) on the other.
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Appendix A. The propagator

The regularized difference correlator is defined as
(A.1)Ca(x) = Ga(0) − Ga(x)
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ducing
whereGa(x) denotes the usual two-point correlator, which is obtained from:3

(A.2)Ga(x) = 1

(2π)D

∫
dDk

exp[i�k�x − a2k2]
k2

.

Here, short-wavelength modes are suppressed through a soft cutoff procedure. Intro
a Schwinger parameterization for the evaluation of the integral in(A.2),

(A.3)Ga(x) =
∞∫

0

dt

∫
dDk

(2π)D
e−(t+a2)k2

eikx = 1

(2
√

π)D

1/a2∫
0

ds sD/2−1e−s x2
4 ,

wheres = 1/(t + a2), we obtain for(A.1):

(A.4)Ca(x) = 1

(2
√

π)D

1/a2∫
0

ds sD/2−1(1− e−s x2
4
)
.

Further evaluation leads to:
(i) D = 2:

(A.5)Ca(x) = 1

4π

(
γ + �

(
0,

x2

4a2

)
+ ln

x2

4a2

)
x→∞−→ 1

2π
ln

x

a
.

(ii) D < 2:

Ca(x) = |x|2−D�(D
2 )

(2− D)2πD/2
+ a2−D

(2− D)2D−1πD/2
e
− x2

4a2 − a2−D

(2− D)2D−1πD/2

− |x|2−D�(D
2 , x2

4a2 )

(2− D)2πD/2

(A.6)
x→∞� |x|2−D

SD(2− D)
− a2−D

(2− D)2D−1πD/2
D→2−→ 1

2π
ln

x

a
.

�(z,α) denotes the incomplete�-function:

(A.7)�(z,α) =
∞∫

α

dt tz−1e−t .

Especially:

(A.8)lim
a→0

Ca(x) = |x|2−D

SD(2− D)
,

as long asD < 2.

3 Strictly speaking, we have to consider the propagator on the torus, as is done inAppendix B. However, this

does not make any difference for the purpose of our argument.
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Appendix B. Calculation of the diagrams in the (2 − D)-expansion

In this section we calculate the diagrams which appear in the 2− D expansion on the
torus of sizeL = 1. It turns out that to obtainC andC2

c we need to evaluate two sum
over discrete wave-vectors due to periodic boundary conditions on the torus. Let u
derive the latter before turning to the explicit evaluation. Starting from the definition o
difference correlatorC(x),

(B.1)C(x) := G(x) − G(0),

whereG(x) is the usual two-point correlator, we obtainC(x) through an inverse discre
Fourier-transformation fromG(k) = 1/�k2, which reads:

(B.2)C(x) =
∑
�k �=0

1
�k2

(
1− ei�k�x), �k = 2π �n, �n ∈ Z × Z\{�0}.

Performing the averaging procedure

(B.3)C(x) =
∫
x

C(x),

where
∫
x

ei�k�x = δD
�k is to be taken into account, the calculation ofC(x) reduces to

(B.4)C(x) = I1 :=
∑
�k �=0

1
�k2

, �k = 2π �n,

where�k is D-dimensional, and the indicesni are integer and running from−∞ to ∞,
�n = 0 being excluded from the summation. Of course, in the expansion in powers of−D

we need an analytic continuation to real values ofD. Finally, to obtainC(x) we have to
subtractC(0)(x) from C(x). Due to our normalizations:

(B.5)C(x) = SD

(
C(x) − C(0)(x)

2π(2− D)

)
,

whereSD denotes the volume of the unit sphere andC(0)(x) = 1.
Turning toC2

c(x), we first note that within our normalizations we have

S−2
D C2(x) = (C(x) − C(0)(x)/(2π(2− D)))2

(B.6)= C(x)2 − 2
C(x)

2π(2− D)
+ 1

(2π(2− D))2

and

(B.7)S−2
D C(x)2 = C(x)2 − 2

C(x)

2π(2− D)
+ 1

(2π(2− D))2

according to(B.5), such that ( )

(B.8)C2

c(x) ≡ C2(x) − C(x)2 = S2
D C2(x) − C(x)2 .
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Knowing already the sum to be evaluated to obtainC, (B.4), what is left is:

C2(x) =
∫
x

C2(x) =
∫
x

∑
�k �=0

∑
�p �=0

1
�k2

1

�p2

(
ei�k�x − 1

)(
ei �p�x − 1

)

(B.9)=
∑
�k �=0

∑
�p �=0

1
�k2

1

�p2

(
δD
�k+ �p − δD

�k − δD
�p + 1

)=
∑
�k �=0

1
�k4

+
[∑

�k �=0

1
�k2

]2

.

Therefore,

(B.10)S−2
D C2

c(x) = I2 :=
∑
�k �=0

1
�k4

, ki = 2πni.

Let us first calculateI1: introducing a Schwinger parameterization we have:

I1 = 1

(2π)2

∞∑
ni=−∞

�n�=0

1

�n2
= 1

(2π)2

∞∑
ni=−∞

�n�=0

∞∫
0

ds e−s�n2

(B.11)= 1

(2π)2

∞∫
0

ds

[( ∞∑
n=−∞

e−sn2

)D

− 1

]
,

where it is to be noted that the sum in the last line is only one-dimensional. Further
from now on it is clear, howI1 is analytically continued to real values ofD.

In order to evaluate this sum, we will make use of a Poisson-transformation, w
reads:

(B.12)
∞∑

n=−∞
e−A(n−z/2)2 =

√
π

A

∞∑
l=−∞

e− π2l2
A

+iπlz.

The contribution froml = 0 is the approximation of the l.h.s. through a Gaussian inte
Our aim is to calculate the coefficients of the 2− D expansion ofI1 numerically using
some algebraic manipulation program. Then, the integration interval in(B.11) has to be
made finite. This is done as follows: for anys0 > 0 we have

I1 = 1

(2π)2

s−1
0∫

0

ds

[( ∞∑
n=−∞

e−sn2

)D

− 1

]
+ 1

(2π)2

∞∫
s−1
0

ds

[( ∞∑
n=−∞

e−sn2

)D

− 1

]

(B.13)

= 1

(2π)2

s−1
0∫

0

ds

[( ∞∑
n=−∞

e−sn2

)D

− 1

]
+ 1

(2π)2

s0∫
0

ds

s2

[( ∞∑
n=−∞

e−n2/s

)D

− 1

]
.

For any finites0 > 0, the sum in the r.h.s. integral can be truncated at some finitenmax for

all s ∈ [0, s0]. For the first integral (corresponding to small values ofs) we make use of the
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Poissonian formula(B.12)with z = 0:

(B.14)
∞∑

n=−∞
e−sn2 =

√
π

s

∞∑
l=−∞

e−π2l2/s .

Inserting this into(B.13), the sum in the first integral can be truncated at some finitel as
well, such that one may approximately write:

I1 ≈ 1

(2π)2

s−1
0∫

0

ds

[(√
π

s

lmax∑
l=−lmax

e−π2l2/s

)D

− 1

]

(B.15)+ 1

(2π)2

s0∫
0

ds

s2

[(
nmax∑

n=−nmax

e−n2/s

)D

− 1

]
.

Choosings0 in a way thatlmax can be set equal to zero the l.h.s. integral can be evalu
analytically:

(B.16)

I1 ≈ 1

(2π)2

(
2πD/2

2− D
s
D/2−1
0 − s−1

0

)
+ 1

(2π)2

s0∫
0

ds

s2

[(
nmax∑

n=−nmax

e−n2/s

)D

− 1

]
.

There is a pole in 2−D, which can be easily subtracted expanding the expression in po
of 2− D. The pole is

(B.17)I1 = 1

2π(2− D)
+ O

(
(2− D)0).

The precision of the machine that we used to evaluate(B.16) was sufficient in a way tha
we could selects0 from an interval, such that the sum appearing in the integrand c
be truncated at some finitenmax and the result was independent from the precise valu
s0 within the desired order of accuracy, therefore, justifying the approximation in(B.15).
Setting, for instance,s0 = 1.9 andnmax= 20 we obtain with MATHEMATICA ®:

(B.18)I1 = 1

2π(2− D)
− 0.715497(1) − 0.00457046(1)(2− D) + O

(
(2− D)2).

On the torus we scaled the square root of the volume of theD-dimensional unitsphere int
the field. Accordingly, comparing with(B.4) and(B.5) we then find:

(B.19)C = −0.44956(1) + 0.3583(1)(2− D) + O
(
(2− D)2).

Let us turn to the evaluation ofI2 following the same strategy as above. Again, set

L = 1 and introducing a Schwinger parameterization leads to:
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I2 = 1

(2π)4

∞∫
0

ds s

[( ∞∑
n=−∞

e−sn2

)D

− 1

]

≈ 1

(2π)4

s−1
0∫

0

ds s

[(√
π

s

lmax∑
l=−lmax

e−π2l2/s

)D

− 1

]

(B.20)+ 1

(2π)4

s0∫
0

ds

s3

[(
nmax∑

n=−nmax

e−n2/s

)D

− 1

]
,

where we have once again applied the Poisson-transformation(B.12) with z = 0 on one
part of the integration interval and truncated both series at some finite valuesnmax andlmax.

There is no pole in 2− D. SinceI2 appears at second order in 2− D we only need its
value atD = 2. s0 has to be chosen from an appropriate interval. Settingnmax= nmax= 10
ands0 = 1.1 we obtain with MATHEMATICA ®:

(B.21)I2 = 0.00386695(1) + O
(
(2− D)

)
,

or, due to the rescaling byS2
D ,

(B.22)C2
c = 0.152661(1) + O

(
(2− D)

)
.
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