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Abstract

The field theory of self-avoiding tethered membranes still poses major challenges. In this article,
we report progress on the toy-model of a manifold repelled by a single point. Our approach allows the
summation of the perturbation expansion in the streggtbf the interactiorexactlyin the limit of
internal dimensiorD — 2, yielding an analytic solution for the strong-coupling limit. This analytic
solution is the starting point for an expansion ir 2, which aims to interpolate to the well studied
case of polymersiy = 1). We give results to fourth order in-2 D, where the dependence gp
is again summed exactly. As an application, we discuss plaquette density functions, and propose a
Monte Carlo experiment to test our results. These methods shed light on the more complex problem
of self-avoiding manifolds.
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1. Introduction

One major problem in statistical physics is the effect of interactions on the thermo-
dynamical properties of extended fluctuating geometric objects. In general, multi-particle
attractive or repulsive interactions are involved. One may divide these into two classes:
(i) The interaction of a single fluctuating object with itself: a well known example is the
excluded volume interaction between any two monomers within a long polymer chain in a
good solvent, which results in the anomalous scaling of the mean squared end-to-end dis-
tance. (i) The interaction between different manifolds or between a single manifold and a
fixed non-fluctuating object. Thermal fluctuations then affect the depinning of the manifold
from an attractive substrate as well as the steric repulsions from a wall. Finally, cases (i)
and (ii) can appear together.

Whatever the situation is, it is usually well understood as long as the fluctuating objects
are one-dimensiongl—4]. Referring to the example above, the long-distance properties
of self-avoiding polymers can be analyzed with renormalization group technjfuék
either in the continuous Edwards Hamilton{aj,

.o 1 - b - -
H[r]:E / (Vr(x))2+50/ /Sd(r(x)—r(y)), (1.2)
xeM xeM yeM

or by mapping this model on a loc@l(N) symmetricp?-theory in the limit of N = 0 com-
ponentg1,3,9]. The critical exponents describing the long-distance properties are related
to the critical exponents of the correspondiNgvector model at the critical point. What
makeg1.1)a non-standard theory is that the interaction is non-local, and not a polynomial
of the field.

Obtaining the corresponding results for membranes poses considerable challenges. The
generalization of polymers to 2D-surfaces are crystalline fixed-connectivity membranes as
they appear, for instance, in the spectrin network of cell membranes. Considering “phan-
tom” membranes which can freely fold into themselves, the existence of a bending rigidity
induced phase transition separating a high rigidity, low temperature flat phase from a low
rigidity, high temperature crumpled phase is well establigi€d15] This in contrast to
polymers, which are always crumpled on large scales. The scaling properties of the crum-
pled phase of phantom membranes are described by the 2D generalization of the free field
part in (1.1). Taking self-avoidance into account, which is modeledliri) through the
short-range two-body interaction, we expect more swollen manifolds than those predicted
by the free theory. This is expressed in a non-trivial radius of gyration exponent

R,~L", 0<v<l, (1.2)

whereL denotes the linear internal size of the membrane, and the radius of gyration

is obtained from the effective extend of the membrane in external space. In the case of
polymersR, scales like the end-to-end distance. Much effort has been spent on calculating
corrections to the radius of gyration exponent within an expansion in the deviatiom

the critical space dimensidi6,17] These calculations cannot be performed directly for
the membrane-dimensidn = 2, since the naive scaling dimension of the couplinfflii)



532 H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530-564

equals

e(D,d) :=[bo] = 2D — Z_TDd, (1.3)

whered denotes the dimension of the embedding space, such teaiways non-zero as

D — 2, for any embedding dimensieh Equivalently, the critical embedding dimension
defined througta (D, d. (D)) = 0 becomes infinite in this limit. The reason is that the non-
self-avoiding membrane densely fills out the embedding space, such that it always “sees”
the interaction. A way to circumvent this problem is to set up the expansion about any
point (D < 2,d.(D)) and to extrapolate along an appropriate path in(thed)-plane to

the physically interesting poinD, d) = (2, 3) [18—24] To second order ia the radius of
gyration exponent is then found to bex 0.86 [16,17] This is a strong correction with
respect to the only logarithmic dependence in the non-interacting theory, and indicates the
existence of a crumpled phase, for whicke: 2/3 follows from the fact that a membrane

has a finite volume.

However, there is no evidence for a crumpled phase in experini2bt28] Latest
Monte Carlo simulations on plaquette-modg$,32] starting from a discretization of the
2D generalized HamiltoniafiL.1) with system sizes of up te: 17000 plaquettes show
considerable evidence for a vanishing of the crumpling transition as soon as self-avoidance
is switched on, in contrast to the earlier referenf@%30] Even on large scales fixed-
connectivity membranes seem to stay flat with a radius of gyration exponertdf. It
is however not clear whether any of the existing simulations is large enough to settle the
problem.

The final goal is to develop techniques, which allow to go beyond the two-loop result.
So far, we developed such techniques for a simplified model, which reduces the non-local
self-avoiding interaction iil.1)to self-avoidance with only a single point, e.g., the origin
in the membrane:

.01 - - -
H[r]:E / (Vr(x))2+go / 84(F(x) — 7(0)). (1.4)
xeM xeM

This is a special case of a phantom tethered manifold interacting with a single point in
embedding space and which is related to case (ii). The corresponding physical situation is
the binding and unbinding of a long chain as, e.g., a polymer or a membrane from a wall
or the wetting of an interface. More precisely, we study the interaction of a single freely
fluctuating manifold with another non-fluctuating, fixed object. Depending on whether the
interaction is attractive or repulsive, one may observe two different scenarios: either the
manifold delocalizes from an attractive substrate as in wetting phenomena or it is sterically
repelled from a fixed object (a wall). Both cases have in common that excluded volume
effects become important. We already discussed these scend3&.in

In [33] we performed a complete resummation of the perturbation series for the effective
coupling in the case of 2D-membranes. The long-distance behavior of the resummed the-
ory then turned out to be non-trivial in the sense that it emerged from the limiting behavior
of a scale invariant theory. As a result of this the effective coupling grows logarithmically
instead of approaching some finite fixed-point value as one would expect. This and the
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extremely slow convergence of the perturbation series makes the analysis of the fully re-
summed theory indispensable: all finite loop calculations fail to extract the correct large
distance properties. The importance of this result becomes evident as soon as one com-
pares it with extrapolations obtained from thexpansion at the 2-loop levé33]. The
latter not only required the numerical calculation of diagrams, with considerably raising
effort as the loop order becomes higher, but also turned out to be unable to make reliable
predictions forD < 2. This problem persisted, though we exploited the freedom to set up
the expansion about any poifl® < 2,d (D)), d.(D) = 2_—% being the critical embedding
dimension for given internal dimensiad and to expand both i® andd along any ap-
propriate extrapolation path to some physically interesting pd@nt 2, d). As soon adD
was approaching 2, the result became strongly dependent on the selected expansion point.

The aim of this paper is two-fold: first, we reconsider the techniques to perform loop
calculations within a “massive scheme”, that is on a manifold of finite size and with fixed
space dimension & D < 2 andd. We show that the perturbation series of the effective
coupling can be completely summed upin= 2, and analyze the long-distance properties
in this limit. In addition to[33], instead of analytically continuing loop integralsfio= 2
from below we perform calculations directly in 2D, which need an explicit short-distance
(UV)-cutoff. It turns out that results i = 2 are independent of the procedure, i.e., they
are universal.

Second, we construct a systematic expansion of the effective coupling in powers of
2— D. ltis based on our techniques to resum the perturbation series at each ordebin 2
A first attempt to go beyon®d = 2 has already been made [83]. However, there, the
effect of the boundaries of the finite manifolds was not taken properly into account, a prob-
lem that has now been circumvented by considering closed manifolds. We specialize to a
toroidal internal topology, which corresponds to imposing periodic boundary conditions.
Of course, the propagator of the perturbation series needs to be modified, and diagrams
become more difficult to calculate. Slightly beladw= 2 we expect power-law behavior
of the effective coupling. We present a possible ansatz for the exact effective coupling as a
function of the internal dimensiob < 2, which is consistent with the expansion ir-D.
However, it remains an open problem to extract more information about the power-law
behavior in order to make this expansion unique.

A short account of this work has already appearel@4).

2. Model and physical observables

2.1. The model

The problem of a membrane avoiding only a single pgint) may appear artificial.
However, it not only provides a toy-model for the analysis of the full self-avoidance prob-
lem, but also specializes case (ii). We consider a phantom tethered membrane interacting
with somes-potential located at the origin of the configuration space: the Hamiltonian is
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given by (0< D £ 2)

.1 - -
H[r]:E / (Vr(x))2+go f 84(7(x)), (2.1)
xeM xeM

where any point in the membrane is labeled by sdeomponent vectar, and its posi-
tion in external space is given by tdecomponent field (x),

FixeRP 5 F(x)eRY. (2.2)
The patrtition function is defined as

Z= / DIr]exp(—HIF]). (2.3)
To remove the translational 0-mode, we will consider

AR / DIF18(F(y)) exp(—HI[F]). (2.4)

Let us discus$2.1)in more detail: the first term is the elastic energy of the manifold which
is entropic in origin. Elasticity and temperature have been scaled to unity. The second term
models the interaction of the manifold with a single point at the origin ir/tdémensional
configurational space. The physical interpretafi@®,35] depends on the dimensionality:
in the case thak is identical to the embedding spa¢2,1) describes a phantom crumpled
manifold interacting with a single defect as sketchedim 1 However, setting = 1 (2.1)
may as well describe a solid-on-solid like fluctuating interface parameterized by some
displacement field and interacting with a parallel plabe=f 2) as shown irFig. 1

The coupling constargy may either be positive (repulsive interaction) or negative (at-
tractive interaction). We now give the dimensional analysis: in internal space units, the
engineering dimensions are

dim[x] =1, v:=dim[r] = Z_TD’

£ = dim[/de 8d(7(x)):| =D —vd. (2.5)
M

(b)

Fig. 1. (a) A D-dimensional manifold = 2) interacting with a point in the origin of the configurational
spaceR?. (b) A “directed” membrane (interface) interacting with a parallel subspace of same diménsion
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The interaction is naively relevant fer> 0, i.e.,d < d,. with (seeFig. 2)

4 - 2D
Cc — 2 _ D I
irrelevant fore < 0 and marginal foe = 0. It has been showf85,36] that the model is

renormalizable for &z D < 2 ande > 0. Results for negative are obtained via analytical
continuation. One can define the renormalized couplirg

(2.6)

N .
8= W[Z(O) - Z(go)|L*, (2.7)

whereV denotes the internal volume of the manifold. The normalizatibdepends on
the definition of the path-integral (but not d@r) and is chosen such that

g=g0L° + 0(gd). (2.8)
Universal quantities emerge at fixed-points of ghéunction, which is defined as

a
Blg) = —Lﬁ : 2.9)
80
The g-function describes, how the effective couplipgchanges under scale transforma-
tions, while keeping the bare coupligg fixed. Let us state the 1-loop result, see, €38,

35,36} it reads

1
B(g) =—eg + Egz +0(g%). (2.10)

whereg is the dimensionless renormalized coupling. Apart from the trivial solutiea,
the flow equation given b{2.9) and(2.10) has a non-trivial fixed point at the zero of the
B-function

g* =2¢+ 0(£2). (2.11)

We will show below that the scaling behavior is encoded in the slope of the RG-function at
the fixed point, which is universal as a consequence of renormalizabilty. The long-distance

2

0 10 20
d

Fig. 2. Critical line defined through=0< d.(D) = 2_—DD. The interaction is relevant for points that lie above
that line.
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B(2) B(g) B(g)
Z \o L \|/
8 \/I 8 | 8

(@ (b) ©

Fig. 3. RG-function and flow for increasing manifold sizdor the dimensionless renormalized couplifiga) in
the case > 0; (b) in the case < 0; (c) in the case = 0.

behavior is then governed by tlieinteraction as considered in our mo@2l1), which is
the most relevant operator at large scales. Let us now discuss possible physical situations
(seeFig. 3J):

(@) € > 0: The RG-flow has an infrared stable fixed pointgat> 0 and an IR-unstable
fixed point atg = 0. The latter corresponds to an unbinding transition whose critical
properties are given by the non-interacting system, while the non-trivial IR stable fixed
point determines the long-distance properties of the delocalized state, the long-range
repulsive force exerted by the fluctuating manifold on the origin—which we remind
may be a point, a line or a plane.

(b) ¢ < 0: Now, the long-distance behavior is Gaussian, while the unbinding transition
occurs at some finite value of the attractive potengél< 0, which corresponds to
an infrared unstable fixed point of thiefunction. Belowg* the RG-flow is to strong
coupling and the manifold is always attracted.

(c) ¢ = 0: This is the marginal situation, where the transition takes plagé at0; we
expect logarithmic corrections to scaling.

We discussed these scenarios and possible observables alr¢28ly Hhere we specialize

to membranes avoiding a single point. It turns out that this situation allows to calculate
observables staying non-singular even for 2D membranes and which can be measured in a
Monte Carlo experiment.

2.2. Plaquettes-density correlation functions

Interesting physical observables for a membrane avoiding a single point are the
plaquettes-density functions at the repelling point. Generally, these are defined as follows:

¢

(n€><> = <l_[ / (Sd(?(x,-))> , (2.12)
i:lxi eM ©

where the expectation value. is taken within the pinned ensemble as define(Rid).

The quantity, which is accessible to perturbation theory, is the effective coupling as defined

in (2.7). Itis a generating function for observables l{@&12) Let us first show how to ob-

tain the constrained partition functi¢2.4)from (2.7). since we consider closed manifolds,
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internal translational invariance implies
1 9 109(gL™®)
Z2°=Z2°@go)=—5—7—| 2(g0) =~
Vm 0golL N dg0 |,

whereg is the renormalized or effective coupling defined(ih7) and Vo, denotes the
internal volume of the membrane. Introducing the dimensionless bare coupling,

, (2.13)

7= gol?, (2.14)
(2.13)can be written in terms of dimensionless quantities as
ad
2°(goL?) = a_g’ (2.15)
Z

whereN has been set to unity. In the same way, all observables of thg2yp2) can be
easily derived frong according to:

Lt 3t /9
(nf), = 2 (°8) (2.16)
°  9g/oz 0zt \ 9z
Observables, which are to be measured in a Monte Carlo simulations, should be universal:
the g-function written in terms of the bare coupling reads

0
B(2) = —sza—j 2.17)

(Note that in a slight abuse of notation, we writéz) = B8(g(z)).) The universal slope at
the fixed point, which is defined as

i 9p(g) ’ (2.18)
ag g*
is obtained from
—ez 08(2)
= — 2.19
0@ B(z) 9z (2.19)

in the limit z — oco. We furthermore need the second derivative of the RG-flow function
with respect to the effective coupling, which is defined as

/ azﬂ(g) z—00 —€&Z Ba)(z)
w = —7FF = —
382 g B() 9z

Let us now show that the universal slof®18)can be obtained from the measurement
of appropriate combinations of observables of typd 2) For this purpose we need the
plaquettes-density/(= 1) and the density—density functios £ 2), which are obtained
after some straightforward, but tedious algebra from the above definitions:

(n)o = i<1+ w(Z)> o i(1+ 9>,
80 & £0 &

2 / 2
), = (2+ LN al- (Zg),f@) e g_12<2+ %4 %) (2.21)
0

(2.20)

)
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These quantities depend on the bare coupdinigvhich is not accessible. Instead, consider
the following ratio:

(n)o 700 1+w/e
2, \2+w/e

(2.22)

which obviously is universal.
2.3. Delocalization transition

For completeness let us shortly discuss the physical situation at the UV-stable fixed point
in Fig. 3. The fixed point corresponds talelocalization transitiorof the manifold, which
is at vanishing coupling* = 0 for ¢ > 0 and at some finite attractive couplig$ < 0 for
e <0.

In the localized phasg < g*, correlation functions such &§ (x) — 7(y)]?) and the
associated correlation leng#j (in the D-dimensional internal space) should be finite,
as well as the radius of gyratiagn . Approaching the transition these quantities diverge
as[37]

g~ —g) " EL~(gF-g) (2.23)
Sinceé | ~ &', the exponents andv, are related through

Vi =V, (224)

v being the dimension of the fiel@.5).
Furthermore, they are related to the correction-to-scaling expanent

1 %
V| = _Tg*)’ V| = _a)(g*) . (225)

Note thatw (g*) < 0 at the transition. Specializing {®, d) = (1, 1), we find

V] = 1, V| = 2. (226)

These exponents are also valid for the delocalization transition of a 1-dimensional in-
terface from an attractive hard wall in 2-dimensional bulk sga8e37—-39]

3. Complete summation of the perturbation series

3.1. Perturbation theory

In (2.2)we saw that physical observables can be derived from the renormalized coupling
g (2.7). To obtaing we need the perturbation series of the partition func#o(2.3):

(— go)NJrl
Z= Z N1 2N, (3.2)
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where
N+1
Zy = < ]‘[ /Sd(r(x,-))> ., N>=0, (3.2)
=1y 0

and the normalization of th&distribution has been chosen to be

5 (r (x)) 1= (4m) /25 (r (1) = / ghkr) (3.3)
k

/ M / . (3.4)

k

with

The advantage of these normalizations is that

/ ¥ =1 (3.5)
k
Accordingly, the perturbation expansion of the effective coup{th@) reads

8@ = ?LE i (QgO)lN, <ﬁ / 5d(r<xf>)> : (3.6)
M N:O( + ) i:lxl. 0
Performing the averages within the Gaussian theory with normalization
1 d
o / (B(r))o=1, (3.7)
X
one arrives at
1 N+1 N+1
gol® X (—g0)V (T " 1
g(x) = Vi Z N+ 1! l_[// 1) Zk,’ exp EZ kik;C(x; —xj) ¢,
N=0 i=1 ki Xi i=1 i,j=1
(3.8)
where
1 2
Clxj —xj):= g((r(xi) —r(x))%) (3.9

denotes the correlator, and tEVe(Zi k;) stems from the integration over the global trans-
lation. Shifting

N

kny1— kny1— Zki, (3.10)
i=1

the quadratic form irf3.8) transforms to
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N+1

1
> Z kik;C(xi — x;)
ij=1
N
— Y knyak;Clxnt1 — X))
j=1

Y Claysr—xi) + Claygr —x)) — Cli — x))
— > kik; .

> (3.11)

ij=1
Integrating out the momenta, ..., ky1 in (3.8), one obtains

N (” ) a2
g@) =z / (detD)~4/2, (3.12)
NZ::O(N+1)! Z_Hlx[

where we have factored odf from the loop integration (such that the integrals now run
over a torus of size 1), and the matrix elemeDts are

1
Dij = E[C(XN-H —xi) + Clan41— xj) — C(xi — x)]. (3.13)

3.2. Complete summation in fixed internal space dimenbien2

Let us compute thev-loop order of(3.12) the behavior of the propagatar(x) for
arguments: large compared to is of the form

1 x
C(x)= —InZ, 3.14
(x) co+ 5—In= (3.14)

wherecg denotes some positive constant (n6te) > 0), and the logarithmic growth (for
large x) is universal (seéppendix A). In D = 2 we need an additional short-distance
cutoff a, which we want to take to 0. We can (somehow arbitrary) decompose

N
det® = (]‘[@,-,») det®. (3.15)
i=1

In the limit of a — 0 eachC (x) = 5 In(L/a) + 0(a®), such that

~ 1 C(XN+1—)C]')—C(X[ —Xj) a—0 1 . .

D..==[1 — =, , 3.16
Y 2[ - Cxn+1 — Xi) > P (3.16)

Dji = 1.

(ﬁ/ )(dem)_d/z - ING) =i (§>(det’}5(°))“” ’ (3.17)
=1y,

The matrix®©@ denotes the limiu — 0 of (3.16) It can be written aH© = 1(1 +
NP), wherel denotes the identity anit the projector ontal, 1, ..., 1), whose image
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has dimension 1, such that & = 1+N [33]. Furthermore, to one loopy(L /a) ‘=
c1(In £)=4/2 wherec; denotes some (f|n|te) constant. One then arrives at

o (=z(in £)= 43N
g(Z)ZZX:OW- (3.18)
N=

A factor ¢12/2 has been absorbed into a rescaling of hoéimdg.
3.3. Asymptotic scaling behavior

In the following we will analyze the limit of large (strong repulsion), which also is the
scaling behavior of infinitely large membranes. We need an analytical expression for sums
like (3.18)in the limit of largez. Later, it will turn out that allowing for small deviations
2— D > 0 only slightly more general sums will arise.

We claim that for alk, d > 0

(_Z)N / d/2—1
E dr r?/ exp[ ze " kr] (3.19)
dj2 = d
N:ON!(k+N) / ?

This can be proven as follows:

derrd/2 lexp( ze " kr)
?

o0

1 & (-
Z /dr rd/Z—le—(N+k)r
F N=O N

I\JI&

0
_ 1 =V (9

This integral-representation is not the most practical for our purpose. It is better to set
r — s := € " which yields

NIk + N)dZ —

i

N
(=2) d /dssk 1( |ns)d/2 1 e 57, (320)
?

This formula is already very useful for some purposes. It is still advantageous to make a
second variable-transformatien— y := sz, yielding

Z
o0 (=N _(Inz)d/2*1 o ok-1(1 Iny d/2-1 . 221
ZN!(k—i—N)d/Z_ r@x ) nz ° (321
N=0 2 0
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Finally we remark that we usually have the following combination

X N npfPLop o Iyt
@ =22 gt = r(s) /dyyk 1(1_ _) °
N=0 220
(3.22)

It satisfies the following simple recursion relation, which is helpful to calculate the
B-function:

zd—dzf,fl(z) = 7). (3.23)
The derivative above can be rewritten as

co Q=) ~ [, (3.24)
such that one obtains a useful formula in order to isolate the dominant behavior fof:large

fa@=kl@ - (2. (3.25)

From(3.19) fkd (z) > Oforallk,d > 0 and the behavior for largeis obtained by expand-
ing (1—1Iny/Inz)4/2=1 for small I/ Inz

i @=—7— /dyy_e_y——<§—1)/dyy_ Inye™
0

d Inz
r(%) 4 nz
o) |+o(= (3.26)
n ((mz)z) L o(e). |
The result is
4 _(|nz)d/2—1r(k)< _ld-2r'w0) )
fe@= r(%) Yz T ) (3.27)

With the above notations, the su®18)expressing; as a function ot becomes

g(z, s) - <|n g)d/zfldﬂ[z(m §>—d/z} (3.28)

in the limit D = 2.

It is now easy to analyze the long-distance behavior in this limit. First, we observe
that according tq3.27) the effective coupling diverges logarithmically for all external
dimensions! > O:

B L\d/2 —d/2~ 1d/2
g(z, %)—>%[ln<z<ln§) )} . (3.29)

This is in contrast to the one-loop result as state@idl) which is exact for polymers
(D =1) and which stays qualitatively valid as long2s< 2. This follows from the renor-
malizability of the theory[35] for sufficiently smalle > 0. A finite limit g(z — o0) = g*
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signals a scale invariant theory. (8.29)we have found the limiting behavior of the latter.
Consequently, we expect the correction-to-scaling expanéate always zero i = 2.

In order to check that let us first compute the renormalizafielanction in terms of the
bare coupling as ir§2.17), which can be immediately derived with the help of relation
(3.23)1

8 ! Z/—>OO 1 , _
ﬂ(z/):—ez/—i = —efl(2) = —[InH]"* (3.30)

r(%)

where we have introduced rescaled couplifigs= goL*(In £)~4/2 andg’ = g(In £)=4/2,

Its derivative with respect to the renormalized coupling is found as a function of the bare
coupling(2.19)to be

L —eZ AB(D) dE ) v 2-d
w(Z)= =—¢ —> ¢

B) 9z @) 2In(z)
Note that the qualitative behavior of thefunction changes depending on the external
dimensiond, approaching asymptotically zero belax= 2 and being divergent above.

In the limit of large bare couplings one may as well give the RG-function in terms of the
effective (renormalized) coupling simply by inverting the asymptotic expressi(® 29)
and inserting it int3.30), with the result:

=, (3.31)

/ d+2\\1-2/d
B(g) 2 _SMglfﬂd_ (3.32)

It is interesting to compare the true asymptotic behavior of the completely resummed per-
turbation series as found above with predictions taking only finite loop orders into account:
if one tries to invert3.18)and truncates it at some finite order, it is at least possible to reach
the asymptotic regim3.32)—however, for large the truncateg-function does not con-
verge to the trugs-function and thus strongly deviates from the true behavioFEitn 4

the Padé-resummed truncatgdunction up to ordeg®in d = 1 is compared with the
asymptotic flow-function. One notices that the truncaiefdinction even though improved
through a Padé-resummation hardly gets into touch with the asymptotic regime. The same
applies to the slope-functio@(g), which is not shown irFig. 4. Let us finally state the
expected behavior of the plaquettes-density functions in the limit of large membranes. For
the plaquettes-density at the repelling fixed-point we find in this limit:

1 2—d\ 1m0 1
mo=—(14+7— )"~ =. (3.33)
80 2Inz 20

o/
1 Note that our definitiong(z’) = —ez’% is strictly speaking equivalent to defining thefunction as

B(g) = (—LadI — aa(j—l)lgog, instead of(2.9). (Note that the derivative w.r.tz disappears foD < 2.) The

natural combination inD =2 is 7/ = ggL€(In %)—d/z instead ofz = ggL€¢, and normalizations such that

g =7+ 0(z’?) does not explicitly depend oh or a. The chosen definitions avoid unnecessary techni-
cal complications, but do not change the physics of the problem.
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)B(Q)n

Fig. 4. B-function in terms of the renormalized coupliggruncated at order 160, Padé-resummed, and plotting
only that part for which the truncated series converges. (This can, e.g., be tested by taking away the last few terms
of the series.) This is compared to the asymptotic behg@i@2) (proportional to ¥g for largeg). d is set to

1, and we used the diagonal (80, 80)-Padé approximant, which was find to converge best. (The non-resummed
expression starts to diverge already at 1.8 at this order.)

Note that in the absence of the repelling interaction this quantity would diverge in this
limit. This follows from dimensional grounds, since then

(n)o ~L". (3.34)

In (3.33)we found the largest possible depopulation of monomers at the defect potential in
the case of a relevant interaction= 0). As we discussed i(2.2) a measurable quantity
should be the following rati¢2.22) which in the case of 2D-membranes becomes in the
limit z — oo:

— 1

(n)o - 200 = (3.35)
(nz)o 2

which can be compared with the 1-loop prediction (which is exact for polymers):

(o _ 2200 121 100p) (3.36)

Jind, V3

4. Crossover to polymers

Let us now analyze the theory beldw= 2. Due to the renormalizability in & D < 2
and the existence of anexpansion we expect the renormalized coupling to reach a finite
fixed point in the strong coupling limit as soon Bs< 2. This approach is characterized
by a power-law decay of the form

() =g"+S(n2)z"* + 0 (), (4.)

wheres is some scaling-function growing at most sub-exponentially@and » > 0, with
o defined in(2.18)



H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530-564 545

Our ultimate aim is to extract information from an expansion in powers -ofI2 of
the effective coupling about the correction-to-scaling exponeint (4.1) for D < 2. The
scale invariant behavior below = 2 results in a finite fixed point of the renormaliza-
tion g-function as a function of the effective coupling. The qualitative behavior of the
B-function is sketched ifrig. 5.

4.1. (2 — D)-expansion on the torus

In order to gain information abogtbelow D = 2 one has to expand the loop integrand
(det®)~%/2 (3.12)in powers of 2— D. For convenience, we take— 0. The propagator
takes in infiniteD-space the forn€' (x) = |x|>~? /(Sp(2— D)), whereSp, = 272/2/1(5)
denotes the volume of the-dimensional unit-sphere. The factdy (2 — D))~ replaces
In(%) and is absorbed into a rescaling of the field and the coupling according-to
r(Sp(2— D))Y? andgo — go(Sp(2— D))¥/?, such that the factors ¢fn £)~¢/2in (3.18)
and(3.29)disappear. The propagator in the rescaled variable can then be written as

C(x)=1+ (2— D)C(x), (4.2)

where for convenience of notation we all@yx) to depend itself orD.
Of course, on a closed manifold of finite sizZé(x) is modified, but the forn{4.2) is
independent of the shape of the manifold. Accordingly, one may expand the Madsx

2=904+2-D)D, (4.3)

where®© is defined as before and coincides with the lithit> 2 when inserting the
aboveC (x) into®. MoreoverD is of the same form &9, but eachC (x) has been replaced
with C(x):

1
D;; = E[(C()c1v+1 —xi) + Clxny41 — xj) + Cx; — x)]. (4.4)
Then,
detd = detd @ exp{Tr[In(1+ 2 - D)[D®] 'D)]}, (4.5)
where[D @]~ = 2(1 — ;A P) denotes the inverse matrix @,
Denoting
m:=[0*] " (4.6)
B(gIA
D =1.5
— >
e 8
D=1
_______ /D=

Fig. 5. Qualitative behavior for the-function in D = 1, D = 2 and result anticipated fap ~ 1.5.
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we expand the determinant {4.5) up to fourth order in 2- D:

[detD)] /2
2
= [det(i)(o))]_d/z[l - g[(z _pyTra— G qrgp
_ 3 _ 4
Mt 2D) Trom3 — G20 gy sm“]

d2
+ E[(2_ D)2Tr2§m —-(2- D)3TrfmTr9ﬁ2

2
+(@2-D) [ Tr m2+3TrmTrzm3H

3

d
— | @2-D)°3Tr® 2-DY*ZTePMmTron | + — (22— D)*1r?
48[( )T — ( ) rfntrim}+384( )FTrEo

+0(2- D)®). (4.7)

The first step in the analysis will be to obtain the resummed perturbation series of the
effective coupling up to fourth order in2 D. That is, we have to inse(4.7) into (4.5),
calculate the corresponding loop integrals at each order of perturbation theory, insert the
result into(3.12)and sum the appearing series to all orders.

Let us start with the first-order term in-2D from (4.7). We only needit = [ @171,
which reads

@) = (2] '0),, = ( vy Zz’”‘) L (48)
The trace 0{4.8) can easily be performed, with the result
N 2
Trom = (H—Nl;@“ TN ;;(1 5,k)©1k>L (4.9)

In each order of perturbation theory we have to integrate the exprggsiover internal
distances. These integrals have to be regularized in the infrared through an appropriate IR
cut-off. We are considering a finite manifold of toroidal topoloig( 6). The precise form
of the correlator on the torus will only later enter into the calculation.

To simplify the calculations, we further introduce the following notation:

f(xll,.. , Xiy) —/ /f(xll,.. L Xi) (4.10)

with the internal integrations defined as

/ _LE/. / integral over the torus withh = 1, (4.11)
xeM
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" e
.

.
Senr

Fig. 6. Regularization scheme for ti&loop diagrams on manifolds with toroidal topology (periodic boundary

conditions). HereD = 2.
such that the overbar i{@.10)can be thought of as an averaging procedure, and especially
(4.12)

1=1.

Thanks to our regularization prescription the integra(4®) over internal points can be
replaced by.VP (for the integration measure) times
2N(N -1 1
¥> (C(XN+1 —Xi) — E(C(xi - xj))
(4.13)

2N?
C —x) —
(¥y-+1 = xi) ( 1+N

Trom =
1+N
2N — NWN-1)—
= ].—}——NC(XN+1 —x;)+ H—NC(-X[ —Xj).

Due to the internal symmetry of the closed manifolds which we consider the expression

above can be further simplified, since
Clxy41—x) =C(x; —x;) =C(x). (4.14)
Introducing a diagrammatic notation
@ =C(x), (4.15)
the N-loop integral reads up to first order in2D
14N ) —d/2
(4.16)

/(detD)fd/Zz MNg( o
x [1— %(2— D)<N@) +0(2- D)Z)}.

For the further analysis we will not only neé#l 13) but also the terms appearing to higher
order in 2— D in (4.7). We derived expressions likg.13)for Tr2M and TrM? and all
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terms up to fourth order in 2 D with a MATHEMATICA ®-program. It is based on the fact
that all terms to appear in the expansidn?) are of the form Tf M or products of the
latter and therefore can be written agV®/(N + 1)%, wheren, m, k € N and RN) is some
polynomial inN. It will turn out soon that it is convenient to expand the polynomigV/P
in terms of the following base:

k
LN, N(N—1),N(N-1(N-2),..., ]_[(N — )it (4.17)
j=0
We obtain:
T — —2N(N —1) = N(N — 1)(N — 2)(mz
1+N
2N +3N(N —1)+ NN — (N —2) 5—
+ TN C4(x), (4.18)
and
T2 WWZDFNN DN =25 | 2N 0 (4.19)

1+N 1+N
Diagrammatically, the averages can be rewritten as

@ — TR (4.20)
@ — 2. (4.21)

Like in the case of the first order diagrgeh18)and(4.19)are highly simplified as com-
pared to an open manifold, see our treatmeri88j.

Let us shortly discuss the reason {dt17} inserting(4.18)and(4.19)into the pertur-
bation series and summing all loop orders, the following series types will appear:

and

p L [ PSS
L NI + DI T L NN k72

= (—DF P (o). (4.22)

We may therefore identify the resummed series with a function that we know already fairly
well, in particular we know its strong coupling behavior. It is furthermore convenient to
reduce all functiong”,fjlz(”l) (z) to sums of functiongfldﬂ(’”) (z) exploiting the formula

(3.25)
4.2. Resummed contributions to the expansiah-+nD up to fourth order

We are now almost in the position to state all resummed contributions up to fourth order
in 2— D. Let us first state all necessary diagrams:
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— TG =), (4.23)

P

which contributes to first order in2 D. To second order one needs in addition

=(C2(xi —Xj). (4-24)

@)

To third order diagrams with new topology are

C3(x; — xj),

I
o
£)

; — x)Cxj —x)Clx — xp). (4.25)

S0

Finally, to fourth order arise:

= CHx; — x;),

C2(x; —x))Clxx — x))Claxx — x7),

=C(xi —x)Clxx — x)Cx; — x)C(x; — xp). (4.26)

0O ®

If one calculates diagrams, it will turn out that it is to some extend more convenient to
express the above averages in terms of averages over a connected correlation function,
which is defined as

C.(x):=C(x) - C, (4.27)
such that, for instance,
C2=C2-C2 (4.28)

Furthermore, we will need:
3_C3_30C2 4 2C3 (4.29)

and

€2 =Colxi —x)Ce(xj — 1) Ce (g — 1))
=Cx; —x)Clx; —x)Clxg — xi) + 3@2((:(x,~——xj)
—3CC(x; — x)Cxj —xx) — c3
=CA-C8, (4.30)

wherex;, x;, x; are distinct points, and the average is over their position$4.30) we
exploited the symmetry of the closed manifold, and the definitio@#fis self-evident.



550 H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530-564

Furthermore, we will need to fourth order in2D:

C4 = C4 + 12C2C? - 4C3C - 3C4, (4.31)
Ce =Ce(x; —x))Ce(xj — x)Ce(xx — x)Ce (x1 — X;)
=C®+5C* (4.32)

and

@ = (Cg(x,' —x)Ce(x; — x)Ce(x — x)
= (CT> — 2@@ — @CZ + 2([_:4. (433)

Let us now state all terms which appear in the expansion of the renormalized coupling
g(z) up to fourth order in 2- D according to(4.7). We have to calculate at ordé¥ of
perturbation theory:

Tra = NC. (4.34)

Inserting this into the perturbation series and summing up the resulting terms to all orders
in N generates the following contributions in ti2— D)-expansion of the renormalized
coupling:

S _ T— _ \N+1 _ _
> (deto @)~ 2% =Cf*%) - CH ), (4.35)
N=1 :

which contributes to first order in2 D.
To second order in 2 D, we have(4.18)providing

i (det’i)(O))—d/2 Tron2(—z)V+t
~ (N +1)!
= 2C2 f{+4(2) + (—4C2 + T?) £+ 2(2) + (-C? +3C2) £ (1) — C2f{2(2),
(4.36)
and(4.19)providing
i (detn®)~¢/2 T2 m(—)M+
— (N +1)!
= 2C2 f*4(2) — (2C2 4 C?) f{+2(2) + 2C2 fiL(2) — T2 £ 72(2). (4.37)

Let us now state the terms at third order in-2D, which we derived with the help of a
MATHEMATICA ®- program (V is the loop order):

i (det©@) /2 Tromd(—z)M+
] (N +1)!

— 4(T3 — 4CD) f7+4(2) + (—10C3 + 36C2 + 6CC2) £4+2(2)

+(9C3 - 32C~ — 12CC2 + T3 f{ (2)
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+ (303 — 17C2 — 9TC2 + T3) £42(2)
—3(2C2 + TC2) f-4(2) + C £7-5¢2),

i detn®) d/ZWT(;vmf;,Z)NH
N=1 !
=4(C3 )fd+6(z) +(—-8C3 + 3202 + 2CC2) £1+4(2)
+ (63 — 20C% + 2TC2 — 6T3) £4+2(r)
+ (- 2@3 + 4@ _ 7@@2 + 2(C3) fd(z)
— (C3-4CC2) £ %(2) - CC2f{ (),
i detn©) ~ap M)V
N=1 (N +1)!
= 4(C3 - 4C2) £{5() + (—4C3 + 24CE — 6CC2) f{H(2)
+ (_S(CC +12CC2 + C3) 1+2(z) — 3(C3+ 2CC2) £(2)
+3C3 {12 - C A ).

To fourth order in 2- D we obtain:

i (detn®) /2 T (=M
P (N 11!

= 8(222C" + 6T7CZ + 3C2 — Cf + 24TF — 36T%) f{ 2(2)
+4(804C" + 12C%C2 + 3C2% — 2C4 + 7207 — 13207 — 4CC3
+16CC2) 178(2)

551

(4.38)

(4.39)

(4.40)

— 4(43204 — 3T2C2 — 6022 + 2400 — 720¢ — 8CC3 + 40CC2) £+ (2)

+ (287C* — 36T2C2 — 12022 — 48T — 160C3 + 1260C2) £242(z)

+ (4T + 36C2C2 — 32CC2) f1(2)
+(—6C* - 2C°C2) f{ 22 +4C* f{ ) - T (0,

i detD©) ~a2 I TrZ M (=) N1
— (N+ D!

= 8(222C" + 6T7CZ + 3C2 — Cf + 24CF — 36T¢) f{2(2)
+4(960C* + 24C2C2 + C2% — 4CE + 10007 — 156C) £1'7°(2)

(4.41)



552 H.A. Pinnow, K.J. Wiese / Nuclear Physics B 711 [FS] (2005) 530-564

— 4(714C* + 20C2C2 - 8C22 — 3C4 + 70C — 116C7 — ATC3

+12C0c2 ) £+

+ (889C* + 36C2C2 — 2C22 — 28CC3 — 4C4 + 80CT — 144C?

I 88@((3—?) d+2( )

+ (~99T4 + 3T2C2 + 822 + 160C3 — 8T + 16T¢ — 48CC2) £2(2)

+ (3T4 — 11C2C2 — 2022 — 4TC3 + 8TCP) £7-2(z)

+ (~C* - 5C2C?) f{~4(2) — C2C2~5(2), (4.42)

i deto®) /2 sz—f(”;zi—lz))v’v “
N=1 :
= 8(222C* + 6T2C2 + 3C22 — C4 + 24C — 36C2) f1*8(2)
+ 4(1116C* + 36C2C2 4 23022 — 6C4 + 128C — 180CT + 4CC3
_ 16@(3 ) fd+6
— 4(1080C* 4 47C2C2 4 28C22 — 8C4 4 1320 — 172C¢ + 8CC3
_ 32@(: )fd+4
+ (2111C* 4 148C2C2 + 44C22 4 24TC3 — 24C4 + 272C> — 328C2
_gotch ) £{F2(2)
+ (—538C* — 74T2C2 + 10C2? — 8TC2 4 10C4 — 72C + 80C2

+8CCH) f{ ()
+ (59T* + 20C°C2 — 1507 — 2C¢ + 8CF — 8T7) f{ *(2)
+ (—2C%C2+ 6C%) f{~4(2) - C2 {8 (), (4.43)

55 (dero®) 42 TR
o] (N +D)!

= 8(222C* + 6C2C2 + 3C22 — C4 4 24C2 — 36T2) f{+8(2)
+ 4(1038C* + 30C2C2 + 18C22 — 5C4 + 114C — 168C2 + 2CC3
_ S(E(C )fd+6( )
— 2(1818C* 4 54C2C2 4 39C22 4 CC3 — 9CA + 204CF — 294C¢
_22Cch ) £ ()
+ (1583C* 4 48C2C2 + 36C22 — CC3 — 6C4 + 186C2> — 258C2
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+8Cct ) Fi*2(2)
+ (~3580% — 21T2C2 — 6022 + 6CC3 — 4807 + 60C3 — 37CCL) £ (2)
+ (35C% + 1202C2 — 3TC3 + 60 — 67 + 23TCY) f-2
+(=3C2 — 7CC2) fi~4(2) + TCE 85 (), (4.44)
i detD©@) /2 -”—9(3;1(;21))7“
N=1 :
= 8(222C* 4 6C%C2 + 3C2% — C4 + 24CF — 36C2) f{8(2)
+4(1116C% + 36C2C2 4 23C22 — 6C4 + 128C7 — 180CT + 4CC3
_ 16@@_?) d+6( )
— 4(1110C* + 39C2C2 + 31C2% + 10CC3 - 7C4 4 136C> — 178C2
_ 36(E(C ) fd+4( )
+ (2473 + 72C2C2 + 82C22 + 36CC3 — 16C4 + 304C2 — 396C¢
— 1280C2) f442(z)
+ (—955C* — 12C2C2 — 36C2% — 12CC3 4 5C4 — 92CF + 154C2
+68CC2) f1(2)
+ (2880 + 12022 — C4 + 1205 — 47C3 — 24TCL) f1-2
+ (—B0C4 — 2022 4 10C3 + 4TC2) f£~4() + (6T — TI) 4 5(2).  (4.45)

4.3. Renormalized coupling

Combining(3.12) (4.7)and the result&4.35)—(4.45¥rom the preceding subsection we
may now give the exact renormalized coupling to fourth order i R. For the sake of
compactness, we introduce a new notation: since all series contributions are of the form as
stated in(4.22) we introduce vectordl such that

i detd©) —af2 [Ty (Trmmiymi (—g)N
N=1 (N + 1!

max

=3 Mpmwe o PQ =M s

j=min ”l ng oo ng ny np .- ong

- T2 (), (4.46)

min

wheremaxandmin are some integers, and summation over the irjdexmplicit. Inserting
the results for the resummed series contributions (4t@) we find for the renormalized
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coupling to fourth order in 2= D:

d_ i .
g() = f{*?(2) - 2- D)EM](1|1)f1d+21 (@)
+(2_D)2(5Mf12 420 )+ Lo f1+2,-(z)>
) (12)

8
—@2- D)3(g

2
MY d+2jy 4 D pni d+2j
4 <%|53)f1 (@) + (12 )fl (2)

8

j d+2j
+48M(\ )fl (z))

_ 4 S d+2j
+(2-D) (81\41(4‘_4 )fl (2)
dz j +2] J +2]
3
d+2j d_ J d+2j — D)
+32 (2 1 )f (Z)+384M( E )f ()>+0(2 D)~.

(4.47)

The vector entriedl/ are to be taken from Sectigh2
It is more convenient to discuss insteadg@f) an integral transform. From the expan-
sion of fZ(z), namely

o
7= (Zd) f dr 112t exp —ze — 1], (4.48)
2
0

and the structure of the expansiorg@t) in powers of 2- D and the integral representation
of the f‘”z’ it follows that the exact renormalized coupling can be written as

g)=¢g(D,2) =z f dr g(r) exp[—ze" - r], (4.49)
0

whereg(r) is of the form

g(r)zrd/[ (%)+(2 D)Z Z puri(2— D)} (4.50)

n=0 j=—nmax
4.4. Guessing the exagtr)

Let us try to gain more information about the power-law behavigdit), that is about
the expansion in 2 D of the correction-to-scaling exponent Power-law behavior forces
the serieg4.50)to turn into some exponentially decaying functig@) as can be seen from
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the asymptotic form of (z):

? . Berw/€
~ —w/e _ —z€" —r —2Z
8(z) = A+ Bz Z/dre (A+7F(1+w/8))+0(e )- (4.51)
0

In order to check the latter equation note that

f12+w/8(z) = gite/e / drexp[—ze” — L+ w/e)r] = F<1+ %) +0(e7)
—w/e z , .
= Z / :m/drexd—ze _(1+w/8)}’]+0(e )
0

L & (e .
_F(l+w/8)l§0/dr oA ] o)

o0

_ 1 (—o/e)" 241 .
_r(1+w/8)n§) a1 @+ 0(e7), (4.52)

where it is understood that is expanded in powers of 2 D.
Let us now test a possible form of the exg¢t). It should satisfy the following prop-
erties:

(i) Inthe limit of D = 2 the exact result?/2/ I (452) emerges.

(i) For D < 2 the corresponding(z) has a finite fixed-point value together with a strong
coupling expansion. Especially, the ansatz should interpolate to the Aimit 1,
which corresponds to a Gaussian polymer closed to form a ring. The strong cou-
pling expansion of the renormalized coupling of a closed chain interacting with a
8-potential is easily obtained from the factorizability of loop integral®ia- 1 (see,
for instance[33]). The result is:

— 1\" 1
g(z)=8|:1+;<—r(8)z) m_ng)]. (4.53)

(iii) It is consistent with the expansio@.47)

The (non-unique) ansatz is

1—S(D,r)e”:r>d/2

/e (4.54)

§(f”)=C<

whereS(D, r) is analytic inD = 2 of the form

w ad n
S(D,r)=1+ " nz::lsn(r)(z - D), (4.55)
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and eacls, (r) has a Laurent expansion

Nmax

S,(r) = Z s,,yjrj. (4.56)

J="Nmin

Note, that in the limit ofD — 2, the expressiol4.54) gives Cr?/2, while for D < 2 it
yields upon integration the forif#.1), ensuring both properties (i) and (ii). Let us finally
check consistency with the expansi@n47)up to the second order in-2 D: inserting

g =w2(2— D)2+ 02— D)? (4.57)

(the linear term in2 — D) has to vanish) into the ansat#4.54)and expanding to second
order in 2— D provides

g(r) = Crd/2|:l - % <Sl(r)(2 — D)

+ <%r _a " 281012 + Sz(r)> 2- D)2+ . )} (4.58)
Explicitly, (4.47)becomes to second order in-2D
g = f{@) - @2- D)%[@ff”z(z) -Cf @]
+ @ D[R + (T - 482 /{720 + (382 - ) )
- C2f{%)]

d? . — — _
+@2- D)ZE [2C2f{H4(z) — (2C2 4 C?) £{+2(2) + 2C? f{ (2)
—C?* {2+ 02— D)*. (4.59)
From this, the first coefficients of th@ — D)-expansion og(r) are obtained. They read

dJ2?

- r d— d
d— d,— = d>, _— =
—(2—0)2[§©§r+z(<c?—4<c§)—E(z 24 C?)

d?, — = d d?(d — d—
= 3 2 - 2 —1__ __1 2 - 2 -2 .
+<8(C+CC)+8C>r 8(2 )(CC+2(C r

(4.60)
Comparing(4.58)and(4.60) one identifie€ = 1/ I'(4F2), S1 = ~C(1— $21) andw, =

2(C_§, whereC,(x) := C(x) — C. Note that the terms proportional @ in Sx(r) mostly
cancel withSy(r)?, a sign that the ansatz catches some structure.

2 This is due to the fact that the ordet — D) term in g(z) scales identically iy as the leading term. Only
the order2 — D)2 diverges more strongly.
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The diagrams to be calculated at this order@raand(c_g (seeAppendix B. On a man-
ifold of toroidal shape, which is equivalent to periodic boundary conditions, two discrete
sums have to be evaluated:

~  Sp 1 2n
C_P[ 2 ﬁ_@—D)]

keZD, k#£0
= —0.44956+ 0.35832 — D) + 0(2— D)?, (4.61)
— 55 1
Cc2= Tend Z =, =0.152661+ 0(2 - D). (4.62)
keZP, k#0

With the results given above, this leads to

w =2¢C2(2— D)?+ 0(2— D)*=0.305322(2— D)?>+ 02— D)?, (4.63)

which can be compared to the exact result foe= 1 (polymers).w = €. As a caveat,

note that the above scheme is not unambiguous in the sense that the second order term
proportional tar in (4.61)could in principle either be attributed te or S». However, any

ansatz in(4.54)will provide anw, whose expansion starts at least quadratically-n .
Though(4.54)is the best ansatz that could yet be found ensuring properties (i)—(iii), the
precise form of constraints on the scaling funct®memains to be discussed in order to
settle this question.

5. Conclusion

In this work we refined the analysis of a-dimensional elastic manifold interacting
by somes-potential with a fixed point in embedding space. Starting from the perturbation
expansion of the effective coupling of the problem, in a first step, we performed a new
calculation using a modified regularization prescription: evaluating loop integrals in fixed
space dimension on a manifold of finite size enforced the introduction of a microscopic cut-
off as soon a® = 2. This way, we recovered the complete summability of the perturbation
theory in this limit and confirmed the strong coupling behavior as found previously in an
analytic continuation from below> = 2. In the strong coupling limit, corresponding to
strong repulsion or equivalently to large membrane sizes, the effective coupling diverges
logarithmically as a function of the bare couplingyielding a vanishing correction-to-
scaling exponenb. Analyzing the RGB8-function we found that it tends to zero at infinite
bare coupling; as 0< d < 2. The renormalization group flow then tends to a fixed point,
and the theory becomes scale invariant in this limit. Due to the logarithmic divergence of
the effective coupling, however, the corresponding zero ofgtfienction in terms of the
latter is, too, shifted to infinity. This is a quite remarkable result showing that the scaling
behavior of the system is accessible only to an all order treatment and deviates qualitatively
from any finite loop expansion, be it within a minimal subtraction scheme or at finite
Especially, the logarithmic growth of the effective coupling signals the limiting behavior
of a scale-invariant theory.
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The result inD = 2 is completely independent of the regularization procedure. This
does no longer hold true beyond the leading order, which should be accessible to an ex-
pansion in 2- D. We constructed its first order in a specific regularization scherf&in
While this reproduces qualitatively correctly the known resulDin= 1, it suffers from
a renormalization scheme, which neglects the boundaries of a finite manifold. We used a
hard cutoff in position space, while working with the infinilespace correlator. It seems
that only in ans-expansion this procedure is systematic.

Now, in a second step of the analysis we overcame this problem by constructing the
(2 — D)-expansion on a manifold of toroidal shape of finite size, thus imposing periodic
boundary conditions on the field. There is no further infrared cutoff necessary. We have
carried out the expansion of the renormalized coupling up to fourth orderif2reveal-
ing the general structure of the expansion. It is important to point out that in consigering
as a function of the bare coupling, the limils— 2 and strong coupling;(— oo) cannot
be interchanged. Whilg tends to infinity ag does inD = 2, we expect finiteness of this
limit as soon as 2 D > 0 and the existence of a strong coupling expansion as found for
polymers O = 1). We were able to guess an exg¢D, z) as a function ot and the in-
ternal dimensiorD, which satisfies these properties and which can be reconciled with the
available expansion in 2 D by an appropriate matching of its free parameters. Though it
turned out that due to an ambiguity in the matching of parameters the precise power-law
behavior of the effective coupling belo®® = 2 cannot yet be isolated, we found that for
closed manifolds the expansion @fin powers of 2— D starts at least quadratically as
D <?2.

The exponent is closely related to observables, which can be measured in Monte Carlo
experiments. These are, for instance, plaquettes-density functions at the repelling potential
on a membrane avoiding a single point.

While results for the pinning problem are interesting on their own, the main motiva-
tion is certainly to obtain a better understanding of self-avoiding polymerized membranes.
Preliminary studie$40] indicate that this problem can also be attacked by the methods
developed here. This would be welcome to settle the discrepancies between field theoretic
results on one hand 6,17,41]and numerical results (e.§32]) on the other.
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Appendix A. The propagator

The regularized difference correlator is defined as

Ca(x) =Ga(0) — Galx) (A1)
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whereG, (x) denotes the usual two-point correlator, which is obtained ffom:

explikx — a?k?
deM_ (A.2)

1
Go(x) = ——
0= | 2
Here, short-wavelength modes are suppressed through a soft cutoff procedure. Introducing
a Schwinger parameterization for the evaluation of the integrg.ip),

1/a?
f(t+az)k2 ikx _ D/2-1g _si2
G,(x) = /dt/(z )D ¢ (ZJ—)D /dss 7, (A.3)
wheres = 1/(r + a?), we obtain for(A.1):
1/a2
1 D/2—1 _s2?
Ca(.x)zm / dss (1—e 4). (A4)
0
Further evaluation leads to:
() D=2:
1 x2 x°\xo0e 1 x
(i) D < 2:
|x|27DF(%) aZ—D a2 aZ—D
402 —
(2— D)2b—1xD/2

Colr) =
) = 2 Dyzeb2 T 2= Dy2p 17072°

2
_kPPrz. )
(2— D)2rP/2

2-D 2-D
1
Al a b=z 2 ndt (A.6)

Sp(2—D) (2—D)2b-1zb2 27

X—>00
~

I'(z, «) denotes the incomplete-function:

o
F(Z,oc):/dttz_le_’. (A7)
Especially:
lim C,(x) = ﬂ (A.8)
a—0 att _SD(Z—D)’ '

aslong a9 < 2.

3 Strictly speaking, we have to consider the propagator on the torus, as is dappandix B However, this
does not make any difference for the purpose of our argument.
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Appendix B. Calculation of the diagramsin the (2 — D)-expansion

In this section we calculate the diagrams which appear in thelRexpansion on the
torus of sizeL = 1. It turns out that to obtaift and CZ we need to evaluate two sums
over discrete wave-vectors due to periodic boundary conditions on the torus. Let us first
derive the latter before turning to the explicit evaluation. Starting from the definition of the
difference correlato€ (x),

C(x):=G(x) — G(0), (B.1)

whereG (x) is the usual two-point co[relator, we obtail{x) through an inverse discrete
Fourier-transformation frond (k) = 1/k2, which reads:

-

1 it B :
C(x)zzﬁ(l—e‘ ), k=2rii, iieZxZ\{0). (B.2)
k0
Performing the averaging procedure

%=/C(x), (B.3)

X

Wherefx gkt — 65 is to be taken into account, the calculationtfr) reduces to

__ 1 - o

C(x):Il.:Zﬁ, k =27, (B.4)
k0

wherek is D-dimensional, and the indices are integer and running fromoo to oo,

n = 0 being excluded from the summation. Of course, in the expansion in poweks bf 2

we need an analytic continuation to real valuegofFinally, to obtainC(x) we have to

subtractC© (x) from C(x). Due to our normalizations:

— - CO (x)
whereSp denotes the volume of the unit sphere &1 (x) = 1.
Turning toC2(x), we first note that within our normalizations we have
Sp2C2(x) = (C(x) — CO(x)/(27(2 — D)))?
— C(x) 1
_ 2 _
=C(x) 22n(2—D) + 21 (2_D))? (B.6)
and
277 N2 _ N2 m 1
SHCx) =Cx) 22n(2_ D) + 21 (2_D))? (B.7)

according tqB.5), such that
C2(x) = C2(x) — C(x)* = S5(C2(x) — C(v)?). (B.8)
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Knowing already the sum to be evaluated to obf@jr{B.4), what is left is:

= [ [T 5 e ey

x k#0p#0
11 P 1 172
=225 5k+p_51?_55+1)=z:12_4+[2ﬁ] (B.9)
k;&OP#O k=0 k0
Therefore,
—— 1

-2 .

S cg(x)=12.=zﬁ, ki = 2mn;. (B.10)
k=0

Let us first calculatd;: introducing a Schwinger parameterization we have:

o0
1 <1 1 > 2
I _— = —F d e—S}’l
1= (27,)2 ZOO 52 (27,)2 an / S

n;éO 1n#0

(271)2/ {( > e )D—1:|, (B.11)

where it is to be noted that the sum in the last line is only one-dimensional. Furthermore,
from now on it is clear, how] is analytically continued to real values bf.

In order to evaluate this sum, we will make use of a Poisson-transformation, which
reads:

Z g Aln— -2/2)% _ \/7 Z ———Hnlz (B.12)

n=—0oo

The contribution fron? = 0 is the approximation of the |.h.s. through a Gaussian integral.
Our aim is to calculate the coefficients of the-2D expansion off; numerically using
some algebraic manipulation program. Then, the integration internv@.il) has to be
made finite. This is done as follows: for asyy> 0 we have

S0 - 00 D . 0 00 D
1 —Snz 1 —Sﬂz
11=W/ds_<29 ) —1_+(2n)2fds (Ze ) —1:|

n=—0oo n=—0oo
So - D . 50 D
1 > _on? 1 ds s _n2/s
=—(2n)2[ds < Z e ) -1 +(2n)2 = ( Z e ”) —1}.

(B.13)

For any finitesg > 0, the sum in the r.h.s. integral can be truncated at some fipigfor
all s € [0, so]. For the first integral (corresponding to small values)ofle make use of the
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Poissonian formuléB.12) with z = O:

\/7 3 e s, (B.14)

[=—00

Inserting this into(B.13), the sum in the first integral can be truncated at some firdte
well, such that one may approximately write:

et o 5 )

{=—Imax

Nmax D
1 —n? /s
+(2n)2/ [( > e ) - } (B.15)

Nn=—Nmax

Choosingso in a way that/max can be set equal to zero the I.h.s. integral can be evaluated
analytically:

N 1 27TD/2 D/2 1 . 1 S0 ds Iimax s D .
b~ o\ aopf —%7 ) T oz 2 nz; © —
0 (B.16)

Thereis apole in 2 D, which can be easily subtracted expanding the expression in powers
of 2— D. The pole is

1

- _ 0
572_D) +0((2-D)°). (B.17)

I =
The precision of the machine that we used to eval(Bt&6) was sufficient in a way that
we could seleckg from an interval, such that the sum appearing in the integrand could
be truncated at some finitg,ax and the result was independent from the precise value of
so within the desired order of accuracy, therefore, justifying the approximati¢B.itb).
Setting, for instancep = 1.9 andnmax = 20 we obtain with M\THEMATICA ®:

_ 1 2
h=5 o~ 0.7154971) — 0.004570461)(2 — D) + O((2— D)?). (B.18)

On the torus we scaled the square root of the volume obtftBmensional unitsphere into
the field. Accordingly, comparing wittB.4) and(B.5) we then find:

C = —0.449561) + 0.35831)(2 — D) + O((2— D)?). (B.19)

Let us turn to the evaluation df following the same strategy as above. Again, setting
L =1 and introducing a Schwinger parameterization leads to:
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1 r > 2 P
i —Sn
12 = W f dss Z e -1
0 n=—0o0
-1
So I D
1 / 7T X 272
~—— | dss — Z e s~
i
(2m) J s =
50 n D
1 ds sy 2
_- | = —71°/ _
+ (271)4/S3 > el -1y, (B.20)
0 n=-—nmax

where we have once again applied the Poisson-transform@id®) with z = 0 on one
part of the integration interval and truncated both series at some finite vajdgand/nax.

There is no pole in 2 D. Sincel, appears at second order in-2D we only need its
value atD = 2. sg has to be chosen from an appropriate interval. Settjfig = nmax = 10
andsg = 1.1 we obtain with MhTHEMATICA®:

I =0.0038669%1) + O((2— D)), (B.21)

or, due to the rescaling by?,

C2=0.1526611) + O((2— D)). (B.22)
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