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1. Introduction

RNA molecules play an important role in all living organisms [1]. They are usually found
in an at least partially folded state, due to the pairing of a base with at most one other
base. A given configuration is thus characterized by the set of base pairings, see figure 1.
These pairings are mostly planar [2]–[4] (see [5] for non-planar corrections), which is what
we will suppose from now on. At high temperatures, in the so-called ‘molten phase’,
energetic considerations only play a minor role and the probability Pij of two RNA bases
to pair is [6]

Pij ∼ |i − j|−ρ, ρ = 3
2
, (1)

where i and j are the labels of the bases counted along the backbone/strand, and n is
the overall size of the RNA molecule, i.e. its total number of bases. In the mathematical
literature these configurations are known as Catalan structures.

At low temperature, the RNA molecule will settle into the optimally paired (or folded)
configuration, i.e. the minimal energy state, as long as this state is reachable in the
available timescale. The optimal fold for a given molecule is a question to be answered by
biology. Since biological sequences are rather specific, much effort has been invested to
understand the properties of a random sequence, termed ‘random RNA’. The idea is that
either the folding properties of random RNA are close to those of biological sequences or,
if not, that they must be characterized in order to understand the deviations present for
biological RNA, giving eventually a hint why nature is organizing in a certain way.

Characterizing random RNA has proven a challenge so far: numerical work [2], [7]–
[9] is restricted to relatively small molecules, with up to maximally 2000 bases [10],
despite the fact that rather efficient polynomial algorithms exist (scaling ∼n3, where
n is the number of bases). Analytical work was pioneered by Bundschuh and Hwa [2, 7].
From their numerical work, they claim that, for large molecules, a random-base model
is indistinguishable from a random pairing-energy model, where the pairing energy εij

between bases i and j is a random Gaussian variable, confirmed in [8]. Bundschuh and
Hwa then conjectured that a phase transition separates the high-temperature molten phase
from a low-temperature frozen phase. Using an RG treatment, Lässig and Wiese [11]
showed analytically that this phase transition exists, and is of second order. They also
calculated the exponents characterizing the transition and, using a locking argument,
extended their findings to the low-temperature (glass) phase. David and Wiese [12]
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Figure 1. RNA molecules, like DNA, are long chain heteropolymers built from
four types of nucleotides: adenine (A), uracil (U), guanine (G) and cytosine
(C). In solution, a single RNA molecule bends back onto itself and folds into a
configuration of loops, stems and terminating bonds, due to pair formation from
nucleotides located on different parts of the polymer strand. The set of base
pairs, Watson–Crick pairs A–U, G–C and the less favorable wobble pair G–U,
defines the secondary structure. Illustration of RNA secondary structures: (a) an
RNA molecule with given base sequence folds into a base pair configuration (b).
In the absence of pseudo-knots the secondary structure may be represented as a
diagram of non-intersecting arches (c).

substantiated these findings by constructing the field theory, showing its renormalizability
to all orders, and performing an explicit two-loop calculation, yielding

ρtransition = ρfrozen ≈ 1.36. (2)

The field theory makes some definite predictions about the transition, which are hard to
verify numerically. A major problem is that the systems are not large enough to analyze
the asymptotic behavior. Under these circumstances, the knowledge of a scaling function
would be very helpful, as would be the knowledge of the form of corrections to scaling.

We therefore propose a simple hierarchical model, where all this can be calculated
analytically3. This is based on the observation that, if the n(n − 1)/2 possible pairing
energies εij are ordered hierarchically

εi1j1 � εi2j2 � · · · � εin(n−1)/2jn(n−1)/2
, (3)

then the construction of the minimal energy configuration is much simplified: first, take
the largest pairing energy εi1j1 and pair bases i1 and j1. Among the remaining pairings,
consider only those allowed by planarity. Among those, choose the one with the largest
pairing energy and pair the corresponding bases. Repeat this procedure until no more
bases can be found. The same idea is at the base of the dynamics for greedy algorithms
of RNA folding: at each time step, choose the most favorable base pairing and fold it.

3 While working on this project, we learned from Markus Müller that he had considered this model in his PhD
thesis [13], but not published elsewhere. He also found the scaling exponent ζ, to be discussed below, but did not
consider the scaling functions and corrections-to-scaling which are the main purpose of this paper.
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In this paper, we systematically analyze the statistical properties of the structures
built in the hierarchical model. In particular, we compute exactly its properties as n → ∞,
for example we prove that in this limit the pairing probability is

P (i, j) ∼ |i − j|−ρ, ρ =
7 −

√
17

2
≈ 1.44. (4)

This result is between the values ρ = 3/2 for the high-temperature phase and ρ = 1.33–
1.36 in the glass phase and at the transition. This indicates that, in the low-temperature
phase of random RNA, collective effects play an important role, which are not present in
the hierarchical model.

We then calculate scaling functions for higher moments of the ‘height function’
(which encodes the pairings) and their finite-size corrections. This is achieved with two
complimentary approaches: generating functions for the arch-deposition model introduced
above and a dual tree-growth process. The advantage is that quantities, which can easily
be calculated in one model, are difficult to obtain in the other, and vice versa. This idea
may be interesting for more general tree-growth processes, since if the dual model can
be constructed there, it would allow us to calculate otherwise inaccessible quantities. For
examples of tree-growth processes, and standard references on graph theory, we refer the
reader to [14]–[19] among the vast existing literature.

The presentation is organized as follows. In section 2, we provide a general framework
for the hierarchical model in terms of recursion relations for finite n. The recursion
relations are analyzed by means of generating functions. In the limit n → ∞ we extract
the scaling behavior of various quantities and compute sub-leading finite-size corrections
in sections 3–5. We compare our results to numerical simulations in section 6. In section 7
we present an alternative tree-growth model which we show to yield equivalent structures
even though the dynamics of their construction is quite different. Several technical points
and extensions are relegated to three appendices.

2. Arch-deposition model

2.1. Arch systems and height functions

We consider a strand with n bases labeled by indices i = 1, . . . , n. Similarly, we use the
same index i to label the segments between consecutive bases i and i + 1. A secondary
structure C is a set of base pairs (i, j) with 1 ≤ i < j ≤ n. C is called planar if any
two (i, j), (k, l) ∈ C are either independent i < j < k < l or nested i < k < l < j. In
what follows, the structures are supposed to be planar. Thus, we may represent a given
structure by a diagram of non-intersecting arches (see figure 2(a)).

Given some structure C, it is natural to ask whether it contains an arch a = (i, j).
This is answered by the contact operator ΦC defined by

ΦC(i, j) :=

{
1 if a ∈ C
0 otherwise.

(5)

For our investigations the so-called height function for the segment i will play a central
role. It is defined as

hC(i, n) :=

i∑
j=1

n∑
k=i+1

ΦC(j, k). (6)
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Figure 2. (a) Arch diagram for a planar structure. (b) Corresponding height
relief, defined in (6).

Figure 3. Building up planar structures via successive arch deposition.

It counts the number of arches above a given segment [i, i + 1], and thus has boundary
conditions hC(0, n) = hC(n, n) = 0. Therefore, the height function hC(i, n) provides a one-
to-one correspondence between C and mountain reliefs (Dyck-like paths) on the interval
[0, n] subject to vanishing boundary conditions and |hC(i + 1, n) − hC(i, n)| = 1 or 0 (see
figure 2(b)). We define the average height by

hC(n) :=
1

n

n−1∑
i=1

hC(i, n). (7)

2.2. The random arch-deposition process

Definition of the model (model A). The structures C are built up in the following way: at
initial time step t = 0, we start with n unoccupied points on the line. At each time step
t, we deposit a new arch as follows. At time step t − 1, we have already a planar system
of t − 1 arches linking 2(t − 1) points. We have m = n − 2(t − 1) free points left, and we
may build m(m− 1)/2 different arches. We now consider the subsets of these arches (i, j)
which keep the arch system planar, when added to the present structure. We choose at
random, and with equal probability, one of these arches and add it to the system at time
t (as depicted in figure 3).

The process is stopped as soon as no more planar deposition is possible. The stopping
time (tstop = number of arches of the final configuration) will vary from configuration to
configuration, since not all points get paired.

We call this arch-deposition process ‘model A’.
In appendix A we define a slightly different deposition model, the compact deposition

model Ā, where no points are left unpaired at the end of the process. We shall see that
this compact model is very similar to the model A introduced here, and has exactly the
same scaling behavior (same universality class).

Hierarchy and recursion for probabilities. Our construction is ‘hierarchical’ in the sense
that each deposition partitions the strand into two non-connected substrands. Since this
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Figure 4. Decomposition of a configuration C in model A.

procedure is performed at random, it naturally induces a probability measure PA(C) on
the set of structures C with a given number of points n. Although it turns out to be a quite
tedious exercise to compute the probabilities for structures, even with only n = 4, 5, 6, . . .
points, we can write a formal yet powerful recursion relation for PA(C). Given C, any
arch a ∈ C may have been the first arch in the construction process (at t = 1). Since the
deposition of a = (i, j), 1 ≤ i < j ≤ n, is not constrained by the presence of any other
arches, its probability is uniform and simply given by 2/[n(n − 1)]. This first step leads
to a separation of the strand into an ‘interior’ part with n1 = j − i − 2 points and an
‘exterior’ part with n2 = n− j + i. The deposition process then grows structures C1 inside
and C2 outside the first arch (see figure 4). The key observation is that these structures
grow independently. Therefore, their joint probability factorizes:

PA(C) =
∑

arch a∈C

2

n(n − 1)
PA(C1)PA(C2). (8)

This recursion relation, together with the initial condition PA = 1 for the n = 0 and n = 1
configurations (no point and a single free point), is sufficient to obtain all probabilities. In
fact, it is this relation that renders the arch-deposition model amenable to exact analytic
calculations.

With the help of PA(C) we can compute averages, i.e. expectation values of an
observable FC via

F = 〈FC〉 =
∑
C

PA(C)FC, (9)

where the sum is carried out over all possible structures with a fixed number n of
points. Throughout this paper, we follow the convention to note objects depending on an
individual structure C with a subscript.

2.3. Summary of results

In this paper, we focus on the mean height at a given point h(i, n) = 〈hC(i, n)〉 and
the probability P (i, j) that two bases located at i and j are paired. The latter is the
expectation value of the contact operator ΦC(i, j), P (i, j) := 〈ΦC(i, j)〉.

Before embarking into calculations, let us briefly summarize some important
properties of these quantities as well as our main results. First, note that the construction
of the height function (6) implies that h(1, n) is the probability that point i = 1 is paired
to any other point 2 ≤ j ≤ n on the strand. Since averaging over structures will lead
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to translational invariance of 〈ΦC(i, j)〉 = 〈ΦC(i + m, j + m)〉, for all m, we can interpret
h(1, n) as the probability that some arbitrary point 1 ≤ i ≤ n is involved in a pair. We
compute h(1, n) for any n and show that it converges to

lim
n→∞

h(1, n) = 1 − e−2 = 0.864 665 . . . . (10)

The full information about all possible structures is contained both in the height profiles
as in the pairing probabilities. In the scaling limit n → ∞, we show that the height
function and the pairing probabilities take the scaling forms

h(i, n) ∼
n→∞

nζH1

(
i

n

)
and P (i, j) ∼

n→∞
n−ρ P

(
|i − j|

n

)
(11)

with scaling functions H1 and P which we compute exactly as well as the scaling exponents
ζ and ρ. From equation (6), we immediately deduce the scaling relation ζ + ρ = 2.

The exponent ζ is also related to the intrinsic fractal dimension (or Hausdorff
dimension) df of the tree structure dual to the arch system by df = 1/ζ . This classical
result follows from the fact that the height hC(i, n) is the number of edges between the
first base and the base i + 1 on the dual tree of the structure C. Thus hC(i, n) is the
geodesic distance between the origin and the point i on the tree.

Therefore it is sufficient to determine the exponent ζ which we show to be

ζ =

√
17 − 3

2
≈ 0.561 553, ρ =

7 −
√

17

2
≈ 1.438 45. (12)

This agrees with [13]. It follows that the average mean height h(n) = 〈hC(n)〉 grows like
nζ for large n. We determine its exact generating function, which allows us to compute
sub-leading corrections to the scaling limit to any desired accuracy.

The analysis of higher moments 〈h(i, n)k〉 naturally raises the question of
multifractality of the arch structures/height profiles. We show that

〈hC(i, n)k〉 ∼
n→∞

nζkHk

(
i

n

)
with ζk = kζ (13)

with scaling functions Hk that we can in principle compute. Using this result we are able
to prove the absence of multifractality.

In appendix B we indicate how to define and study multicorrelators along the same
lines, i.e. correlations between the height functions at different points along the chain, of
the form

〈hC(i1, n)k1 · · ·hC(ip, n)kp〉.

2.4. Recurrence relations and generating functions

We now exploit the recursion relation (8) to compute the moments of the height function
〈hC(i, n)k〉, k = 0, 1, 2, . . .. Our general strategy is to extract their properties by analyzing
the behavior of their corresponding generating functions.

doi:10.1088/1742-5468/2008/04/P04008 8
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Figure 5. The decomposition used in order to derive the recurrence relation for
the average height function h(i, n).

2.4.1. Recurrence relation for the height function: the principle. We want to evaluate the
height hC(i, n) for a given structure C. The first arch a = (j, k) splits C into the two
independent substructures C1 and C2 with lengths n1 = n− k + j − 1 and n2 = k − j − 1,
respectively. We now consider the height over segment [i, i + 1]. With respect to the first
arch a, this segment may have three different locations, as indicated in figure 5. (a) if
i < j, the segment is situated on the part of the strand which belongs to C1 and thus the
height is given by hC1(i, n−k + j−1). (b) The case i ≥ k is similar, but we must shift the
position i → i−k+j−1. We thus find the height hC1(i−k+j−1, n−k+j−1). (c) Finally,
if j ≤ i < k, we have to count the height for the structure C2 with the readjusted position
i → i−j, the arches in C1 over C2 and the contribution from a. These three terms together
are hC1(i − 1, n − k + j − 1) + hC2(i − j, k − j − 1) + 1.

Upon averaging and using (8) we obtain the recursion relation for the average height
function:

n(n − 1)

2
h(i, n) =

∑
i<j<k<n

h(i, n−k+j−1) +
∑

0<j<k≤i

h(i−k+j−1, n−k+j−1)

+
∑

0<j≤i<k<n

[h(j−1, n−k+j−1) + h(i−j, k−j−1) + 1]. (14)

In the scaling limit n → ∞, we may insert the scaling ansatz h(i, n) ∼ nζH(i/n) from (11)
and replace sums by integrals, which yields after a few manipulations a Volterra-like double
integral equation for the scaling function H(x). It is possible, though tedious, to show
that the integral equation allows a solution H(x) ∝ xζ(1 − x)ζ with the scaling exponent
ζ = (

√
17 − 3)/2. Besides the quite complicated treatment of the integral equation we

have found evidence for this scaling form from numerical simulations (see section 6).
In the following, we shall develop a more systematic approach to extract the scaling

behavior which is based on recursion relations like (14). Furthermore, this allows us to
compute sub-leading corrections to the scaling limit and therefore to exactly quantify
finite-size contributions.

2.4.2. Generating functions for the local height moments. Since the relations for the height
h are additive in h, it is convenient to deal with the exponential function as a generating
function of the moments. We thus consider the generating function for the height h at
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site i for a strand of length n:

E(i, n; z) = 〈exp(z hC(i, n))〉 =

∞∑
k=0

zk

k!
〈hC(i, n)k〉. (15)

We obtain the recurrence equation for E:

n(n − 1)

2
E(i, n; z) =

∑
i<j<k

E(i, n − k + j − 1; z) +
∑

j<k≤i

E(i − k + j − 1, n − k + j − 1; z)

+ ez
∑

j≤i<k

E(i − 1, n − k + j − 1; z)E(i − j, k − j − 1; z). (16)

Note the crucial factorization in the last term due to the independence of the substructures
C1 and C2 inside C once the first arch a is chosen. It is convenient to introduce the ‘grand-
canonical’ generating function

G(u, v; z) =
∞∑

n=0

n∑
i=0

〈
ezhC(i,n)

〉
uivn−i =

∞∑
n=0

n∑
i=0

E(i, n; z)uivn−i, (17)

which contains the contribution of strands with arbitrary length n, and which is left/right
symmetric G(u, v; z) = G(v, u; z). The discrete recursion relation for E becomes the
nonlinear partial differential equation

[
1

2

(
u2 ∂2

∂u2
+ v2 ∂2

∂v2

)
+ uv

∂2

∂u∂v

]
G(u, v; z)

=

[
u2

(1 − u)

(
u

∂

∂u
+ 1

)
+

v2

(1 − v)

(
v

∂

∂v
+ 1

)]
G(u, v; z) + uv ez G(u, v; z)2.

(18)

We directly derive initial conditions for G(u, v; z) at u = 0 (or v = 0) from the series
development (17). Since by definition the height function vanishes at the ends of the
strand, we have

G(0, v; z) =
∞∑

n=0

〈
ezhC(0,n)

〉
vn =

∞∑
n=0

vn =
1

1 − v
. (19)

For z = 0 we find G(u, v; 0) = (1 − u)−1(1 − v)−1.

2.4.3. Generating functions for the local height h(i, n) and h(n). From G we obtain the
generating function for the height h(i, n) itself:

F (u, v) =
∞∑

n=0

n∑
i=0

〈hC(i, n)〉uivn−i =
∂

∂z
G(u, v; z)

∣∣∣∣
z=0

. (20)

doi:10.1088/1742-5468/2008/04/P04008 10

http://dx.doi.org/10.1088/1742-5468/2008/04/P04008


J.S
tat.M

ech.
(2008)

P
04008

A growth model for RNA secondary structures

Using (18) and G(u, v; 0) = (1 − u)−1(1 − v)−1, we conclude that F satisfies the linear
partial differential equation[
1

2

(
u2 ∂2

∂u2
+ v2 ∂2

∂v2

)
+ uv

∂2

∂u∂v

]
F (u, v) =

[
u2

(1 − u)

(
u

∂

∂u
+ 1

)
+

v2

(1 − v)

(
v

∂

∂v
+ 1

)

+ 2
u

1 − u

v

1 − v

]
F (u, v) +

u

(1 − u)2

v

(1 − v)2
(21)

with initial conditions F (0, v) = F (u, 0) = 0. It is straightforward to obtain the generating
function of the sum of the heights nh(n) (or total area below the height curve h(i, n),
0 ≤ i ≤ n) from F (u, v) by setting u = v:

K(v) := F (v, v) =

∞∑
n=0

(
n∑

i=0

〈hC(i, n)〉
)

vn =

∞∑
n=0

nh(n)vn. (22)

Equation (21) implies that K is a solution of the ordinary differential equation

(1 − v)2K ′′(v) − 2v(1 − v)K ′(v) − 4(2 − v)K(v) =
2

(1 − v)2
. (23)

From h(0) = h(1) = 0 we infer the initial conditions K(0) = K ′(0) = 0. Analysis of (21)
and (23) in the limit u, v → 1 will give access to the scaling limits of the height function
as well as its average h(n).

3. Mean height and the scaling exponent ζ

In this section, we derive the exact scaling form of the mean height h(n) from the
differential equation (23) for K(v). In order to get an idea of the scaling limit, let us
suppose that h(n) scales like

h(n) ∼
n→∞

c nζ. (24)

Since ζ > 0, insertion of this ansatz into (22) implies that the generating function K(v)
is analytic in the vicinity of v = 0, with convergence radius 1. Its closest singularity is
situated at v = 1, with a power-like divergence

K(v) ∼
v→1−

c Γ(ζ + 2)

(1 − v)2+ζ
. (25)

Inserting this ansatz into (23), the most singular term is p(ζ)(1 − v)−2−ζ , with p(ζ) =
ζ2 + 3ζ − 2, and must vanish. The roughness exponent ζ is thus a solution of p(ζ) = 0,
i.e.

ζ± =
−3 ±

√
17

2
. (26)

We thus identify the roughness exponent with the larger solution

ζ = ζ+ =

√
17 − 3

2
= 0.561 552 . . . . (27)

This is the value obtained (using a different argument) by Markus Müller in [13]. Let us
recall that the roughness exponent ζ is related to the pairing probability exponent ρ by
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ζ +ρ = 2. Moreover, its inverse is equivalent to the intrinsic fractal dimension (or intrinsic
Hausdorff dimension) df = 1/ζ. Thus for our model

ρ =
7 −

√
17

2
= 1.438 447 . . . , df =

√
17 + 3

4
= 1.780 77 . . . . (28)

This exact value for the roughness exponent ζ is larger than the one for generic arch
systems (with weight factors given by the Catalan statistics, i.e. generic trees or branched
polymers in the dual picture), which corresponds to RNA in the homopolymer phase (no
disorder), where

ζ0 = 1
2
, ρ0 = 3

2
, df0 = 2. (29)

However, it is smaller than the value observed in numerical simulations for random
RNA [7, 8]

ζrandom RNA ≈ 0.66, (30)

and that of two-loop RG [12] ζ = 0.64 for random RNA.
We now solve equation (23) exactly. First, note that a particular solution of the full

equation is given by

K0(v) = − 1

(1 − v)2
. (31)

Consequently, we need an appropriate solution K1(v) of the homogeneous version of (23).
Performing the transformations

K1(v) = e−2v(v − 1)ζ+1 u(z), z = 2(1 − v), ζ =

√
17 − 3

2
, (32)

the equation for K1 is changed to a confluent hypergeometric equation for u(z):

zu′′(z) + [2(ζ + 2) − z] u′(z) − (ζ + 1)u(z) = 0. (33)

After a few manipulations, the (appropriate) general solution of this differential equation
for K(v) = K0(v) + K1(v) is of the form

K(v) =
C+

(1 − v)ζ+2
M(−ζ,−2 − 2ζ ; 2 − 2v)

+C−(1 − v)1+ζM(ζ + 3, 2ζ + 4; 2 − 2v) − 1

(1 − v)2
, (34)

where M(a, b, z) is the confluent hypergeometric function [20]. The coefficients C+ and C−
are fixed by the constraint that K(v) be analytic at v = 0 and that its Taylor expansion
starts at order v2. Hence C+ and C− are given by complicated and not especially
enlightening combinations of confluent hypergeometric functions at z = 2. Numerically
we find

C+ = 0.713 263 . . . C− = 0.519 299 . . . . (35)

The first terms of the Taylor expansion of K are rationals

K(v) = v2 + 4
3
v3 + 8

3
v4 + 56

15
v5 + · · · . (36)
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The asymptotic limit n → ∞ is equivalent to v → 1−. In this case, K(v) has a power-law
divergence and its most singular terms contribute to the leading orders of h(n). A Taylor
expansion of (34) yields

K(v) =
C+

(1 − v)2+ζ

(
1 +

ζ

1 + ζ
(1 − v) − ζ(1 − ζ)

(1 + ζ)(1 + 2ζ)
(1 − v)2

)
− 1

(1 − v)2
+ · · · , (37)

where we have omitted the terms which remains finite v → 1−. This expression allows
us to compute the scaling behavior for the average height h(n) by inversion of the
transformation. After some algebra, we find for n � 1

h(n) =
C+

Γ(ζ + 2) n Γ(n + 1)

{
Γ(2 + ζ + n) + ζ Γ(1 + ζ + n)

− ζ(1 − ζ)(1 + ζ)

(1 + 2ζ)
Γ(ζ + n)

}
− 1 − n−1 + · · ·

= 0.513 34 nζ − 1 + 1.314 98 nζ−1 − n−1 + 0.414 13 nζ−2 + O(nζ−3). (38)

Therefore at leading order we indeed find the scaling law h(n) ∼ c nζ with c =
C+/Γ(ζ + 2) = 0.513 34 . . .. Note that, in principle, all amplitudes in (38) as well as
subsequent corrections may be computed exactly in terms of hypergeometric functions
and the gamma function. However, we shall omit these rather lengthy expressions and
content ourselves with numerical values. This explicit solution will be useful to test
numerical simulations and the domain of validity for the scaling ansatz (see section 6).

4. Scaling behavior and scaling functions

4.1. Scaling form for the F function

In this section we show that the average height function h(i, n) = 〈hC(i, n)〉 takes the
following scaling form in the limit of long strands:

〈hC(i, n)〉 =
n→∞

nζ H1(x), x =
i

n
. (39)

This is, in fact, a particular case of the general scaling form for the moments of h

〈hC(i, n)k〉 =
n→∞

nkζ Hk(x), x =
i

n
. (40)

The partial differential equation (21) indicates that the generating function F (u, v) has
in R

2 singular lines at u = 1 and at v = 1. These singularities govern the long-strand
limit n → ∞ with respectively n − i = O(1) and i = O(1). The scaling limit n → ∞,
i/n = O(1) is governed by the singularity at u = v = 1.

To prove validity of the scaling (39), it is sufficient to show that in the limit u, v → 1
the generating function F (u, v) scales as

F (u, v) =
u,v→1

τ−2−ζF1(ω) (41)

with

τ = 1 − u + v

2
, σ =

v − u

2
, ω = σ2/τ 2. (42)
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In terms of the new variables σ and τ , the scaling limit is τ and σ → 0, ω = σ2/τ 2 = O(1)
fixed. In this scaling limit the transformation (20) 〈hC〉 → F becomes a double Laplace
transform. The corresponding transformation H1(x) → F1(ω) is

F1(ω) ≈
∫ ∞

0

dn

∫ 1

0

dx nζ+1(1 −
√

ωτ − τ)nx(1 +
√

ωτ − τ)n−nxH1(x)

≈
∫ ∞

0

dn

∫ 1

0

dx nζ+1e−(
√

ω+1)τnx e−(1−
√

ω)τn(1−x)H1(x)

= Γ(2 + ζ)

∫ 1

0

dxH1(x)
[
1 −

√
ω + 2x

√
ω
]−(2+ζ)

. (43)

To obtain the equation for F1(ω), we keep the most singular terms in (21) when u, v → 1.
This gives[
1

2

(
∂2

∂u2
+

∂2

∂v2

)
+

∂2

∂u∂v
− 1

1 − u

∂

∂u
− 1

1 − v

∂

∂v
− 2

(1 − u)(1 − v)

]
F (u, v) � 0. (44)

Using ansatz (41), we obtain a hypergeometric differential equation for F1(ω)

ω(1 − ω)F ′′
1 (ω) +

[
3 + 2ζ

2
− 7 + 2ζ

2
ω

]
F ′

1(ω) − (ζ + 4)

2
F1(ω) = 0. (45)

Thus the scaling function F1(ω) is a hypergeometric function

F1(ω) = D 2F1(1 + ζ/2, (3 + ζ)/2, ζ + 3/2, ω), (46)

where D denotes some constant. We explicitly compute D from the constants C+ and
C− obtained in (34) and (35) since K(v) = F (v, v) � (1 − v)−(2+ζ)F1(0) = τ−(2+ζ)F1(0)
as v → 1. One obtains

D = C+ = 0.713 263 · · · . (47)

As we shall see in the next subsection, the form (46) for F1(z) implies a very simple scaling
function for the average height.

4.2. Scaling form for the average height function h(i, n)

Proposition. The scaling limit H1 of the average height distribution h(i, n), as defined
in (39), is given by a simple ‘beta law’ with exponent ζ

H1(x) = E xζ(1 − x)ζ , ζ =

√
17 − 3

2
(48)

and the amplitude

E =
Γ(2 + 2ζ)

(1 + ζ)Γ(1 + ζ)3
C+ = 1.457 17 . . . , (49)

where C+ is given in (47).

Discussion and proof. The fact that the average height H1(x) scales as xζ for small x
was already known by Müller [13]. The simple exact form for H1(x) is quite remarkable
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and unexpected. Our first hints for (48) came from the numerical simulations that we
describe in section 6.

To prove (48) it is simpler to start from (48) and to show that it implies the form (46)
for F1(z) (the transformation H1 → F1 is linear and one-to-one). Inserting (48) into the
definition for F (u, v) when u, v → 1 we have (this is equivalent to using (43))

F (u, v) � E
∑
i,j

iζ jζ

(i + j)ζ
ui vj � E

∫ ∞

0

di

∫ ∞

0

dj
iζ jζ

(i + j)ζ
e−i(1−u) e−j(1−v)

=

√
πE

21+2ζ

Γ(1 + ζ)Γ(2 + ζ)

Γ(3/2 + ζ)
(1 − v)−(2+ζ)

2F1

(
1 + ζ, 2 + ζ, 2 + 2ζ ;

u − v

1 − v

)
. (50)

We now use the quadratic identity for hypergeometric functions [20]

2F1(a, b, 2b, z) =
(
1 − z

2

)−a

2F1

(
a

2
,
1 + a

2
,
2b + 1

2
,

(
z

2 − z

)2
)

(51)

in the special case a = 2 + ζ , b = 1 + ζ . We obtain

F (u, v) =

√
πE

21+2ζ

Γ(1 + ζ)Γ(2 + ζ)

Γ(3/2 + ζ)

[
1 − u + v

2

]−2−ζ

× 2F1

(
2 + ζ

2
,
3 + ζ

2
,
3

2
+ ζ ;

[
v − u

2 − u − v

]2
)

. (52)

Upon identification with (41) (and using the duplication formula for the Γ-function [20])
we recover the scaling solution (46) for F1. ��

4.3. Scaling for higher moments of the height function

In this section, we study the higher moments of the local height hC(i, n) at site i for a
strand of length n, 〈hC(i, n)k〉. Once again, the starting point is a generating function

Gk(u, v) =

∞∑
n=0

n∑
i=0

uivn−i 〈hC(i, n)k〉 =
∂k

∂zk
G(u, v; z)

∣∣∣∣
z=0

. (53)

G(u, v; z) denotes the solution of (18). From this equation, we are able to recursively
determine a generating function Gk by a partial differential equation involving functions
Gk′, k′ < k. For example, G2 is a solution of the linear equations[
1

2

(
u2 ∂2

∂u2
+ v2 ∂2

∂v2

)
+ uv

∂2

∂u∂v
− u2

(1−u)

(
u

∂

∂u
+ 1

)
− v2

(1−v)

(
v

∂

∂v
+ 1

)]
G2(u, v)

= uv

(
1

(1−u)2(1−v)2
+

4

(1−u)(1−v)
F (u, v) + 2F (u, v)2

+
2

(1−u)(1−v)
G2(u, v)

)
, (54)

where the right-hand side involves the k = 0 and k = 1 moments. F (u, v) = G1(u, v) is
the generating function for the average height 〈hC(i, n)〉 studied previously.
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4.3.1. Averaged k-moments. Let us first consider the generating function for the ‘integral’
of the averaged k-moment

K(t; z) = G(t, t; z) =

∞∑
k=0

zk

k!
Kk(t) (55)

with

Kk(t) =

∞∑
n=0

tn
n∑

i=0

〈hC(i, n)k〉. (56)

We already know K0(t) = (1 − t)−2 and K1(t) from (34). K(t; z) satisfies the nonlinear
differential equation[

1

2

∂2

∂t2
− t

1 − t

∂

∂t
− 2

1 − t

]
K(t, z) = ezK2(t; z). (57)

The scaling limit corresponds to t → 1−. In this limit, we expect the functions Kk(t) to
scale as

Kk(t) � bk(1 − t)−2−ζk , ζk = k ζ. (58)

This implies that the average of the k-moment of the local height scales with the length
of the strand n as

1

n

n∑
i=0

〈hC(i, n)k〉 � ak nζk, ak =
bk

Γ(2 + kζ)
. (59)

The coefficients ak can be computed recursively from the first non-trivial one a1 � 0.513 34
that we computed previously, see (38). Indeed from (58) it follows that K(t, z) takes the
scaling form

K(t, z) =
t→1−

1

(1 − t)2
K(u) =

1

(1 − t)2

∞∑
k=0

bk

k!
uk, (60)

with the scaling variable u = z(1 − t)−ζ. Corrections are of the order of (1 − t)1−ζ ;
considering ezK(t, z), they would be of the order of (1 − t).

Using (57) and inserting the scaling function K(u), we obtain up to terms of the order
of (1 − t) the equation

K(u) + uK′(u) + 1
2
ζ2u2K′′(u) = K(u)2. (61)

We obtain

b2 = b2
1

5 +
√

17

6
, b3 = b3

1

92 + 22
√

17

59
, · · · . (62)

Numerically, we find

K(u) = 1 + 0.713 243u + 0.386 756u2 + 0.187 27u3 + 0.085 1827u4

+ 0.037 2364u5 + 0.015 835u6 + 0.006 599 14u7 + 0.002 707 89u8 + · · · . (63)

As an application, let us evaluate the average height fluctuations by considering the
quantity

Δ2 =
1

n

n∑
k=1

(
〈hC(k, n)2〉 − 〈hC(k, n)〉2

)
≈

(
a2 −

E2Γ(2ζ + 1)

Γ(4ζ + 2)

)
n2ζ ≈ 0.055 658 n2ζ. (64)

We thus conclude that the fluctuations of the height function remain large in the scaling
limit (see section 6).
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4.3.2. General scaling function. We now consider the general scaling limit of the generating
function G(u, v; z) for the moments of hC(i, n). The correct ansatz is

G(u, v; z) =
u,v→1

τ−2G(z̃, ω) (65)

with

z̃ = zτ−ζ , τ = 1 − u + v

2
, ω =

(
v − u

2 − u − v

)2

. (66)

In the scaling limit we obtain for G(z̃, ω) the equation[
2ω2 ∂2

∂ω2
+

ζ2

2
z̃2 ∂2

∂z̃2
+ 2ζω

∂2

∂ω∂z̃
+

3−7ω

1−ω
ω

∂

∂ω
+

1−(1+ζ)ω

1 − ω
z̃

∂

∂z̃
+

1 − 3ω

1 − ω

]
G(z̃, ω)

= G(z̃, ω)2. (67)

Expanding in z̃ we find the scaling limit for the generating functions of the moments of
hC(i, n) via a Taylor expansion

G(z̃, ω) =

∞∑
k=0

z̃k

k!
Gk(ω). (68)

At order k = 0 and k = 1 we recover our previous results (46)

G0(ω) =
1

1 − ω
, G1(ω) = F1(ω) (69)

and for k ≥ 2 recursive second-order linear differential equations for the Gk(ω) with
coefficients and second members depending on the previous Gk′(ω) (k′ < k). From Gk(ω)
we obtain the scaling form for the moments

〈hC(i, n)k〉 ∼
n→∞

nkζ Hk(x), x =
i

n
. (70)

The scaling function Hk(x) is related to Gk(ω) by the integral transformation

Gk(ω) = Γ(2 + kζ)

∫ 1

0

dxHk(x)
[
1 −

√
ω + 2x

√
ω
]−(2+kζ)

, (71)

which generalizes (43).

4.4. Simple scaling or multifractality?

Studying the roughness properties of the height function in the scaling limit, we naturally
are led to the question of multifractality. We shall argue that within our model the
height-profile statistics is solely governed by the scaling exponent ζ . This excludes strong
fluctuations which might lead to multifractal scaling. To this end, let us consider the
moments of the local height variations

Δhk = 〈|hC(i, n) − hC(j, n)|k〉. (72)

In the scaling limit n → ∞, we expect a relation of the type

〈|hC(i, n) − hC(j, n)|k〉 ∝ |i − j|ζk (73)
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in the regime 1 � |i − j] � n. If ζk = kζ there is simple scaling, whereas ζk > kζ (at
least for large enough k) implies multifractal behavior.

We now argue that we are in the first case and there is no evidence for multifractality.
Indeed, it is easy to show (using the height picture, and using translation invariance to
move the point i to the origin of the strand) that the following general inequality holds:

〈|hC(i, n) − hC(j, n)|k〉 ≤ 〈|hC(
, n)|k〉, 
 = |j − i|. (74)

We know from (70) that for 
 � n this scales as

〈|hC(
, n)|k〉 ∝ nkζHk(
/n). (75)

In the limit n → ∞, 
 finite, 〈|hC(
, n)|k〉 remains finite, since it is bounded by |
|k. This
implies that Hk(x) should behave for small x as

Hk(x) �
x→0

xkζ. (76)

This can be shown more rigorously using (67) for the generating function G(z̃, ω) of the Gk

and the integral relation (71) between the Gk and the Hk. The small-x behavior of Hk(x)
is related to the ω → 1 behavior of Gk(ω). One can check from (67) that the function
G(z̃, ω) must behave when ω → 1 as

G(z̃, ω) ∼
ω→1

Ω(z̃)

1 − ω
+ O(log(1 − ω)). (77)

Using (71), this implies that

Gk(ω) ∼
ω→1

Ωk

1 − ω
⇒ Hk(x) �

x→0
xkζ . (78)

We conclude that

〈|hC(i, n) − hC(j, n)|k〉 ≤ const. |i − j|kζ, for 1 � 
 � n, (79)

which implies that ζk ≤ kζ . However, we know that ζk ≥ kζ from general correlation
inequalities. Hence it follows that

ζk = k ζ, (80)

which proves the absence of multifractal behavior, at least for moments of |hC(i, n) −
hC(j, n)|.

4.5. Corrections to scaling

We can study the corrections to scaling for the height function 〈hC(i, n)〉. Let us come
back to equation (21) for the generating function F (u, v) defined by (20). A particular
solution of (21) is

F0(u, v) = − 1

(1 − u)(1 − v)
. (81)

Thus the general solution of (21) is of the form

F (u, v) = F0(u, v) + C+F+(u, v) + C−F−(u, v), (82)
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where F+(u, v) and F−(u, v) are two linearly independent solutions of the linear equation
with no rhs:

[u2

2

∂2

∂u2
+

v2

2

∂2

∂v2
+ uv

∂2

∂u∂v
− u2

(1 − u)

(
u

∂

∂u
+ 1

)

− v2

(1 − v)

(
v

∂

∂v
+ 1

)
− 2uv

(1 − u)(1 − v)

]
F (u, v) = 0. (83)

It is possible to go to the scaling variable τ and ω used in equations (41) and (65)

u = 1 − τ(1 + y), v = 1 − τ(1 − y), ω = y2 (84)

and to take for F+ and F− the solutions which can be written respectively as

F+(u, v) = τ−2−ζ+F̃+(τ, ω), F−(u, v) = τ−2−ζ−F̃−(τ, ω), ζ± =
±
√

17 − 3

2
(85)

(ζ+ = ζ is the roughness exponent), such that F̃+(τ, ω) and F̃−(τ, ω) have an asymptotic
expansion in powers of τ in the scaling limit τ → 0, and are regular in the domain
ω ∈ [0, 1[. Indeed (83) becomes for F̃± the linear equations

[
−2(τ−1)2τζ± + 2τ 3ω2 (2+ζ±) − 2 (τ−1)ω

(
4+2τ 2+ζ±+2τ (1+ζ±)

)]
F̃±(τ, ω)

+ 2
[
−3+2τ 3(ω−1)2 − 2ζ± − 2τ (ω−1) ζ± + ω (7+2ζ±)

]
ω

∂

∂ω
F̃±(τ, ω)

+ [−2τ 3ω2 − 2(τ−1)ω(−2+τ(ζ±−1) − ζ±) + 2(τ−1)2(1+τ+ζ±)]

× t
∂

∂t
F̃±(τ, ω) + (ω−1)4ω2 ∂2

∂ω2
F̃±(τ, ω) + 4 (τ−1) τω

∂2

∂τ∂ω
F̃±(τ, ω)

+ (τ−1)2τ 2 ∂2

∂τ 2
F̃±(τ, ω) = 0. (86)

Note that in the scaling variables the particular solution is

F0(u, v) = −τ−2(1 − ω)−1. (87)

Although not simple, (86) implies that its solutions can be expanded in powers of τ .
Indeed, let us expand in τ the functions F̃±(τ, ω)

F̃±(τ, ω) =
∞∑

k=0

τk

k!
F̃ (k)

± (ω). (88)

Setting τ = 0 in (86) fixes the equation for the dominant term to

2ω(ζ±+4)F̃ (0)
± (ω) + 2 ((7+2ζ±)ω − (3+2ζ±)) ω

∂

∂ω
F̃ (0)

± (ω)

+ (ω−1) 4 ω2 ∂2

∂ω2
F̃ (0)

± (ω) = 0. (89)

This is nothing but the hypergeometric differential equation (45) for the scaling function
F(ω) obtained previously. Its solution is thus

F̃ (0)
± (ω) = 2F1(1 + ζ±/2, (3 + ζ±)/2, ζ± + 3/2; ω). (90)
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The expansion in τ gives a hierarchy of hypergeometric-like differential equations for the

correction-to-scaling functions F̃ (k)
± (ω) with a non-zero rhs involving the previous scaling

functions F̃ (k′)
± (ω), 0 ≤ k′ < k. It is easy to check that these equations admit a unique

solution F̃ (k)
± (ω) which is analytic at ω = 0 and regular in the domain ω ∈ [0, 1[ (with a

singularity at ω = 1).
From this analysis, the coefficients C+ and C− in the full scaling expansion (82) are

those already calculated in section 3, (35):

C+ = 0.713 263 . . . and C− = 0.519 299 . . . . (91)

The important result is that, using the inverse transformation F (u, v) → 〈hC(i, n)〉, the
average height function takes the general form

〈hC(i, n)〉 = nζ+

( ∞∑
k=0

n−kH(k)
+ (x)

)
+ nζ−

( ∞∑
k=0

n−k H(k)
− (x)

)
− 1, (92)

where the dominant term is the scaling function obtained in (48)

H(0)
+ (x) = H1(x) = E xζ(1 − x)ζ , (93)

the leading subdominant term is the last term −1 in (92). In fact, since we know that the
leading order scales like nζ and therefore only grows relatively slowly with n, the correction
−1 turns out to be important, even at n = O(103), a case that we shall consider below.

The sub-leading corrections H(k)
± (x) are distributions on [0, 1] and may, in principle, be

computed from the functions F̃ (k)
± (ω) via inverse Laplace transforms.

5. Pairing probabilities

Up to now we focused on the height function and its scaling laws. However, for the original
RNA problem pairing probabilities constitute more natural objects. In this section, we
compute the single-base pairing probability as well as the scaling limit for the pairing
probability P (i, j).

5.1. Single-base pairing probability

As mentioned above, h(1, n) is the probability that a given base is involved in a pair. We
obtain the generating function g(v) of h(1, n) from F (u, v), introduced in (20), through
differentiation

g(v) := v
∂F (u, v)

∂u

∣∣∣∣
u=0

=

∞∑
n=0

h(1, n)vn. (94)

According to (21), it is a solution of the ordinary differential equation

(1 − v)g′′(v) − 2vg′(v) =
2

1 − v
, g(0) = g′(0) = 0. (95)
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The initial conditions are due to the fact that h(1, 0) = h(1, 1) = 0. For our purposes, it
is sufficient to solve for g′(v) and compare it to the derivative of the series expansion (94):

g′(v) =
1 − e−2v

(1 − v)2
=

∞∑
n=1

nh(1, n)vn−1. (96)

Comparison of the series development on both sides leads us to the explicit expression

h(1, n) = −
n−1∑
k=0

(−2)k+1

(k + 1)!
+

1

n

n−1∑
k=0

(−2)k+1

k!
. (97)

In the limit of large strands n → ∞, the series converges and we obtain

lim
n→∞

h(1, n) = 1 − 1

e2
. (98)

For large n � 1, the corrections to this result can be determined as follows:

h(1, n) = 1 − 1

e2
− 2

ne2
+ r(n), |r(n)| ≤ 2n

n! ln n
, (99)

where the bound is obtained by approximating the remaining terms in the sum by an
integral. We shall reconsider this probability later when comparing the arch-deposition
model to a tree-growth model.

5.2. Scaling law for the pairing probability P (i, j)

In this section we compute the scaling function P as defined in (11). First of all, P (i, j)
is indeed only a function of the distance—despite the fact that we have singled out an
origin. Therefore we expect for large n the scaling form (11)

P (i, j) ∼
n→∞

n−ρ P
(
|i − j|

n

)
. (100)

With this ansatz, relation (6) in terms of the scaling functions for the height field and the
pairing probability turns into the integral equation

nζH1(z) = n2−ρ

∫ z−ε

0

ds

∫ 1

z+ε

dtP(t − s). (101)

This identifies

ρ = 2 − ζ. (102)

The dimensionless scaling functions for height and pairing probability are then related by

H1(z) =

∫ z−ε

0

ds

∫ 1

z+ε

dtP(t − s). (103)

Note that we have introduced a small ultraviolet cutoff ε in order to circumvent possible
singularities as t − s → 0. Upon differentiating twice, we find the harmless expression

H′′
1(z) = −(P(1 − z + ε) + P(z + ε)) =

ε→0
−(P(1 − z) + P(z)). (104)
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It is clear that the limit ε → 0 will not lead to any problems since potentially divergent
terms have canceled out. Since P(z) is invariant with respect to the transformation
z → 1 − z, it is possible to deduce its exact form

P(z) = −H′′
1(z)/2 = E

ζ

2
zζ−2(1 − z)ζ−2 [1 − ζ + 2(2ζ − 1)z(1 − z)] . (105)

We see that P(z) factorizes into a beta law with characteristic exponent ρ = 2 − ζ and
a polynomial correction. Note that a pure beta law is obtained if and only if ζ = 1/2;
this corresponds to the RNA homopolymer roughness exponent. Since the amplitude E
is known from (49), we have entirely characterized the scaling law.

6. Numerical simulations

Numerical simulations not only provide a verification of our analytical results in the scaling
limit n → ∞ but are useful in order to quantify finite-size corrections. In this section,
we present a simple algorithm for random generation of hierarchical arch structures.
Furthermore, we compare the statistics obtained from random sampling to the exact
solutions.

6.1. Outline of the algorithm

We give a description of the algorithm which we have used to generate hierarchical
structures C: information about arches is stored in the ‘adjacency matrix’ ΦC(i, j). In
order to take into account the planarity condition we label each basis i = 1, . . . , n with a
‘color’ c(i) ∈ Z. During the construction process, two bases i, j may be linked by an arch
if and only if c(i) = c(j). Furthermore, we introduce two special colors: if a structure C
contains an arch (i, j) we color its endpoints with c(i) = 1 and c(j) = −1 (which turns
out to be convenient).

The deposition of arches is carried out in the following way: initially all colors are
set to c(k) = 0, k = 1, . . . , n and all entries of the adjacency matrix to ΦC(i, j) = 0, i, j =
1, . . . , n. First, we randomly choose a base i among all unpaired bases. Next we collect all
bases k which may be paired to i without violation of the planarity constraints, i.e. with
the same colors c(k) = c(i), k �= i, in an ordered list 
. If 
 is empty, the point may be
removed from the set of unpaired points and the procedure restarted. From the list 
 of
compatible bases we randomly choose a second base j. For simplicity, let us suppose that
i < j (the converse case is similar). We store information about the so-created arch (i, j)
by setting ΦC(i, j) = 1. Moreover we label the starting point and the endpoint of the
arch with colors c(i) = 1 and c(j) = −1. Finally, in order to mark the new substructure
due to the insertion of this arch, we set c(k) = i + 1 for all i < k < j. We repeat the
procedure until no more points can be paired without violation of planarity. See figure 6
for illustration of a single cycle.

Once this procedure is finished, the matrix ΦC(i, j) contains all information about
the structure. To compute the height field, the colors c(i) may be used as well: if we
set c(i) = 0 for all i such that c(i) > 1, then we obtain a sequence {c(i)}n

i=1 with
entries 0,±1. It precisely corresponds to the discrete derivative of the height function
c(i) = hC(i, n) − hC(i − 1, n). Therefore, we can reconstruct

hC(i, n) =

i∑
k=1

c(k). (106)
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Figure 6. A single step of the construction of hierarchical structures: (a) random
choice of the point i. Point j is chosen amongst all points of the same color as i
(light gray). (b) Once the arch (i, j) is determined all the points i < k < j are
re-colored in order to mark the new substructure (dark gray).

For a given strand of length n, we perform this construction N times in order to average
over the samples. This algorithm is a variant of the point process to be discussed in
section 7. Though not being dynamically equivalent to the arch-deposition model, the key
feature of partitioning into independent substructures leads to the same final probability
law in configuration space.

6.2. Results

We have constructed structures with up to n = 6500 bases in order to test our theoretical
predictions. For n ≤ 200 bases, we have sampled 106 structures whereas, for n > 200
bases, 105 structures per data point were sampled.

Single-base pairing probability h(1, n). Results for the probability that a base is paired,
which equals the height h(1, n), is presented in figure 7(a). We find agreement with the
theoretical prediction from (97) within error bars.

Averaged mean height h(n), and its fluctuations. In figure 7(b) we compare results for the
averaged mean height h(n) to the theoretical prediction in the limit n → ∞. Taking into
account all terms of (38) is sufficient to show that the difference between numerical results
and theory is of the order of the statistical error, see figure 8(a).

In order to compare our data to the results of section 4.3.1 on averaged k-moments, we
evaluate the height fluctuations via Δ2 =

∑n
k=1(〈hC(k, n)2〉−〈hC(k, n)〉2)/n in figure 8(b).

The data shows good agreement with the prediction from (64).

Averaged height function h(k, n). Results for the averaged height functions are shown in
figures 9(a) and (b). In order to point out universal behavior we plot h(k, n)/nζ as a
function of x = k/n. In figure 9(b), we compare the data to the first-order corrected
scaling limit n−ζH(k/n) − 1 where H(x) denotes the scaling function from (48). The
deviations Δh(k, n) = h(k, n) − n−ζH(k/n) + 1 are large at the ends k = 1 and n.

We examine the deviation of the height function h(k, n) from the scaling limit
by evaluation of its value at k = n/2. Figure 10 shows the rescaled deviation
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Figure 7. (a) Deviation of the single-base pairing probability h(1, n) from 1−e−2

as a function of n. The dashed line is the theoretical prediction (97). (b) Log–
log plot of the average mean height h(n) as a function of the number of bases
for 5 ≤ n ≤ 6500. The straight line corresponds to the theoretical prediction
from (38), while the dashed line indicates the scaling limit. (The error bar is of
point size.)

Figure 8. (a) Deviations of the averaged mean height h(n) from the theoretical
prediction, normalized by the result of (38). Clearly, the deviations are smaller
than the error bars. (b) Log–log plot of the averaged second moment Δ2. (The
error bar is of point size.) The straight line presents the scaling limit.

n−ζ(h(n/2, n) − nζH(k/n) + 1). Numerically, we find

n−ζ [h(n/2, n) − nζH(k/n) + 1] = O(n−1), (107)

in agreement with the scaling form (92).

7. Growth model

The model considered in the previous sections (model A) is a deposition model. The size
of the system is fixed; to study the folding of a strand with n bases, we start from a set
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Figure 9. (a) Scaling plot for the height function H(k, n) for two strand lengths
n = 100 and n = 6000. The dashed lines correspond to the scaling function plus
the first finite-size corrections to the scaling limit n−ζ(nζH(k/n)−1). (b) Residual
scaled deviations Δh(k, n)/nζ for different strand lengths n = 50, 100, 200.

Figure 10. Log–log plot of deviations of the height function h(k, n) at k = n/2
as a function of n. The straight line corresponds to the function to n−1.

of n unoccupied points {1, . . . , n} on the line and successively deposit arches in a planar
way until the system is full (no deposition possible). Systems with different size n and n′

are a priori different.
In sections 7.1 and 7.2, we show that this arch-deposition model A is equivalent to a

stochastic growth model G for arch systems, where we start from a system with no points.
At each time step t we deposit a new point according to a simple stochastic process and
create a new arch whenever it is possible. We show that in the growth model G the
statistics for the arches at time t is the same as the statistics of arches of the deposition
model A for a system of N = t points.

In section 7.3, we shall also show that this stochastic growth process can be
reformulated (by a simple geometric duality) as a tree-growth process T. In section 7.4,
as an application, we compute in a simple way local observables of these models, such as
the asymptotic (at large time) distribution of the number of branches for a vertex of the
growing tree, which is related to the asymptotic distribution of substructures (maximal
arches) in the arch model. Finally, in section 7.5, we study the dynamics of this growth
model and compute time-dependent pairing correlation functions.
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Figure 11. Model G: successive deposition of points on a circle. Unlinked points
are marked in white, linked points in black.

7.1. Arch-growth models via point deposition

7.1.1. Closed-strand growth model G. Let us first define the model G (closed model),
illustrated in figure 11.

At time t = 0 we start from a closed line (a circle) with no point. At time t = 1 we
deposit a point on the circle. Assume that at time t we have already deposited t points
and constructed a maximal planar arch system between these points. Namely there are
na(t) arches and nf(t) = t − 2na(t) free points such that it is impossible to construct a
new arch linking two free points without crossing an already constructed arch (planarity
condition).

At time t + 1 we deposit a (t + 1)th point with equiprobability 1/t on the t intervals
separating the t already deposited points. If it is possible to draw a planar arch between
this last point and one of the free points (i.e. an arch which does not intersect one of
the existing arches) we add this arch. (It is clear that this arch is unique, otherwise the
existing planar arch system at time t would not be maximal.) Otherwise the new point
stays free.

It is important to stress that in this process no definition of an ‘origin’ or first point
is given, since at each step we ‘forget’ in which order the previous points were deposited
and keep only the resulting arch structure. Therefore two configurations (with n points)
which differ by a Zn rotation are equivalent. In contrast, since the deposition process is
planar, two configurations which differ by a reflection (which is a non-planar operation)
are non-equivalent. This is illustrated in the following drawings, where we give all possible
configurations from n = 2 up to 9 vertices, with their probabilities. As an example, the
last configuration in figure 11 (n = 6) is not reflection symmetric. It appears in ((110),
number 3) together with its reflection symmetric ‘partner’ (number 5), with the same
probability weight (since the growth process is reflection symmetric):

C2 =
{

1
}

, C3 =
{

1
}

, (108)

C4 =

{
2

3
,
1

3

}
, C5 =

{
1

3
,
2

3

}
, (109)

C6 =

{
1

3
,

2

15
,
1

5
,

2

15
,
1

5

}
, (110)

C7 =

{
8

45
,

4

15
,

1

15
,
1

5
,

8

45
,
1

9

}
, (111)
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Figure 12. An explicit example of a structure with n = 600 points.

C8 =

{
2

105
,

8

45
,

8

63
,

17

315
,

4

45
,

4

63
,

4

105
,

8

315
,

4

105
,

8

315
,

2

21
,

2

21
,

16

315
,

4

63
,

4

105

}
, (112)

C9 =

{
5

63
,

7

90
,

2

63
,

1

105
,

4

63
,

7

90
,

1

21
,

31

315
,

1

21
,

19

315
,

2

63
,

19

315
,

4

105
,

2

63
,

13

630
,

11

420
,

13

630
,

1

30
,

1

90
,

1

30
,

11

420
,

11

420
,

11

420
,

13

630

}
. (113)

Furthermore figure 12 shows a sample for n = 600 points.

7.1.2. Open-strand growth model G′. Let us now define a slightly different model G′ (open
model).

At time t = 0 we start from an open line with no point. At time t = 1 we deposit a
point on the line. At time t, we assume that we have already deposited t points on the
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Figure 13. Model G′: successive deposition of points on an open line. Unlinked
points are marked in white, linked points in black.

Figure 14. From a configuration C of G′ to a configuration C of G.

line and constructed a maximal planar arch system between these points. Namely, there
are na(t) arches and nf(t) = t−2na(t) free points such that any link between two of these
free points necessarily intersects one of the na(t) existing arches. At time t + 1 we then
deposit a (t + 1)th point, with equiprobability 1/(t + 1) on the t + 1 intervals separated
by the t already deposited points. If it is possible to draw a planar arch between this last
point and one of the free points we add this arch, otherwise the new point stays free. This
is illustrated in figure 13.

Note that model G′ can also be viewed as model G with an additional inactive point,
marking the cut.

7.1.3. Relation between model G and model G′. It is clear that a configuration C of model
G can be obtained from a configuration C of model G′ by closing the line and that all
configurations C that are equivalent by a discrete rotation give the same C (see figure 14).
In other words, the configurations C of model G are the Zn orbits of the configuration
space of G′ under the action of discrete rotations.

7.2. Equivalence between the growth model G′ and the deposition model A

It is clear that the arch configurations C of model G′ are the same as the arch configurations
of model A. It is less obvious that the probability for each configuration in both models
is the same.

Theorem. The probability P (C) of any configuration (i.e. class of diagrams) C in models
G′ and A are the same:

PA(C) = PG′(C). (114)

To prove the theorem we start from the recursion equation (8) for the configuration
probabilities in the arch-deposition model A, which we obtained in section 2.1, and rewrite
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here for completeness:

PA(C) =
∑

arch a∈C

2

n(n − 1)
PA(C1) PA(C2). (115)

It is illustrated in figure 15. This recursion relation, together with the initial condition
P = 1 for the n = 0 and the n = 1 configurations (no point and a single free point), is
sufficient to obtain all probabilities.

We now prove that the probabilities in model G′ obey the same recursion relation.
For this we first need to relate the probabilities in model G to those in model G′.

Lemma. Let C be a configuration with n points in model G′ (successive deposition of points
on a line) and C its equivalent configuration in model G (successive point depositions on
a circle). Let s(C) be the symmetry factor of the configuration C, i.e. the number of cyclic
rotations that leave C invariant. Then

PG′(C) =
s(C)

n
PG(C). (116)

Proof of the lemma. It is clear that in model G′ any deposition process of n points on
the line is uniquely specified by the bijection i → x(i) where x(i) is the position at time
t = n of the point deposited at time i. x is a bijection on {1, n}, i.e. a permutation. Any
process is equiprobable, therefore the probability for any x is p(x) = 1/n!. It is equivalent
to successively create the arches as soon as this is possible, or to create all the arches
at time n, with the constraint that any point x(i) can only be connected to the points
x(j) with j < i. To any permutation x is associated a unique arch system C and the
probability for C is

PG′(C) =
1

n!
number of x → C =

1

n!
card{x : x → C}. (117)

Two configurations C and D of model G′ are equivalent in model G if they are equivalent
by some Zn rotation r:

C ≡ D ⇐⇒ C = D. (118)

This means that, if x is a permutation for C, y = r ◦ x is a permutation for D. Hence
there are as many permutations for C as for D:

C ≡ D ⇒ PG′(C) = PG′(D). (119)

We now count the number of C which are equivalent by rotation and give C. This is
obviously

number of C → C =
n

s(C)
. (120)

Now we go back to the model G. Any point-deposition process on the circle is also
in bijection with a permutation, but now with one point fixed, for instance x(1) = 1.
Therefore

PG(C) =
∑
C→C

PG′(C) =
n

s(C)
PG′(C). (121)
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We now go back to the proof of the theorem. In model G any configuration C (with n
points) can be constructed by first depositing a couple of points (1, 2), which form a first
arch a1 and then by depositing n1 points to the right of a and n2 points to the left, with
of course n1 + n2 = n − 2. Let us denote C1 and C2 the arch configurations to the right
and to the left of a1 in C, see figure 16. These configurations are arch configurations of
model G′, not of model G, since the arch a1 cuts the circle into two segments. Once the
first two points are deposited, amongst the (n − 1)! possible ways to deposit successively
the last n−2 points, each either to the left or to the right of a1, there are (n−2)! possible
ways to deposit n1 points to the right and n2 points to the left, independently of (n1, n2).
In other words, the distribution for (n1, n2) is uniform:

prob(n1, n2) =
1

n − 1
, n1 + n2 = n − 2. (122)

This can be shown easily by using the recursion relation

prob(n1, n2) = prob(n1 − 1, n2)
n1

n1 + n2 + 1
+ prob(n1, n2 − 1)

n2

n1 + n2 + 1
, (123)

with initial condition prob(0, 0) = 1. Once this is done, the conditional probabilities to
obtain C1 and C2 are independent and given by PG′(C1) and PG′(C2).

The total probability to obtain a configuration C in model G is therefore given by a
sum over all (first) arches a1 in C. Each term of the sum is the probability that a1 is the
first deposited arch, and that one obtains C1 and C2 in process G′. This is illustrated
in figure 16. There is a counting factor 2/s(C) associated with each initial arch a1, where
the factor of 2 accounts for the two possible choices for the first point 1 on a1, and
the symmetry factor 1/s(C) is there to avoid multiple counting when several arches are
equivalent. Therefore we have finally

PG(C) =
∑

arches a∈C

2

s(C)

1

n − 1
PG′(C1) PG′(C2). (124)

Using lemma (116) the symmetry factor disappears and we obtain for the probability in
model G′ the recurrence equation

PG′(C) =
∑

arch a∈C

2

n(n − 1)
PG′(C1) PG′(C2). (125)

This is exactly the same recurrence relation as for model A. The initial conditions are the
same for n = 0 and 1, which proves the theorem.

��

7.3. Equivalent tree-growth processes

7.3.1. Duality with trees. There is a well-known dual description of planar arch systems
in terms of planar trees. Represent faces by vertices, and arches by links between two
vertices. In our model, we have also free points deposited on the external circle but not
yet linked to another point by an arch. Every face of the planar arch system has at most
one such free point. We represent such a face by a white vertex ◦ with a white arrow
pointing towards the free point. Every face with no free vertex is represented by a black
vertex •. We thus obtain a dual description in term of decorated planar trees with at
most one arrow per vertex (see figure 17). Within this dual description, the model G is a
planar tree-growth model T defined as follows.
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Figure 15. Probability recursion (115) as decomposition of a configuration C in
model A.

Figure 16. The decomposition of a configuration of model G used in the proof.
To be compared with figure 15.

7.3.2. Tree-growth processes T. At t = 0 we start from the tree with a single black vertex
and no link. We define the tree-growth process as follows. As illustrated in figure 18, at
each time step we

• either add an arrow to any black vertex, so that it becomes a white vertex (for a black
vertex with k links, i.e. a k-vertex, there are k different ways to add an arrow);

• or add a second arrow to a white vertex (for a white vertex with k legs there are k+1
different possibilities); and then split this vertex along a line joining the two arrows,
in order to make a pair of black vertices, and to join them by a new link (which will
be ‘orthogonal’ to the two arrows, i.e. dual to the link made by the two arrows), as
illustrated in figure 18.

This splitting/budding process for internal vertices is a specific feature of our growth
model.

7.3.3. Another tree-growth process T′. A similar growth process is obtained if we forget
about the arrow position for ◦-vertices. One considers trees with black vertices •, and
white vertices ◦ if there is an arrow (see figure 19). Indeed it is easy to see that at each step
the position of the arrow around a white vertex is equiprobable, i.e. there is a probability
1/k for an arrow to be at a given position on a type ◦ k-vertex. With this property, we
consider undecorated trees made out of •- and ◦-vertices. We start from a single • vertex
at time t = 0. At each time step we can, as illustrated in figure 20,
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Figure 17. First planar arches configurations and their dual decorated trees
configurations (here n = 0–6).

• either transform a black k-vertex into a white vertex with probability weight w•→◦ = k
(where k is the coordination number of the black vertex);

• or transform a white k-vertex into a pair of black vertices, one k1-vertex and one k2-
vertex, with k1 + k2 = k +2 (and k1 and k2 > 0), with a uniform weight w◦→•• = 2/k
for each occurrence.

This choice of weights

w•→◦(k) = k and w◦→••(k) =
2

k
(126)

makes processes T and T′ equivalent since there are k(k + 1)/2 different processes
• → ◦ → •• and k + 1 ordered pairs (k1, k2) such that k1 + k2 = k + 2.

Let us denote the number of black vertices • and of white vertices ◦ for some tree
configuration obtained at time t by n•(t) and n◦(t), respectively. For any tree created
through this growth process up to time t, it holds the Euler relation

2n•(t) + 3n◦(t) = t + 2. (127)

This relation is proven by induction. For t = 0, n• = 0 and n◦ = 1. During a time step
t → t + 1 we either have (n•, n◦) → (n• − 1, n◦ + 1), or (n•, n◦) → (n• + 2, n◦ − 1). In
both cases 2n• + 3n◦ increases by 1, as does t + 1.
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Figure 18. Elementary growth steps for the decorated tree model: at each step
we add an arrow to some vertex; if there is already an arrow the vertex splits in
two.

Figure 19. The position of an arrow around a ◦-vertex is uniformly distributed.

The transition probability pC→C′ to go from C → C′ is defined from the probability
weights wC→C′ by

pC→C′ =
wC→C′∑
C′′ wC→C′′

. (128)

Thus the probability P (C, t) at time t to be in a configuration C is obtained recursively
by

P (C, t) =
∑
C′

pC′→C P (C′, t − 1) =
∑
C′

wC′→C∑
C′′

wC′→C′′
P (C′, t − 1). (129)

Note also that the dual of an arch configuration C in model G′ is a rooted tree Trooted

(decorated with white arrows, or with black and white vertices as explained above). Thus
model G′ is dual to a growth model for rooted trees (see figure 21).

7.4. Large-time asymptotics for local observables

In this section we consider the large-time asymptotics for the point-deposition model G. It
allows us to compute local observables defined on the tree structures such as average vertex
densities, coordination numbers, etc, in the large-size or long-time limit. More precisely,
this approximation amounts to neglecting fluctuations in the limit t → ∞ which are of
order 1/t. This allows to transform the problem into a stationary process.
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Figure 20. Growth processes for a k = 4 vertex in the undecorated vertex model.
For k = 4 the process • → ◦ has probability weight w(k) = k = 4 and each
process ◦ → •• has w(k) = 2/k = 1/2.

Figure 21. Open planar arch systems are dual to rooted trees. The root is
indicated by the barred line pointing to the top.

7.4.1. Vertex densities. The simplest observables are local observables, such as the average
number of vertices of a given type. Let us denote by n•(k, T ) and n◦(k, T ) the total
number of k-vertices of type • and ◦ in a tree configuration T obtained at time t, starting
from • at time t = 0. We have shown above in (127) that at any time t and for any tree
configuration T

∞∑
k=1

(2n•(k, T ) + 3n◦(k, T )) = t + 2. (130)

Similarly, starting from a given tree configuration T at time t, the total number of weighted
moves t → t + 1 (i.e. of ways to add a new point on the dual configuration) is

Σ(t) =

∞∑
k=1

(kn•(k, T ) + (k + 1) n◦(k, T )) = t. (131)

This last equality can be shown by induction, by a similar argument as the one used for
the Euler relation (127).

For simplicity we denote by bk(t) = 〈n•(k, T )〉t and wk(t) = 〈n◦(k, T )〉t the average
number of black and white k-vertices at time t. We now write down a master equation
for their time evolution during a step t → t + 1. To this end, we have to evaluate the
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transition probabilities for transformations of black and white vertices. During the time
step t → t + 1 the probability for a given black k-vertex to become white is

p(• → ◦) =
k

Σ(t)
=

k

t
. (132)

Similarly, the probability for a given white k-vertex to split into a pair of black k1- and
k2-vertices (with k1 + k2 = k + 2) is

p(◦k → •k1•k2) =
k + 1

Σ(t)
=

k + 1

t
. (133)

Hence the master equations for the vertex numbers are given by

bk(t + 1) = bk(t) +
1

t

(
−k bk(t) + 2

∑
q≥k−1

wq(t)

)
, (134)

wk(t + 1) = wk(t) +
1

t

(
k bk(t) − (k + 1) wk(t)

)
. (135)

Let us note that the master equations are exact, thanks to (131). We have not made any
assumption on the suppression of fluctuations. This is a peculiarity of the present model,
compared to the case of more general tree-growth models.

In the large-time limit t → ∞ we expect the vertex numbers bk(t) and wk(t) to be
extensive, i.e. proportional to t. Therefore, we define (assuming that the limit exists) the
density of black and white vertices as

βk = lim
t→∞

bk(t)

t
and ωk = lim

t→∞

wk(t)

t
. (136)

Consequently, from the master equations we find two coupled recurrence equations

βk =
2

k + 1

∑
q≥k−1

ωq, ωk =
k

k + 2
βk, (137)

whereas relation (131) implies

∑
k

k βk + (k + 1) ωk = 1. (138)

The solution of these equations for the densities is (see appendix C for the derivation)

βk =
1

e2

2k

(k + 1)!
, ωk =

1

e2

k 2k

(k + 2)!
. (139)
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7.4.2. Results for vertices and related local observables. The explicit expressions for the
vertex densities allow us to determine some interesting quantities. For a system with t
bases, the average number of black and white vertices are

n•(t) = t ×
∑
k>0

βk = t × e2 − 3

2 e2
and n◦(t) = t ×

∑
k>0

ωk = t × 1

e2
. (140)

Therefore, the average number of vertices is given by

n•(t) + n◦(t) = t ×
(
1 − e−2

)
. (141)

We are already familiar with the expression on the left-hand side: because of the duality
between trees and arch diagrams, we have just calculated twice the average number of
arches in the large-strand limit. However, this is nothing but the number of bases (here
t) times the single-base probability (98). In fact, this observation is consistent with the
value for the fraction of white vertices

ω =
n◦

t
=

∑
k>0

ωk = e−2 = 0.135 335, (142)

because of the relation limn→∞ h(1, n) = 1 − ω.
In order to learn more about the average tree structure, we compute the average

coordination numbers for large times:

〈k•〉 =

∑
k>0

k βk∑
k>0

βk

=
e2 + 1

e2 − 3
= 1.911 36, 〈k◦〉 =

∑
k>0

k ωk∑
k>0

ωk

=
e2 − 3

2
= 2.194 53. (143)

On average, vertices have two legs. The probability for a branching, i.e. the probability
to have a vertex with at least three points is∑∞

k=3 ωk + βk∑∞
k=1 ωk + βk

=
3e2 − 17

3 (e2 − 1)
= 0.269 584. (144)

More specifically, the probabilities p(k) to have a branching with a black or white k-
vertex are: p(1) = 0.417 38, p(2) = 0.313 035, p(3) = 0.166 952, p(4) = 0.069 5634,
p(5) = 0.023 8503, . . .. We thus conclude that branchings (i.e. vertices with at least three
legs) are not rare.

7.4.3. Substructures and exterior arch statistics. The arch-tree duality allows us to use
the tree-growth model to analyze the number of substructures of arch diagrams. A
substructure is defined as a maximal (or exterior) arch which has no further arch above
itself (see figure 22).

We characterize an arch diagram by (k, σ) where k denotes the number of
substructures (number of maximal arches) and σ = • or ◦ if the root vertex is black
or white. We are interested in the large-time probability distribution p(k, σ) that the
‘state’ of the arch system is (k, σ). Consequently, the probability that the arch diagram
has k substructures is given by p(k) = p(k, •) + p(k, ◦). A (k, •) state is dual to a tree
with a black k-vertex with a marked leg. The same holds for (k, ◦) states, with a white k-
vertex having a marked leg. Taking into account the combinatorial factor of k for marking
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Figure 22. Example of a configuration with k = 3 substructures and white-
colored root.

a black k-vertex, and a similar factor of k+1 for a white k-vertex, the probabilities p(k, •)
and p(k, ◦) are proportional to the fraction of black or white vertices respectively:

p(k, •) =
kβk∑

k(kβk + (k + 1)ωk)
= kβk, (145)

p(k, ◦) =
(k + 1)ωk∑

k(kβk + (k + 1)ωk)
= (k + 1)ωk, (146)

where we have used the Euler relation
∑

k(kβk + (k + 1)ωk) = 1 to simplify the results.
Using (139) we obtain

p(k, •) =
2k

e2(k + 1)(k − 1)!
and p(k, ◦) =

2k

e2(k + 2)(k − 1)!
. (147)

With the probability distribution for the number k of substructures

p(k) = p(k, •) + p(k, ◦) =
2kk(2k + 3)

e2(k + 2)!
, (148)

we are able to evaluate its moments 〈km〉 =
∑

k kmp(k) in order to characterize the arch
diagrams. The average number of substructures is 〈k〉 = (5e2 + 1)/(2e2) ≈ 2.567 67, to
be compared with the result 〈k〉Catalan = 3 found for generic trees, also called Catalan
structures [21]; this corresponds to the probability law for high temperatures given in (1).
For its variance we find 〈k2〉 − 〈k〉2 = (9e4 − 16e2 − 1)/(4e4) ≈ 1.704 08 which is smaller
than the corresponding value 〈k2〉Catalan − 〈k〉2Catalan = 4. We therefore conclude that
hierarchically constructed structures fluctuate less than generic, equiprobable Catalan
structures.

7.5. Dynamical correlations

We can also compute dynamical quantities in the tree-growth model G (and G′). The
dynamics of this model is interesting in its own, but note that its dynamics is different
from the arch-deposition dynamics of model A. Let us give a few examples.
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7.5.1. Probability of non-immediate pairing. Consider process G. Having deposited a point
at time t, one might ask for the probability that it does not get paired immediately with
a free point already present. This equals the probability that we add an arrow to a black
vertex, not to a white one. At large t it is

∑
k≥1

k βk =
1 + e2

2 e2
= 0.567 668. (149)

7.5.2. Time-dependent pairing probabilities. What is, in model G, the probability Ψ(i, j)
that the point deposited at time t1 = i is paired with the point deposited at time t2 = j > i,
as a function of i and j? This amounts to the following event. At time t = t1 = i a point is
deposited on the circle so that no arch is formed, i.e. a certain black k-node is converted to
a white k-node. The probability of this event is bk(i) k/i, see (132). This particular node
then remains white up to time t = t2 = j where it is converted to a pair of black nodes.
In the time step t → t + 1 ≤ j the probability of keeping the white k-node unchanged is
1− (k + 1)/t, while the probability of splitting it is (k + 1)/t, see (133). Thus, if we start
from a k-node at time t = 1, the probability is

Ψk(i, j) =
bk(i) k

i

[
j−1∏

t=i+1

(
1 − k + 1

t

)]
k + 1

j
(150)

and the total probability is

Ψ(i, j) =
∑

k

bk(i) k

i

[
j−1∏

t=i+1

(
1 − k + 1

t

)]
k + 1

j
. (151)

It is interesting to consider the large-time, i.e. large-size, limit t → ∞ with i, j → ∞,
i/j = O(1). Indeed, using bk(t) � t βk and

j−1∏
t=i+1

(
1 − k + 1

t

)
≈

(
i

j

)k+1

, (152)

the time-dependent pairing probability takes a simple scaling form

Ψ(i, j) =

[ ∞∑
k=1

1

j

(
i

j

)k+1
]

2k

e2 (k − 1)!
=

2

e2

i2

j3
e2i/j =:

1

j
ψ(i/j). (153)

Note also that in the large-time, i.e. large-size, limit t → ∞ a point deposited at a finite
time i gets paired with probability one. Indeed

∫ ∞

i

Ψ(i, j) dj =
1 + e2

2 e2
= 0.567 668 (154)

is the probability (149) of non-immediate pairing.
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8. Conclusions and outlook

To summarize, inspired from the subject of RNA folding, we have introduced and studied
a growth model of planar arch structures (which can be viewed as an arch-deposition
process). The construction of arch structures is similar to processes generated by greedy
algorithms. The arch-growth model turns out to be amenable to analytical calculations.
We have calculated the generating functions for the local height, and their moments. This
allowed us to obtain the scaling exponent ζ for the height, the exponent ρ for the pairing
probability, the corresponding scaling functions in the limit of long strands n → ∞, as
well as finite-size corrections. We also proved the absence of multicriticality. These results
were then confirmed by numerical simulations for systems of sizes up to n = 6500.

In a second step, we have defined an equivalent tree-growth model. This model
involves growth by vertex splitting as well as by vertex attachment. This growth process
allows us to generate RNA configurations with arbitrarily large strands (number of bases).
This allows us to obtain quantities such as, for example, the probability, that a point gets
paired, analytically.

This work leaves open many interesting questions:

• Some properties (e.g. distances on the tree, fractal dimension) are easy to study in the
arch-deposition formulation, while some other properties (e.g. substructure statistics)
are easier in the tree-growth formulation. It would be interesting to have a better
understanding of this fact.

• The equivalence between the arch-deposition process and the tree-growth process is
very specific to models A and G. We have not been able to find a tree-growth process
which is equivalent to the compact arch-deposition model Ā, although this model Ā
is in the same universality class as the non-compact arch-deposition model A.

• Is there a tree-growth process which gives the statistics of planar arches in the
high-temperature phase where all arch structures have the same probability (i.e. the
statistics of the so-called ‘generic trees’ or mean-field branched polymers)?

• Arch structures and trees appear in many problems in physics, mathematical physics,
combinatorics, computer science, etc, in particular in integrable systems (Razumov–
Stroganof conjecture, loop models), random permutations, random matrix models
and interface growth. Are the kind of models introduced in this paper related to
these problems?

Finally, since our scaling exponent ζ = (
√

17 − 3)/2 deviates from the value found
for random RNA ζ ≈ 0.66, we conclude that the low-temperature phase of random RNA
is governed by rules which are more complicated than the greedy algorithm. It would be
interesting to find a refined scheme that yields statistics closer to random RNA in order
to comprehend the nature of the glassy phase of random RNA.

Acknowledgments

This work is supported by the EU ENRAGE network (MRTN-CT-2004-005616) and the
Agence Nationale de la Recherche (ANR-05-BLAN-0029-01 and ANR-05-BLAN-0099-01).
The authors thank the KITP (NSF PHY99-07949), where this work was started, for its
hospitality. We are very grateful to M Müller for stimulating discussions, and providing us

doi:10.1088/1742-5468/2008/04/P04008 39

http://dx.doi.org/10.1088/1742-5468/2008/04/P04008


J.S
tat.M

ech.
(2008)

P
04008

A growth model for RNA secondary structures

with a copy of his PhD thesis. We also thank R Bundschuh, P Di Francesco, T Jonsson,
L Tang and A Rosso for useful discussions.

Appendix A. The compact arch-deposition model Ā

In the compact arch-deposition model one deals with strands with an even number of
bases 
 = 2n, and the arches are always between an even and an odd base a = (even, odd)
or (odd, even). At the end of the deposition process, there are no free bases and there
are always n = 
/2 arches. The recursion relation (8) for the probabilities PĀ(C) for the
configurations C becomes in this model

PĀ(C) =
∑

arch a∈C

1

n2
PĀ(C1) PĀ(C2). (A.1)

The recursion relation for the generating function of the height

FĀ(u, v) =
∞∑

n=0

�=2n∑
i=0

uiv�−i 〈h(i, 
)〉Ā (A.2)

is easily derived and is

1

4

(
u

∂

∂u
+ v

∂

∂v

)2

FĀ(u, v) = uv

(
1 + uv

(1 − u2)(1 − v2)

)2

+

[
u2

1 − u2

(
u

∂

∂u
+ 1

)
+

v2

1 − v2

(
v

∂

∂v
+ 1

)
+ 2uv

1 + uv

(1 − u2)(1 − v2)

]

× FĀ(u, v) (A.3)

(to be compared with equation (21) obtained for the non-compact model A).
The scaling limit 
 → ∞ is still given by the singularity at u, v → 1. In this limit the

dominant (most singular) terms are

1

4

(
∂

∂u
+

∂

∂v

)2

FĀ(u, v) =

[
1

2(1 − u)

∂

∂u
+

1

2(1 − v)

∂

∂v
+

1

(1 − u)(1 − v)

]
FĀ(u, v). (A.4)

This is the same equation than equation (44) for the scaling limit of the generating function
F (u, v) for the non-compact model A. Therefore the scaling limit for the non-compact
model A and the compact model Ā are the same. The same result holds for the higher
moments correlation functions and the N -point correlators.

Finally, let us mention that, although the deposition models A and Ā are very similar,
we have not been able to construct a growth model (i.e. a point-deposition model) which
could be equivalent to the compact arch-deposition model Ā.

Appendix B. Multicorrelators

We can extend the recurrence equations (14) and (15) to compute correlation functions
for heights at several points of the strand. Let us consider the two-point correlators. They
are the expectation values, at two points i and j, of

〈hC(i1, n)k1hC(i2, n)k2〉. (B.1)
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Figure B.1. The six different ways to deposit the first arch (k, l) w.r.t. the two
points i and j correspond to the six different terms in the rhs of (B.4)

A generating function for these correlators is

G2(u, v, w; z1, z2) =
∑

0≤i<j≤n

ui vj−i wn−j〈ez1hC(i,n)ez2hC(j,n)〉. (B.2)

The recurrence equation is obtained by considering all the possible positions for the first
arch (k, l) with respect to the two points i and j (see figure B.1) Denoting by L the length
operator

L :=

(
u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w

)
(B.3)

and G(u, v; z) the one-point function studied in section 4.3, we obtain the linear PDE for
G2:

1
2
L(L−1)G2(u, v, w; z1, z2)

=

[
u2

1 − u

(
u

∂

∂u
+1

)
+

v2

1 − v

(
v

∂

∂v
+1

)
+

w2

1 − w

(
w

∂

∂w
+1

)

+ uv ez1 G(u, v; z1) + vw ez2 G(v, w; z2) + uw ez1+z2 G(u, w; z1 + z2)

]

× G2(u, v, w; z1, z2). (B.4)

Each term in the rhs of (B.4) corresponds to one of the positions in figure B.1 (in the
same order). The boundary conditions are given by the cases u = 0, v = 0 or w = 0
where the two-point function G2 reduces to a one-point function G = G1 or a zero-point
function G0.

Similarly, we may consider the three-point function

G3(u, v, w, x; z1, z2, z3) =
∑

0≤i≤j≤k≤n

〈uivj−iwk−lxn−kez1h(i,n)+z2h(j,n)+z3h(k,n)〉.

G3 satisfies a linear PDE with coefficients involving the one-point and two-point functions
G and G2.
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Appendix C. Large-time asymptotics for the vertex densities

This appendix contains a detailed presentation of the computation of the vertex densities
for large times. We start from the Euler relation

∞∑
k=1

(k βk + (k + 1)ωk) = 1 (C.1)

and

βk =
2

k + 1

∞∑
q=k−1

ωq , ωk =
kβk

k + 2
. (C.2)

Taking these two last relations together, we find

(k + 1)βk

2
= ωk−1 +

(k + 2)βk+1

2
=

(k − 1)βk−1

k + 1
+

(k + 2)βk+1

2
(C.3)

⇒ (k + 2)2βk+1 = (k + 2)(k + 3)βk+1 + 2kβk. (C.4)

This leads to the following differential equation for the generating function B(z) =∑∞
k=1 βkz

k:
(

z
d

dz
+ 1

)2

(B(z) − β1z) =
d

dz

(
z

d

dz
+ 1

) (
B(z) − β1z − β2z

2
)

+ 2z2B′(z). (C.5)

Using the fact that β2 = 2β1/3, one finds

z(z − 1)B′′(z) − (2z2 − 3z + 2)B′(z) + B(z) = −2β1, (C.6)

whose solution is

B(z) = −2β1 + C1
e2z

z
+ C2

1 − 2z

z
. (C.7)

The simple pole at z = 0 is removed via setting C = C1 = −C2. Furthermore, consistency
requires B(z = 0) = 0, which yields C = β1/2. Thus, the generating function is determined
up to a factor

B(z) = β1
e2z − 1 − 2z

2z
= β1

∞∑
k=1

2k

(k + 1)!
zk ⇒ βk =

β1 2k

(k + 1)!
. (C.8)

The overall factor β1 is obtained by insertion of these expression into (C.1). The result is

β1

∑
k=1

k(2k + 3)

(k + 2)!
2k = β1e

2 = 1, (C.9)

so that β1 = e−2. Therefore, we obtain the vertex densities

βk =
2k

e2 (k + 1)!
, ωk =

2k k

e2 (k + 2)!
. (C.10)
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