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Interacting Crumpled Manifolds:
Exact Results to all Orders of Perturbation Theory
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Abstract. – In this letter, we report progress on the field theory of polymerized tethered membranes. For
the toy-model of a manifold repelled by a single point, we areable to sum the perturbation expansion in
the strengthg0 of the interactionexactlyin the limit of internal dimensionD → 2. This exact solution is
the starting point for an expansion in2−D, which aims at connecting to the well studied case of polymers
(D = 1). We here give results to order(2 − D)4, where again all orders ing0 are resummed. This is a
first step towards a more complete solution of the self-avoiding manifold problem, which might also prove
valuable for polymers.

Introduction. – The statistical mechanics of fluctuating lines and surfacesis a subject of great
interest, which poses fundamental problems and has remained challenging for more than 20 years.
One particular universality class, which has been studied extensively in the past, are polymerized or
“tethered” membranes [1–9]. These are two-dimensional networks, where the bond-length fluctuates,
but never breaks up. In the high-temperature regime nearest-neighbor interactions can be modeled
by a harmonic potential. Neglecting self-avoidance, the membrane is extremely crumpled and highly
folded, a property, which is characterized by the universalradius-of-gyration exponentν, defined as

Rg ∼ Lν , ν = 0 , (1)

whereRg denotes the radius of gyration, andL is the linear internal size. Physically,0 ≤ ν ≤ 1, but
in the absence of interactions, the radius of gyration growsonly logarithmically with the internal size.

For a more realistic description one has to take into accountself-avoidance, whose continuum ver-
sion can be modeled by the generalized Edwards-Hamiltonian[10] with 2-particle contact interaction

H[r] =
1

2

∫

x∈M

(∇r(x))2 +
b0

2

∫

x∈M

∫

y∈M

δd(r(x) − r(y)) , (2)

wherex∈M⊂RD labels points in the manifoldM, while r(x)∈Rd points to their position in external
space. The Edwards model successfully describes long polymers [11,12]. Much effort has been spent
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to extend these results to membranes (D = 2). The problem is, that the usualε-expansion about the
upper critical dimension is not feasible, since the latter is infinity. An important idea was therefore
to generalize (2) to manifolds of arbitrary internal dimension D. One then studies theD-dimensional
manifold problem, and finally continuous analytically toD = 2. A major breakthrough was the proof
of perturbative renormalizability [5,6] to all orders in perturbation theory. This procedure was carried
out to two loops [13, 14] resulting in a radius-of-gyration exponent ofν ≈ 0.86. This is a strong
correction over the non-interacting theory withν = 0, but may still be in contradiction to Monte-
Carlo simulations, which often but not consistently find tethered membranes in a flat phase withν = 1
[15–18]. While simulations are very demanding and therefore not yet conclusive, it is nevertheless
compelling to try to identify possible mechanisms, which might render flexible membranes flat at all
scales. Such a mechanism has indeed been found for rigid membranes, where fluctuations strongly
renormalize rigidity [1,19].

Here we study a simplified model, and solve itexactlyat D = 2. It corresponds to a gaussian
elastic manifold interacting by excluded volume with a single δ-like impurity in external space [20]

H[r] =
1

2

∫

x∈M

(∇r(x))
2

+ g0

∫

x∈M

δd(r(x)) . (3)

As a first step to prove renormalizability of the full problem, [3, 4] analysed (3) and indeed showed
renormalizability to all orders in perturbation theory forall dimensions0 < D < 2. (3) has essen-
tial features in common with SAM: Its critical embedding dimension tends to infinity as the internal
dimension approachesD = 2. This can be read off from the dimension of the couplingg0, which is

[g0] =: ε = D −
2 − D

2
d . (4)

Thus, calculating universal quantities within theε-expansion necessitates similar techniques as for
SAM, and we expect to learn more from the solution of the toy-model (3).

Recently, we have been able [21] to sum the perturbative expansionexactlyin D = 2. The key-idea
was, that when approachingD = 2, the correlator which enters all perturbative calculations, becomes
essentially flat. In order to check the consistency of the results obtained by that method, one would
like to go away fromD = 2, and hopefully smoothly connect to polymers inD = 1, which are well
enough studied to check almost any quantity. In [21], we havedone a first step in that direction, and
obtained quite promising results in first order in(2 − D). However, the expansion in(2 − D) is not
a loop-expansion, and at each order in(2 − D), we have to resum an infinite number of diagrams.
It turns out, that the results thus become very sensitive to the regularization procedure. In this letter,
we pursue this road further, calculating contributions to the partition-functionexactlyfor a manifold
of toroidal or spherical shape. We obtain the expansion up toorder(2 − D)4. This information can
then be used to extrapolate away fromD = 2. However, since we find that atD = 2, the fixed point
is at infinity, one needs additional constraints, i.e. a scaling function, in order to be able to use this
result. We have not been able to settle this question, despite the tremendous information contained in
the perturbative result. We thus present our “raw data”, together with some possible scaling-functions,
encouraging the reader to think himself about the missing link.

Perturbation theory. – Physical observables are derived from the partition functionZ(g0). We
use it to define the effective coupling of the problem,

g(z) :=
Lε

VM
(Z(0) −Z(g0)) , (5)
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which only depends on the dimensionless combinationz := g0L
ε. VM denotes the total internal

volume of the manifold. Accordingly, the perturbation expansion reads

g(z) =
g0L

ε

VM

∞
∑

N=0

(−g0)
N

(N+1)!

〈

N+1
∏

i=1

∫

xi

δ̃d(r(xi))

〉

0

, (6)

where the normalization of theδ-distribution has been chosen to beδ̃d(r(x)) = (4π)dδ(r(x))
=

∫

k eikr(x) with
∫

k := π−d/2
∫

ddk. Performing the averages within the gaussian theory with nor-

malization 1
VM

∫

x

〈

δ̃d (r(x))
〉

0
= 1, one arrives at

g(z) =
g0L

ε

VM

∞
∑

N=0

(−g0)
N

(N+1)!





N+1
∏

i=1

∫

ki

∫

xi



 δ̃d
(

∑

i

ki

)

e
1
2

N+1
∑

i,j=1

kikjC(xi−xj)

, (7)

whereC(x) := 1
2d

〈

(r(x) − r(0))2
〉

0
denotes the correlator, and theδ̃d(

∑

i ki) stems from the inte-

gration over the global translation. Performing the shiftkN+1 → kN+1 −
∑N

i=1 ki and integrating out
the momentak1, . . . , kN+1 one obtains

g(z) = z

∞
∑

N=0

(−z)N

(N+1)!





N
∏

`=1

∫

x`



 (det D)−d/2 , (8)

where we have factored outLε from the loop integration (such that the integrals now run over a torus
of size 1), and the matrix elementsDij areDij = 1

2 [C(xN+1−xi)+C(xN+1−xj)−C(xi−xj)].

Complete resummation of the perturbation series inD = 2. – Let us compute theN -loop order
of (8): The asymptotic behavior of the propagatorC(x) for large arguments is of the form

C(x) ' c0 +
1

2π
ln

x

a
, (9)

wherec0 denotes some positive constant (noteC(x) ≥ 0), and the logarithmic growth (for largex)
is universal. InD = 2 we need an additional short distance cutoffa. The loop integrals, denoted
by IN , only depend on the dimensionless combinationL/a. We can (somehow arbitrary) decompose
det D = (

∏N
i=1 Dii) det D̃ with

D̃ij =
1

2

[

1+
C(xN+1−xj) − C(xi−xj)

C(xN+1−xi)

]

a→0
−−−→

1

2
, i 6=j ,

D̃ii = 1 . (10)

One has in the limit ofa → 0





N
∏

`=1

∫

x`



 (detD)−d/2 =: IN (L/a) = IN
1 (L/a) (det D̃

(0))−d/2 . (11)

The matrixD̃
(0) denotes the limita → 0 of (10). It can be written as̃D(0) = 1

2 (I + NP), whereI

denotes the identity andP the projector onto(1, 1, . . . , 1), whose image has dimension1, such that
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det D̃
(0) = 1+N

2N . Furthermore, to one loopI1(L/a)
a→0
= c1(ln

L
a )−d/2, wherec1 denotes some

(finite) constant. One then arrives at

g(z) = z

∞
∑

N=0

(−z(ln L
a )−d/2)N

N !(1+N)d/2+1
. (12)

A factor c12
d/2 has been absorbed into a rescaling of bothz andg. The above series can be analysed

in the strong coupling limitz → ∞. For this purpose we define functionsfd
k (z) together with their

integral representation

fd
k (z) := zk

∞
∑

N=0

(−z)N

N !(k+N)d/2
=

zk

Γ(d
2 )

∞
∫

0

dr rd/2−1e−ze−r−kr

=
(ln z)d/2−1

Γ(d
2 )

z
∫

0

dy yk−1e−y

(

1 −
ln y

ln z

)d/2−1
z→∞
−−−→

Γ(k)

Γ(d
2 )

(ln z)d/2−1 . (13)

Thus in the limit of largez, the effective coupling (12) approaches the asymptotic form

g(z) =

(

ln L
a

)d/2

Γ(d+2
2 )

[

ln
(

z
(

ln L
a

)−d/2
)]d/2

. (14)

Observables. – It immediately follows from this behavior that the correction-to-scaling exponent
ω, which is defined as the slope of the RG-β-function at the fixed point, equals zero. Here, it is useful
to study theβ-function as a function of the bare couplingz, which readsβ(z) = −ε z ∂g(z)/∂z.
Then, the correction-to-scaling exponent is obtained fromthe limit z → ∞ of

ω(z) := −
ε z

β(z)

∂β(z)

∂z
. (15)

The value ofω can be checked in a Monte-Carlo experiment by considering plaquette-density func-
tions on a membrane with self-avoidance in only a singleδ-like defect. Be the partition function
Z� =

∫

D[r]δ̃d(r(y)) exp[−H[r]], then the plaquette-density at the defect is obtained from〈n〉� =
Lε

∂g/∂z
∂
∂z (∂g

∂z ), where∂g
∂z = Z�. One furthermore needs the density-density correlation atthis point,

which is defined as
〈

n2
〉

�
= L2ε

∂g/∂z
∂2

∂z2 (∂g
∂z ). In the limit of strong coupling〈n〉� = 1

g0
(1+ω

ε ) and
〈

n2
〉

�
= 1

g2
0

(2+3ω
ε +ω2

ε2 ), such that the ratio

〈n〉�
√

〈n2〉�

z→∞
−−−→

√

ε+ω

2ε+ω

ω=0
−−−→

√

1

2
(16)

becomes universal and should be measurable in simulations.

(2 −D)-expansion. – Let us now analyse the theory belowD = 2. Due to the renormalizability
in 0 < D < 2 and the existence of anε-expansion we expect the renormalized coupling to reach a
finite fixed point in the strong coupling limit as soon asD < 2. This approach is characterized by a
powerlaw decay of the form

g(z) = g∗ + S(ln z) z−ω/ε + O(z−ω1/ε) , (17)
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whereS is some scaling-function growing at most sub-exponentially andω1 > ω > 0, with ω defined
in (15). In order to gain information aboutg below D = 2 one has to expand the loop integrand
(det D)−d/2 in powers of2−D. For convenience, we takea → 0. The propagator (9) takes in infinite
D-space the formC(x) = |x|2−D/(SD(2−D)), whereSD = 2πD/2/Γ(D

2 ) denotes the volume of the
D-dimensional unit-sphere. The factor(SD(2−D))−1 replacesln(L

a ) and is absorbed into a rescaling
of the field and the coupling according tor → r (SD (2−D)) andg0 → g0 (SD (2−D))d/2, such
that the factors of(ln L

a )−d/2 in (12) and (14) are replaced by(SD (2−D))d/2. The propagator in the
rescaled variable can then be written as

C(x) = 1 + (2 − D) C(x) . (18)

where for convenience of notation we allowC(x) to depend itself onD.
Of course, on a closed manifold of finite size,C(x) needs to be modified, but the form (18) is

independent of the shape of the manifold. Accordingly, one may expand the matrixD, which is
D = D̃

(0) + (2−D) D, whereD̃
(0) is defined as before and coincides with the limitD→2 when

inserting the aboveC(x) into D. Moreover,D is of the same form asD, but eachC(x) has been
replaced withC(x): Dij = 1

2 [C(xN+1 − xi) + C(xN+1 − xj) + C(xi − xj)]. Then,

detD = det D̃
(0) exp

{

Tr
[

ln(1 + (2 − D)[D̃(0)]−1
D)

]}

, (19)

where[D̃(0)]−1 = 2(I− N
N+1P) denotes the inverse matrix of̃D

(0). Expanding the integrand (19) in
powers of(2 − D) and the couplingg0, all orders ing0 can again be summed, with the difference
that the integrands are no longer constant. Expanding up to thenth order in2−D involvesn powers
of C(x). Introducing the notationf(x1, . . . , xk) :=

∫

x1
· · ·

∫

xk
f(x1, . . . , xk) with the integration

defined as
∫

x :=
∫

dDx (on the torus) the overbar can be thought of as an averaging procedure. To

first and second order in2−D, the only integrals to be evaluated areC(x) andC2(x). In order to
reveal the structure of the expansion we generated all termsup to fourth order. Generally, the terms
are of the following form

z

∞
∑

N=1

(det D̃
(0))−d/2

∏l
i=1

(

Tr([D̃(0)]−1D)ni

)mi

(−z)N

(N+1)!
=:

max
∑

j=min

M(

m1 m2 · · · ml
n1 n2 · · · nl

)fd+2j
1 (z)

=: M
j
(

m1 m2 · · · ml
n1 n2 · · · nl

∣

∣

∣

max
min

)fd+2j
1 (z) , (20)

wheremax andmin are some integers, and summation over the indexj is implicit. The precise form
of the vector entriesMj will be reported elsewhere [22]. The renormalized couplingthen reads up to
fourth order in2−D (note that we have absorbed a factor of2d/2 in bothg andz):

g(z) = fd+2
1 (z) − (2−D)

d

2
M

j
(1
1
|1
0
)
fd+2j
1 (z)

+(2−D)2
[

d

4
M

j
(1
2
| 2
−1

)
fd+2j
1 (z) +

d2

8
M

j
(2
1
| 2
−1

)
fd+2j
1 (z)

]

−(2−D)3
[

d

4
M

j
(1
3
| 2
−3

)
fd+2j
1 (z) +

d2

8
M

j
(1
1

1
2
| 3
−2

)
fd+2j
1 (z) +

d3

48
M

j
(3
1
| 3
−2

)
fd+2j
1 (z)

]

+(2−D)4
[

d

8
M

j
(4
1
| 4
−3

)
fd+2j
1 (z) +

d2

8

(

1

4
M

j
(2
2
| 4
−3

)
fd+2j
1 (z) +

2

3
M

j
(1
1

1
3
| 4
−3

)
fd+2j
1 (z)

)

+
d3

32
M

j
(2
1

1
2
| 4
−3

)
fd+2j
1 (z) +

d4

384
M

j
(4
1
| 4
−3

)
fd+2j
1 (z)

]

+ O(2 − D)5 (21)
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From the integral representation (13) offd+j
1 (z) and the above expansion, it follows immediately that

the exact renormalized coupling can be written as

g(z) = z

∫ ∞

0

dr g̃(r) e−ze−r−r , (22)

whereg̃(r) is of the form

g̃(r) = rd/2

[

1

Γ(d+2
2 )

+ (2−D)

∞
∑

n=0

n
∑

j=−nmax

pnj
rj(2−D)n

]

. (23)

Let us try to gain more information about the powerlaw behavior in (17), that is about the expansion
in 2−D of the correction-to-scaling exponentω. Powerlaw behavior forces the series (23) to turn into
some exponentially decaying functiong̃(r) as can be seen from the asymptotic form ofg(z)

g(z) ' A + Bz−ω/ε = z

∞
∫

0

dr e−z e−r−r

(

A +
B e−rω/ε

Γ(1+ω
ε )

)

+ O(e−z) (24)

Now, we test a possible form of the exactg̃(r), which is consistent with the expansion (21) and which
satisfies the following properties: (i) In the limit ofD = 2 the exact formrd/2/Γ(d+2

2 ) emerges and
(ii) for D < 2 the correspondingg(z) has a finite fixed-point value together with a strong coupling
expansion. The (non-unique) ansatz is

g̃(r) = C

(

1 − S(D, r) e−
ω
ε

r

ω/ε

)d/2

, (25)

whereS(D, r) is analytic inD = 2 of the formS(D, r) = 1 + ω
ε r

∑∞
n=1 Sn(r)(2−D)n, and each

Sn(r) has a Laurent expansionSn(r) =
∑nmax

j=−nmin
sn,j rj . Note, that in the limit ofD → 2, the

expression (25) givesrd/2, while for D < 2 it yields upon integration the form (24), ensuring both
properties (i) and (ii). Insertingω/ε = ω2(2−D)2+O(2−D)3 (the linear term in(2−D) has to
vanish) into the ansatz (25) and expanding to second order in2−D provides

g̃(r) = C rd/2

[

1−
d

2

(

S1(r)(2−D) +

(

ω2

2
r −

d − 2

4
S1(r)

2 + S2(r)

)

(2−D)2+ · · ·

)]

. (26)

The first coefficients of the(2−D)-expansion of̃g(r) obtained from (21) read

g̃(r) =
rd/2

Γ(d+2
2 )

{

1 + (2−D)
d

2
C

(

1−
d

2r

)

− (2−D)2
[

d

2
C2

c r+
d

4

(

C
2
−4C2

c

)

−
d2

8

(

2C2
c+C

2
)

+

(

d2

8

(

−C
2
+3C2

c

)

+
d3

8
C

2
)

r−1−
d2

8

(

d

2
−1

) (

C2
c+

d

2
C

2
)

r−2

]}

. (27)

Comparing (26) and (27), one identifiesC = 1/Γ(d+2
2 ), S1 = −C(1− d

2
1
r ) andω2 = 2C2

c , where

Cc(x):=C(x) −C. Note that the terms proportional toC
2

in S2(r) mostly cancel withS1(r)
2, a sign

that the ansatz catches some structure.
The diagrams to be calculated at this order areC andC2

c . On a manifold of toroidal shape, which
is equivalent to periodic boundary conditions, two discrete sums have to be evaluated:

C = SD

[

∑

k6=0

1

k2 −
1

2π(2 − D)

]

= −0.44956 + 0.3583 (2− D) + O(2 − D)2 (28)

C2
c = S2

D

∑

k6=0

1

k4 = 0.152661 + O(2 − D) . (29)
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k is D-dimensional with componentski = 2π/L ni, andni integer. With the results given above, this
leads to

ω = 2εC2
c(2 − D)2 + O(2 − D)3 = 0.305322 ε (2− D)2 + O(2 − D)3 , (30)

which can be compared to the exact result forD = 1 (polymers):ω = ε. As a caveat, note that the
above scheme is not unambiguous, since different ansätze in (25) are possible. Also the second order
term proportional tor in (27) could in principle either be attributed toω2 or S2. More constraints are
necessary to settle this question.

In summary: We have presented a complementary approach to treat the problem of tethered mem-
branes in interaction. We hope that this approach will provefruitful for self-avoiding tethered mem-
branes, with eventual applications for polymers.
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